Chapter 2

Problem 2.1

a)

Let

$$
\begin{aligned}
& w_{k}=x+\mathrm{j} y \\
& p(-k)=a+\mathrm{j} b
\end{aligned}
$$

We may then write

$$
\begin{aligned}
f & =w_{k} p^{*}(-k) \\
& =(x+\mathrm{j} y)(a-\mathrm{j} b) \\
& =(a x+b y)+\mathrm{j}(a y-b x)
\end{aligned}
$$

Letting

$$
f=u+\mathrm{j} v
$$

where

$$
\begin{aligned}
& u=a x+b y \\
& v=a y-b x
\end{aligned}
$$

Hence,

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=a & \frac{\partial u}{\partial y}=b \\
\frac{\partial v}{\partial y}=a & \frac{\partial v}{\partial x}=-b
\end{array}
$$

From these results we can immediately see that

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
& \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

In other words, the product term $w_{k} p^{*}(-k)$ satisfies the Cauchy-Riemann equations, and so this term is analytic.
b)

Let

$$
\begin{aligned}
f & =w_{k} p^{*}(-k) \\
& =(x-\mathrm{j} y)(a+\mathrm{j} b) \\
& =(a x+b y)+\mathrm{j}(b x-a y)
\end{aligned}
$$

Let

$$
f=u+j v
$$

with

$$
\begin{aligned}
& u=a x+b y \\
& v=b x-a y
\end{aligned}
$$

Hence,

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=a & \frac{\partial u}{\partial y}=b \\
\frac{\partial v}{\partial x}=b & \frac{\partial v}{\partial y}=-a
\end{array}
$$

From these results we immediately see that

$$
\begin{aligned}
& \frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y} \\
& \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

In other words, the product term $w_{k}^{*} p(-k)$ does not satisfy the Cauchy-Riemann equations, and so this term is not analytic.

Problem 2.2

a)

From the Wiener-Hopf equation, we have

$$
\begin{equation*}
\mathbf{w}_{0}=\mathbf{R}^{-1} \mathbf{p} \tag{1}
\end{equation*}
$$

We are given that

$$
\begin{aligned}
& \mathbf{R}=\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right] \\
& \mathbf{p}=\left[\begin{array}{c}
0.5 \\
0.25
\end{array}\right]
\end{aligned}
$$

Hence the inverse of \mathbf{R} is

$$
\begin{aligned}
\mathbf{R}^{-1} & =\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right]^{-1} \\
& =\frac{1}{0.75}\left[\begin{array}{cc}
1 & -0.5 \\
-0.5 & 1
\end{array}\right]^{-1}
\end{aligned}
$$

Using Equation (1), we therefore get

$$
\begin{aligned}
\mathbf{w}_{0} & =\frac{1}{0.75}\left[\begin{array}{cc}
1 & -0.5 \\
-0.5 & 1
\end{array}\right]\left[\begin{array}{c}
0.5 \\
0.25
\end{array}\right] \\
& =\frac{1}{0.75}\left[\begin{array}{c}
0.375 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
0.5 \\
0
\end{array}\right]
\end{aligned}
$$

b)

The minimum mean-square error is

$$
\begin{aligned}
J_{\min } & =\sigma_{d}^{2}-\mathbf{p}^{H} \mathbf{w}_{0} \\
& =\sigma_{d}^{2}-\left[\begin{array}{ll}
0.5 & 0.25
\end{array}\right]\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] \\
& =\sigma_{d}^{2}-0.25
\end{aligned}
$$

c)

The eigenvalues of the matrix \mathbf{R} are roots of the characteristic equation:

$$
(1-\lambda)^{2}-(0.5)^{2}=0
$$

That is, the two roots are

$$
\lambda_{1}=0.5 \quad \text { and } \lambda_{2}=1.5
$$

The associated eigenvectors are defined by

$$
\mathbf{R q}=\lambda \mathbf{q}
$$

For $\lambda_{1}=0.5$, we have

$$
\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right]\left[\begin{array}{l}
q_{11} \\
q_{12}
\end{array}\right]=0.5\left[\begin{array}{l}
q_{11} \\
q_{12}
\end{array}\right]
$$

Expanded this becomes

$$
\begin{aligned}
& q_{11}+0.5 q_{12}=0.5 q_{11} \\
& 0.5 q_{11}+q_{12}=0.5 q_{12}
\end{aligned}
$$

Therefore,

$$
q_{11}=-q_{12}
$$

Normalizing the eigenvector q_{1} to unit length, we therefore have

$$
\mathbf{q}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Similarly, for the eigenvalue $\lambda_{2}=1.5$, we may show that

$$
\mathbf{q}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Accordingly, we may express the Wiener filter in terms of its eigenvalues and eigenvectors as follows:

$$
\begin{aligned}
\mathbf{w}_{0} & =\left(\sum_{i=1}^{2} \frac{1}{\lambda_{i}} \mathbf{q}_{i} \mathbf{q}_{i}^{H}\right) \mathbf{p} \\
& =\left(\frac{1}{\lambda_{1}} \mathbf{q}_{1} \mathbf{q}_{1}^{H}+\frac{1}{\lambda_{2}} \mathbf{q}_{2} \mathbf{q}_{2}^{H}\right) \mathbf{p} \\
& =\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\left[\begin{array}{ll}
1 & -1
\end{array}\right]+\frac{1}{3}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right]\right)\left[\begin{array}{c}
0.5 \\
0.25
\end{array}\right] \\
& =\left(\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]+\frac{1}{3}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)\left[\begin{array}{c}
0.5 \\
0.25
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{4}{3} & -\frac{2}{3} \\
-\frac{2}{3} & \frac{4}{3}
\end{array}\right]\left[\begin{array}{c}
0.5 \\
0.25
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{4}{6}-\frac{1}{6} \\
-\frac{1}{3}+\frac{1}{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
0.5 \\
0
\end{array}\right]
\end{aligned}
$$

Problem 2.3

a)

From the Wiener-Hopf equation we have

$$
\begin{equation*}
\mathbf{w}_{0}=\mathbf{R}^{-1} \mathbf{p} \tag{1}
\end{equation*}
$$

We are given

$$
\mathbf{R}=\left[\begin{array}{ccc}
1 & 0.5 & 0.25 \\
0.5 & 1 & 0.5 \\
0.25 & 0.5 & 1
\end{array}\right]
$$

and

$$
\mathbf{p}=\left[\begin{array}{lll}
0.5 & 0.25 & 0.125
\end{array}\right]^{T}
$$

Hence, the use of these values in Equation (1) yields

$$
\begin{aligned}
\mathbf{w}_{0} & =\mathbf{R}^{-1} \mathbf{p} \\
& =\left[\begin{array}{ccc}
1 & 0.5 & 0.25 \\
0.5 & 1 & 0.5 \\
0.25 & 0.5 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
0.5 \\
0.25 \\
0.125
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1.33 & -0.67 & 0 \\
-0.67 & 1.67 & -0.67 \\
0 & -0.67 & 1.33
\end{array}\right]\left[\begin{array}{c}
0.5 \\
0.25 \\
0.125
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{w}_{0}=\left[\begin{array}{lll}
0.5 & 0 & 0
\end{array}\right]^{T}
$$

b)

