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CHAPTER 1

Sets, Numbers, and Functions

1.1. No, because T ∧ F is F.

1.2. Yes, because F ∨ T is T. If ∼ (p ∧ q) is T(F), then so is (∼ p∨ ∼ q).

1.3. (a)
p q ∼ p ∼ p ∨ q p→ q

T T F T T
T F F F F
F T T T T
F F T T T

(b)
p q p→ q q→ p (p→ q) ∧ (q→ p) p↔ q

T T T T T T
T F F T F F
F T T F F F
F F T T T T

(c)
p q ∼ p ∼ q p→ q ∼ q→∼ p (p→ q)↔ (∼ q→∼ p)

T T F F T T T
T F F T F F T
F T T F T T T
F F T T T T T

1.4. (a), (b), (f ) hold.

1.5. A Right Distributive Law is already implied by R2(b), R4: (y+ z)x =
x(y+ z) = xy+ xz = yx+ zx. Statements analogous to field axioms
R2(b), R6(b) would fail for 3× 3 matrices.

1.6. (a) For <Z5,⊕,⊗>, axioms analogous to R1 – R5 are inherited from
R. The additive inverses of 0, 1, 2, 3, 4 are 0, 4, 3, 2, 1, respectively,
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2 CHAPTER 1: Sets, Numbers, and Functions

and the multiplicative inverses of 1, 2, 3, 4, are 1, 3, 2, 4, respectively.
Hence, an axiom analogous to R6 holds, so <Z5,⊕,⊗> is a field.

(b) For Z5 suppose that P ⊆ {1, 2, 3, 4} is nonempty; let x ∈ P. Addition
of x to itself a sufficient number of times produces all members of
{1, 2, 3, 4}, so P = {1, 2, 3, 4}. But then −x ∈ P, which is not allowed
by Axiom R7(b), so P = ∅.

(c) If⊕,⊗ are defined modularly as with<Z5,⊕,⊗> at the start of Exer-
cise 1.6, then <Z7,⊕,⊗> and <Z11,⊕,⊗> are found to be finite
fields. But the set Z6 does not produce a field where addition and
multiplication are modular because, for example, 2 then has no
multiplicative inverse. CONJECTURE: <Zp,⊕,⊗> is a field iff p is
prime.

1.7. (a) If 0, 0′ are distinct additive identities, we interpret “distinct” to mean
that their difference is nonzero. Let 0+ (−0′) = c, where c 6= 0, 0′.
Post-addition of 0′ to both sides gives from Axiom R3(a)

0+
[
−0′ + 0′

]
= c+ 0′. (*)

In the brackets, let 0 be the zero resulting from addition of the num-
ber 0′ to its additive inverse −0′. On the right-hand side of (*), let
0′ be a zero as in Axiom R5(b). We obtain

0+ 0 = c,

so from R5(b) again we have 0 = c, which is not allowed. The
difficulty can be removed if 0, 0′ are not distinct.

(b) Interpret “1, 1′ being distinct” to mean that 1 · (1′)−1 is neither 1 nor
1′. Let 1 · (1′)−1

= c. Post-multiplication of both sides by 1′ gives
from Axiom R3(b)

1 ·
[
(1′)−1

· 1′
]
= c · 1′. (*)

In the brackets, let 1 be the multiplicative identity resulting from
multiplication of the nonzero number 1′ by its multiplicative inverse
(1′)−1. On the right-hand side of (*), apply Axiom R5(b); we obtain

1 = 1 · 1 = c,

which is not allowed. The difficulty can be removed if 1, 1′ are not
distinct.
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1.8. If x 6= y, then there is a nonzero c ∈ R such that x = y+ c. Pre-addition
of (−y) to both sides gives, from Axiom R3(a),

(−y)+ x = [(−y)+ y]+ c

and then x+ (−y) = 0+ c = c 6= 0,

from Axioms R2(a), R6(a), R5(b). This is a direct proof.
The inequality y+ (−x) 6= 0 follows analogously if x and y are inter-

changed in the steps above.

