Derivatives 2nd Edition Sundaram Test Bank

$26.99$50.00 (-46%)

In stock

Derivatives 2nd Edition Sundaram Test Bank.

Download sample

This is completed downloadable of Derivatives 2nd Edition Sundaram Test Bank

Product Details:

Derivatives makes a special effort throughout the text to explain what lies behind the formal mathematics of pricing and hedging. Questions ranging from ‘how are forward prices determined?’ to ‘why does the Black-Scholes formula have the form it does?’ are answered throughout the text. The authors use verbal and pictorial expositions, and sometimes simple mathematical models, to explain underlying principles before proceeding to formal analysis. Extensive uses of numerical examples for illustrative purposes are used throughout to supplement the intuitive and formal presentations.

 

Table of Content:

  1. Chapter 1: Introduction
  2. 1.1 Forward and Futures Contracts
  3. 1.2 Options
  4. 1.3 Swaps
  5. 1.4 Using Derivatives: Some Comments
  6. 1.5 The Structure of this Book
  7. 1.6 Exercises
  8. Part One: Futures and Forwards
  9. Chapter 2: Futures Markets
  10. 2.1 Introduction
  11. 2.2 The Functioning of Futures Exchanges
  12. 2.3 The Standardization of Futures Contracts
  13. 2.4 Closing Out Positions
  14. 2.5 Margin Requirements and Default Risk
  15. 2.6 Case Studies in Futures Markets
  16. 2.7 Exercises
  17. Appendix 2A: Futures Trading and US Regulation: A Brief History
  18. Appendix 2B: Contango, Backwardation, and Rollover Cash Flows
  19. Chapter 3: Pricing Forwards and Futures I: The Basic Theory
  20. 3.1 Introduction
  21. 3.2 Pricing Forwards by Replication
  22. 3.3 Examples
  23. 3.4 Forward Pricing on Currencies and Related Assets
  24. 3.5 Forward-Rate Agreements
  25. 3.6 Concept Check
  26. 3.7 The Marked-to-Market Value of a Forward Contract
  27. 3.8 Futures Prices
  28. 3.9 Exercises
  29. Appendix 3A: Compounding Frequency
  30. Appendix 3B: Forward and Futures Prices with Constant Interest Rates
  31. Appendix 3C: Rolling Over Futures Contracts
  32. Chapter 4: Pricing Forwards and Futures II: Building on the Foundations
  33. 4.1 Introduction
  34. 4.2 From Theory to Reality
  35. 4.3 The Implied Repo Rate
  36. 4.4 Transactions Costs
  37. 4.5 Forward Prices and Future Spot Prices
  38. 4.6 Index Arbitrage
  39. 4.7 Exercises
  40. Appendix 4A: Forward Prices with Convenience Yields
  41. Chapter 5: Hedging with Futures and Forwards
  42. 5.1 Introduction
  43. 5.2 A Guide to the Main Results
  44. 5.3 The Cash Flow from a Hedged Position
  45. 5.4 The Case of No Basis Risk
  46. 5.5 The Minimum-Variance Hedge Ratio
  47. 5.6 Examples
  48. 5.7 Implementation
  49. 5.8 Further Issues in Implementation
  50. 5.9 Index Futures and Changing Equity Risk
  51. 5.10 Fixed-Income Futures and Duration-Based Hedging
  52. 5.11 Exercises
  53. Appendix 5A: Derivation of the Optimal TailedHedge Ratio h **
  54. Chapter 6: Interest-Rate Forwards and Futures
  55. 6.1 Introduction
  56. 6.2 Eurodollars and Libor Rates
  57. 6.3 Forward-Rate Agreements
  58. 6.4 Eurodollar Futures
  59. 6.5 Treasury Bond Futures
  60. 6.6 Treasury Note Futures
  61. 6.7 Treasury Bill Futures
  62. 6.8 Duration-Based Hedging
  63. 6.9 Exercises
  64. Appendix 6A: PVBP-Based Hedging Using Eurodollar Futures
  65. Appendix 6B: Calculating the Conversion Factor
  66. Appendix 6C: Duration as a Sensitivity Measure
  67. Appendix 6D: The Duration of a Futures Contract