The Minimum mean-square error is

$$
\begin{aligned}
J_{\min } & =\sigma_{d}^{2}-\mathbf{p}^{H} \mathbf{w}_{0} \\
& =\sigma_{d}^{2}-\left[\begin{array}{lll}
0.5 & 0.25 & 0.125
\end{array}\right]\left[\begin{array}{c}
0.5 \\
0 \\
0
\end{array}\right] \\
& =\sigma_{d}^{2}-0.25
\end{aligned}
$$

c)

The eigenvalues of the matrix \mathbf{R} are

$$
\left[\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right]=\left[\begin{array}{lll}
0.4069 & 0.75 & 1.8431
\end{array}\right]
$$

The corresponding eigenvectors constitute the orthogonal matrix:

$$
\mathrm{Q}=\left[\begin{array}{ccc}
-0.4544 & -0.7071 & 0.5418 \\
0.7662 & 0 & 0.6426 \\
-0.4544 & 0.7071 & 0.5418
\end{array}\right]
$$

Accordingly, we may express the Wiener filter in terms of its eigenvalues and eigenvectors as follows:

$$
\mathbf{w}_{0}=\left(\sum_{i=1}^{3} \frac{1}{\lambda_{i}} \mathbf{q}_{i} \mathbf{q}_{i}^{H}\right) \mathbf{p}
$$

$$
\begin{aligned}
& \mathbf{w}_{0}=\left(\frac{1}{0.4069}\left[\begin{array}{c}
-0.4544 \\
0.7662 \\
-0.4544
\end{array}\right]\left[\begin{array}{lll}
-0.4544 & 0.7662 & -0.4544
\end{array}\right]\right. \\
& +\frac{1}{0.75}\left[\begin{array}{c}
-0.7071 \\
0 \\
0.7071
\end{array}\right]\left[\begin{array}{lll}
-0.7071 & 0 & -0.7071
\end{array}\right] \\
& \left.+\frac{1}{1.8431}\left[\begin{array}{l}
0.5418 \\
0.6426 \\
0.5418
\end{array}\right]\left[\begin{array}{lll}
0.5418 & 0.6426 & 0.5418
\end{array}\right]\right) \times\left[\begin{array}{c}
0.5 \\
0.25 \\
0.125
\end{array}\right] \\
& \mathbf{w}_{0}=\left(\frac{1}{0.4069}\left[\begin{array}{ccc}
0.2065 & -0.3482 & 0.2065 \\
-0.3482 & 0.5871 & -0.3482 \\
0.2065 & -0.3482 & 0.2065
\end{array}\right]\right. \\
& +\frac{1}{0.75}\left[\begin{array}{ccc}
0.5 & 0 & -0.5 \\
0 & 0 & 0 \\
-0.5 & 0 & 0.5
\end{array}\right] \\
& \left.+\frac{1}{1.8431}\left[\begin{array}{lll}
0.2935 & 0.3482 & 0.2935 \\
0.3482 & 0.4129 & 0.3482 \\
0.2935 & 0.3482 & 0.2935
\end{array}\right]\right) \times\left[\begin{array}{c}
0.5 \\
0.25 \\
0.125
\end{array}\right] \\
& =\left[\begin{array}{c}
0.5 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Problem 2.4

By definition, the correlation matrix

$$
\mathbf{R}=\mathbb{E}\left[\mathbf{u}(n) \mathbf{u}^{H}(n)\right]
$$

Where

$$
\mathbf{u}(n)=\left[\begin{array}{c}
u(n) \\
u(n-1) \\
\vdots \\
u(0)
\end{array}\right]
$$

Invoking the ergodicity theorem,

$$
\mathbf{R}(N)=\frac{1}{N+1} \sum_{n=0}^{N} \mathbf{u}(n) \mathbf{u}^{H}(n)
$$

Likewise, we may compute the cross-correlation vector

$$
\mathbf{p}=\mathbb{E}\left[\mathbf{u}(n) d^{*}(n)\right]
$$

as the time average

$$
\mathbf{p}(N)=\frac{1}{N+1} \sum_{n=0}^{N} \mathbf{u}(n) d^{*}(n)
$$

The tap-weight vector of the wiener filter is thus defined by the matrix product

$$
\mathbf{w}_{0}(N)=\left(\sum_{n=0}^{N} \mathbf{u}(n) \mathbf{u}^{H}(n)\right)^{-1}\left(\sum_{n=0}^{N} \mathbf{u}(n) d^{*}(n)\right)
$$

Problem 2.5

a)

$$
\begin{aligned}
\mathbf{R} & =\mathbb{E}\left[\mathbf{u}(n) \mathbf{u}^{H}(n)\right] \\
& =\mathbb{E}\left[(\alpha(n) \mathbf{s}(n)+\mathbf{v}(n))\left(\alpha^{*}(n) \mathbf{s}^{H}(n)+\mathbf{v}^{H}(n)\right)\right]
\end{aligned}
$$

With $\alpha(n)$ uncorrelated with $v(n)$, we have

$$
\begin{align*}
\mathbf{R} & =\mathbb{E}\left[|\alpha(n)|^{2}\right] \mathbf{s}(n) \mathbf{s}^{H}(n)+\mathbb{E}\left[\mathbf{v}(n) \mathbf{v}^{H}(n)\right] \\
& =\sigma_{\alpha}^{2} \mathbf{s}(n) \mathbf{s}^{H}(n)+\mathbf{R}_{v} \tag{1}
\end{align*}
$$

where \mathbf{R}_{v} is the correlation matrix of \mathbf{v}
b)

The cross-correlation vector between the input vector $\mathbf{u}(n)$ and the desired response $d(n)$ is

$$
\begin{equation*}
\mathbf{p}=\mathbb{E}\left[\mathbf{u}(n) d^{*}(n)\right] \tag{2}
\end{equation*}
$$

If $d(n)$ is uncorrelated with $\mathbf{u}(n)$, we have

$$
\mathrm{p}=0
$$

Hence, the tap-weight of the wiener filter is

$$
\begin{aligned}
\mathbf{w}_{0} & =\mathbf{R}^{-1} \mathbf{p} \\
& =\mathbf{0}
\end{aligned}
$$

c)

