Fluid Mechanics 2nd Edition Hibbeler Solutions Manual

$26.99$50.00 (-46%)

In stock

Fluid Mechanics 2nd Edition Hibbeler Solutions Manual.

Download sample

This is completed downloadable of Fluid Mechanics 2nd Edition Hibbeler Solutions Manual

Product Details:

  • ISBN-10 ‏ : ‎ 013464929X
  • ISBN-13 ‏ : ‎ 978-0134649290
  • Author:  R.C. Hibbeler

Fluid Mechanics provides a comprehensive guide to a full understanding of the theory and many applications of fluid mechanics. The text features many of the hallmark pedagogical aids unique to Hibbeler texts, including its student-friendly clear organization. The text supports the development of your problem-solving skills through a large variety of problems, representing a broad range of engineering disciplines that stress practical, realistic situations encountered in professional practice and varying levels of difficulty. The text offers flexibility in that basic principles are covered in chapters 1 through 6, and the remaining chapters can be covered in any sequence without the loss of continuity.

The 2nd Edition addresses comments and suggestions from colleagues, reviewers in the teaching profession, and many of the author’s students, including expanded topic coverage and new Example and Fundamental Problems intended to further your understanding of the theory and its applications.

 

Table of Content:

  1. Chapter 1 Fundamental Concepts
  2. Chapter Objectives
  3. 1.1 Introduction
  4. Branches of Fluid Mechanics
  5. Historical Development
  6. 1.2 Characteristics of Matter
  7. Solid
  8. Liquid
  9. Gas
  10. Continuum
  11. 1.3 Systems of Units
  12. U.S. Customary Units
  13. Temperature
  14. SI Units
  15. Temperature
  16. Conversion of Units
  17. Prefixes
  18. 1.4 Calculations
  19. Dimensional Homogeneity
  20. Rounding off Numbers
  21. Calculation Procedure
  22. 1.5 Problem Solving
  23. Solution
  24. Solution
  25. 1.6 Some Basic Fluid Properties
  26. Density
  27. Liquid
  28. Gas
  29. Specific Weight
  30. Specific Gravity
  31. Bulk Modulus
  32. Liquid
  33. Gas
  34. Ideal Gas Law
  35. Solution
  36. Solution
  37. 1.7 Viscosity
  38. Physical Cause of Viscosity
  39. Newton’s Law of Viscosity
  40. Shear Stress
  41. Shear Strain
  42. Newtonian Fluids
  43. Non-Newtonian Fluids
  44. Inviscid and Ideal Fluids
  45. Pressure and Temperature Effects
  46. Kinematic Viscosity
  47. 1.8 Viscosity Measurement
  48. Solution
  49. Fluid Description
  50. Analysis
  51. Solution
  52. Fluid Description
  53. Analysis
  54. 1.9 Vapor Pressure
  55. Cavitation
  56. 1.10 Surface Tension and Capillarity
  57. Surface Tension
  58. Liquid Drops
  59. Capillarity
  60. References
  61. Problems
  62. Sec. 1.1-1.6
  63. Sec. 1.7-1.8
  64. Sec. 1.9-1.10
  65. Conceptual Problems
  66. Chapter Review
  67. Chapter 2 Fluid Statics
  68. Chapter Objectives
  69. 2.1 Pressure
  70. Pascal’s Law
  71. Solution
  72. Fluid Description
  73. Analysis
  74. 2.2 Absolute and Gage Pressure
  75. Solution
  76. Fluid Description
  77. Analysis
  78. 2.3 Static Pressure Variation
  79. 2.4 Pressure Variation for Incompressible Fluids
  80. Pressure Head
  81. Solution
  82. Fluid Description
  83. Analysis
  84. 2.5 Pressure Variation for Compressible Fluids
  85. Constant Temperature
  86. Solution
  87. Fluid Description
  88. Analysis
  89. Incompressible Gas
  90. Compressible Gas
  91. 2.6 Measurement of Static Pressure
  92. Barometer
  93. Manometer
  94. Manometer Rule
  95. Differential Manometer
  96. Bourdon Gage
  97. Pressure Transducers
  98. Other Pressure Gages
  99. Solution
  100. Fluid Description
  101. Analysis
  102. Solution
  103. Fluid Description
  104. Analysis
  105. Solution
  106. Fluid Description
  107. Analysis
  108. 2.7 Hydrostatic Force on a Plane Surface—Formula Method
  109. Resultant Force
  110. Location of the Resultant Force
  111. The yP Coordinate
  112. The xP Coordinate
  113. Symmetrical Plate
  114. Solution
  115. Fluid Description
  116. Analysis
  117. Solution
  118. Fluid Description
  119. Analysis
  120. Solution
  121. Fluid Description
