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Al'l’kougk it is not S‘i’ai'cc\) the flow is assumed to be
S’rta.d\ so that %ﬁ' = 0.
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2.1 Con\'d.& we note that!

~ A A A

S & =%yCo= ety =1 and

gr'ge = gg’éz- = é}-?r =0
To evsluate the terms i the n\f)\d'—l'\e,w& cnluwth)
we ncte that @ vector can chanqe in masn(‘(ude_ ancl/or
in dicectiom. Obvious(nj, a unit vector Cannot change in
MaSv\I’wde. (or lenfi’rks .From vectr caleulus, the

deavahives of the unil vectors in cjltndn‘ca\ coordinates

are ; % .4 . % _ 4
ag' 9339-—-—8(-

Al other derivatives are wero, Thus, the equation
becomes |
V(S_\-/q\ =0
_ oleNe) , Ve | L 3(gve) . 3(gve)
ar ' s 20 Sz

_ L 3(ervo) La(gv\ N
) P_%r‘_—+ ECE *3—5——&*\ CQED

2.2) () We have a radial flows in whith £ = mstant

Thecefore, we can use the reswlt from problem 2.1

L3PV |, L 3Wa . 3ve 2
Cr T v T 3% =°
——9
Siace. \ = K /e\r , we See that '\)r=—-—-’K > Vg =0,
2T

Zar
and 4z =0, Su\ogh“ruh‘/\.ﬁ these components into the

contin u.(’nj equation

Lo L) =0 Cntinuty is setished.
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Z'ZC"__,_'ifg (b) Let us use the Qmﬁnw:},j eg(umﬁon o s
Hoeee - dimensona | Clow, re., E-QMO-HOY\ CQ.l\'.

29 o Aeul L pg9) | deed) T
ot 4 Btj oz - ©
For constant clev\s(h‘ flow, this ecqualion becones:

ou. . YR
+ 9 2w
9% oy * 5T ©

9 - 2xyz d (&‘—;ﬂz \
Th,\LS) 2% { ’()?z—‘j—\j—z)-i UaoL-} B a\j (xt"H'St)z— Uco‘-a

+ 0 { 3— UmL\S =0
oz x‘-t-\j
Since. Up and L are constants and since the
Bppear in every term, they can be divided .a«.d3 leaving!

- Zyz . Zxye CO2A) | _2ye | Ge-gda(D)
(x> Y4 ) (x> +y*) (xz+y) (x* +y°)

oAy -8x*yz + 4 x'ye —4y%e
(x‘+j‘)" (x*+4*)’
- ~AXY® - 4y'e + Bxlye - 4rlye +4y’e =0
(\(‘«j");
Therefore, the conhinuiy equalion s satisfed.
2.3)

"

Given: Two of three velocity components for an incompressible flow:
u=x>+2xz v=y>+2yz
The velocity components must satisfy the continuity equation:

8_p+8pu+8pv+8p\4/zo
ot  ox oy oz

3
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2.3) contd.

For incompressible flow this becomes:
ou ov ow
—t—+—=
ox oy Oz
Find the derivatives of the given velocity components:

0

v

= & = 20+2)

Therefore:

Integrating yields:
w :—22(x+y+z):f(x,y,l)
Where f (x, y, l) is an arbitrary function (x,y,7). Since the first two velocity components are not a

function of time, it may be possible to assume the flow is steady and drop the time function from
the arbitrary constant.

2.4)

Given: Velocity components for a 2D incompressible flow:

Ky Kx

) )

For 2D incompressible flow the continuity equation is:

ou ov
—+—=0
Ox Oy
Taking the required derivatives yields:
ou _ 2xy o 2y
Ox (xZ +y2)2 ay (xz +y2)2
4
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2.4) contd.

which shows that the flowfield satisfies continuity. Now convert to cylindrical coordinates for
simplicity using:

X =rcosf y=rsinf

Resulting in velocity components of:

Ksind K cos@

r r

Now some vector information is required:

—

V=ui +vi=v.e, +vye,

— ~ ~

. =V-e =ui-e +vj-e, i-e, =cosd j-e, =sinf

v

— A~

Ve, =ui-e,+vj-e, i-e, =—sin@

v, -e, =cosd

~o

Resulting in:

A A A KsinBcos@ Ksinfcosb
v, =ui-e +vj-e =— + =0
r r
~ . ~ . Ksin*8 Kcos’8 K
V,=ui-e,+vj-é, = + =—

r r

This represents a counter-clockwise vortex flow about the origin with a velocity singularity at the
origin and a circular velocity about the origin proportional to 1/r.