1.9. (a) (−a)+ [a+ b] = (−a)+ [a+ c] gives, from Axiom R3(a), [(−a)+
a]+ b = [(−a)+ a]+ c, and b = c then follows from Axioms R2(a),
R6(a), R5(b).

(b) By Axiom R5(b), y+ 0 = y for any y ∈ R. Pre-multiplication by any
x ∈ R gives x · (y+ 0) = x · y, and use of Axioms R4 and R2(b) gives

x · y+ x · 0 = x · y.

Since x · y is in R (Axiom R1), it has an additive inverse, −(x · y)
(Axiom R6(a)). Pre-addition of−(x · y) to both sides of the equation
gives, from Axiom R3(a),

[−(x · y)+ x · y]+ x · 0 = −(x · y)+ x · y,

and then from Axioms R6(a) and R5(b) we obtain x · 0 = 0.

1.10. By Axiom R6(a) we have 1+ (−1) = 0. Pre-multiplication of both sides
by any x ∈ R and use of Axioms R4, R2(b), R5(b) give x+ (−1) ·
x = 0 · x = 0, from Exercise 1.9(b). Finally, pre-addition of −x to both
sides of x+ (−1) · x = 0 and use of Axioms R3(a), R6(a) and R5(b) give

0+ (−1) · x = −x,

which reduces to (−1) · x = (−x), by R5(b) a second time.
If x = −1, then the right-hand side is the additive inverse of−1, which

is 1, so we obtain (−1) · (−1) = 1.

1.11. On the left-hand side of the tautology

x+ [(−x)+ y] = x+ [(−x)+ y]

replace (−x) by (−1) · x and y by (−1) · (−y) (Exercise 1.10):

x+ [(−1) · x+ (−1) · (−y)] = x+ [(−x)+ y] ,

and then x+ (−1) [x+ (−y)] = x+ [(−x)+ y] , (*)
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by Axiom R4. Finally, application of Exercise 1.9(a) to the left-hand side
of (*) and use of Exercise 1.10 a second time give

−[x+ (−y)] = (−x)+ y.

1.12. If x > x were to hold for some x ∈ R, then by definition of > one would
have [x+ (−x)] ∈ P. But by Axiom R6(a), x+ (−x) = 0 for all x ∈ R,
and by definition of P, 0 /∈ P. Hence, x > x cannot be true, and so > is
Nonreflexive.

If x > y and y > z hold, then by definition of >[x+ (−y)] ∈ P

[y+ (−z)] ∈ P.

Addition and use of Axiom R3(a) give [x+ (−z)] ∈ P, from the defini-
tion of P. Finally, by definition of > again, we have x > z. Hence, > is
Transitive.

1.13. By hypothesis, [b+ (−a)] ∈ P and c ∈ P. Hence, by definition of P,
c · [b+ (−a)] = [cb+ c(−a)] ∈ P, from Axiom R4. From Exercise 1.10 we
replace c(−a) by c[(−1)(a)], and then by [c(−1)] · a (Axiom R3(b)).
Finally, this is −(c · a) (Axioms R2(b), R3(b), and Exercise 1.10). Thus,
[cb+ (−(ca))] ∈ P, and this is equivalent to cb > ca.

1.14. (a)
k xk x2

k k xk x2
k

1 1 1 10 1.731830 2.999236

2 7/5 1.96 11 1.731964 2.999698

3 1.592593 2.536351 12 1.732016 2.999880

4 1.675497 2.807290 13 1.732037 2.999953

5 1.709452 2.922225 14 1.732045 2.999981

6 1.723074 2.968984 15 1.732049 2.999993

7 1.728493 2.987690 16 1.732050 2.999997

8 1.730642 2.995123 17 1.732050 2.999999

9 1.731493 2.998069 18 1.732051 2.999999

(b) xk+1 = 4− 13
4+xk
→ 3− x2

k+1 =
13(3−x2

k )
(4+xk)2 > 0 if x2

k < 3. Since x2
k < 3

is true for k = 1, then 3− x2
k+1 > 0 is true, so for all k ∈ N by math-

ematical induction x2
k < 3 holds.

