Measure the Sky 2nd Edition Chromey Solutions Manual

$26.99$50.00 (-46%)

In stock

Measure the Sky 2nd Edition Chromey Solutions Manual.

Download sample

Measure the Sky 2nd Edition Chromey Solutions Manual

Product details:

  • ISBN-10 ‏ : ‎ 9781107572560
  • ISBN-13 ‏ : ‎ 978-1107572560
  • Author:

The second edition of this popular text provides undergraduates with a quantitative yet accessible introduction to the physical principles underlying the collection and analysis of observational data in contemporary optical and infrared astronomy. The text clearly links recent developments in ground- and space-based telescopes, observatory and instrument design, adaptive optics, and detector technologies to the more modest telescopes and detectors that students may use themselves. Beginning with reviews of the most relevant physical concepts and an introduction to elementary statistics, students are given the firm theoretical foundation they need. New topics, including an expanded treatment of spectroscopy, Gaia, the Large Synoptic Survey Telescope, and photometry at large redshifts bring the text up to date. Historical development of topics and quotations emphasize that astronomy is both a scientific and a human endeavour, while extensive end-of-chapter exercises facilitate the students’ practical learning experience.

Table contents:

  1. Chapter 1 Light
  2. 1.1 The story
  3. 1.2 Models for the behavior of light
  4. 1.2.1 Electromagnetic waves
  5. 1.2.2 Quantum mechanics and light
  6. 1.2.3 A geometric approximation: light rays
  7. 1.3 Measurements of light rays
  8. 1.3.1 Luminosity and brightness
  9. 1.3.2 The inverse square law of brightness
  10. 1.3.3 Surface brightness
  11. 1.4 Spectra
  12. 1.4.1 Monochromatic flux
  13. 1.4.2 Flux within a band
  14. 1.4.3 Spectrum analysis
  15. The Fraunhofer spectrum
  16. The Kirchhoff–Bunsen results
  17. Blackbody spectra
  18. 1.4.4 Spectra of stars
  19. 1.5 Magnitudes
  20. 1.5.1 Apparent magnitudes
  21. 1.5.2 Absolute magnitudes
  22. 1.5.3 The bolometric correction
  23. 1.5.4 Apparent magnitudes from images
  24. 1.5.5 Example problem
  25. Exercises
  26. Chapter 2 Uncertainty
  27. 2.1 Accuracy and precision
  28. 2.1.1 An example
  29. 2.1.2 Accuracy and systematic error
  30. 2.1.3 Precision and random error
  31. 2.1.4 Uncertainty
  32. 2.1.5 Digitizing effects
  33. 2.1.6 Significant digits
  34. 2.2 Describing populations
  35. 2.2.1 Descriptive statistics of a finite population
  36. Measures of the central value
  37. Measures of dispersion
  38. 2.2.2 Estimating population statistics
  39. 2.3 Probability distributions
  40. 2.3.1 The random variable
  41. 2.3.2 The Poisson distribution
  42. 2.3.3 The Gaussian, or normal, distribution
  43. 2.3.4 The standard normal distribution
  44. 2.3.5 Other distributions
  45. 2.4 Estimating uncertainty
  46. 2.4.1 The central limit theorem
  47. 2.4.2 Reducing uncertainty
  48. 2.5 Propagation of uncertainty
  49. 2.5.1 Combining several variables
  50. 2.5.2 General rule
  51. 2.5.3 Several measurements of a single variable
  52. 2.6 Additional topics
  53. Exercises
  54. Chapter 3 Place, time, and motion
  55. 3.1 Astronomical coordinate systems
  56. 3.1.1 Three-dimensional coordinates
  57. 3.1.2 Coordinates on a spherical surface
  58. 3.1.3 Terrestrial latitude and longitude
  59. 3.1.4 The altitude–azimuth system
