Calculus with Applications 10th Edition Lial Solutions Manual

$26.99$50.00 (-46%)

In stock

Calculus with Applications 10th Edition Lial Solutions Manual.

Calculus with Applications 10th Edition Lial Solutions Manual

Calculus with Applications: Brief Version 10th edition 9780321748577 0321748573

Product details:

  • ISBN-10 ‏ : ‎ 0321749006
  • ISBN-13 ‏ : ‎ 978-0321749000
  • Author: Marge Lial

Calculus with Applications, Tenth Edition (also available in a Brief Version containing Chapters 1–9) by Lial, Greenwell, and Ritchey, is our most applied text to date, making the math relevant and accessible for students of business, life science, and social sciences. Current applications, many using real data, are incorporated in numerous forms throughout the book, preparing students for success in their professional careers. With this edition, students will find new ways to get involved with the material, such as “Your Turn” exercises and “Apply It” vignettes that encourage active participation.

Table contents:

  • Chapter 1: Limits and Their Properties
    • 1.1: A Preview of Calculus (22)
    • 1.2: Finding Limits Graphically and Numerically (61)
    • 1.3: Evaluating Limits Analytically (71)
    • 1.4: Continuity and One-Sided Limits (59)
    • 1.5: Infinite Limits (55)
    • 1: Review Exercises
    • 1: Problem Solving
  • Chapter 2: Differentiation
    • 2.1: The Derivative and the Tangent Line Problem (63)
    • 2.2: Basic Differentiation Rules and Rates of Change (74)
    • 2.3: Product and Quotient Rules and Higher-Order Derivatives (77)
    • 2.4: The Chain Rule (72)
    • 2.5: Implicit Differentiation (57)
    • 2.6: Related Rates (56)
    • 2: Review Exercises
    • 2: Problem Solving
  • Chapter 3: Applications of Differentiation
    • 3.1: Extrema on an Interval (56)
    • 3.2: Rolle’s Theorem and the Mean Value Theorem (61)
    • 3.3: Increasing and Decreasing Functions and the First Derivative Test (56)
    • 3.4: Concavity and the Second Derivative Test (59)
    • 3.5: Limits at Infinity (69)
    • 3.6: A Summary of Curve Sketching (53)
    • 3.7: Optimization Problems (63)
    • 3.8: Newton’s Method (46)
    • 3.9: Differentials (50)
    • 3: Review Exercises
    • 3: Problem Solving
  • Chapter 4: Integration
    • 4.1: Antiderivatives and Indefinite Integration (80)
    • 4.2: Area (71)
    • 4.3: Riemann Sums and Definite Integrals (62)
    • 4.4: The Fundamental Theorem of Calculus (99)
    • 4.5: Integration by Substitution (75)
    • 4.6: Numerical Integration (60)
    • 4: Review Exercises
    • 4: Problem Solving
  • Chapter 5: Logarithmic, Exponential, and Other Transcendental Functions
    • 5.1: The Natural Logarithmic Function: Differentiation (70)
    • 5.2: The Natural Logarithmic Function: Integration (87)
    • 5.3: Inverse Functions (66)
    • 5.4: Exponential Functions: Differentiation and Integration (83)
    • 5.5: Bases Other than e and Applications (79)
    • 5.6: Inverse Trigonometric Functions: Differentiation (68)
    • 5.7: Inverse Trigonometric Functions: Integration (86)
    • 5.8: Hyperbolic Functions (90)
    • 5: Review Exercises
    • 5: Problem Solving
  • Chapter 6: Differential Equations
    • 6.1: Slope Fields and Euler’s Method (69)
    • 6.2: Differential Equations: Growth and Decay (72)
    • 6.3: Separation of Variables and the Logistic Equation (84)
    • 6.4: First-Order Linear Differential Equations (69)
    • 6: Review Exercises
    • 6: Problem Solving
  • Chapter 7: Applications of Integration
    • 7.1: Area of a Region Between Two Curves (77)
    • 7.2: Volume: The Disk Method (67)
    • 7.3: Volume: The Shell Method (56)
    • 7.4: Arc Length and Surfaces of Revolution (63)
    • 7.5: Work (41)
    • 7.6: Moments, Centers of Mass, and Centroids (55)
    • 7.7: Fluid Pressure and Fluid Force (26)
    • 7: Review Exercises
    • 7: Problem Solving
  • Chapter 8: Integration Techniques, L’Hopital’s Rule, and Improper Integrals
    • 8.1: Basic Integration Rules (66)
    • 8.2: Integration by Parts (75)