2.5)

Given: Velocity components for a 2D incompressible flow:
C (y2 — xz) 2Cxy
U= Ve
2 2 2 2
(x> +y?) (x> +y?)
5
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2.5) contd.

Assume 2D incompressible flow and that C is a constant. For 2D incompressible flow the
continuity equation is:

—+—=0
ox

Taking the required derivatives yields:

ou

Sl oD+ o) 200 4 y7)

% = 2Cxy(~ 2)(x2 +y° )73 2y)+C(- 2x)(x2 +y’ )72

_ 2 .2 2
4Cx(y X )_ 2Cx N 8Cxy”  2(x 0

(x2 +y2)3 (x2 +y2)2 (x2 +y2)3 (x2 +y2)2

after some algebra and patience!

Z_ﬁ’] Re‘(le.(‘rinﬁ to the con’cinud*‘g eq_ua.h’ov[ for a
two-dimensional , iac_ow-pre.ssib\e (ow.
ou 4 Y _

3

N _ _du _ 1B ...3:_._.21,,3
oy ~ O% — 2 XV 2 x*

Iﬂ{’&gra\'ing with re_sped’ 1o J

2 4
V= -+ .L._ag j - _3_ S j
4‘ x‘os 8 ;—2.5 + C

To evaluate the onstant of in\'cgre.{‘(m C, we note
that 4=0 when j=O.Tkus) C=0 and
V= M__ - %—.a_liq_.

l 2
Z X .5 xz_s
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2_-_}] The ifl’tcsra\ -@orw\ ofF Hhe ccy\‘f:\‘nufﬂ e’qu&h‘“m
[e%%&‘h‘”\ (2-5\] for S_*'Cli\y one -dimeasional flow in
3 streamtube yields

- T eVidA, + [[e.VidA, =0

ﬁl v\\}\’\__’/:_,ﬂz
~N T

Since. the flow properties (e'ﬂ'J S and \/3 are. unform

acfoss 'Hr\e 2fed (’Che. one~dtmems€m -Fcr quAIcL\ ‘H«e
C(ou: ?roperﬁes vary is the Sﬁeamwise. coordi nate !

fn\/| Al = fr—v;_ A,_ = gVA = constant

D\igt(ﬁnﬁ&‘\“\ .
(dg\ VA + -SCdV\A + g\/(dﬁ\\ =0

Di\/(di/\ﬁ b\B gVA, we obtain:
é_ﬁ_ + é_\i. + é&‘_ = O

AY \4 AN
1€ the flow is Cf\c,om’\)m_ss(\a[c) c\g:OJ and
av. _ _ dA
VAl

Thus, if the cross ~sechional arca betyjeen
Streamlites (ot of & sireamtube, or of the walls ol &
wind tunnel) decreases, the flow accelerates, When dhe
Cross- Sechional - area between sireamlines increases, the
Ve,\oc(\-j ok the fluid ’\Jer’dc\es decreases. These relabons

between dV and dA are not true it the flow is
supersonic. as will be discussed tn Chapfer 8.
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__2_,@ Usi(\s He Iq{-gﬁba\ Corm  of the c.on{‘iﬂuﬂ'j eﬂmh"m
for S\‘C—BC\\3 flow , we can use eguation (2.S)

S0 s duol) + & ¢V.AdA =0
Vol Acea
to Solve s ’Pro\a\cw\. ket us draw 2 control voluwe
between stations 1 and &,
the walls of dhe.
'''' / Pipe will serve as
i a streamtube