  68. Part Two: Options
  69. Chapter 7: Options Markets
  70. 7.1 Introduction
  71. 7.2 Definitions and Terminology
  72. 7.3 Options as Financial Insurance
  73. 7.4 Naked Option Positions
  74. 7.5 Options as Views on Market Direction and Volatility
  75. 7.6 Exercises
  76. Appendix 7A: Options Markets
  77. Chapter 8: Options: Payoffs and Trading Strategies
  78. 8.1 Introduction
  79. 8.2 Trading Strategies I: Covered Calls and Protective Puts
  80. 8.3 Trading Strategies II: Spreads
  81. 8.4 Trading Strategies III: Combinations
  82. 8.5 Trading Strategies IV: Other Strategies
  83. 8.6 Which Strategies Are the Most Widely Used?
  84. 8.7 The Barings Case
  85. 8.8 Exercises
  86. Appendix 8A: Asymmetric Butterfly Spreads
  87. Chapter 9: No-Arbitrage Restrictions on Option Prices
  88. 9.1 Introduction
  89. 9.2 Motivating Examples
  90. 9.3 Notation and Other Preliminaries
  91. 9.4 Maximum and Minimum Prices for Options
  92. 9.5 The Insurance Value of an Option
  93. 9.6 Option Prices and Contract Parameters
  94. 9.7 Numerical Examples
  95. 9.8 Exercises
  96. Chapter 10: Early Exercise and Put-Call Parity
  97. 10.1 Introduction
  98. 10.2 A Decomposition of Option Prices
  99. 10.3 The Optimality of Early Exercise
  100. 10.4 Put-Call Parity
  101. 10.5 Exercises
  102. Chapter 11: Option Pricing: A First Pass
  103. 11.1 Overview
  104. 11.2 The Binomial Model
  105. 11.3 Pricing by Replication in a One-Period Binomial Model
  106. 11.4 Comments
  107. 11.5 Riskless Hedge Portfolios
  108. 11.6 Pricing Using Risk-Neutral Probabilities
  109. 11.7 The One-Period Model in General Notation
  110. 11.8 The Delta of an Option
  111. 11.9 An Application: Portfolio Insurance
  112. 11.10 Exercises
  113. Appendix 11A: Riskless Hedge Portfolios and Option Pricing
  114. Appendix 11B: Risk-Neutral Probabilities and Arrow Security Prices
  115. Appendix 11C: The Risk-Neutral Probability, No-Arbitrage, and Market Completeness
  116. Appendix 11D: Equivalent Martingale Measures
  117. Chapter 12: Binomial Option Pricing
  118. 12.1 Introduction
  119. 12.2 The Two-Period Binomial Tree
  120. 12.3 Pricing Two-Period European Options
  121. 12.4 European Option Pricing in General n-Period Trees
  122. 12.5 Pricing American Options: Preliminary Comments
  123. 12.6 American Puts on Non-Dividend-Paying Stocks
  124. 12.7 Cash Dividends in the Binomial Tree
  125. 12.8 An Alternative Approach to Cash Dividends
  126. 12.9 Dividend Yields in Binomial Trees
  127. 12.10 Exercises
  128. Appendix 12A: A General Representation of European Option Prices
  129. Chapter 13: Implementing Binomial Models
  130. 13.1 Introduction
  131. 13.2 The Lognormal Distribution
  132. 13.3 Binomial Approximations of the Lognormal
  133. 13.4 Computer Implementation of the Binomial Model
  134. 13.5 Exercises
  135. Appendix 13A: Estimating Historical Volatility
  136. Chapter 14: The Black-Scholes Model
  137. 14.1 Introduction
  138. 14.2 Option Pricing in the Black-Scholes Setting
  139. 14.3 Remarks on the Formula
  140. 14.4 Working with the Formulae I: Plotting Option Prices
  141. 14.5 Working with the Formulae II: Algebraic Manipulation
  142. 14.6 Dividends in the Black-Scholes Model
  143. 14.7 Options on Indices, Currencies, and Futures
  144. 14.8 Testing the Black-Scholes Model: Implied Volatility
  145. 14.9 The VIX and Its Derivatives
  146. 14.10 Exercises