  122. Analysis
  123. 2.8 Hydrostatic Force on a Plane Surface—Geometrical Method
  124. Resultant Force
  125. Location
  126. Plate Having Constant Width
  127. Solution
  128. Fluid Description
  129. Analysis I
  130. Loading
  131. Resultant Forces
  132. Location
  133. Analysis II
  134. Loading
  135. Resultant Forces
  136. Location
  137. Solution
  138. Fluid Description
  139. Loading
  140. Resultant Force
  141. Location
  142. 2.9 Hydrostatic Force on a Plane Surface—Integration Method
  143. Resultant Force
  144. Location
  145. Solution
  146. Fluid Description
  147. Resultant Force
  148. Location
  149. Solution
  150. Fluid Description
  151. Resultant Force
  152. Location
  153. 2.10 Hydrostatic Force on an Inclined Plane or Curved Surface Determined by Projection
  154. Horizontal Component
  155. Vertical Component
  156. Liquid below Plate
  157. Gas
  158. Solution
  159. Fluid Description
  160. Horizontal Force Component
  161. Vertical Force Component
  162. Resultant Force
  163. Solution
  164. Fluid Description
  165. Analysis I
  166. Horizontal Force Component
  167. Vertical Force Component
  168. Resultant Force
  169. Reactions
  170. Analysis II
  171. Solution
  172. Fluid Description
  173. Analysis
  174. 2.11 Buoyancy
  175. Hydrometer
  176. Solution
  177. Fluid Description
  178. Analysis
  179. Part (a)
  180. Part (b)
  181. 2.12 Stability
  182. Solution
  183. Fluid Description
  184. Analysis
  185. 2.13 Constant Translational Acceleration of a Liquid
  186. Constant Horizontal Acceleration
  187. Vertical Element
  188. Horizontal Element
  189. Constant Vertical Acceleration
  190. Horizontal Element
  191. Vertical Element
  192. Solution
  193. Fluid Description
  194. Analysis
  195. Solution
  196. Fluid Description
  197. Analysis
  198. Side of Tank
  199. Bottom of Tank
  200. 2.14 Steady Rotation of a Liquid
  201. Vertical Element
  202. Ring Element
  203. Solution
  204. Fluid Description
  205. Analysis
  206. References
  207. Fundamental Problems
  208. Sec. 2.1-2.5
  209. Sec. 2.6
  210. Sec. 2.7-2.9
  211. Sec. 2.10
  212. Sec. 2.11-2.12
  213. Problems
  214. Sec. 2.1-2.5
  215. Sec. 2.6
  216. Sec. 2.7-2.9
  217. Sec. 2.10
  218. Sec. 2.11-2.12
  219. Sec. 2.13-2.14
  220. Conceptual Problems
  221. Chapter Review
  222. Chapter 3 Kinematics of Fluid Motion
  223. Chapter Objectives
  224. 3.1 Types of Fluid Flow
  225. Classification of Flow Based on Its Frictional Effects
  226. Classifications of Flow Based on Dimension
  227. Classification of Flow Based on Space and Time
  228. 3.2 Graphical Descriptions of Fluid Flow
  229. Streamlines
  230. Streamtubes
  231. Equation of a Streamline
  232. Pathlines
  233. Streaklines
  234. Optical Methods
  235. Computational Fluid Dynamics
  236. 3.3 Fluid Flow Descriptions
  237. Lagrangian Description—System Approach
  238. Eulerian Description—Control Volume Approach
  239. Solution
  240. Fluid Description
  241. Analysis
  242. Solution
  243. Fluid Description
  244. Pathline
  245. Streamline
  246. Solution
  247. Fluid Description
  248. Analysis
  249. 3.4 Fluid Acceleration
  250. Local Acceleration
  251. Convective Acceleration
  252. Three-dimensional Flow
  253. Solution
  254. Fluid Description
  255. Analysis
  256. Solution
  257. Flow Description
  258. Analysis
  259. Velocity
  260. Acceleration
  261. Solution
  262. Fluid Description
  263. Analysis
  264. 3.5 Streamline Coordinates
  265. Velocity
  266. Acceleration
  267. Local Change
  268. Convective Change
  269. Resultant Acceleration
  270. Solution
  271. Fluid Description
  272. Streamline Acceleration Component
  273. Normal Acceleration Component
  274. Acceleration
  275. References
  276. Fundamental Problems
  277. Sec. 3.1-3.3
  278. Sec. 3.4
  279. Sec. 3.5
  280. Problems
  281. Sec. 3.1-3.3
  282. Sec. 3.4
  283. Sec. 3.5
  284. Chapter Review
  285. Chapter 4 Conservation of Mass
  286. Chapter Objectives
  287. 4.1 Volumetric Flow, Mass Flow, and Average Velocity
  288. Volumetric Flow
  289. Average Velocity
  290. Mass Flow
  291. Solution