With $\sigma_{\alpha}^{2}=0$, Equation (1) reduces to

$$
\mathbf{R}=\mathbf{R}_{v}
$$

with the desired response

$$
d(n)=v(n-k)
$$

Equation (2) yields

$$
\begin{align*}
\mathbf{p} & =\mathbb{E}\left[\left(\alpha(n) \mathbf{s}(n)+\mathbf{v}(n) v^{*}(n-k)\right)\right] \\
& =\mathbb{E}\left[\left(\mathbf{v}(n) v^{*}(n-k)\right)\right] \\
& =\mathbb{E}\left[\left[\begin{array}{c}
v(n) \\
v(n-1) \\
\vdots \\
v(n-M+1)
\end{array}\right]\left(v^{*}(n-k)\right)\right] \\
& =\mathbb{E}\left[\begin{array}{c}
r_{v}(n) \\
r_{v}(n-1) \\
\vdots \\
r_{v}(k-M+1)
\end{array}\right], \quad 0 \leq k \leq M-1 \tag{3}
\end{align*}
$$

where $r_{v}(k)$ is the autocorrelation of $v(n)$ for lag k. Accordingly, the tap-weight vector of the (optimum) wiener filter is

$$
\begin{aligned}
\mathbf{w}_{0} & =\mathbf{R}^{-1} \mathbf{p} \\
& =\mathbf{R}_{v}^{-1} \mathbf{p}
\end{aligned}
$$

where \mathbf{p} is defined in Equation (3).
d)

For a desired response

$$
d(n)=\alpha(n) \exp (-\mathrm{j} \omega \tau)
$$

The cross-correlation vector \mathbf{p} is

$$
\begin{aligned}
\mathbf{p} & =\mathbb{E}\left[\mathbf{u}(n)\left(d^{*} n\right)\right] \\
& =\mathbb{E}\left[(\alpha(n) \mathbf{s}(n)+\mathbf{v}(n)) \alpha^{*}(n) \exp (-\mathrm{j} \omega \tau)\right] \\
& =\mathbf{s}(n) \exp (\mathrm{j} \omega \tau) \mathbb{E}\left[|\alpha(n)|^{2}\right] \\
& =\sigma_{\alpha}^{2} \mathbf{s}(n) \exp (\mathrm{j} \omega \tau) \\
& =\sigma_{\alpha}^{2}\left[\begin{array}{c}
1 \\
\exp (-\mathrm{j} \omega) \\
\vdots \\
\exp ((-\mathrm{j} \omega)(M-1))
\end{array}\right] \exp (\mathrm{j} \omega \tau) \\
& =\sigma_{\alpha}^{2}\left[\begin{array}{c}
\exp (\mathrm{j} \omega \tau) \\
\exp (\mathrm{j} \omega(\tau-1)) \\
\vdots \\
\exp ((\mathrm{j} \omega)(\tau-M+1)
\end{array}\right]
\end{aligned}
$$

The corresponding value of the tap-weight vector of the Wiener filter is

$$
\begin{aligned}
\mathbf{w}_{0} & =\sigma_{\alpha}^{2}\left(\sigma_{\alpha}^{2} \mathbf{s}(n) \mathbf{s}^{H}(n)+\mathbf{R}_{v}\right)^{-1}\left[\begin{array}{c}
\exp (\mathrm{j} \omega \tau) \\
\exp (\mathrm{j} \omega(\tau-1)) \\
\vdots \\
\exp ((\mathrm{j} \omega)(\tau-M+1))
\end{array}\right] \\
& =\left(\mathbf{s}(n) \mathbf{s}^{H}(n)+\frac{1}{\sigma_{\alpha}^{2}} \mathbf{R}_{v}\right)^{-1}\left[\begin{array}{c}
\exp (\mathrm{j} \omega \tau) \\
\exp (\mathrm{j} \omega(\tau-1)) \\
\vdots \\
\exp ((\mathrm{j} \omega)(\tau-M+1))
\end{array}\right]
\end{aligned}
$$

Problem 2.6

The optimum filtering solution is defined by the Wiener-Hopf equation

$$
\begin{equation*}
\mathrm{Rw}_{0}=\mathbf{p} \tag{1}
\end{equation*}
$$

for which the minimum mean-square error is

$$
\begin{equation*}
J_{\min }=\sigma_{d}^{2}-\mathbf{p}^{H} \mathbf{w}_{0} \tag{2}
\end{equation*}
$$

Combine Equations (1) and Equation(2) into a single relation:

$$
\left[\begin{array}{cc}
\sigma_{d}^{2} & \mathbf{p}^{H} \\
\mathbf{p} & \mathbf{R}
\end{array}\right]\left[\begin{array}{c}
1 \\
\mathbf{w}_{0}
\end{array}\right]=\left[\begin{array}{c}
J_{\min } \\
\mathbf{0}
\end{array}\right]
$$

Define

$$
\mathbf{A}=\left[\begin{array}{cc}
\sigma_{d}^{2} & \mathbf{p}^{H} \tag{3}\\
\mathbf{p} & \mathbf{R}
\end{array}\right]
$$

Since

$$
\begin{aligned}
& \sigma_{d}^{2}=\mathbb{E}\left[d(n) d^{*}(n)\right] \\
& \mathbf{p}=\mathbb{E}\left[\mathbf{u}(n) d^{*}(n)\right] \\
& \mathbf{R}=\mathbb{E}\left[\mathbf{u}(n) \mathbf{u}^{H}(n)\right]
\end{aligned}
$$

we may rewrite Equation (3) as

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ll}
\mathbb{E}\left[d(n) d^{*}(n)\right] & \mathbb{E}\left[d(n) \mathbf{u}^{H}(n)\right] \\
\mathbb{E}\left[\mathbf{u}(n) d^{*}(n)\right] & \mathbb{E}\left[\mathbf{u}(n) \mathbf{u}^{H}(n)\right]
\end{array}\right] \\
& =\mathbb{E}\left\{[\begin{array} { l }
{ d (n) } \\
{ \mathbf { u } (n) }
\end{array}] \left[\begin{array}{ll}
d^{*}(n) & \left.\left.\mathbf{u}^{H}(n)\right]\right\}
\end{array}\right.\right.
\end{aligned}
$$

The minimum mean-square error equals

$$
\begin{equation*}
J_{\min }=\sigma_{d}^{2}-\mathbf{p}^{H} \mathbf{w}_{0} \tag{4}
\end{equation*}
$$

Eliminating σ_{d}^{2} between Equation (1) and Equation (4):

$$
\begin{equation*}
J(\mathbf{w})=J_{\min }+\mathbf{p}^{H} \mathbf{w}_{0}-\mathbf{p}^{H} \mathbf{R} \mathbf{w}-\mathbf{w}^{H} \mathbf{R} \mathbf{w}_{0}+\mathbf{w}^{H} \mathbf{R} \mathbf{w} \tag{5}
\end{equation*}
$$