  60. 3.1.5 The equatorial system: definition of coordinates
  61. 3.1.6 The relation between the equatorial and the horizon systems
  62. 3.1.7 Measuring equatorial coordinates
  63. 3.1.8 Precession and nutation
  64. 3.1.9 Barycentric coordinates
  65. 3.1.10 The ICRS
  66. 3.1.11 The ecliptic coordinate system
  67. 3.1.12 The Galactic coordinate system
  68. 3.1.13 Transformation of coordinates
  69. 3.2 The third dimension
  70. 3.2.1 The astronomical unit
  71. 3.2.2 Stellar parallax
  72. 3.3 Time
  73. 3.3.1 Atomic time
  74. 3.3.1 Solar time
  75. 3.4 Motion
  76. 3.4.1 Space motion
  77. 3.4.2 Proper motion
  78. 3.4.3 Radial velocity
  79. Precise radial velocities
  80. Large redshifts
  81. Exercises
  82. Chapter 4 Names, catalogs, and databases
  83. 4.1 Star names
  84. 4.1.1 Proper names
  85. 4.1.2 Bayer designations
  86. 4.1.3 Flamsteed designations
  87. 4.1.4 Double stars, exoplanets, and variables
  88. 4.1.5 Durchmusterung numbers
  89. 4.1.6 The nomenclature problem
  90. 4.1.7 Other stellar catalogs
  91. 4.2 Non-stellar objects outside the Solar System
  92. 4.2.1 Bright objects
  93. 4.2.2 Faint non-stellar objects
  94. 4.3 Objects at non-optical wavelengths
  95. 4.4 Atlases, finding charts, and sky surveys
  96. 4.5 Solar System objects
  97. 4.6 Websites and other computer resources
  98. Exercises
  99. Chapter 5 Optics for astronomy
  100. 5.1 Principles of geometrical optics
  101. 5.1.1 Rays and wavefronts in dielectric media
  102. 5.1.3 Reflection and transmission coefficients
  103. 5.1.4 Reflecting materials
  104. 5.1.5 Transmitting materials
  105. 5.1.6 Thin film coatings
  106. 5.1.7 Cleaning
  107. 5.1.8 Reflection at a spherical surface
  108. 5.1.9 Refraction at a spherical surface
  109. 5.2 Lenses, mirrors, and simple optical configurations
  110. 5.2.1 Thick lenses
  111. 5.2.2 Thin lenses
  112. 5.2.3 Graphical ray tracing
  113. 5.2.4 Multiple lenses
  114. 5.2.5 The thick plane-parallel plate
  115. 5.2.6 Refraction by an atmosphere
  116. 5.2.7 Optical fibers
  117. 5.2.8 Prisms
  118. 5.3 Simple telescopes
  119. 5.3.1 Telescopes as single-element cameras
  120. 5.3.2 Image scale and image size
  121. 5.3.3 Focal ratio and image brightness
  122. 5.3.4 Telescopes with oculars
  123. 5.4 Image quality: telescopic resolution
  124. 5.4.1. The diffraction limit
  125. 5.4.2 Rayleigh refused: atmospheric seeing and optical aberrations
  126. 5.5 Aberrations
  127. 5.5.1 Chromatic aberration
  128. 5.5.2 Classification of monochromatic wavefront aberrations
  129. 5.5.3 Shapes of optical surfaces
  130. 5.5.4 Spherical aberration
  131. 5.5.5 Coma
  132. 5.5.6 Astigmatism
  133. 5.5.7 Field curvature
  134. 5.5.8 Distortion
  135. 5.5.9 Other aberrations and ray tracing in practice
  136. Exercises
  137. Chapter 6 Astronomical telescopes
  138. 6.1 Telescope mounts and drives
  139. 6.1.1 Altazimuth and equatorial mounts
  140. 6.1.2 Telescope mounts in space
  141. 6.2 Reflecting telescope optics
  142. 6.2.1 Prime focus and Newtonian focus
  143. 6.2.2 Cassegrain and Gregorian reflectors
  144. 6.2.3 Aplanatic two-mirror telescopes
  145. 6.2.4 Nasmyth and coudé foci
  146. 6.2.5 Three-mirror telescopes
  147. 6.2.6 Schmidt telescopes
  148. 6.2.7 Other catadioptric telescopes
  149. 6.3 Telescopes in space
  150. 6.3.1 Advantages of space telescopes
  151. Resolution