  292. Fluid Description
  293. Analysis
  294. 4.2 Finite Control Volumes
  295. Open Control Surfaces
  296. Velocity
  297. Steady Flow
  298. 4.3 The Reynolds Transport Theorem
  299. Fluid Property Description
  300. The Reynolds Transport Theorem
  301. Applications
  302. 4.4 Conservation of Mass
  303. Special Cases
  304. Solution
  305. Fluid Description
  306. Control Volume
  307. Continuity Equation
  308. Solution
  309. Fluid Description
  310. Control Volume
  311. Continuity Equation
  312. Ideal Gas Law
  313. Solution
  314. Fluid Description
  315. Control Volume
  316. Continuity Equation
  317. Ideal Gas Law
  318. Solution
  319. Fuel Description
  320. Control Volume
  321. Continuity Equation
  322. Solution
  323. Fluid Description
  324. Control Volume I
  325. Conservation of Mass
  326. Control Volume II
  327. Conservation of Mass
  328. References
  329. Fundamental Problems
  330. Sec. 4.1-4.2
  331. Sec. 4.4
  332. Problems
  333. Sec. 4.1-4.2
  334. Sec. 4.3
  335. Sec. 4.4
  336. Conceptual Problems
  337. Chapter Review
  338. Chapter 5 Work and Energy of Moving Fluids
  339. Chapter Objectives
  340. 5.1 Euler’s Equations of Motion
  341. s Direction
  342. n Direction
  343. Steady Horizontal Flow of an Ideal Fluid
  344. Solution
  345. Fluid Description
  346. Analysis
  347. 5.2 The Bernoulli Equation
  348. Limitations
  349. 5.3 Applications of the Bernoulli Equation
  350. Flow from a Large Reservoir
  351. Flow around a Curved Boundary
  352. Flow in an Open Channel
  353. Flow in a Closed Conduit
  354. Venturi meter
  355. Solution
  356. Fluid Description
  357. Bernoulli Equation
  358. Solution
  359. Fluid Description
  360. Bernoulli Equation
  361. Solution
  362. Fluid Description
  363. Analysis
  364. Continuity Equation
  365. Bernoulli Equation
  366. Solution
  367. Fluid Description
  368. Bernoulli Equation
  369. Continuity Equation
  370. Solution
  371. Fluid Description
  372. Bernoulli Equation
  373. 5.4 Energy and Hydraulic Grade Lines
  374. Solution
  375. Fluid Description
  376. Bernoulli Equation
  377. EGL and HGL
  378. Solution
  379. Fluid Description
  380. Energy Grade Line
  381. Hydraulic Grade Line
  382. Solution
  383. Fluid Description
  384. Bernoulli Equation
  385. EGL and HGL
  386. 5.5 The Energy Equation
  387. System Energy
  388. Heat Energy
  389. Work
  390. Flow Work
  391. Shaft Work
  392. Shear Work
  393. Energy Equation
  394. Incompressible Flow
  395. Compressible Fluid
  396. Power and Efficiency
  397. Nonuniform Velocity
  398. Solution
  399. Fluid Description
  400. Control Volume
  401. Energy Equation
  402. Power
  403. Solution
  404. Fluid Description
  405. Control Volume
  406. Energy Equation
  407. Solution
  408. Fluid Behavior
  409. Control Volume
  410. Continuity Equation
  411. Energy Equation
  412. Solution
  413. Fluid Description
  414. Control Volume
  415. Energy Equation
  416. Power
  417. EGL and HGL
  418. References
  419. Fundamental Problems
  420. Sec. 5.2-5.3
  421. Sec. 5.4
  422. Sec. 5.5
  423. Problems
  424. Sec. 5.1
  425. Sec. 5.2-5.3
  426. Sec. 5.4-5.5
  427. Conceptual Problems
  428. Chapter Review
  429. Chapter 6 Fluid Momentum
  430. Chapter Objectives
  431. 6.1 The Linear Momentum Equation
  432. Steady Flow
  433. Free-Body Diagram
  434. 6.2 Applications to Bodies at Rest
  435. Solution
  436. Fluid Description
  437. Control Volume and Free-Body Diagram
  438. Continuity Equation
  439. Bernoulli Equation
  440. Linear Momentum
  441. Solution
  442. Fluid Description
  443. Control Volume and Free-Body Diagram
  444. Linear Momentum
  445. Solution
  446. Fluid Description
  447. Control Volume and Free-Body Diagram
  448. Bernoulli and Continuity Equations
  449. Linear Momentum
  450. Solution
  451. Fluid Description
  452. Control Volume and Free-Body Diagram
  453. Linear Momentum
  454. 6.3 Applications to Bodies Having Constant Velocity
  455. Solution
  456. Fluid Description
  457. Control Volume and Free-Body Diagram
  458. Linear Momentum
  459. Solution
  460. Fluid Description