Eliminating p between Equation (2) and Equation (5)

$$
\begin{equation*}
J(\mathbf{w})=J_{\min }+\mathbf{w}_{0}^{H} \mathbf{R} \mathbf{w}_{0}-\mathbf{w}_{0}^{H} \mathbf{R} \mathbf{w}-\mathbf{w}^{H} \mathbf{R} \mathbf{w}_{0}+\mathbf{w}^{H} \mathbf{R} \mathbf{w} \tag{6}
\end{equation*}
$$

where we have used the property $\mathbf{R}^{H}=\mathbf{R}$. We may rewrite Equation (6) as

$$
J(\mathbf{w})=J_{\min }+\left(\mathbf{w}-\mathbf{w}_{0}\right)^{H} \mathbf{R}\left(\mathbf{w}-\mathbf{w}_{0}\right)
$$

which clearly shows that $J\left(\mathbf{w}_{0}\right)=J_{\text {min }}$

Problem 2.7

The minimum mean-square error is

$$
\begin{equation*}
J_{\min }=\sigma_{d}^{2}-\mathbf{p}^{H} \mathbf{R}^{-1} \mathbf{p} \tag{1}
\end{equation*}
$$

Using the spectral theorem, we may express the correlation matrix \mathbf{R} as

$$
\begin{align*}
\mathbf{R} & =\mathbf{Q} \Lambda \mathbf{Q}^{H} \\
\mathbf{R} & =\sum_{k=1}^{M} \lambda_{k} \mathbf{q}_{k} \mathbf{q}_{k}^{H} \tag{2}
\end{align*}
$$

Substituting Equation (2) into Equation (1)

$$
\begin{aligned}
J_{\min } & =\sigma_{d}^{2}-\sum_{k=1}^{M} \frac{1}{\lambda_{k}} \mathbf{p}^{H} \mathbf{q}_{k} \mathbf{p}^{H} \mathbf{q}_{k} \\
& =\sigma_{d}^{2}-\sum_{k=1}^{M} \frac{1}{\lambda_{k}}\left|\mathbf{p}^{H} \mathbf{q}_{k}\right|^{2}
\end{aligned}
$$

Problem 2.8

When the length of the Wiener filter is greater than the model order m, the tail end of the tap-weight vector of the Wiener filter is zero; thus,

$$
\mathbf{w}_{0}=\left[\begin{array}{c}
\mathbf{a}_{m} \\
\mathbf{0}
\end{array}\right]
$$

Therefore, the only possible solution for the case of an over-fitted model is

$$
\mathbf{w}_{0}=\left[\begin{array}{c}
\mathbf{a}_{m} \\
\mathbf{0}
\end{array}\right]
$$

Problem 2.9

a)

The Wiener solution is defined by

$$
\mathbf{R}_{M} \mathbf{a}_{M}=\mathbf{p}_{M}
$$

$$
\begin{align*}
& {\left[\begin{array}{cc}
\mathbf{R}_{M} & \mathbf{r}_{M-m} \\
\mathbf{r}_{M-m}^{H} & \mathbf{R}_{M-m, M-m}
\end{array}\right]\left[\begin{array}{c}
\mathbf{a}_{m} \\
\mathbf{0}_{M-m}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{p}_{m} \\
\mathbf{p}_{M-m}
\end{array}\right]} \\
& \mathbf{R}_{M} \mathbf{a}_{m}=\mathbf{p}_{m} \\
& \mathbf{r}_{M-m}^{H} \mathbf{a}_{m}=\mathbf{p}_{M-m} \\
& \mathbf{p}_{M-m}=\mathbf{r}_{M-m}^{H} \mathbf{a}_{m}=\mathbf{r}_{M-m}^{H} \mathbf{R}_{M}^{-1} \mathbf{p}_{m} \tag{1}
\end{align*}
$$

b)

Applying the conditions of Equation (1) to the example in Section 2.7 in the textbook

$$
\begin{aligned}
& \mathbf{r}_{M-m}^{H}=\left[\begin{array}{lll}
-0.05 & 0.1 & 0.15
\end{array}\right] \\
& \mathbf{a}_{m}=\left[\begin{array}{c}
0.8719 \\
-0.9129 \\
0.2444
\end{array}\right]
\end{aligned}
$$

The last entry in the 4 -by- 1 vector \mathbf{p} is therefore

$$
\begin{aligned}
\mathbf{r}_{M-m}^{H} \mathbf{a}_{m} & =-0.0436-0.0912+0.1222 \\
& =-0.0126
\end{aligned}
$$

Problem 2.10

$$
\begin{aligned}
J_{\min } & =\sigma_{d}^{2}-\mathbf{p}^{H} \mathbf{w}_{0} \\
& =\sigma_{d}^{2}-\mathbf{p}^{H} \mathbf{R}^{-1} \mathbf{p}
\end{aligned}
$$

when $m=0$,

$$
\begin{aligned}
J_{\min } & =\sigma_{d}^{2} \\
& =1.0
\end{aligned}
$$

When $m=1$,

$$
\begin{aligned}
J_{\min } & =1-0.5 \times \frac{1}{1.1} \times 0.5 \\
& =0.9773
\end{aligned}
$$

when $m=2$

$$
\begin{aligned}
J_{\min } & =1-\left[\begin{array}{ll}
0.5 & -0.4
\end{array}\right]\left[\begin{array}{ll}
1.1 & 0.5 \\
0.5 & 1.1
\end{array}\right]^{-1}\left[\begin{array}{c}
0.5 \\
-0.4
\end{array}\right] \\
& =1-0.6781 \\
& =0.3219
\end{aligned}
$$

when $m=3$,

$$
\begin{aligned}
J_{\min } & =1-\left[\begin{array}{lll}
0.5 & -0.4 & -0.2
\end{array}\right]\left[\begin{array}{ccc}
1.1 & 0.5 & 0.1 \\
0.5 & 1.1 & 0.5 \\
0.1 & 0.5 & 1.1
\end{array}\right]^{-1}\left[\begin{array}{c}
0.5 \\
-0.4 \\
-0.2
\end{array}\right] \\
& =1-0.6859 \\
& =0.3141
\end{aligned}
$$

when $m=4$,

$$
\begin{aligned}
J_{\min } & =1-0.6859 \\
& =0.3141
\end{aligned}
$$

Thus any further increase in the filter order beyond $m=3$ does not produce any meaningful reduction in the minimum mean-square error.