Similarly, xk+1 − xk = 4− 13
4+xk
− xk =

3−x2
k

4+xk
, and since 3− x2

k > 0
for all k ∈ N, then by mathematical induction xk+1 − xk > 0 for all
k ∈ N.
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(c)
k xk x2

k k xk x2
k

1 2 4 9 1.732200 3.000517

2 11/6 3.361111 10 1.732110 3.000205

3 1.771429 3.137959 11 1.732074 3.000081

4 1.747525 3.053843 12 1.732060 3.000032

5 1.738157 3.021189 13 1.732054 3.000011

6 1.734464 3.008366 14 1.732052 3.000005

7 1.733005 3.003307 15 1.732051 3.000002

8 1.732428 3.001308 16 1.732051 3.000001

(d) It appears that sup S1 = inf S2 =
√

3. These should exist by the
Axiom of Completeness because S1 is bounded from above and S2

is bounded from below.

1.15. Suppose that the nonempty set S of real numbers were alleged to have
two suprema, U1 and U2, and that U2 > U1. But this is silly because if
U1 is truly a supremum, then U2 is merely an upper bound. And if U2

were truly a supremum, then it is the smallest number such that U2 ≥ x
for all x ∈ S. Hence, U1 cannot even be just an upper bound of S. As S is
stated to have a supremum, it can have only one.

1.16. By hypothesis, l ≤ x for every x ∈ S. Define S′ to be the set of additive
inverses of all the elements in S, that is, S′ =

{
y : y = −x, x ∈ S

}
. Then

−l ≥ y for every y ∈ S′. By Axiom R8 there is a smallest number U such
that U ≥ y. Hence, −U ≥ l is the largest number L such that L ≤ x for
every x ∈ S, that is, −U = inf S.

1.17. (a)
k xk k xk k xk

0 0 5 121/81 10 1.499975

1 1 6 364/243 11 1.499992

2 4/3 7 1.499314 12 1.499997

3 13/9 8 1.499771

4 40/27 9 1.499924

(b) CONJECTURE: sup S = 3/2.
(c) Let xk = Nk/Dk; it appears that Nk+1 = 3Nk + 1 and Dk = 3k−1,

k ≥ 1.
Iterating on Nk+1 = 3Nk + 1, it also appears that Nk =

∑k−1
j=0 3j

=

(3k
− 1)/2. Hence, xk = (3/2)−

[
2(3k−1)

]−1, and so all x′ks are
bounded above by 3/2; sup S should exist.
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1.18. The proof reproduces the core of that in Exercise 1.13, but with x, y ∈ R
entirely arbitrary:

x · (−y) = x · [(−1) · y] = [x · (−1)] · y = [(−1) · x] · y

= (−1) · (x · y) = −(x · y).

1.19. (a) x > y and z < 0 imply that [x+ (−y)] ∈ P and −z ∈ P. Hence, by
definition of P, we have

(−z) [x+ (−y)] ∈ P
or [(−z)(x)+ (−z)(−y)] ∈ P.

Using Exercises 1.11, 1.15, we obtain

[−(zx)+ {(−1)(−1)}(zy)] = [−(zx)+ zy] ∈ P,

and this is equivalent to zy > zx.
(b) xy < 0 is equivalent to −(xy) ∈ P, that is, x(−y) ∈ P. If x > 0, so

x ∈ P, then −y ∈ P (and, hence, y < 0) will guarantee that the prod-
uct x(−y) = −(x · y) will be in P. For if −y /∈ P, then by Axiom R7(b)
y ∈ P and so xy ∈ P, which contradicts xy < 0.

(c) If x > 0, then x ∈ P and x4
= [(x)(x)] [(x)(x)] ∈ P by a 3-fold

application of the definition of P. If x < 0, then x /∈ P and by
Axiom R7(b) and Exercise 1.10, (−1) · x = −x ∈ P; hence, by Axiom
R7(c), [(−1) · x] [(−1) · x] = [(−1) · (−1)] · [x · x] = 1 · x2

= x2
∈ P.