  147. Appendix 14A: Further Properties of the Black-Scholes Delta
  148. Appendix 14B: Variance and Volatility Swaps
  149. Chapter 15: The Mathematics of Black-Scholes
  150. 15.1 Introduction
  151. 15.2 Geometric Brownian Motion Defined
  152. 15.3 The Black-Scholes Formula via Replication
  153. 15.4 The Black-Scholes Formula via Risk-Neutral Pricing
  154. 15.5 The Black-Scholes Formula via CAPM
  155. 15.6 Exercises
  156. Chapter 16: Options Modeling: Beyond Black-Scholes
  157. 16.1 Introduction
  158. 16.2 Jump-Diffusion Models
  159. 16.3 Stochastic Volatility
  160. 16.4 GARCH Models
  161. 16.5 Other Approaches
  162. 16.6 Implied Binomial Trees/Local Volatility Models
  163. 16.7 Summary
  164. 16.8 Exercises
  165. Appendix 16A: Program Code for Jump- Diffusions
  166. Appendix 16B: Program Code for a Stochastic Volatility Model
  167. Appendix 16C: Heuristic Comments on Option Pricing under Stochastic Volatility See online at www.mhh
  168. Appendix 16D: Program Code for SimulatingGARCH Stock Prices Distributions
  169. Appendix 16E: Local Volatility Models: The FourthPeriod of the ExampleSee online at www.mhhe.com/sd2
  170. Chapter 17: Sensitivity Analysis: The Option “Greeks”
  171. 17.1 Introduction
  172. 17.2 Interpreting the Greeks: A Snapshot View
  173. 17.3 The Option Delta
  174. 17.4 The Option Gamma
  175. 17.5 The Option Theta
  176. 17.6 The Option Vega
  177. 17.7 The Option Rho
  178. 17.8 Portfolio Greeks
  179. 17.9 Exercises
  180. Appendix 17A: Deriving the Black-Scholes Option Greeks
  181. Chapter 18: Exotic Options I: Path-Independent Options
  182. 18.1 Introduction
  183. 18.2 Forward Start Options
  184. 18.3 Binary/Digital Options
  185. 18.4 Chooser Options
  186. 18.5 Compound Options
  187. 18.6 Exchange Options
  188. 18.7 Quanto Options
  189. 18.8 Variants on the Exchange Option Theme
  190. 18.9 Exercises
  191. Chapter 19: Exotic Options II: Path-Dependent Options
  192. 19.1 Path-Dependent Exotic Options
  193. 19.2 Barrier Options
  194. 19.3 Asian Options
  195. 19.4 Lookback Options
  196. 19.5 Cliquets
  197. 19.6 Shout Options
  198. 19.7 Exercises
  199. Appendix 19A: Barrier Option Pricing Formulae
  200. Chapter 20: Value-at-Risk
  201. 20.1 Introduction
  202. 20.2 Value-at-Risk
  203. 20.3 Risk Decomposition
  204. 20.4 Coherent Risk Measures
  205. 20.5 Exercises
  206. Chapter 21: Convertible Bonds
  207. 21.1 Introduction
  208. 21.2 Convertible Bond Terminology
  209. 21.3 Main Features of Convertible Bonds
  210. 21.4 Breakeven Analysis
  211. 21.5 Pricing Convertibles: A First Pass
  212. 21.6 Incorporating Credit Risk
  213. 21.7 Convertible Greeks
  214. 21.8 Convertible Arbitrage
  215. 21.9 Summary
  216. 21.10 Exercises
  217. Appendix 21A: Octave Code for the Blended Discount Rate Valuation Tree
  218. Appendix 21B: Octave Code for the Simplified Das-Sundaram Model
  219. Chapter 22: Real Options
  220. 22.1 Introduction
  221. 22.2 Preliminary Analysis and Examples
  222. 22.3 A Real Options “Case Study”
  223. 22.4 Creating the State Space
  224. 22.5 Applications of Real Options
  225. 22.6 Summary
  226. 22.7 Exercises
  227. Part Three: Swaps
  228. Chapter 23: Interest Rate Swaps and Floating-Rate Products
  229. 23.1 Introduction
  230. 23.2 Floating-Rate Notes
  231. 23.3 Interest Rate Swaps
  232. 23.4 Uses of Swaps
  233. 23.5 Swap Payoffs
  234. 23.6 Valuing and Pricing Swaps