The vectors rc_?rtsewh"nﬂ the =zreas (ﬁdAX sre divected outand
from e control volume ) as shown in the sketcla,The
veloehies represent an assumed flows Brom left to right, lksrhj
He vector dot products and noting that the flow Pro?e.r'hes
do aot Vary across the. cross - se2tivn, We obtain:

- 8|\[‘A\ + gz\/z. A'Z..: O
Where V, and \fy are the Magn({vdes of He \rdocﬂ'j vectors,

v: and \/2. 3 (‘E_Sped'\‘udb, Thus,

S\ V, A‘ = S,_\/,_ A, (and \D\.\ CKMSVW\) = e5Vs A,

(Often we see the expressipn for S‘\‘Qaclj,bﬂe-d?rv\e:\s\‘ov\a_l
Clow in a sireambube as:

S\/A = constant
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2.8 Cow{*d.l

The duct need not e s’rraight pmv\‘d\\sj the flow is

ayproﬁmahlp one - dimeasional, Thus, the cquation is often
SPPU\'—C& to tlow in curvek vipes and euoows.\

For this Flod), waler can be assumed 4o be bQ—
Constant deasity. Thus,
8587 53
As a resulf,

\/l A\ = VzAz. = \[-5 AS = O'S'Lg:

v [% (O-‘Qz] =\, [111(- (o. Z.Y] = \3 [{- (o (,Y‘X =

So\vi
’\33
N, =3979% , V.= 1595 %3V, = 1.7 %
E_._‘_ﬂ Followibj the [bgfc of Problem 2.8,
SSV3 As = S'\[‘Al = S:. Sg U, dAL: 10 %—
Note +hat w, is left &0 the integral, since it is et

constent over the cross sechwon, iie.,

U,,{t— {z]

0.5
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?;_%__Ci'ﬁé'-] Thus, V5 = 0.0599 L5V = 37.44% g
Nete that the V&‘Od‘h‘ of which a fluid Partide. 24 the

free sucface moves (Vs) is very small compared to the

veloc in the drain pipe. Since the fowo s aoﬁsxAth\‘nc..

a+  station 2!
dA = 2rrdr

Re o ik gm
Q2 So Us [1—-@-;-]Z.wrdr- fo* 2

Zﬂ-uog’z [E— -E_:-‘&‘: 104 2;\—

2 T R®;
4 gum
Us = ———rms— = 235.586 %)
AT <§=)(—$)-§_%

?,;19} let us use the integral fomm of the enfinuity equalion,
Note that the effocts of viscosihy are such that there is a
Sicy\fﬁcaw&’ reduckion of e velocihy in the wake of the
aichorl (at s’ra’ddn@). Thas, 4or Hais re.c’ranﬁu\ar control Vvolume,
3 sigoificsat fraction of the mass inflap ot station (D dees
nok leave Hhe control voluwme Hﬂmws\/\ station @ Thus, Some
flcd must ext through ?lanes@) and @), T, «Hne-j are
Sbuicusly wot streamlines. |

2 (1] 5 ad + & gV-Fdh=0

ot
B».S C.Df\HnuH‘H, we Kaow ot the is @ 0—C0M()cntn‘t

i the weke off the airtorl  aad that

ok velout
A\ov\3 Sur@ace.®

A) C'K) 13\ "

10
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210 Gontd] Wy = U + 0. ))
and alomz Sur("ac.o.@
\14 = ao/: "‘\)oa(‘)da

S;'\C& 'H'\e— Q\M (s Si'téd ‘H\Q YR&ss .ﬂu*cs QQP Mﬂ"‘ dQPH’\
on Ahe mnknu&\j e,scua.*\ov\ can be writken:

5 [t [-249] + 35 |- e 7-03} 4

@ - -

+3§§[UJ AL“’Q&“% SS[UM*-UQ,A] \j-x

—

..-——-@——————»

*’jg [UM—%A h“" O

No{‘t ‘H?\z.‘l’ <HAQ_ Uerhca_\ Covn ovmyd" c‘c ve(oc.\"'j does vw‘r Arans -
Port flusd across the surface at station @ Tand that the

~horizontal compeneat of vdomks does not transport Fluid
actoss the surface at stafions (D and (@), Theis is because.