Finally, by Axiom R7(b) again, x4
= (x2) · (x2) ∈ P, that is, x4 > 0.

1.20. Let S′ = {y : y = −x iff x ∈ S}; additionally, let L = inf S and let l be any
lower bound of S. Then x ∈ S implies x ≥ L ≥ l, so for any y ∈ S′ one has
y ≤ −L ≤ −l. Now suppose that l ∈ S; then −l ∈ S′ and by Theorem 1.3
−l must be sup S′. It follows from Exercise 1.16 that −(−l) is inf S, that
is l = L.

1.21. SHORT ANSWER: Assume x0 is the smallest, positive real number.
Then 0 < 1

3 · x0 < x0, a contradiction. LONGER ANSWER: We accept
(although a proof is easy) that 1 ∈ P. Axiom R7(c) gives 2, 3 ∈ P. Now
assume that 1

3 /∈ P, so −1
3 ∈ P. Then

(
−

1
3

)
· 3 = (−1)

[1
3 · 3

]
= (−1) ·

1 = −1 ∈ P, by definition of P. But 1 ∈ P implies −1 /∈ P, a contradic-
tion. Hence, 1

3 ∈ P and consequently, also, 2
3 = 2 · 1

3 ∈ P. Now assume
that x0 is the smallest, positive real number. Then x0 − x0 ·

2
3 = x0 · 1−

x0 ·
2
3 = x0 · (1− 2

3 ) = x0 ·
1
3 > 0, so x0 > x0 ·

2
3 > 0, a contradiction.

Hence, x0 does not exist.

1.22.
√

xy 6= x+y
2 → 2

√
xy 6= x+ y→ 4(xy) 6= x2

+ 2xy+ y2
→ 0 6= x2

− 2xy+
y2
→ 0 6= (x− y)2

→ 0 6= x− y→ y 6= x. The second implication holds
because both sides of 2

√
xy 6= x+ y are positive.
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1.23. Suppose that there were an x < U such that no s ∈ S satisfies x < s. For
all s ∈ S one would then have s ≤ x < U. This contradicts U being sup S,
so no such x can exist.

s s s s s s s U

S U

s s s x s s

1.24. Let x = U − ε, where 0 < ε < U. The situation is then identical to that
described in Exercise 1.23, so corresponding to any ε > 0, there is an
s ∈ S such that x < s ≤ U, that is, U − ε < s ≤ U.

1.25. Assume that there is an x ∈ Q+ such that x2
= 5; let x = a

b , a, b ∈ N. We
stipulate at the outset that a

b has been reduced to lowest terms, that is,

the largest common divisor of a, b is 1. Then a2

b2 = 5, or a2
= 5b2. By the

Fundamental Theorem of Arithmetic, the prime factorizations of a2, 5b2

must be the same. Hence, since 5 divides 5b2, then 5 divides a2. As 5
is prime (not factorable into 2 factors, each larger than 1), so 5 must
divide a. Thus, a = 5k and 25k2

= a2, or 5k2
= b2. The same argument

implies that 5 must divide b. This is now a contradiction, since a, b were
stated to have no common divisor larger than 1. We conclude that no
such x ∈ Q+, as assumed, can exist.

1.26. By Axiom R8, in the form of Exercise 1.16, both inf S and inf T exist. For
each y ∈ T one has y ≥ inf T. But S ⊆ T, so each x ∈ S is a y ∈ T; hence,
S is bounded from below by L = inf T. By the definition of infimum
(Section 1.3), inf S ≥ L then follows.

1.27. By Theorem 1.5 there is a natural number N such that N(y− x) > 3.
We now seek an integer M such that x < M

N < x+ 3
N . This will hold iff

Nx < M < Nx+ 3. But in the open interval (Nx, Nx+ 3) there are always
2 or 3 integers (depending upon whether Nx is, or is not, integral).
Hence, an M exists and we have x < M

N < x+ 3
N < y.