  235. 23.7 Extending the Pricing Arguments
  236. 23.8 Case Study: The Procter & Gamble–Bankers Trust “5/30” Swap
  237. 23.9 Case Study: A Long-Term Capital Management “Convergence Trade”
  238. 23.10 Credit Risk and Credit Exposure
  239. 23.11 Hedging Swaps
  240. 23.12 Caps, Floors, and Swaptions
  241. 23.13 The Black Model for Pricing Caps, Floors, and Swaptions
  242. 23.14 Summary
  243. 23.15 Exercises
  244. Chapter 24: Equity Swaps
  245. 24.1 Introduction
  246. 24.2 Uses of Equity Swaps
  247. 24.3 Payoffs from Equity Swaps
  248. 24.4 Valuation and Pricing of Equity Swaps
  249. 24.5 Summary
  250. 24.6 Exercises
  251. Chapter 25: Currency and Commodity Swaps
  252. 25.1 Introduction
  253. 25.2 Currency Swaps
  254. 25.3 Commodity Swaps
  255. 25.4 Summary
  256. 25.5 Exercises
  257. Part Four: Interest Rate Modeling
  258. Chapter 26: The Term Structure of Interest Rates: Concepts
  259. 26.1 Introduction
  260. 26.2 The Yield-to-Maturity
  261. 26.3 The Term Structure of Interest Rates
  262. 26.4 Discount Functions
  263. 26.5 Zero-Coupon Rates
  264. 26.6 Forward Rates
  265. 26.7 Yield-to-Maturity, Zero-Coupon Rates, and Forward Rates
  266. 26.8 Constructing the Yield-to-Maturity Curve: An Empirical Illustration
  267. 26.9 Summary
  268. 26.10 Exercises
  269. Appendix 26A: The Raw YTM Data
  270. Chapter 27: Estimating the Yield Curve
  271. 27.1 Introduction
  272. 27.2 Bootstrapping
  273. 27.3 Splines
  274. 27.4 Polynomial Splines
  275. 27.5 Exponential Splines
  276. 27.6 Implementation Issues with Splines
  277. 27.7 The Nelson-Siegel-Svensson Approach
  278. 27.8 Summary
  279. 27.9 Exercises
  280. Appendix 27A: Bootstrapping by Matrix Inversion
  281. Appendix 27B: Implementation with Exponential Splines
  282. Chapter 28: Modeling Term-Structure Movements
  283. 28.1 Introduction
  284. 28.2 Interest-Rate Modeling versus Equity Modeling
  285. 28.3 Arbitrage Violations: A Simple Example
  286. 28.4 “No-Arbitrage” and “Equilibrium” Models
  287. 28.5 Summary
  288. 28.6 Exercises
  289. Chapter 29: Factor Models of the Term Structure
  290. 29.1 Overview
  291. 29.2 The Black-Derman-Toy Model See online at www.mhhe.com/sd2e
  292. 29.3 The Ho-Lee Model See online at www.mhhe.com/sd2e
  293. 29.4 One-Factor Models
  294. 29.5 Multifactor Models
  295. 29.6 Affine Factor Models
  296. 29.7 Summary
  297. 29.8 Exercises
  298. Appendix 29A: Deriving the Fundamental PDE in Factor Models
  299. Chapter 30: The Heath-Jarrow-Morton and Libor Market Models
  300. 30.1 Overview
  301. 30.2 The HJM Framework: Preliminary Comments
  302. 30.3 A One-Factor HJM Model
  303. 30.4 A Two-Factor HJM Setting
  304. 30.5 The HJM Risk-Neutral Drifts: An Algebraic Derivation
  305. 30.6 Libor Market Models
  306. 30.7 Mathematical Excursion: Martingales
  307. 30.8 Libor Rates: Notation
  308. 30.9 Risk-Neutral Pricing in the LMM
  309. 30.10 Simulation of the Market Model
  310. 30.11 Calibration
  311. 30.12 Swap Market Models
  312. 30.13 Swaptions
  313. 30.14 Summary
  314. 30.15 Exercises
  315. Appendix 30A: Risk-Neutral Drifts and Volatilities in HJM
  316. Part Five: Credit Risk
  317. Chapter 31: Credit Derivative Products
  318. 31.1 Introduction
  319. 31.2 Total Return Swaps
  320. 31.3 Credit Spread Options/Forwards
  321. 31.4 Credit Default Swaps
  322. 31.5 Credit-Linked Notes
  323. 31.6 Correlation Products
  324. 31.7 Summary
  325. 31.8 Exercises