  461. Control Volume and Free-Body Diagram
  462. Linear Momentum
  463. Power
  464. 6.4 The Angular Momentum Equation
  465. Steady Flow
  466. Solution
  467. Fluid Description
  468. Control Volume and Free-Body Diagram
  469. Bernoulli Equation
  470. Linear and Angular Momentum
  471. Solution
  472. Fluid Description
  473. Control Volume and Free-Body Diagram
  474. Velocity
  475. Angular Momentum
  476. Solution
  477. Fluid Description
  478. Control Volume and Free-Body Diagram
  479. Continuity Equation
  480. Angular Momentum
  481. *6.5 Propellers and Wind Turbines
  482. Propeller
  483. Linear Momentum
  484. Bernoulli Equation
  485. Power and Efficiency
  486. Wind Turbine
  487. Power and Efficiency
  488. Solution
  489. Fluid Description
  490. Analysis
  491. 6.6 Applications for Control Volumes Having Accelerated Motion
  492. *6.7 Turbojets and Turbofans
  493. *6.8 Rockets
  494. Solution
  495. Fluid Description
  496. Analysis
  497. Solution
  498. Fluid Description
  499. Analysis
  500. References
  501. Fundamental Problems
  502. Sec. 6.1-6.2
  503. Sec. 6.3
  504. Problems
  505. Sec. 6.1-6.2
  506. Sec. 6.3
  507. Sec. 6.4
  508. Sec. 6.5-6.8
  509. Conceptual Problems
  510. Chapter Review
  511. Chapter 7 Differential Fluid Flow
  512. Chapter Objectives
  513. 7.1 Differential Analysis
  514. 7.2 Kinematics of Differential Fluid Elements
  515. Translation
  516. Linear Distortion
  517. Rotation
  518. Angular Distortion
  519. 7.3 Circulation and Vorticity
  520. Circulation
  521. Vorticity
  522. Irrotational Flow
  523. Solution
  524. Fluid Description
  525. Triangular Path
  526. Circular Path
  527. Solution
  528. Fluid Description
  529. Vorticity
  530. Shear-Strain Rate
  531. 7.4 Conservation of Mass
  532. Two-Dimensional Steady Flow of an Ideal Fluid
  533. Cylindrical Coordinates
  534. 7.5 Equations of Motion for a Fluid Particle
  535. 7.6 The Euler and Bernoulli Equations
  536. Two-Dimensional Steady Flow
  537. The Bernoulli Equation
  538. Solution
  539. Fluid Description
  540. Volumetric Dilatation Rate
  541. Rotation
  542. Pressure
  543. 7.7 Potential Flow Hydrodynamics
  544. 7.8 The Stream Function
  545. Velocity Components
  546. Volumetric Flow
  547. Solution
  548. Fluid Description
  549. Stream Functions
  550. Velocity
  551. Solution
  552. Fluid Description
  553. Velocity
  554. Stream Function
  555. Solution
  556. Fluid Description
  557. Velocity
  558. 7.9 The Potential Function
  559. Flow Net
  560. Solution
  561. Fluid Description
  562. Analysis
  563. Solution
  564. Fluid Description
  565. Analysis
  566. 7.10 Basic Two-Dimensional Flows
  567. Uniform Flow
  568. Line Source Flow
  569. Line Sink Flow
  570. Free-Vortex Flow
  571. Circulation
  572. Forced-Vortex Flow
  573. Solution
  574. Fluid Description
  575. Free Vortex
  576. Forced Vortex
  577. 7.11 Superposition of Flows
  578. Uniform Flow Past a Half Body
  579. Doublet
  580. Uniform Flow around a Rankine Oval
  581. Uniform Flow around a Cylinder
  582. Uniform and Free-Vortex Flow around a Cylinder
  583. Other Applications
  584. Solution
  585. Fluid Description
  586. Analysis
  587. Solution
  588. Fluid Description
  589. Analysis
  590. 7.12 The Navier-Stokes Equations
  591. Cylindrical Coordinates
  592. Solution
  593. Fluid Description
  594. Analysis
  595. 7.13 Computational Fluid Dynamics
  596. The CFD Code
  597. Input
  598. Fluid Properties
  599. Flow Phenomena
  600. Geometry
  601. Program
  602. Finite Difference Method
  603. Finite Element Method
  604. Finite Control Volume Method
  605. Output
  606. General Considerations
  607. References
  608. Problems
  609. Sec. 7.1-7.6
  610. Sec. 7.7-7.9
  611. Sec. 7.10-7.11
  612. Sec. 7.12
  613. Chapter Review
  614. Chapter 8 Dimensional Analysis and Similitude
  615. Chapter Objectives
  616. 8.1 Dimensional Analysis
  617. 8.2 Important Dimensionless Numbers
  618. Euler Number
  619. Reynolds Number
  620. Froude Number
  621. Weber Number
  622. Mach Number
  623. 8.3 The Buckingham Pi Theorem
  624. Solution