these veloes componests are ?e_rPu\chc:ular o the aren
“vectors’ at the station. Thus,

—-SUC.,ZH+~3U<-‘§;—1 +§___.<

+§S“’d><+§§ Vo A% =0

The last two temms represent the total wass flo) across
the Suclaces @ z-md@ The. deast

tecm. We can divide by the der\s&j
Llow acress@o.v\d@ [ZS

H

H is Common To ever

cse,‘(' Hhe volumetc
Up dx | = U H

11
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?-_1_0 Let ws apply the inteqral form of the conkinu
equation. Note that ) since surfeces @) and @ ace s
lines , How gasses ‘l’krc»«s\'\ cv\\Aj sucbas @D ol @D,

3 sh;.d»s — . _
% S+ fh gV -AdA=0

Since. the Flow s incompressible and steady , we can
write the C.Of\ﬁnm;'\'\} equation 3s

“ste J_‘H:‘*w 3l S ()4
) — ;;——-——______>
+ gLLo 5 (ﬁ;) d\3 =0

(@)

—@y—
(Z:Qe.r to Problem 2.10 to see how to handle e
U-QDMPMQA{— of udou‘l—l ot shﬁh@)

C ol (2H) - Ve /yt[° L gUe (4t
gUa ( ) H°<Z‘—np+ H—D(?-

Qearru‘.&Mﬁ and di\lidrnﬁ ‘Harou-sk bU) §U°, (wh‘d\ is &
Common Lector to C—Uerj "'E—VW\\, we_ obtain:

Hu"‘ 'lz_HD

é@ let us aPPI‘j the_ fﬂ‘l‘ﬁgra_( Larm of the conbinu

+'1 eg‘uaﬁdn.
Note that the effects of \n‘scos('\n have caused a S‘BATcicanf
reduction of veJOd\'j in the wake of the airfuil (at station @),

As a2 result, thece is a V- component o veloahy whach,

Produces 2 mass fluy across planes(D) aed @ ecause they
are. honzontael (?crpm&icm\mr 4o the - componext) .

M-—

Hy
=0

(]

12
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202 Con%cg The flow is Skac&\s and ‘mcom\orassible_. As a cesult,
the ‘m’tegra\ Con’dnu?‘n‘ eq‘uo&'\ov\ becomes,

§V-adA=0

[ o) [ragd » [ fon-asce )2 e

=1 “H
-‘-————-—@ —_— -

@

L L

Pt el [l o

O

| :___. (3) — > S S @ —_—
Note that the vectical com\oonen‘t of vdoci-l-\j does not
Transport flsd across the. surface at stotion @) and that
the horizontal componeat of velocity does nok transport flud

across <tations @ and @ This is because these ue.\odg
Componenats are perpeadicular 4o the area “vectors”. Tha

+H
- Un(2H) + Us [y - 05 2 i T4 |

—>

J

L L
+So Vo dy. + _L\Jq, dy =0
The last 10 tecoms rcpmsex\'(' the total volumetric. flouw

across sur ces B and @, Since the flow iy planar

Sngw.\-ric at stations @D and @, we'll assume that the
Volumetric  low mate acrwss(@) is equal b tat acoss (8.

[2 ] v du) = 2HUa - 2HU, + B 1)

[z SO A, A«] =

13
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243) let us apply the inteqral form of the c.o\n’finm'&-\j
equation, Note Hhat, since surfaces @ snd @) are
streamlines, fluid can cross onlus surfaces @am\@,
Since fhe Flow 13 steady,

S'\'cad\3=o — A
i T 4§ sV A= O

Because the flow is incompressivle (Ve 8= co(\s’raat'\,

- SUQ, Sj:: clu; t € Us S”‘D(i - 0.5 cos %—Hl-pjaj =0

’HD

Note that we have eliminated the - Component ol veloci
at shtion @), since it doesn't contribute 4o the mass

Clm}(, Se_e He A‘\'swsw d'c +U‘MS Qv\& N Pmb‘QM Z.tO.
We can divide 'Hf\rowsh b\-} ~gUm and obfain.