1.28. A convex polygon of k+ 2 sides has k+ 2 vertices. The number of diag-
onals that can be drawn to a given vertex is (k+ 2)− 3 = k− 1. As
there are k+ 2 vertices, then the total number of diagonals might be
(k+ 2)(k− 1). But this counts each diagonal twice; hence, the correct
number of diagonals is (k+ 2)(k− 1)/2, k ∈ N.

1.29. If A, B are two bounded subsets of R, then x ∈ A ∪ B means x ∈ A or
x ∈ B. Then x ∈ A implies x ≤ sup A and x ∈ B implies x ≤ sup B. Hence,
for any x ∈ A ∪ B one must have x ≤ max {sup A, sup B}.
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Now consider the union

n⋃
k=1

Sk =


S1 n = 1

S1 ∪ S2 n = 2

{x : x ∈
n−1⋃
k=1

Sk or x ∈ Sn} n > 2.

We have sup
⋃1

k=1 Sk = sup S1, sup
⋃2

k=1 Sk = max{sup S1, sup S2}.
Assume that for an arbitrary n = K one has

sup
K⋃

k=1

Sk = max{sup S1, sup S2, · · · , sup SK}.

Next, for n = K + 1 let T =
(⋃K

k=1 Sk

)
∪ SK+1; then from the initial

lemma

sup T = max

{
sup

(
K⋃

k=1

Sk

)
, sup SK+1

}
= max{max{sup S1, sup S2, . . . , sup SK}, sup SK+1}

= max{sup S1, sup S2, . . . , sup SK+1}.

It follows by Mathematical Induction that for any n ∈ N one has

sup
n⋃

k=1

Sk = max{sup S1, sup S2, . . . , sup Sn}.

1.30. (a) Yes (b) No; the addition of two invertible 3× 3 matrices does not
necessarily give another invertible 3× 3 matrix.

1.31. SYMMETRY: x ∗ y = x1y1 + x2y2 + x3y3 = y1x1 + y2x2 + y3x3 = y ∗ x;
POSITIVITY: x ∗ x = x2

1 + x2
2 + x2

3 > 0 if at least one of x1, x2, x3 is
unequal to 0; otherwise, 0 ∗ 0 = 02

+ 02
+ 02

= 0;
LINEARITY: (k · x) ∗ y = (kx1)y1 + (kx2)y2 + (kx3)y3 =

k(x1y1 + x2y2 + x3y3) = k · (x ∗ y);
(x⊕ y) ∗ z = (x1 + y1)z1 + (x2 + y2)z2 + (x3 + y3)z3

= (x1z1 + x2z2 + x3z3)+ (y1z1 + y2z2 + y3z3)
= x ∗ z+ y ∗ z.

1.32. z =
√

53
53 · (−6, 1,−4).

1.33. (a) x = (x− y)+ y, so from the Triangle Inequality

|x| = |(x− y)+ y| ≤ |x− y| + |y|, and

|x| − |y| ≤ |x− y|. (*)
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Interchanging x and y, we also have

|y| − |x| ≤ |y− x| = |x− y|. (**)

Inequalities (*, **) together are equivalent to ||x| − |y|| ≤ |x− y|.
(b) |xy| = |x||y| is trivially true if either x = 0 or y = 0, for the equation

reduces to 0 = 0. If x < 0, y > 0, then xy < 0 and |xy| = (−x)y =
|x|y = |x||y|; If x < 0, y < 0, then xy > 0 and |xy| = xy = (−|x|)
(−|y|) = |x||y|; If x > 0, y > 0, then xy > 0 and |xy| = xy = |x||y|.

1.34. Let Sk = x1 + x2 + · · · + xk; by the Triangle Inequality we have |S2| =

|x1 + x2| ≤ |x1| + |x2|. Assume that for arbitrary k < n, one has |Sk| ≤∑k
j=1 |xj|. Then for Sk+1 we obtain

|Sk+1| = |Sk + xk+1| ≤ |Sk| + |xk+1| ≤

k∑
j=1

|xj| + |xk+1| =

k+1∑
j=1

|xj|.