  625. Define the Physical Variables
  626. Select the Repeating Variables
  627. Π Term, q = D
  628. Dimensional Analysis
  629. Solution
  630. Define the Physical Variables
  631. Select the Repeating Variables
  632. Π1 Term q = FD
  633. Dimensional Analysis
  634. Π2 Term q = μ
  635. Dimensional Analysis
  636. Solution
  637. Define the Physical Variables
  638. Select the Repeating Variables
  639. Π1 Term q = FD and Dimensional Analysis
  640. Π2 Term q = μ and Dimensional Analysis
  641. Π3 Term q = g and Dimensional Analysis
  642. Solution
  643. Define the Physical Variables
  644. Select the Repeating Variables
  645. Π Terms and Dimensional Analysis
  646. 8.4 Some General Considerations Related to Dimensional Analysis
  647. 8.5 Similitude
  648. Geometric Similitude
  649. Kinematic Similitude
  650. Dynamic Similitude
  651. Steady Flow through a Pipe
  652. Open-Channel Flow
  653. Ships
  654. Review
  655. Solution
  656. Solution
  657. Solution
  658. Solution
  659. References
  660. Problems
  661. Sec. 8.1–8.4
  662. Sec. 8.5
  663. Chapter Review
  664. Chapter 9 Viscous Flow within Enclosed Conduits
  665. Chapter Objectives
  666. 9.1 Steady Laminar Flow between Parallel Plates
  667. Horizontal Flow Caused by a Constant Pressure Gradient—Both Plates Fixed
  668. Horizontal Flow Caused by a Constant Pressure Gradient—Top Plate Moving
  669. Horizontal Flow Caused Only by the Motion of the Top Plate
  670. Limitations
  671. 9.2 Navier-Stokes Solution for Steady Laminar Flow between Parallel Plates
  672. Solution
  673. Fluid Description
  674. Analysis
  675. Solution
  676. Fluid Description
  677. Analysis
  678. Solution
  679. Fluid Description
  680. Analysis
  681. 9.3 Steady Laminar Flow within a Smooth Pipe
  682. Horizontal Flow through a Circular Pipe
  683. 9.4 Navier–Stokes Solution for Steady Laminar Flow within a Smooth Pipe
  684. 9.5 The Reynolds Number
  685. Solution
  686. Fluid Description
  687. Analysis
  688. Solution
  689. Fluid Description
  690. Analysis
  691. 9.6 Fully Developed Flow from an Entrance
  692. Laminar Flow
  693. Turbulent Flow
  694. Solution
  695. Fluid Description
  696. Analysis
  697. Water
  698. Oil
  699. 9.7 Laminar and Turbulent Shear Stress within a Smooth Pipe
  700. Laminar Flow
  701. Turbulent Flow
  702. Turbulent Shear Stress
  703. 9.8 Steady Turbulent Flow within a Smooth Pipe
  704. Viscous Sublayer
  705. Transitional and Turbulent Flow Regions
  706. Power Law Approximation
  707. Solution
  708. Fluid Description
  709. Shear Stress
  710. Velocity
  711. Viscous Laminar Sublayer
  712. Solution
  713. Fluid Description
  714. Shear Stress
  715. Viscous Shear-Stress Component
  716. Turbulent Shear-Stress Component
  717. References
  718. Problems
  719. Sec. 9.1–9.2
  720. Sec. 9.3–9.6
  721. Sec. 9.7–9.8
  722. Chapter Review
  723. Chapter 10 Analysis and Design for Pipe Flow
  724. Chapter Objectives
  725. 10.1 Resistance to Flow in Rough Pipes
  726. Laminar Flow
  727. Turbulent Flow
  728. Moody Diagram
  729. Laminar Flow
  730. Critical Zone and Transitional Flow
  731. Turbulent Flow
  732. Empirical Solutions
  733. Noncircular Conduits
  734. Hazen–Williams Equation
  735. Solution
  736. Fluid Description
  737. Analysis
  738. Solution
  739. Fluid Description
  740. Analysis
  741. Solution
  742. Fluid Description
  743. Analysis
  744. Solution
  745. Fluid Description
  746. Analysis
  747. Solution
  748. Fluid Description
  749. Analysis
  750. 10.2 Losses Occurring from Pipe Fittings and Transitions
  751. Inlet and Exit Transitions
  752. Expansion and Contraction
  753. Sudden Expansion
  754. Sudden Contraction
  755. Gradual Expansion
  756. Pipe Connections
  757. Bends
  758. Valves
  759. Equivalent Length
  760. 10.3 Single-Pipeline Flow
  761. Solution
  762. Fluid Description
  763. Analysis
  764. Solution
  765. Fluid Description
  766. Part a)
  767. Analysis I
  768. Analysis II
  769. Part b)
  770. Analysis III
  771. Analysis IV
  772. Solution
  773. Fluid Description
  774. Analysis
  775. Equivalent Length of Pipe
  776. 10.4 Pipe Systems