Problem 2.11

(b)
a)

$$
\begin{align*}
& u(n)=x(n)+v_{2}(n) \tag{1}\\
& d(n)=-d(n-1) \times 0.8458+v_{1}(n) \tag{2}\\
& x(n)=d(n)+0.9458 x(n-1) \tag{3}
\end{align*}
$$

Equation (3) rearranged to solve for $d(n)$ is

$$
d(n)=x(n)-0.9458 x(n-1)
$$

Using Equation (2) and Equation (3):

$$
x(n)-0.9458 x(n-1)=0.8458[-x(n-1)+0.9458 x(n-2)]+v_{1}(n)
$$

Rearranging the terms this produces:

$$
\begin{aligned}
x(n) & =(0.9458-8.8458) x(n-1)+0.8 x(n-2)+v_{1}(n) \\
& =(0.1) x(n-1)+0.8 x(n-2)+v_{1}(n)
\end{aligned}
$$

b)

$$
u(n)=x(n)+v_{2}(n)
$$

where $x(n)$ and $v_{2}(n)$ are uncorrelated, therefore

$$
\begin{aligned}
& \mathbf{R}=\mathbf{R}_{x}+\mathbf{R}_{v_{2}} \\
& \mathbf{R}_{x}=\left[\begin{array}{ll}
r_{x}(0) & r_{x}(1) \\
r_{x}(1) & r_{x}(0)
\end{array}\right] \\
& r_{x}(0)=\sigma_{x}^{2} \\
& \quad=\frac{1+a_{2}}{1-a_{2}} \frac{\sigma_{1}^{2}}{\left(1+a_{2}\right)^{2}-a_{1}^{2}}=1 \\
& r_{x}(1)=\frac{-a_{1}}{1+a_{2}} \\
& r_{x}(1)=0.5
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{R}_{x}=\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right] \\
& \mathbf{R}_{v_{2}}=\left[\begin{array}{cc}
0.1 & 0 \\
0 & 0.1
\end{array}\right] \\
& \mathbf{R}=\mathbf{R}_{x}+\mathbf{R}_{v_{2}}=\left[\begin{array}{ll}
1.1 & 0.5 \\
0.5 & 1.1
\end{array}\right] \\
& \mathbf{p}=\left[\begin{array}{l}
p(0) \\
p(1)
\end{array}\right] \\
& p(k)=\mathbb{E}[u(n-k) d(n)], \quad k=0,1
\end{aligned}
$$

$$
\begin{aligned}
p(0) & =r_{x}(0)+b_{1} r_{x}(-1) \\
& =1-0.9458 \times 0.5 \\
& =0.5272
\end{aligned}
$$

$$
\begin{aligned}
p(1) & =r_{x}(1)+b_{1} r_{x}(0 \\
& =0.5-0.9458 \\
& =-0.4458
\end{aligned}
$$

Therefore,

$$
\mathbf{p}=\left[\begin{array}{c}
0.5272 \\
-0.4458
\end{array}\right]
$$

c)

The optimal weight vector is given by the equation $\mathbf{w}_{0}=\mathbf{R}^{-1} \mathbf{p}$; hence,

$$
\begin{aligned}
\mathbf{w}_{0} & =\left[\begin{array}{ll}
1.1 & 0.5 \\
0.5 & 1.1
\end{array}\right]^{-1}\left[\begin{array}{c}
0.5272 \\
-0.4458
\end{array}\right] \\
& =\left[\begin{array}{c}
0.8363 \\
-0.7853
\end{array}\right]
\end{aligned}
$$

Problem 2.12

a)

For $M=3$ taps, the correlation matrix of the tap inputs is

$$
\mathbf{R}=\left[\begin{array}{ccc}
1.1 & 0.5 & 0.85 \\
0.5 & 1.1 & 0.5 \\
0.85 & 0.5 & 1.1
\end{array}\right]
$$

The cross-correlation vector between the tap inputs and the desired response is

$$
\mathbf{p}=\left[\begin{array}{c}
0.527 \\
-0.446 \\
0.377
\end{array}\right]
$$

b)

The inverse of the correlation matrix is

$$
\mathbf{R}^{-1}=\left[\begin{array}{ccc}
2.234 & -0.304 & -1.666 \\
-0.304 & 1.186 & -0.304 \\
-1.66 & -0.304 & 2.234
\end{array}\right]
$$

Hence, the optimum weight vector is

$$
\mathbf{w}_{0}=\mathbf{R}^{-1} \mathbf{p}=\left[\begin{array}{c}
0.738 \\
-0.803 \\
0.138
\end{array}\right]
$$

The minimum mean-square error is

$$
J_{\min }=0.15
$$

Problem 2.13

a)

The correlation matrix \mathbf{R} is

$$
\begin{aligned}
\mathbf{R} & =\mathbb{E}\left[\mathbf{u}(n) \mathbf{u}^{H}(n)\right] \\
& =\mathbb{E}\left[\left|A_{1}\right|^{2}\right]\left[\begin{array}{c}
e^{-\mathrm{j} \omega_{1} n} \\
e^{-\mathrm{j} \omega_{1}(n-1)} \\
\vdots \\
e^{-\mathrm{j} \omega_{1}(n-M+1)}
\end{array}\right]\left[\begin{array}{llll}
e^{+\mathrm{j} \omega_{1} n} & e^{+\mathrm{j} \omega_{1}(n-1)} & \ldots & e^{+\mathrm{j} \omega_{1}(n-M+1)}
\end{array}\right] \\
& =\mathbb{E}\left[\left|A_{1}\right|^{2}\right] \mathbf{s}\left(\omega_{1}\right) \mathbf{s}^{H}\left(\omega_{1}\right)+\mathbf{I} \mathbb{E}\left[|v(n)|^{2}\right] \\
& =\sigma_{1}^{2} \mathbf{s}\left(\omega_{1}\right) \mathbf{s}^{H}\left(\omega_{1}\right)+\sigma_{v}^{2} \mathbf{I}
\end{aligned}
$$

where I is the identity matrix.
b)

The tap-weights vector of the Wiener filter is

$$
\mathbf{w}_{0}=\mathbf{R}^{-1} \mathbf{p}
$$

From part a),

$$
\mathbf{R}=\sigma_{1}^{2} \mathbf{s}\left(\omega_{1}\right) \mathbf{s}^{H}\left(\omega_{1}\right)+\sigma_{v}^{2} \mathbf{I}
$$

We are given

$$
\mathbf{p}=\sigma_{0}^{2} \mathbf{s}\left(\omega_{0}\right)
$$

To invert the matrix \mathbf{R}, we use the matrix inversion lemma (see Chapter 10), as described here:

If:

$$
\mathbf{A}=\mathbf{B}^{-1}+\mathbf{C D}^{-1} \mathbf{C}^{H}
$$

then:

$$
\mathbf{A}^{-1}=\mathbf{B}-\mathbf{B C}\left(\mathbf{D}+\mathbf{C}^{H} \mathbf{B C}\right)^{-1} \mathbf{C}^{H} \mathbf{B}
$$

In our case:

$$
\mathbf{A}=\sigma_{v}^{2} \mathbf{I}
$$

$$
\begin{aligned}
& \mathbf{B}^{-1}=\sigma_{v}^{2} \mathbf{I} \\
& \mathbf{D}^{-1}=\sigma_{1}^{2} \\
& \mathbf{C}=\mathbf{s}\left(\omega_{1}\right)
\end{aligned}
$$

Hence,

$$
\mathbf{R}^{-1}=\frac{1}{\sigma_{v}^{2}} \mathbf{I}-\frac{\frac{1}{\sigma_{v}^{2}} \mathbf{s}\left(\omega_{1}\right) \mathbf{s}^{H}\left(\omega_{1}\right)}{\frac{\sigma_{v}^{2}}{\sigma_{1}^{2}}+\mathbf{s}^{H}\left(\omega_{1}\right) \mathbf{s}\left(\omega_{1}\right)}
$$