Hence, by Mathematical Induction |Sk| ≤
∑k

j=1 |xj| is true for all k =
1, 2, 3, . . . , n.

1.35. (a) If either x = 0 or y = 0, then x ∗ y = 0 and |x ∗ y| = 0. Suppose, with-
out loss of generality, that x = 0; then ‖x‖ = 0, and ‖x‖ ‖y‖ = 0 ·
‖y‖ = 0, so |x ∗ y| = ‖x‖ ‖y‖.

(b) P = x⊕ (c · y) : P ∗P > 0 by Positivity. Expansion of the inner prod-
uct, using both left and right linearity, gives

[x⊕ (cy)] ∗ [x⊕ (cy)] =
{
[x⊕ (cy)] ∗ x

}
+
{
[x⊕ (cy)] ∗ (cy)

}
=
{
(x ∗ x)+ (cy) ∗ x

}
+
{
x ∗ (cy)+ (cy) ∗ (cy)

}
=
{
‖x‖2 + c(y ∗ x)

}
+
{
c(x ∗ y)+ c(y ∗ (cy))

}
= ‖x‖2 + 2c(x ∗ y)+ c2

‖y‖2

> 0.

(c) Viewing the left-hand side of the inequality in (b) as a quadratic in
c, we see that it has no real roots. The discriminant D, formed from
the coefficients, must be negative, that is,

D = [2(x ∗ y)]2
− 4‖y‖2‖x‖2 < 0,

or
|x ∗ y| < ‖x‖ ‖y‖.

Combination of this strict inequality with the particular result in
part (a) gives for all x, y

|x ∗ y| < ‖x‖ ‖y‖.
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1.36. ‖x⊕ y‖2 = (x⊕ y) ∗ (x⊕ y) = x ∗ x+ x ∗ y+ y ∗ x+ y ∗ y = ‖x‖2 +
2(x ∗ y)+ ‖y‖2 ≤ ‖x‖2 + 2|x ∗ y| + ‖y‖2 ≤ ‖x‖2 + 2‖x‖ ‖y‖ + ‖y‖2 =(
‖x‖ + ‖y‖

)2. Then taking the positive square roots, we obtain
‖x⊕ y‖ ≤ ‖x‖ + ‖y‖.

1.37. Suppose that p is distinct from a; then ‖a− p‖ > 0 will hold. Now
choose ε = 1

2‖a− p‖ > 0. Every point q in Bn(a;εεε) is of distance
dn(q, a) < 1

2‖a− p‖ from a. Since p is of distance ‖a− p‖ from a, then
p is not in Bn(a; ε) for at least one choice of ε. The statement of the
theorem follows by the Law of Contraposition.

Bn(a;εεε)

p a− εεε q a q a+ εεε
← |a− p| →

1.38. 60 elements in S× T×W; 260 subsets of S× T×W.

1.39. (a) f =
{
(x, y) : y = 2x+ 1, x ∈ R1

}
, I = [0, 1], f (I) = [1, 3];

f−1(f (I)) = f−1([1, 3]
)
=
{
x : (x, y) ∈ f , y ∈ [1, 3]

}
=
{
x : y = 2x+ 1, y ∈ [1, 3]

}
=

{
x : x =

1
2

(y− 1), y ∈ [1, 3]
}

= [0, 1].

(b) Let x ∈ I ⊆ D(f ); then y = f (x) is an element of f (I). Since f is
an injection, this implies that f−1 is actually a function. Thus,
f−1(f (x)) = f−1(y) = x uniquely, and as x ∈ I was arbitrary, then
x ∈ f−1(f (I)). Hence, I ⊆ f−1(f (I)).
The proper set inclusion I ⊂ f−1(f (I)) would imply that there is an
x /∈ I and an x′ ∈ I such that x 6= x′ but f (x) = f (x′). But this cannot
be since f is an injection. It follows that I = f−1(f (I)).