2 H T *ho
—IHu ¥ [‘3 - oS % 5"“'{&» H =
-o

Hy = HD[‘ ~ T‘r‘] = 0.681% Hp

2.14)

Given: A rectangular duct as shown below with two porous surfaces. What is the average
velocity of water leaving the duct if it is 1.0 m long and has a cross section of 0.1
m>?

,f’”'/’/ 0.3 m*/s/unit length
1
Jf‘f_f-r
——1 ¥ ¥ ¥ ¥ ¥
L0 mY/s B L H

0.5 m*/s/unit length

14
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2.14) contd.

Conservation of mass requires:
out — "in
Or, since the flow is incompressible:

Gous =4
where ¢ is the volume flow rate. This yields:

Qinend + qin,op = qaut + qoutem]

side

3
1o 4 £0.3x2dx = £0.5(l - x)dx + G
S end

. m3 x3] 1 le
G, =1.0—+0.3— —0.5x,+0.5—
S 0 0

"

S

g =0852
end S

and the velocity at the outflow is:

=G, | PA=0.85m" /5/(977.8kg / m’ - 0.1m*)

Vo, =0.087m/s
2.15)
Given: The same duct as in Problem 2.14.

H-”/’/ 0.3 m*/s/unit length
1
_.-—_|:—"I_T_r

L0 mYs
m/s ﬁ I I ﬂ‘:'*"H'"

0.5 m*/s/unit length

15
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2.15) contd.

Using the development presented in the solution for Prob. 2.14, the volume flow rate at any
station along the duct is:

3
G =107+ [03¢%ax— [0.501-&)ax

N

3 3 X 2 X
G —1.0™ 1035 —0.585+055
N 0 20
3

G =1.0740.16" ~0.5x +0.25x
end s

and the velocity at the outflow is:
V.=q./pA=1.0-05x+025x +0.1x* )/(977.8kg / m* - 0.1m)
The minimum velocity is found by:

dV./dx=3x"+5x-5=0

+
- _ﬂ =0.7m
6
2.16)
Given: A rectangular duct as shown below with two porous surfaces. What is the average
velocity of water leaving the duct if it is 1.0 m long and has a cross section of 0.1

m’?

0.3 m*/s/unit length
__——ﬂ“T{ |

0.5 m*/s/unit length

1.5 mYs

L

16
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2.16) contd.

Following the same procedure used in solving Prob. 2.14:

qinem] + qmsule - qourlop + qoureml

3
i, =15+ [03x%dx— [0.5(1- x)ax
end S

. m3 x31 1 le
G,y =15=—+0.3- ~0.5x+0.5

0 0

3
g, =135"
end S

and the velocity at the outflow is:

Vow = | pA=135m/5/(977.8kg/m’ -0.1m*)

V

out,

y =0.014m/s

- _ dv _ av B-\-] — —
3 = Y _ 3V
dt ot Tt aa\/ w Y

- [43‘ + 10t:H21< B - 24y ﬂ + 25 [0]

when («,3,%} (s (3,0,2.3 and t=1

—p

3 7 fo-e 3 16] - 58t 15

17
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213 ) Tt will b shywn that the VdocH'b‘ function

N (6 6) = Uy (I- %;)ws@ 8- Ua(1+ B sn0 8,
represeats an inviseid, shach) flow around 2 cyliader ofl
rgdius R. T deuelop the expre ssion for the acceleratim;

&V _ oV — N\TT
<1t"at+('V>

I
<
w‘o)

©
<\
}
&
(W)

<)

I
—
C
§
—~
i
72
~
'y
A
D, v
—
C
8
(o)
s)
v
DO
o>
T
~
R
~——
i
(@
&
e
>
‘?)
/‘\
~N
I
I_ﬁ_.—/i—-'

+ (Ve (1 ) 220 flun (1- 2) 4, (s0)
+Ug (1- B ) cos 9€9]+[-La(1+ 15—) o (o3 9)

(14 E) w0 &1

Ta developing tis expression, we have used the. fact that

der A ¢ N

= e %8 - _

oG o nd 30 r

Thus,

dV Al 2. 2 (ZR"_ 2pt v apft _R} _ 2R*_p¢
;l—t—-e(_‘.\)m QSG-—r? - +U¢;5m 9 r ;—S’-JF T“??
~ T 2 t 2 ¢ 4 1 4
+ee[+()ms.n9¢039(+-%—75~—-}_- +%*‘%‘+g§-+.§_.)]