The corresponding value of the Wiener tap-weight vector is

$$
\begin{aligned}
& \mathbf{w}_{0}=\mathbf{R}^{-1} \mathbf{p} \\
& \mathbf{w}_{0}=\frac{\sigma_{0}^{2}}{\sigma_{v}^{2}} \mathbf{s}\left(\omega_{0}\right)-\frac{\frac{\sigma_{0}^{2}}{\sigma_{v}^{2}} \mathbf{s}\left(\omega_{1}\right) \mathbf{s}^{H}\left(\omega_{1}\right)}{\frac{\sigma_{v}^{2}}{\sigma_{1}^{2}}+\mathbf{s}^{H}\left(\omega_{1}\right) \mathbf{s}\left(\omega_{1}\right)} \mathbf{s}\left(\omega_{0}\right)
\end{aligned}
$$

we note that

$$
\mathbf{s}^{H}\left(\omega_{1}\right) \mathbf{s}\left(\omega_{1}\right)=M
$$

which is a scalar hence,

$$
\mathbf{w}_{0}=\frac{\sigma_{0}^{2}}{\sigma_{v}^{2}} \mathbf{s}\left(\omega_{0}\right)-\left(\frac{\sigma_{0}^{2}}{\sigma_{v}^{2}} \frac{\mathbf{s}^{H}\left(\omega_{1}\right) \mathbf{s}\left(\omega_{1}\right)}{\frac{\sigma_{v}^{2}}{\sigma_{0}^{2}}+M} \mathbf{s}\left(\omega_{0}\right)\right)
$$

Problem 2.14

The output of the array processor equals

$$
e(n)=u(1, n)-w u(2, n)
$$

The mean-square error equals

$$
\begin{aligned}
J(w) & =\mathbb{E}\left[|e(n)|^{2}\right] \\
& =\mathbb{E}\left[(u(1, n)-w u(2, n))\left(u^{*}(1, n)-w^{*} u^{*}(2, n)\right)\right] \\
& =\mathbb{E}\left[|u(1, n)|^{2}\right]+|w|^{2} \mathbb{E}\left[|u(2, n)|^{2}\right]-w \mathbb{E}\left[u(2, n) u^{*}(1, n)\right]-w \mathbb{E}\left[u(1, n) u^{*}(2, n)\right]
\end{aligned}
$$

Differentiating $J(w)$ with respect to w :

$$
\frac{\partial J}{\partial w}=-2 \mathbb{E}\left[u(1, n) u^{*}(2, n)\right]+2 w \mathbb{E}\left[|u(2, n)|^{2}\right]
$$

Putting $\frac{\partial J}{\partial w}=0$ and solving for the optimum value of w :

$$
w_{0}=\frac{\mathbb{E}\left[u(1, n) u^{*}(2, n)\right]}{\mathbb{E}\left[|u(2, n)|^{2}\right]}
$$

Problem 2.15

Define the index of the performance (i.e., cost function)

$$
\begin{aligned}
& J(\mathbf{w})=\mathbb{E}\left[|e(n)|^{2}\right]+\mathbf{c}^{H} \mathbf{s}^{H} \mathbf{w}+\mathbf{w}^{H} \mathbf{s c}-2 \mathbf{c}^{H} \mathbf{D}^{1 / 2} \mathbf{1} \\
& J(\mathbf{w})=\mathbf{w}^{H} \mathbf{R} \mathbf{w}+\mathbf{c}^{H} \mathbf{s}^{H} \mathbf{w}+\mathbf{w}^{H} \mathbf{s c}-2 \mathbf{c}^{H} \mathbf{D}^{1 / 2} \mathbf{1}
\end{aligned}
$$

Differentiate $J(\mathbf{w})$ with respect to \mathbf{w} and set the result equal to zero:

$$
\frac{\partial J}{\partial \mathbf{w}}=2 \mathbf{R} \mathbf{w}+2 \mathbf{s c}=\mathbf{0}
$$

Hence,

$$
\mathbf{w}_{0}=-\mathbf{R}^{-1} \mathbf{s c}
$$

But, we must constrain \mathbf{w}_{0} as

$$
\mathbf{s}^{H} \mathbf{w}_{0}=\mathbf{D}^{1 / 2} \mathbf{1}
$$

therefore, the vector cequals

$$
\mathbf{c}=-\left(\mathbf{s}^{H} \mathbf{R}^{-1} \mathbf{s}\right)^{-1} \mathbf{D}^{1 / 2} \mathbf{1}
$$

Correspondingly, the optimum weight vector equals

$$
\mathbf{w}_{0}=\mathbf{R}^{-1} \mathbf{s}\left(\mathbf{s}^{H} \mathbf{R}^{-1} \mathbf{s}\right)^{-1} \mathbf{D}^{1 / 2} \mathbf{1}
$$

Problem 2.16

The weight vector \mathbf{w} of the beamformer that maximizes the output signal-to-noise ratio:

$$
(\mathrm{SNR})_{0}=\frac{\mathbf{w}^{H} \mathbf{R}_{S} \mathbf{w}}{\mathbf{w}^{H} \mathbf{R}_{v} \mathbf{w}}
$$

is derived in part b) of the problem 2.18; there it is shown that the optimum weight vector $\mathbf{w}_{S N}$ so defined is given by

$$
\begin{equation*}
\mathbf{w}_{S N}=\mathbf{R}_{v}^{-1} \mathbf{s} \tag{1}
\end{equation*}
$$

where \mathbf{s} is the signal component and \mathbf{R}_{v} is the correlation matrix of the noise $\mathbf{v}(n)$. On the other hand, the optimum weight vector of the LCMV beamformer is defined by

$$
\begin{equation*}
\mathbf{w}_{0}=g^{*} \frac{\mathbf{R}^{-1} s(\phi)}{s^{H}(\phi) \mathbf{R}^{-1} s(\phi)} \tag{2}
\end{equation*}
$$

where $s(\phi)$ is the steering vector. In general, the formulas (1) and (2) yield different values for the weight vector of the beamformer.