(c) f =
{
(x, y) : y = x2

+ 1, x ∈ R1
}
, I = [0, 1], f (I) = [1, 2]. But 1 ∈ I

and, yet, f−1( f (1)) = f−1(2) = {−1, 1} and −1 /∈ I, so f−1( f (I)) 6=
I. We conclude from part (b) that the present f is not an injection.

(d) Consistent with the remarks in (b) we have that f−1( f (I)) ⊃ I when
f−1( f (I)) 6= I. This is also suggested by the example in (c).

1.40. (a) Let y ∈ f ( f−1(H)) ⊆ S. Since f is a surjection, there is an x ∈ f−1(H)
such that (x, y) ∈ f . But by definition of f−1, x ∈ f−1(H) iff y = f (x)
belongs to H. As y ∈ f ( f−1(H)) was arbitrary, then f ( f−1(H)) ⊆ H.
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The proper set inclusion f ( f−1(H)) ⊂ H could mean either (a) there
is a y0 ∈ H\ f ( f−1(H)) such that f−1(y0) ∈ f−1(H) and f ( f−1(y0) =
y0), or (b) there is a y1 ∈ H\ f ( f−1(H)) such that y1 has no inverse
image in f−1(H), or possibly even none in D( f ). But (a) cannot be,
for y0 then should have been included in f ( f−1(H)). And (b) cannot
hold because f being onto S implies that it is onto H, so y1 must have
an inverse image in f−1(H). It follows that f ( f−1(H)) = H.

(b) f =
{
(x, y) : y = x2

+ 1, x ∈ R1
}
, H = [1/2, 2], S = R1. We have

f−1(H) = [−1, 1], and the points in T = [1/2, 1), a subset of
H, have no inverse images in f−1(H), or even in D( f ). Then
f ( f−1(T)) = f (∅) = ∅ and, therefore, f ( f−1(H)) = [1, 2] 6= H. We
conclude from part (a) that the present f is not a surjection.

(c) Consistent with the remarks in (a), as well as the example in (b), we
have that f ( f−1(H)) ⊂ H when f ( f−1(H)) 6= H.

1.41. x ∈ I ∪ J→ x ∈ I or x ∈ J→ f (x) ∈ f (I) or f (x) ∈ f (J)

→ f (x) ∈ f (I) ∪ f (J)

Example: f (x) = x2, I = {1, 2}, J = {1, 3}; f (I ∪ J) = f ({1, 2, 3}) =
{1, 4, 9}, and

f (I) ∪ f (J) = {1, 4} ∪ {1, 9} = {1, 4, 9} = f (I ∪ J).

We assume that f (I), f (J) are defined for any x in either I or J and, there-
fore, f may be taken as onto f (I ∪ J); f is then a surjection with respect to
any subset of I ∪ J. Then

y ∈ f (I ∩ J)→ f−1(y) = x ∈ I ∩ J→ x ∈ I and x ∈ J

→ f (x) ∈ f (I) and f (x) ∈ f (J)

→ y ∈ f (I) ∩ f (J).

The direction of the implications only permits f (I ∩ J) ⊆ f (I) ∩ f (J).
Example: f (x) = x2

− x, I = {0, 2}, J = {−1, 1, 2}; f (I ∩ J) = f ({2}) = {2},
and f (I) ∩ f (J) = {0, 2} ∩ {0, 2} = {0, 2}, so f (I) ∩ f (J) ⊃ f (I ∩ J).

1.42. (a) Both f [g] and g[ f ] make sense;
(b) f [g] makes sense; g[ f ] does not;
(c) Neither makes sense.

1.43. (a) The inverse relation derived from the mapping f : D( f )→ S is the
set f−1

= {(y, x) : (x, y) ∈ f }. Let y ∈ R( f ) be arbitrary; then if f is
an injection and (x1, y), (x2, y) ∈ f , we have x1 = x2. Hence, given
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