18
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2,13 Contd]
Note that ohen r=R,ie., ot Poiats on the sucface of the
c\j\tr\c\ex:
CT\T ~ [—- 40 3((\"9] -~ \:400015\7\@@39‘&
—_— = e
dt ¢ R + <o a
Nete forther that when Q=0 ank wke_A Q=
&N _
& ©

Thus, whea =2 and ©=0 2nd when =T and @=1,
N =0 (these two Peints are stagnation pot«\\ﬂ and
%_\%L =0 ('H'\E QM\A ?a\'{'\\C\QS are Y\Q‘\' auﬁl&rl\'\\ﬁ at

these two ?omﬁ\, Note H\éf G=0 and O=T represent

Points o the x-oaxis, whach corresponds +o the. plane ol
symmetrd oo Hais Flow,

2.20 ) From the fr\’mﬂral form of the c.nn\‘inu.ﬁ.\ eg‘ud'l‘m.'

uA = onstant = @
The cross-sectipnal area for 8 uait depth s A = th (.1.\
Usimcs the bouu\danx condition Hat w= 2 % aud h={m

3t X=0. Thus, at 4he inkal station
) (—tke. Volmmd'n\o-cloc()/w Ld t(ﬂ"«} = (u:\ (2 f,‘\ = 4.0 MZ
Thus,
QAepH'\ = (@(Z@: n {_Zf« - sm (—ZTE ){j\—k: 4.0 (a\

19
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2.20 Contd]]

o dV _ 3V av | 9V V]
The accelerafimm 2 T - T4 S +«)..§_j +w_a.l§L
reduces o 3 = %-g = U %—‘-‘X—/g,\ Lor Has one dimen -~

Subshfu‘hng e e&Pt‘cssmv\ -Cm— e \)d_ou > e,

= % T e (X
[2& hsin (% ﬂ {[_29\ fisin(Z ‘Zt
A x=0' = = 8n‘ﬁ 12 - ~

8 = L $u® T [‘g:"i =7t
__8““ Cos -

[2.9\ B sia (——\1

a = 8,205V M/S

20
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2.21)

Given: A mass flow rate for the cabin air of:

i, =—0.040415-2<[4, ]

N

Using the Ideal Gas Law and the definition of density:

m
= pRT =—
p=p P 7

The pressure becomes:

m
= RT
P=y

And the mass flow rate equation can be rewritten as:

i, =—0.040415 ’:’; RAT.[4,,]

and:

m 0.040415
7 = _TRC ’\/FC[Ahole]

c

But the mass flow rate is defined as n2 = dm/dt and the relationship can be integrated as:

L”“f am _ _%Rﬂ/ﬁ[@m]ﬁf dt

o m

where i represents an initial value and frepresents a final value. Solving for the final time:

—¥ m,
t,= In| —~
0.040415R T 4, | m.
Since T, =22°C we see that m, /mc_ :pcf/pc_ and:
- P,
s In| —

t =
" 0.040415R T 4,,, | P.

Using # =71 m’ and consistent units, we get:

i, = 5589s =1.55hours

21
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2.22)

Given: A mass flow rate for the cabin air of:

i, =-0.5318-2<[4, ]

JT.
Using the Ideal Gas Law and the definition of density:
m
= pRT =—
p=p P P

The pressure becomes:

m
= RT
P=y

And the mass flow rate equation can be rewritten as:

mc = _05318 };ZLC Rc’\/Fc[Ahole]

and:

m 0.5318
7 =- V Rc '\/E[Ahole]

But the mass flow rate is defined as 72 = dm/ dt and the relationship can be integrated as:

., dm 0.5318 .
'[:C.fgz_ ¥ RC\/FC[Ahole]‘[/ dt

i

where i represents an initial value and frepresents a final value. Solving for the final time:

—¥ mcf
f. = In| —
7 0.5318RAT 4,,, | m,

i

Since T, =22°C we see that m, /mc_ :pcf/pc_ and:

- P.
¥ In| —

|
7 05318RAT 4, | p.