  152. Detection limits
  153. Background
  154. Atmospheric transmission
  155. Access to sky
  156. Perturbing forces and environment
  157. 6.3.2 Disadvantages of space telescopes
  158. 6.3.3 Airborne telescopes
  159. 6.3.4 The James Webb Space Telescope
  160. 6.4 The current revolution in ground-based observing
  161. 6.4.1 Large mirrors
  162. 6.4.2 Observatory engineering
  163. 6.4.3 Computers
  164. 6.5 Atmospheric blur
  165. 6.5.1 Atmospheric wavefront (WF) distortion
  166. 6.5.2 High resolution on short exposures
  167. 6.5.3 Quantifying wavefront distortion
  168. 6.6 Adaptive optics
  169. 6.6.1 The idea of adaptive optics
  170. 6.6.2 The Greenwood time delay
  171. 6.6.3 Anisoplanatism
  172. 6.6.4 Guide stars
  173. 6.6.5 Wavefront correctors
  174. 6.6.6 Wavefront sensors
  175. 6.6.7 A simple AO system
  176. 6.6.8 Advanced AO systems
  177. 6.7 Extremely large telescopes
  178. Exercises
  179. Chapter 7 Matter and light
  180. 7.1 Isolated atoms
  181. 7.1.1 Atomic energy levels
  182. 7.1.2 Absorption of light by atoms
  183. 7.1.3 Emission of light by atoms
  184. 7.1.4 Collisions and thermal excitation
  185. 7.1.5 Specification of energy levels
  186. 7.2 Isolated molecules
  187. 7.3 Solid-state crystals
  188. 7.3.1 Bonds and bands in silicon
  189. 7.3.2 Conductors, semiconductors, and insulators
  190. 7.3.3 Intrinsic semiconductors
  191. Semiconductor crystals
  192. Conductivity and temperature
  193. 7.3.4 Intrinsic photo-absorbers
  194. 7.3.5 Extrinsic semiconductors
  195. 7.4 Photoconductors
  196. 7.4.1 Simple photoconductors
  197. 7.4.2 The blocked impurity band photoconductor
  198. 7.5 The MOS capacitor
  199. 7.6 The p–n junction
  200. 7.6.1 Generation and recombination
  201. 7.6.2 p–n junction diodes
  202. 7.6.3 Light detection in diodes
  203. 7.6.4 Variations on the junction diode
  204. 7.7 The vacuum photoelectric effect
  205. 7.8 Superconductivity
  206. 7.8.1 The superconductor band gap
  207. 7.8.2 Light detection in an SIS junction
  208. 7.8.3 Light detection in kinetic induction devices
  209. Exercises
  210. Chapter 8 Detectors
  211. 8.1 Detector characterization
  212. 8.1.1 Detection modes
  213. 8.1.2 Efficiency and yield
  214. 8.1.3 Noise
  215. 8.1.4 Spectral response and discrimination
  216. 8.1.5 Linearity and dynamic range
  217. 8.1.6 Stability
  218. 8.1.7 Response time
  219. 8.1.8 Physical size and pixel count
  220. 8.1.9 Image sampling and degradation
  221. 8.2 The CCD
  222. 8.2.1 General operation
  223. 8.2.2 Channel stops, blooming, full well, and gain
  224. 8.2.3 Readout time, read noise, and bias
  225. 8.2.4 Dark current, cooling, and vacuum enclosures
  226. 8.2.5 Charge transfer efficiency
  227. 8.2.6 The buried channel CCD
  228. 8.2.7 The MPP CCD
  229. 8.2.8 CCD variations
  230. 8.2.9 CCD sensitivity issues
  231. Frontside options
  232. Backthinning
  233. Anti-reflection coatings
  234. 8.2.10 Drift scanning and time delayed integration
  235. 8.3 CMOS arrays
  236. 8.4 Infrared arrays
  237. 8.4.1 Detectors at different wavelengths
  238. Silicon IR and SWIR (0.72–1.1 and 0.9–2.5 μm)
  239. Thermal infrared
  240. 8.4.2 Infrared detector construction
  241. 8.5 Photo-emissive devices
  242. 8.5.1 The photomultiplier tube
  243. 8.5.2 The microchannel plate
  244. 8.5.3 Image intensifiers and the ICCD
  245. 8.6 Thermal detectors
  246. Exercises