Problem 2.17

Let τ_{i} be the propagation delay, measured from the zero-time reference to the i th element of a nonuniformly spaced array, for a plane wave arriving from a direction defined by angle θ with respect to the perpendicular to the array. For a signal of angular frequency ω, this delay amounts to a phase shift equal to $-\omega \tau_{i}$. Let the phase shifts for all elements of the array be collected together in a column vector denoted by $\mathbf{d}(\omega, \theta)$. The response of a beamformer with weight vector \mathbf{w} to a signal (with angular frequency ω) originates from angle $\theta=\mathbf{w}^{H} \mathbf{d}(\omega, \theta)$. Hence, constraining the response of the array at ω and θ to some value g involves the linear constraint

$$
\mathbf{w}^{H} \mathbf{d}(\omega, \theta)=g
$$

Thus, the constraint vector $\mathbf{d}(\omega, \theta)$ serves the purpose of generalizing the idea of an LCMV beamformer beyond simply the case of a uniformly spaced array. Everything else is the same as before, except for the fact that the correlation matrix of the received signal is no longer Toeplitz for the case of a nonuniformly spaced array

Problem 2.18

a)

Under hypothesis H_{1}, we have

$$
\mathbf{u}=\mathbf{s}+\mathbf{v}
$$

The correlation matrix of \mathbf{u} equals

$$
\begin{aligned}
& \mathbf{R}=\mathbb{E}\left[\mathbf{u} \mathbf{u}^{T}\right] \\
& \mathbf{R}=\mathbf{s s}^{T}+\mathbf{R}_{N}, \quad \text { where } \mathbf{R}_{N}=\mathbb{E}\left[\mathbf{v v}^{T}\right]
\end{aligned}
$$

The tap-weight vector \mathbf{w}_{k} is chosen so that $\mathbf{w}_{k}^{T} \mathbf{u}$ yields an optimum estimate of the k th element of \mathbf{s}. Thus, with $s(k)$ treated as the desired response, the cross-correlation vector between \mathbf{u} and $s(k)$ equals

$$
\begin{aligned}
\mathbf{p}_{k} & =\mathbb{E}[\mathbf{u} s(k)] \\
& =\mathbf{s s}(k), \quad k=1,2, \ldots, m
\end{aligned}
$$

Hence, the Wiener-Hopf equation yields the optimum value of \mathbf{w}_{k} as

$$
\begin{align*}
& \mathbf{w}_{k 0}=\mathbf{R}^{-1} \mathbf{p}_{k} \\
& \mathbf{w}_{k 0}=\left(\mathbf{s s}^{T}+\mathbf{R}_{N}\right)^{-1} \mathbf{s} s(k), \quad k=1,2, \ldots, M \tag{1}
\end{align*}
$$

To apply the matrix inversion lemma (introduced in Problem 2.13), we let

$$
\begin{aligned}
& \mathbf{A}=\mathbf{R} \\
& \mathbf{B}^{-1}=\mathbf{R}_{N} \\
& \mathbf{C}=\mathbf{s} \\
& \mathbf{D}=1
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\mathbf{R}^{-1}=\mathbf{R}_{N}^{-1}-\frac{\mathbf{R}_{N}^{-1} \mathbf{s s}^{T} \mathbf{R}_{N}^{-1}}{1+\mathbf{s}^{T} \mathbf{R}_{N}^{-1} \mathbf{s}} \tag{2}
\end{equation*}
$$

Substituting Equation (2) into Equation (1) yields:

$$
\mathbf{w}_{k 0}=\left(\mathbf{R}_{N}^{-1}-\frac{\mathbf{R}_{N}^{-1} \mathbf{s s}^{T} \mathbf{R}_{N}^{-1}}{1+\mathbf{s}^{T} \mathbf{R}_{N}^{-1} \mathbf{s}}\right) \mathbf{s} s(k)
$$

$$
\begin{aligned}
\mathbf{w}_{k 0} & =\frac{\mathbf{R}_{N}^{-1} \mathbf{s}\left(1+\mathbf{s}^{T} \mathbf{R}_{N}^{-1} \mathbf{s}\right)-\mathbf{R}_{N}^{-1} \mathbf{s s}^{T} \mathbf{R}_{N}^{-1} \mathbf{s}}{1+\mathbf{s}^{T} \mathbf{R}_{N}^{-1} \mathbf{s}} s(k) \\
\mathbf{w}_{k 0} & =\frac{s(k)}{1+\mathbf{s}^{T} \mathbf{R}_{N}^{-1} \mathbf{s}} \mathbf{R}_{N}^{-1} \mathbf{s}
\end{aligned}
$$

b)

The output signal-to-noise ratio is

$$
\begin{align*}
\mathrm{SNR} & =\frac{\mathbb{E}\left[\left(\mathbf{w}^{T} \mathbf{s}\right)^{2}\right]}{\mathbb{E}\left[\left(\mathbf{w}^{T} \mathbf{v}\right)^{2}\right]} \\
& =\frac{\mathbf{w}^{T} \mathbf{s s}^{T} \mathbf{w}}{\mathbf{w}^{T} \mathbb{E}\left[\mathbf{v v}^{T}\right] \mathbf{w}} \\
& =\frac{\mathbf{w}^{T} \mathbf{s s}^{T} \mathbf{w}}{\mathbf{w}^{T} \mathbf{R}_{N} \mathbf{w}} \tag{3}
\end{align*}
$$

Since \mathbf{R}_{N} is positive definite, we may write,

$$
\mathbf{R}_{N}=\mathbf{R}_{N}^{1 / 2} \mathbf{R}_{N}^{1 / 2}
$$

Define the vector

$$
\mathbf{a}=\mathbf{R}_{N}^{1 / 2} \mathbf{w}
$$

or equivalently,

$$
\begin{equation*}
\mathbf{w}=\mathbf{R}_{N}^{-1 / 2} \mathbf{a} \tag{4}
\end{equation*}
$$

Accordingly, we may rewrite Equation (3) as follows

$$
\begin{equation*}
\mathrm{SNR}=\frac{\mathbf{a}^{T} \mathbf{R}_{N}^{1 / 2} \mathbf{s s}^{T} \mathbf{R}_{N}^{1 / 2} \mathbf{a}}{\mathbf{a}^{T} \mathbf{a}} \tag{5}
\end{equation*}
$$

where we have used the symmetric property of \mathbf{R}_{N}. Define the normalized vector

$$
\overline{\mathbf{a}}=\frac{\mathbf{a}}{\|\mathbf{a}\|}
$$

where $\|\mathbf{a}\|$ is the norm of \mathbf{a}. Equation (5) may be rewritten as:

$$
\mathrm{SNR}=\overline{\mathbf{a}}^{T} \mathbf{R}_{N}^{1 / 2} \mathbf{s s}^{T} \mathbf{R}_{N}^{1 / 2} \overline{\mathbf{a}}
$$

$$
\mathrm{SNR}=\left|\overline{\mathbf{a}}^{T} \mathbf{R}_{N}^{1 / 2} \mathbf{s}\right|^{2}
$$

Thus the output signal-to-noise ratio SNR equals the squared magnitude of the inner product of the two vectors $\overline{\mathbf{a}}$ and $\mathbf{R}_{N}^{1 / 2} \mathbf{s}$. This inner product is maximized when a equals $\mathbf{R}_{N}^{-1 / 2}$. That is,

$$
\begin{equation*}
\mathbf{a}_{S N}=\mathbf{R}_{N}^{-1 / 2} \mathbf{s} \tag{6}
\end{equation*}
$$