  326. Appendix 31A: The CDS Big Bang
  327. Chapter 32: Structural Models of Default Risk
  328. 32.1 Introduction
  329. 32.2 The Merton (1974) Model
  330. 32.3 Issues in Implementation
  331. 32.4 A Practitioner Model
  332. 32.5 Extensions of the Merton Model
  333. 32.6 Evaluation of the Structural Model Approach
  334. 32.7 Summary
  335. 32.8 Exercises
  336. Appendix 32A The Delianedis-Geske Model
  337. Chapter 33: Reduced-Form Models of Default Risk
  338. 33.1 Introduction
  339. 33.2 Modeling Default I: Intensity Processes
  340. 33.3 Modeling Default II: Recovery Rate Conventions
  341. 33.4 The Litterman-Iben Model
  342. 33.5 The Duffie-Singleton Result
  343. 33.6 Defaultable HJM Models
  344. 33.7 Ratings-Based Modeling: The JLT Model
  345. 33.8 An Application of Reduced-Form Models: Pricing CDS
  346. 33.9 Summary
  347. 33.10 Exercises
  348. Appendix 33A Duffie-Singleton in Discrete Time
  349. Appendix 33B Derivation of the Drift-Volatility Relationship
  350. Chapter 34: Modeling Correlated Default
  351. 34.1 Introduction
  352. 34.2 Examples of Correlated Default Products
  353. 34.3 Simple Correlated Default Math
  354. 34.4 Structural Models Based on Asset Values
  355. 34.5 Reduced-Form Models
  356. 34.6 Multiperiod Correlated Default
  357. 34.7 Fast Computation of Credit Portfolio Loss Distributions without Simulation
  358. 34.8 Copula Functions
  359. 34.9 Top-Down Modeling of Credit Portfolio Loss
  360. 34.10 Summary
  361. 34.11 Exercises
  362. Part Six: Computation
  363. Chapter 35: Derivative Pricing with Finite Differencing
  364. 35.1 Introduction
  365. 35.2 Solving Differential Equations
  366. 35.3 A First Approach to Pricing Equity Options
  367. 35.4 Implicit Finite Differencing
  368. 35.5 The Crank-Nicholson Scheme
  369. 35.6 Finite Differencing for Term-Structure Models
  370. 35.7 Summary
  371. 35.8 Exercises
  372. Chapter 36: Derivative Pricing with Monte Carlo Simulation
  373. 36.1 Introduction
  374. 36.2 Simulating Normal Random Variables
  375. 36.3 Bivariate Random Variables
  376. 36.4 Cholesky Decomposition
  377. 36.5 Stochastic Processes for Equity Prices
  378. 36.6 ARCH Models
  379. 36.7 Interest-Rate Processes
  380. 36.8 Estimating Historical Volatility for Equities
  381. 36.9 Estimating Historical Volatility for Interest Rates
  382. 36.10 Path-Dependent Options
  383. 36.11 Variance Reduction
  384. 36.12 Monte Carlo for American Options
  385. 36.13 Summary
  386. 36.14 Exercises
  387. Chapter 37: Using Octave
  388. 37.1 Some Simple Commands
  389. 37.2 Regression and Integration
  390. 37.3 Reading in Data, Sorting, and Finding
  391. 37.4 Equation Solving
  392. 37.5 Screenshots
  393. Bibliography
  394. Name Index
  395. A
  396. B
  397. C
  398. D
  399. E
  400. F
  401. G
  402. H
  403. I
  404. J
  405. K
  406. L
  407. M
  408. N
  409. O
  410. P
  411. R
  412. S
  413. T
  414. V
  415. W
  416. X
  417. Y
  418. Z
  419. Subject Index
  420. A
  421. B
  422. C
  423. D
  424. E
  425. F
  426. G
  427. H
  428. I
  429. J
  430. K
  431. L
  432. M
  433. N
  434. O
  435. P
  436. Q
  437. R
  438. S
  439. T
  440. U
  441. V
  442. W
  443. X
  444. Y

 

People Also Search:

derivatives sundaram

derivatives 2nd edition sundaram

derivatives 2nd edition

derivatives 2nd edition testbank download pdf

derivatives 2nd edition download scribd

Instant download after Payment is complete

Main Menu