  247. Chapter 9 Digital images from arrays
  248. 9.1 Arrays
  249. 9.1.1 Pixels and pixel response
  250. 9.1.2 Digital images
  251. 9.1.3 CCD gain
  252. 9.1.4 Pictures lie
  253. 9.2 Digital image manipulation
  254. 9.2.1 Basic image arithmetic
  255. 9.2.2 Image dimensions and color
  256. 9.2.3 Image functions
  257. 9.2.4 Image convolution and filtering
  258. 9.3 Preprocessing array data: bias, linearity, dark, flat, and fringe
  259. 9.3.1 Bias frames
  260. 9.3.2 Overscan and reference pixels
  261. 9.3.3 Dark current
  262. 9.3.4 Detector linearity
  263. 9.3.5 Flat field
  264. Twilight flats
  265. Dark-sky flats
  266. Dome flats
  267. Space telescope flats
  268. Computing simple flats
  269. Compound flats
  270. 9.3.6 Preprocessing data frames
  271. 9.3.7 Fringing
  272. 9.4 Combining images
  273. 9.4.1 Where is it? The centroid
  274. 9.4.2 Where is it, again? PSF fitting
  275. 9.4.3 Aligning images: shift, canvas, and trim
  276. 9.4.4 Aligning images: geometric transformations
  277. 9.4.5 Interpolation
  278. 9.4.6 Resampling, interlace, and drizzle
  279. 9.4.7 Cleaning images
  280. 9.5 Digital aperture photometry
  281. 9.5.1 Digital apertures and PSF fits
  282. 9.5.2 Measuring the sky
  283. 9.5.3 Signal and noise in an aperture
  284. 9.5.4 The CCD equation
  285. Exercises
  286. Chapter 10 Photometry
  287. 10.1 Introduction: a short history
  288. 10.2 The photometric response function
  289. 10.2.1 Types of photometry
  290. Single-band photometry
  291. Broadband multicolor photometry
  292. Narrow- and intermediate-band photometry
  293. 10.2.2 Magnitudes
  294. 10.2.3 Response function implementation
  295. 10.2.4 Response function description
  296. 10.2.5 Color indices
  297. 10.2.6 Line and feature indices
  298. 10.3 The idea of a photometric system
  299. 10.4 Common photometric systems
  300. 10.4.1 Visual and photographic systems
  301. 10.4.2 The UBVRI system
  302. 10.4.3 The SDSS ugriz(y) system
  303. 10.4.4 The broadband infrared systems: ZYJHKLMNQ
  304. 10.4.5 The intermediate-band Strömgren system: uvbyβ
  305. 10.4.6 Other systems
  306. 10.5 Absorption by the atmosphere
  307. 10.5.1 Atmospheric windows
  308. 10.5.2 Absorption by a plane-parallel slab
  309. 10.5.3 Bouguer’s law
  310. 10.5.4 Sources of extinction
  311. Rayleigh scattering by molecules
  312. Absorption by ozone
  313. Scattering by aerosols
  314. Molecular-band absorption
  315. 10.5.5 Heterochromatic extinction
  316. 10.5.6 Compensating for extinction: theory
  317. 10.5.7 Compensating for extinction: practice
  318. Case 1: assume a mean extinction
  319. Case 2: use known outside-the-atmosphere magnitudes
  320. Case 3: draw the Bouguer line from observations
  321. Case 4: variable extinction
  322. Case 5: use all the data
  323. 10.5.8 Indices or magnitudes?
  324. 10.6 Transformation to a standard system
  325. 10.7 Absorption outside the atmosphere
  326. 10.7.1 The interstellar medium
  327. 10.7.2 Interstellar absorption and reddening
  328. 10.7.3 The interstellar reddening law
  329. 10.7.4 Spectroscopic parallax
  330. 10.8 Wavelength changes
  331. 10.8.1 Redshift and photometry
  332. 10.8.2 The K correction
  333. 10.8.3 Absorption outside our Galaxy
  334. Exercises
  335. Chapter 11 Spectroscopy
  336. 11.1 Dispersive spectrometry
  337. 11.2 Dispersing optical elements
  338. 11.2.1 Prisms