  777. Pipes in Series
  778. Pipes in Parallel
  779. Solution
  780. Fluid Description
  781. Continuity Equation
  782. Energy Equation
  783. Moody Diagram
  784. Solution
  785. Fluid Description
  786. Continuity Equation
  787. Moody Diagram
  788. Energy Equation
  789. 10.5 Flow Measurement
  790. Venturi Meter
  791. Nozzle Meter
  792. Orifice Meter
  793. Rotometer
  794. Turbine Flow Meter
  795. Vortex Flow Meter
  796. Thermal Mass Flow Meter
  797. Positive Displacement Flow Meter
  798. Nutating Disk Flow Meter
  799. Magnetic Flow Meter
  800. Other Types
  801. References
  802. Fundamental Problems
  803. Sec. 10.1
  804. Sec. 10.2–10.3
  805. Problems
  806. Sec. 10.1
  807. Sec. 10.2–10.3
  808. Sec. 10.4
  809. Chapter Review
  810. Chapter 11 Viscous Flow over External Surfaces
  811. Chapter Objectives
  812. 11.1 The Concept of the Boundary Layer
  813. Boundary Layer Description
  814. Laminar Flow
  815. Transitional Flow
  816. Turbulent Flow
  817. Boundary Layer Thickness
  818. Disturbance Thickness
  819. Displacement Thickness
  820. Momentum Thickness
  821. Boundary Layer Classification
  822. 11.2 Laminar Boundary Layers
  823. Disturbance Thickness
  824. Displacement Thickness
  825. Momentum Thickness
  826. Shear Stress
  827. Friction Drag
  828. Solution
  829. Fluid Description
  830. Analysis
  831. Solution
  832. Fluid Description
  833. Disturbance Thickness
  834. Velocity
  835. Solution
  836. Fluid Description
  837. Displacement Thickness
  838. Velocity
  839. Solution
  840. Fluid Description
  841. Analysis
  842. 11.3 The Momentum Integral Equation
  843. Continuity Equation
  844. Momentum Equation
  845. Solution
  846. Fluid Description
  847. Boundary Layer Thickness
  848. Skin Friction Coefficient
  849. Friction Drag Coefficient
  850. 11.4 Turbulent Boundary Layers
  851. Disturbance Thickness
  852. Shear Stress along Plate
  853. Drag on Plate
  854. 11.5 Laminar and Turbulent Boundary Layers
  855. Solution
  856. Fluid Description
  857. Analysis
  858. Solution
  859. Fluid Description
  860. Analysis
  861. Solution
  862. Fluid Description
  863. Analysis
  864. 11.6 Drag and Lift
  865. Drag and Lift Components
  866. Solution
  867. Fluid Description
  868. Analysis
  869. 11.7 Pressure Gradient Effects
  870. Ideal Flow Around a Cylinder
  871. Real Flow around a Cylinder
  872. Vortex Shedding
  873. 11.8 The Drag Coefficient
  874. Reynolds Number
  875. Cylinder
  876. Sphere
  877. Froude Number
  878. Mach Number
  879. 11.9 Drag Coefficients for Bodies Having Various Shapes
  880. Applications
  881. Solution
  882. Fluid Description
  883. Analysis
  884. Solution
  885. Fluid Description
  886. Analysis
  887. Solution
  888. Fluid Description
  889. Analysis
  890. 11.10 Methods for Reducing Drag
  891. Airfoils
  892. Design
  893. Airfoil Drag Coefficients
  894. Road Vehicles
  895. 11.11 Lift and Drag on an Airfoil
  896. Airfoil Lift
  897. Circulation
  898. Experimental Data
  899. Race Cars
  900. Trailing Vortices and Induced Drag
  901. Induced Drag Coefficient
  902. Spinning Ball
  903. Solution
  904. Fluid Description
  905. Angle of Attack
  906. Drag
  907. Stall
  908. References
  909. Problems
  910. Sec. 11.1-11.3
  911. Sec. 11.4-11.5
  912. Sec. 11.6
  913. Sec. 11.7-11.9
  914. Sec. 11.10-11.11
  915. Conceptual Problems
  916. Chapter Review
  917. Chapter 12 Open-Channel Flow
  918. Chapter Objectives
  919. 12.1 Types of Flow in Open Channels
  920. Laminar and Turbulent Flow
  921. Uniform and Steady Flow
  922. Hydraulic Jump
  923. 12.2 Open-Channel Flow Classifications
  924. Froude Number
  925. 12.3 Specific Energy
  926. 12.4 Open-Channel Flow over a Rise or Bump
  927. Rise
  928. Bump
  929. Solution
  930. Fluid Description
  931. Analysis
  932. Solution
  933. Fluid Description
  934. Analysis
  935. 12.5 Open-Channel Flow under a Sluice Gate
  936. Solution
  937. Fluid Description
  938. Analysis
  939. Solution
  940. Fluid Description
  941. Analysis
  942. 12.6 Steady Uniform Channel Flow
  943. Reynolds Number