    • 8.3: Trigonometric Integrals (57)
    • 8.4: Trigonometric Substitution (68)
    • 8.5: Partial Fractions (55)
    • 8.6: Integration by Tables and Other Integration Techniques (65)
    • 8.7: Indeterminate Forms and L’Hopital’s Rule (78)
    • 8.8: Improper Integrals (75)
    • 8: Review Exercises
    • 8: Problem Solving
  • Chapter 9: Infinite Series
    • 9.1: Sequences (50)
    • 9.2: Series and Convergence (48)
    • 9.3: The Integral Test and p-Series (41)
    • 9.4: Comparisons of Series (35)
    • 9.5: Alternating Series (46)
    • 9.6: The Ratio and Root Tests (47)
    • 9.7: Taylor Polynomials and Approximations (35)
    • 9.8: Power Series (40)
    • 9.9: Representation of Functions by Power Series (37)
    • 9.10: Taylor and Maclaurin Series (43)
    • 9: Review Exercises
    • 9: Problem Solving
  • Chapter 10: Conics, Parametric Equations, and Polar Coordinates
    • 10.1: Conics and Calculus (56)
    • 10.2: Plane Curves and Parametric Equations (43)
    • 10.3: Parametric Equations and Calculus (57)
    • 10.4: Polar Coordinates and Polar Graphs (60)
    • 10.5: Area and Arc Length in Polar Coordinates (55)
    • 10.6: Polar Equations of Conics and Kepler’s Laws (42)
    • 10: Review Exercises
    • 10: Problem Solving
  • Chapter 11: Vectors and the Geometry of Space
    • 11.1: Vectors in the Plane (53)
    • 11.2: Space Coordinates and Vectors in Space (64)
    • 11.3: The Dot Product of Two Vectors (53)
    • 11.4: The Cross Product of Two Vectors in Space (43)
    • 11.5: Lines and Planes in Space (65)
    • 11.6: Surfaces in Space (44)
    • 11.7: Cylindrical and Spherical Coordinates (62)
    • 11: Review Exercises
    • 11: Problem Solving
  • Chapter 12: Vector-Valued Functions
    • 12.1: Vector-Valued Functions (48)
    • 12.2: Differentiation and Integration of Vector-Valued Functions (51)
    • 12.3: Velocity and Acceleration (48)
    • 12.4: Tangent Vectors and Normal Vectors (53)
    • 12.5: Arc Length and Curvature (54)
    • 12: Review Exercises
    • 12: Problem Solving
  • Chapter 13: Functions of Several Variables
    • 13.1: Introduction to Functions of Several Variables (42)
    • 13.2: Limits and Continuity (47)
    • 13.3: Partial Derivatives (56)
    • 13.4: Differentials (43)
    • 13.5: Chain Rules for Functions of Several Variables (41)
    • 13.6: Directional Derivatives and Gradients (46)
    • 13.7: Tangent Planes and Normal Lines (42)
    • 13.8: Extrema of Functions of Two Variables (49)
    • 13.9: Applications of Extrema (48)
    • 13.10: Lagrange Multipliers (40)
    • 13: Review Exercises
    • 13: Problem Solving
  • Chapter 14: Multiple Integration
    • 14.1: Iterated Integrals and Area in the Plane (60)
    • 14.2: Double Integrals and Volume (54)
    • 14.3: Change of Variables: Polar Coordinates (47)
    • 14.4: Center of Mass and Moments of Inertia (45)
    • 14.5: Surface Area (40)
    • 14.6: Triple Integrals and Applications (47)
    • 14.7: Triple Integrals in Other Coordinates (43)
    • 14.8: Change of Variables: Jacobians (42)
    • 14: Review Exercises
    • 14: Problem Solving
  • Chapter 15: Vector Analysis
    • 15.1: Vector Fields (48)
    • 15.2: Line Integrals (47)
    • 15.3: Conservative Vector Fields and Independence of Path (40)
    • 15.4: Green’s Theorem (42)
    • 15.5: Parametric Surfaces (43)
    • 15.6: Surface Integrals (43)
    • 15.7: Divergence Theorem (31)
    • 15.8: Stokes’s Theorem (34)
    • 15: Review Exercises
    • 15: Problem Solving
  • Chapter 16: Additional Topics in Differential Equations (online only)
    • 16.1: Exact First-Order Equations (42)
    • 16.2: Second-Order Homogeneous Linear Equations (47)
    • 16.3: Second-Order Nonhomogeneous Linear Equations (43)
    • 16.4: Series Solutions of Differential Equations (26)

People also search:

Calculus with Applications 10th

Calculus with Applications 10th edition

Calculus with Applications 10th pdf

Calculus with Applications 10th pdf free

Calculus with Applications 10th download scribd

 

Instant download after Payment is complete

Main Menu