Using ¥ = 2513 /¥’ and consistent units, we get:

i, = 5385s =1.50hours

22
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2.23)

Given: A mass flow rate for Oxygen of:

Po
——1\4
m [ hole ]

Using the Ideal Gas Law and the definition of density:

1y, =—-0.6847

m
= pRT _m
p=p P=7

The pressure becomes:

m
= ZRT
Py

And the mass flow rate equation can be rewritten as:

iy, = —0.6847% JRo T, [4,,]

and:

Mo, _ 0.6847

m, = v &Y, Roz To2 [Ahole]

2

But the mass flow rate is defined as n2 = dm/ dt and the relationship can be integrated as:

[ dm _ 0.6847

02,: m ¥ m [Ahole]‘[f dt

where 7 represents an initial value and frepresents a final value. Solving for the final time:

—¥ Mo,
i, = In ‘
0.6847. /R, T, Ay Mo,

Since 7, =18°C we see that Mo, /maz,. = Po,, /pozf and:

74 Po,,

t, = In
" 0.6847 R, T, A, | Po,

Using ¥ =1 m’ and consistent units, we get:

t, =445859s =743 1hours = 310days
For ¥ = 0.1 m’ and consistent units, we get:

t, =3ldays

23
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2.24) As was doe in Exemple 2.2,we can weite dhat
e v e de -y d?

w=0; W= O} a—ﬁ--ﬂa_y.%
In'\'eara’rifts twice!  w = Z!Ff% ‘jz + C'j + Cy (i)
Which s Sub_jcc+ o the two boundar CM&T#WLS'
(33 tﬁ‘-‘-O: w=0O (‘HA& fower plate 1s s+chv\arj\)
(bs \j: ‘,\2 w= Uo (the wpper Fla+e maves with C.ons‘l'an*'Sf&Cb
Applnj ng these -hoo Eow\dar-j condi Hevs;

Cl) O"—-Cz 3 (b\ UO: #g%e:dkc&\
TL‘“ ) = U ._l-—
> ¢ R iﬁ- R
Subsktuting these constants into ()
_ Us | d
w= ey o Ldp e o)
) Zp dx 3 j |

-

['near vanation veloety varation due 4o the.
due 1o movement existence of the pressuse
ot the upper plate qradieal

1.0

24
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2

2.24 Contd] The factor o g& 's & constant for a

qiven prob lem, which we shall call ﬂo The \ldod’ﬂ.s

profiles (w/Uo) are preseated in the sketch as a Function
ot (\J/"A\ %;- varmouws Va.\uas o(’-ﬁo. No{’e that Tht, ?(‘0&\\1:. s

“fuller " when the pressure decreases in fhe x-direchm , e,
P" is n¢3a~’d¢e, which is Kawm as a favorable pressure g\‘ac&\‘m‘f

H" LL':O,uJMen j:,{'z\-_
) L do(®*_&°|. Az o | dp[ 4°
0 #%_-+—~—E.[ -ﬁ-—} 0= 3 + "f—g—]

Zmdx |4 Tl 2ede L 4
Solvinﬁ‘. %E = ﬁ'%&_)g_ (>O) an atverse pressure Sre&fm%

Riso, we. can write ; _(_Ju: = a' + zﬁ\:;)o :(L% [(’a—y— (%]

2.25

— Uy

Y ch g b,
tj&j#ﬁz‘gﬁw— sfa.ﬁonafj
(3\ T wust be constont across tHie ﬁ(m‘d (l‘nc.(udiki
across the Llud [ Fluid iab?ue}

(B) () §y=0: =0 (the lowes plate 1s stakiomary)
(‘:Z‘\ \' = {'\3 U, = Uo (HAe_ Upper 'P(a'ff_ Maves o ﬂ«&(‘fgl«f)
(!‘.L\‘) \j = kz : /.[l :/&l(d%/d\s\ :Nz(duz /d\j\ = ltz_
(the shear is constant across the de-e.rpace_\
(i\/\ Li: i‘i : u‘ -_-_uL
(the velocity s contiauous across the inter face
(& For this fully - developed flow with o gresswe Gradient