  339. 11.2.2 The diffraction grating
  340. 11.2.3 Blazed gratings
  341. 11.2.4 Echelles
  342. 11.2.5 Volumetric phase gratings
  343. 11.2.6 Grating manufacture
  344. 11.3 Spectrometers without slits
  345. 11.3.1 The objective prism
  346. 11.3.2 The non-objective prism and grism
  347. 11.4 Basic slit and fiber spectrometers
  348. 11.5 Single-object spectrometer design for astronomy
  349. 11.5.1 An example configuration
  350. 11.5.2 Slit orientation and spectrum widening
  351. 11.5.3 Getting light in
  352. 11.6 Multiplexed spectrometers
  353. 11.6.1 Spectra without dispersion – energy-resolving detectors
  354. 11.6.2 Long-slit spectrometers
  355. 11.6.3 Integral field spectrometers
  356. Image slicers
  357. Fiber mosaics
  358. Lenslet arrays
  359. 11.6.4 Multi-object spectrometers
  360. 11.6.5 Refinements
  361. 11.7 Spectrometer stability and mounting
  362. 11.8 Data acquisition and reduction
  363. 11.8.1 Observing practices
  364. 11.8.2 Spectrum extraction
  365. 11.8.3 Wavelength calibration
  366. 11.8.4 Flux calibration
  367. 11.8.5 Other calibrations
  368. 11.9 Interpreting spectra
  369. 11.9.1 Classification of stellar spectra
  370. 11.9.2 Spectra of gaseous nebulae
  371. 11.9.3 Measuring line strength
  372. 11.9.4 Line profiles
  373. Natural broadening
  374. Instrumental broadening
  375. Rotational broadening
  376. Thermal broadening
  377. Microturbulence
  378. Pressure broadening
  379. Abundances
  380. 11.9.5 The redshift parameter
  381. 11.9.6 Determination of masses
  382. 11.9.7 Exoplanets
  383. 11.9.8 Galaxies and the universe
  384. The Hubble law
  385. Determining the value of H0
  386. High z supernovae and dark energy
  387. Exercises
  388. Appendices
  389. Appendix A General reference data
  390. A1 The Greek alphabet
  391. A2 Metric system prefixes and symbols
  392. A3 Physical constants
  393. A4 Astronomical constants
  394. A5 Conversions
  395. Appendix B Light
  396. B1 Photon properties
  397. B2 The strongest Fraunhofer lines
  398. B3 Sensitivity of human vision
  399. B4 The visually brightest stars
  400. Appendix C
  401. C1 The standard normal distribution
  402. Appendix D
  403. D1 The nearest stars
  404. D2 The equation of time
  405. D3 Coordinate transformations and relations
  406. D4 Atmospheric refraction
  407. D5 Astrometric catalogs
  408. D6 Days and years
  409. Appendix E
  410. E1 The constellations
  411. E2 Some named stars
  412. E3 Naming small bodies in the Solar System
  413. Minor planets
  414. Comets
  415. Natural satellites of the major and minor planets
  416. Appendix F
  417. F1 A timeline for optical telescopes
  418. Appendix G
  419. G1 Websites
  420. G2 Largest optical telescopes (2015)*
  421. G3 Large Schmidt telescopes
  422. Appendix H
  423. H1 The hydrogen atom
  424. H2 Some common semiconductors
  425. Appendix I
  426. I1 Characteristics of some commercial CCDs for astronomy
  427. I2 Manufacturers of sensors and cameras for astronomy
  428. Appendix J
  429. J1 The point-spread function
  430. Appendix K
  431. K1 Intrinsic broadband colors for various spectral types
  432. References
  433. Index

People also search:

to measure the sky 2nd edition pdf

to measure the sky 2nd edition

how to measure the sky

how is a second measured

how do we measure a second

Instant download after Payment is complete

Main Menu