  944. Chézy Equation
  945. Manning Equation
  946. Best Hydraulic Cross Section
  947. Critical Slope
  948. Solution
  949. Fluid Description
  950. Analysis
  951. Solution
  952. Fluid Description
  953. Analysis
  954. Solution
  955. Fluid Description
  956. Analysis
  957. Solution
  958. Fluid Description
  959. Analysis
  960. 12.7 Gradually Varied Flow
  961. Rectangular Cross Section
  962. Surface Profiles
  963. Calculating the Surface Profile
  964. Solution
  965. Fluid Description
  966. Analysis
  967. Solution
  968. Fluid Description
  969. Analysis
  970. 12.8 The Hydraulic Jump
  971. Continuity Equation
  972. Momentum Equation
  973. Energy Equation
  974. Solution
  975. Fluid Description
  976. Analysis
  977. Solution
  978. Fluid Description
  979. Analysis
  980. 12.9 Weirs
  981. Sharp-Crested Weirs
  982. Rectangle
  983. Triangle
  984. Broad-Crested Weirs
  985. Solution
  986. Fluid Description
  987. Analysis
  988. References
  989. Problems
  990. Sec. 12.1-12.3
  991. Sec. 12.4
  992. Sec. 12.5
  993. Sec. 12.6
  994. Sec. 12.7
  995. Sec. 12.8
  996. Sec. 12.9
  997. Chapter Review
  998. Fundamental Equations of Open-Channel Flow
  999. Chapter 13 Compressible Flow
  1000. Chapter Objectives
  1001. 13.1 Thermodynamic Concepts
  1002. Ideal Gas Law
  1003. Internal Energy and the First Law of Thermodynamics
  1004. Specific Heat
  1005. Constant-Volume Process
  1006. Constant-Pressure Process
  1007. Entropy and the Second Law of Thermodynamics
  1008. Isentropic Process
  1009. Solution
  1010. Fluid Description
  1011. Change in Enthalpy
  1012. Change in Internal Energy
  1013. Change in Entropy
  1014. Solution
  1015. Fluid Description
  1016. Temperature
  1017. Density
  1018. 13.2 Wave Propagation through a Compressible Fluid
  1019. Continuity Equation
  1020. Linear Momentum Equation
  1021. 13.3 Types of Compressible Flow
  1022. Subsonic Flow, < 1
  1023. Sonic and Supersonic Flow, M ≥ 1
  1024. Mach Cone
  1025. Solution
  1026. Fluid Description
  1027. Analysis
  1028. 13.4 Stagnation Properties
  1029. Stagnation Temperature
  1030. Stagnation Pressure
  1031. Stagnation Density
  1032. Solution
  1033. Fluid Description
  1034. Analysis
  1035. Solution
  1036. Fluid Description
  1037. Stagnation Temperature
  1038. Stagnation Pressure
  1039. Solution
  1040. Fluid Description
  1041. Analysis
  1042. 13.5 Isentropic Flow through a Variable Area
  1043. Continuity Equation
  1044. Linear Momentum Equation
  1045. Subsonic Flow
  1046. Supersonic Flow
  1047. Laval Nozzle
  1048. Area Ratios
  1049. Solution
  1050. Fluid Description
  1051. Throat Area
  1052. Properties at Section 2
  1053. 13.6 Isentropic Flow through Converging and Diverging Nozzles
  1054. Converging Nozzle
  1055. Converging-Diverging Nozzle
  1056. Solution
  1057. Fluid Description
  1058. Analysis
  1059. Solution
  1060. Fluid Description
  1061. Analysis
  1062. Solution
  1063. Fluid Description
  1064. Analysis
  1065. Solution I
  1066. Fluid Description
  1067. Analysis
  1068. Solution II
  1069. 13.7 The Effect of Friction on Compressible Flow
  1070. Continuity Equation
  1071. Linear Momentum Equation
  1072. Ideal Gas Law
  1073. Energy Equation
  1074. Pipe Length versus Mach Number
  1075. Temperature
  1076. Velocity
  1077. Density
  1078. Pressure
  1079. The Fanno Line
  1080. Solution
  1081. Fluid Description
  1082. Maximum Pipe Length
  1083. Flow Properties at L = 0.8 m
  1084. Solution
  1085. Fluid Description
  1086. L = 1 m
  1087. L = 2 m
  1088. Solution
  1089. Fluid Description
  1090. Mass Flow
  1091. Stagnation Temperature and Pressure
  1092. Friction Force
  1093. 13.8 The Effect of Heat Transfer on Compressible Flow
  1094. Continuity Equation
  1095. Linear Momentum Equation
  1096. Ideal Gas Law
  1097. Energy Equation
  1098. Velocity
  1099. Density
  1100. Pressure
  1101. Temperature
  1102. Stagnation Temperature and Pressure
  1103. Rayleigh Line
  1104. Solution
  1105. Fluid Description
  1106. Air Properties at Critical Location
  1107. Air Properties at Section 2