Let $\mathbf{w}_{S N}$ denote the value of the tap-weight vector that corresponds to Equation (6). Hence, the use of Equation (4) in Equation (6) yields

$$
\begin{aligned}
\mathbf{w}_{S N} & =\mathbf{R}_{N}^{-1 / 2}\left(\mathbf{R}_{N}^{-1 / 2} \mathbf{s}\right) \\
\mathbf{w}_{S N} & =\mathbf{R}_{N}^{-1} \mathbf{s}
\end{aligned}
$$

c)

Since the noise vector $\mathbf{v}(n)$ is Gaussian, its joint probability density function equals

$$
f_{\mathbf{v}}(\mathbf{v})=\frac{1}{(2 \pi)^{M / 2}\left(\operatorname{det}\left(\mathbf{R}_{N}\right)\right)^{1 / 2}} \exp \left(-\frac{1}{2} \mathbf{v}^{T} \mathbf{R}_{N}^{-1} \mathbf{v}\right)
$$

Under the hypothesis H_{0} we have

$$
\mathbf{u}=\mathbf{v}
$$

and

$$
f_{\mathbf{u}}\left(\mathbf{u} \mid H_{0}\right)=\frac{1}{(2 \pi)^{M / 2}\left(\operatorname{det} \mathbf{R}_{N}\right)^{1 / 2}} \exp \left(-\frac{1}{2} \mathbf{u}^{T} \mathbf{R}_{N}^{-1} \mathbf{u}\right)
$$

Under hypothesis H_{1} we have

$$
\mathbf{u}=\mathbf{s}+\mathbf{v}
$$

and

$$
f_{\mathbf{u}}\left(\mathbf{u} \mid H_{1}\right)=\frac{1}{(2 \pi)^{M / 2}\left(\operatorname{det} \mathbf{R}_{N}\right)^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{u}-\mathbf{s})^{T} \mathbf{R}_{N}^{-1}(\mathbf{u}-\mathbf{s})\right)
$$

Hence, the likelihood ratio is defined by

$$
\begin{aligned}
\Lambda & =\frac{f_{\mathbf{u}}\left(\mathbf{u} \mid H_{1}\right)}{f_{\mathbf{u}}\left(\mathbf{u} \mid H_{0}\right)} \\
& =\exp \left(-\frac{1}{2} \mathbf{s}^{T} \mathbf{R}_{N}^{-1} \mathbf{s}+\mathbf{s}^{T} \mathbf{R}_{N}^{-1} \mathbf{u}\right)
\end{aligned}
$$

The natural logarithm of the likelihood ratio equals

$$
\begin{equation*}
\ln \Lambda=-\frac{1}{2} \mathbf{s}^{T} \mathbf{R}_{N}^{-1} \mathbf{s}+\mathbf{s}^{T} \mathbf{R}_{N}^{-1} \mathbf{u} \tag{7}
\end{equation*}
$$

The first term in (7) represents a constant. Hence, testing $\ln \Lambda$ against a threshold is equivalent to the test

$$
\mathbf{s}^{T} \mathbf{R}_{N}^{-1} \mathbf{u} \underset{H_{0}}{\stackrel{H_{1}}{\gtrless}} \lambda
$$

where λ is some threshold. Equivalently, we may write

$$
\mathbf{w}_{M L}=\mathbf{R}_{N}^{-1} \mathbf{s}
$$

where $\mathbf{w}_{M L}$ is the maximum likelihood weight vector.
The results of parts \mathbf{a}), b), and \mathbf{c}) show that the three criteria discussed here yield the same optimum value for the weight vector, except for a scaling factor.

Problem 2.19

a)

Assuming the use of a noncausal Wiener filter, we write

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty} w_{0 i} r(i-k)=p(-k), \quad k=0, \pm 1, \pm 2, \ldots, \pm \infty \tag{1}
\end{equation*}
$$

where the sum now extends from $i=-\infty$ to $i=\infty$. Define the z-transforms:

$$
\begin{aligned}
& S(z)=\sum_{k=-\infty}^{\infty} r(k) z^{-k}, \quad H_{u}(z)=\sum_{k=-\infty}^{\infty} w_{0, k} z^{-k} \\
& P(z)=\sum_{k=-\infty}^{\infty} p(-k) z^{-k}=P\left(z^{-1}\right)
\end{aligned}
$$

Hence, applying the z-transform to Equation (1):

$$
\begin{align*}
& H_{u}(z) S(z)=P\left(z^{-1}\right) \\
& H_{u}(z)=\frac{P(1 / z)}{S(z)} \tag{2}
\end{align*}
$$

b)

$$
\begin{aligned}
& P(z)=\frac{0.36}{\left(1-\frac{0.2}{z}\right)(1-0.2 z)} \\
& P(1 / z)=\frac{0.36}{(1-0.2 z)\left(1-\frac{0.2}{z}\right)} \\
& S(z)=1.37 \frac{\left(1-0.146 z^{-1}\right)(1-0.146 z)}{\left(1-0.2 z^{-1}\right)(1-0.2 z)}
\end{aligned}
$$

Thus, applying Equation (2) yields

$$
\begin{aligned}
H_{u}(z) & =\frac{0.36}{1.37\left(1-0.146 z^{-1}\right)(1-0.146 z)} \\
& =\frac{0.36 z^{-1}}{1.37\left(1-0.146 z^{-1}\right)\left(z^{-1}-0.146\right)} \\
& =\frac{0.2685}{1-0.146 z^{-1}}+\frac{0.0392}{z^{-1}-0.146}
\end{aligned}
$$

Clearly, this system is noncausal. Its impulse response is $h(n)=$ inverse z-transform of $H_{u}(z)$ is given by

$$
h(n)=0.2685(0.146)^{n} u_{\text {step }}(n)-\frac{0.0392}{0.146}\left(\frac{1}{0.146}\right)^{n} u_{\text {step }}(-n)
$$

where $u_{\text {step }}(n)$ is the unit-step function:

$$
u_{\text {step }}(n)=\left\{\begin{array}{l}
1 \text { for } n=0,1,2, \ldots \\
0 \text { for } n=-1,-2, \ldots
\end{array}\right.
$$

and $u_{\text {step }}(-n)$ is its mirror image:

$$
u_{\text {step }}(-n)=\left\{\begin{array}{l}
1 \text { for } n=0,-1,-2, \ldots \\
0 \text { for } n=1,2, \ldots
\end{array}\right.
$$

Simplifying,

$$
h_{u}(n)=0.2685 \times(0.146)^{n} u_{\text {step }}(n)-0.2685 \times(6.849)^{-n} u_{\text {step }}(-n)
$$

Evaluating $h_{u}(n)$ for varying n :

$$
\begin{array}{lll}
h_{u}(0)=0 & \\
h_{u}(1)=0.03, & h_{u}(2)=0.005, & h_{u}(3)=0.0008 \\
h_{u}(-1)=-0.03, & h_{u}(-2)=-0.005, & h_{u}(-3)=-0.0008
\end{array}
$$

The preceding values for $h_{u}(n)$ are plotted in the following figure:

c)

A delay of 3 time units applied to the impulse response will make the system causal and therefore realizable.