  1108. 13.9 Normal Shock Waves
  1109. Continuity Equation
  1110. Linear Momentum Equation
  1111. Ideal Gas Law
  1112. Energy Equation
  1113. Relationship between Mach Numbers
  1114. 13.10 Shock Waves in Nozzles
  1115. Solution
  1116. Fluid Description
  1117. Analysis
  1118. Solution
  1119. Fluid Description
  1120. Analysis
  1121. Solution
  1122. Fluid Description
  1123. Analysis
  1124. 13.11 Oblique Shock Waves
  1125. Continuity Equation
  1126. Momentum Equation
  1127. Energy Equation
  1128. Solution
  1129. Fluid Description
  1130. Analysis
  1131. 13.12 Compression and Expansion Waves
  1132. Solution
  1133. Fluid Description
  1134. Analysis
  1135. 13.13 Compressible Flow Measurement
  1136. Pitot Tube and Piezometer
  1137. Subsonic Flow
  1138. Supersonic Flow
  1139. Venturi Meter
  1140. References
  1141. Problems
  1142. Sec. 13.1
  1143. Sec. 13.2-13.4
  1144. Sec. 13.5-13.6
  1145. Sec. 13.7-13.8
  1146. Sec. 13.9-13.10
  1147. Sec. 13.11-13.12
  1148. Chapter Review
  1149. Fundamental Equations of Compressible Flow
  1150. Chapter 14 Turbomachines
  1151. Chapter Objectives
  1152. 14.1 Types of Turbomachines
  1153. 14.2 Axial-Flow Pumps
  1154. Continuity
  1155. Angular Momentum
  1156. Power
  1157. Flow Kinematics
  1158. Solution
  1159. Fluid Description
  1160. Kinematics
  1161. Solution I
  1162. Solution II
  1163. Solution III
  1164. Solution
  1165. Fluid Description
  1166. Kinematics
  1167. Torque and Power
  1168. 14.3 Radial-Flow Pumps
  1169. Kinematics
  1170. Continuity
  1171. Angular Momentum
  1172. Power
  1173. Flow within the Casing
  1174. 14.4 Ideal Performance for Pumps
  1175. Head Loss and Efficiency
  1176. Head-Discharge Curve—Radial-Flow Pump
  1177. Solution
  1178. Fluid Description
  1179. Pump Head
  1180. Hydraulic Efficiency
  1181. Solution
  1182. Fluid Description
  1183. Kinematics
  1184. Flow
  1185. Hydraulic Efficiency
  1186. SOLUTION I
  1187. Fluid Description
  1188. Kinematics
  1189. Ideal Power
  1190. SOLUTION II
  1191. 14.5 Turbines
  1192. Impulse Turbines
  1193. Torque
  1194. Power
  1195. Solution
  1196. Fluid Description
  1197. Kinematics
  1198. Power
  1199. Reaction Turbines
  1200. Kinematics
  1201. Torque
  1202. Power
  1203. Head and Efficiency
  1204. Solution
  1205. Fluid Description
  1206. Kinematics
  1207. Power
  1208. Head Loss
  1209. 14.6 Pump Performance
  1210. Manufacturer’s Pump Performance Curves
  1211. 14.7 Cavitation and the Net Positive Suction Head
  1212. Solution
  1213. Fluid Description
  1214. Inlet Pressure
  1215. 14.8 Pump Selection Related to the Flow System
  1216. Solution
  1217. Fluid Description
  1218. System Equation
  1219. 14.9 Turbomachine Similitude
  1220. Pump Scaling Laws
  1221. Specific Speed
  1222. Solution
  1223. Solution
  1224. Solution
  1225. References
  1226. Problems
  1227. Sec. 14.1-14.2
  1228. Sec. 14.3-14.4
  1229. Sec. 14.5
  1230. Sec. 14.6-14.8
  1231. Sec. 14.9
  1232. Chapter Review
  1233. Appendix A Physical Properties of Fluids
  1234. Appendix B Compressible Properties of a Gas (K = 1.4)
  1235. Fundamental Solutions
  1236. Chapter 2
  1237. Chapter 3
  1238. Chapter 4
  1239. Chapter 5
  1240. Chapter 6
  1241. Chapter 10
  1242. Answers to Selected Problems
  1243. Chapter 1
  1244. Chapter 2
  1245. Chapter 3
  1246. Chapter 4
  1247. Chapter 5
  1248. Chapter 6
  1249. Chapter 7
  1250. Chapter 8
  1251. Chapter 9
  1252. Chapter 10
  1253. Chapter 11
  1254. Chapter 12
  1255. Chapter 13
  1256. Chapter 14
  1257. Index
  1258. A
  1259. B
  1260. C
  1261. D
  1262. E
  1263. F
  1264. G
  1265. H
  1266. I
  1267. K
  1268. L
  1269. M
  1270. N
  1271. O
  1272. P
  1273. Q
  1274. R
  1275. S
  1276. T
  1277. U
  1278. V
  1279. W
  1280. Z
  1281. Fundamental Equations of Fluid Mechanics

 

People Also Search:

fluid mechanics

fluid mechanics hibbeler

fluid mechanics 2nd edition hibbeler

fluid mechanics 2nd edition

fluid mechanics 2nd edition solution manual download pdf

fluid mechanics 2nd edition download scribd

Instant download after Payment is complete

Main Menu