2
/(L‘d—d%%_zcb u.lf—ct‘j-l"Cz_

25
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. Jp, & -
ZQSCMtd]/&z-Jqu-}-_O, Wy = C3j + Cq

Applying ovadary condition (1): y=0:u=0=> (=0
A??ltjiv\__v\ bomdah\ condition (D) = ANTPR
Ugz Cah + Cy or Cq = U, -Csf
APPL)('LS bou.ndarj eandition Gid); Y= %—; T =T,
Thas, MCi=p,Cy o C, --;*T\Z.c,
AW\\jms bow\d‘uﬂ.‘ wnadih on (“A Y=
Cl% = CS'Z‘_‘ +U, - Ch
Rearransins X CC| + CQ f‘z- = U,
Subsh“mh‘nﬂ the fact Hhat:
C‘(l + ﬁl—)ﬁ- = U
Therefore ; C =2

M 2
M+ M f U wnd CS_/“z /M U
Thea :

U= Uy

Caﬁﬁ%cl

Nz-l'/"l ©
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2.20) G =t
— ().=UC.L(1’L- R

Y
—r——————————— >

@ @

ZE: SaE SSS '-3 VJ(\lom + ﬁ)(gV?\ dA\V
The Hfirst teem on the rrgh’r-fnav\d side is zero for S&aclj
Clow. The second term on the r«‘gkf—C\ar\A side is zero for
Rlly - developed  flow, since the effluy of momentum through
the surface of the contrl volume (Le., Crossing 5\1&}“@) isof

equa,\ Mé%ﬂ;h).de, but o@?osﬂ'e SN 1o the Mfluy of momeatum
‘Hr\oou.ﬁk &he ch-ace og "H'\e. Cantrol VO(UuMe (t‘o(’.) c_rossM_s}

skt (D). To see. that this 1s true let us evaluate the
Second term on Hhe rrrakf- haad stde .

& (V.4 AN

[ sloet @) frorar] e (- ]

—_— —
evaluated at s*’ah‘on@

s a2 [oreer] [a (- 2)

\—’\( —
evaluated at Sl’éﬁon@

The opposite Signs result because e wnit veetsr for area
(?ﬂ is directed outward for the control volume. ‘l'he_re?oraj

\7 ‘A dA >0 for s’cah‘m@ and 7~fn\dA<O for stabhon (D).

27
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2.206 Cmtd] Since the \Macsn{\‘udes of the iz\hsrand‘s are cc_‘,ud)
& (eV-4a dA\\/ =0
Ths, 21, = pA, - P Ay + 2rR(A%) Tw =0

Tw =/L(':‘ﬁ_—3r=& :/*Uq. (— %\ = - LA St RUQL

Ay= Ay = TR - Note, that with the velodity distribudtion
Kaswn , t.e, u~(J'\ = Uer (\ - ‘EE_T ) ev a.\u‘a’('if\s Tw U-Sf"ﬁ
the Tw =/*k(éﬁl—\ ?roduce.s a ncﬂa*h\\lﬁ sheosr force fem

in Hhe momentum eq(u.ah‘m. Com\o.‘ni'\ﬂ:

Pu-P _ 2 (2m UC.L.>
Ax ~ % ( R
Thus, 3& - - 4M UC.L

R?—
For Ucr in the direchon Skou)n, %& <0. Thus, the pressure

decreases in the streamwise diechiown, t.e., a favorable

ff*c.ssure, srac\iud' exisi‘:, because of the Presence of viscous
Lforces, It isto Compensate for this pressure decrease (termed

a "head loss" ia civil e,msu‘t\eeriv\:) ‘]'ErMS) due to Hhe Viscous

focces that Pumps are needed in 2 ’F«‘pe.l-‘ne. 1 the flowy were
inviscid, there would be no prssure 3radtevd’ Gor Hhe flow in

3 constant-area Pipe. |
The wmass flow rate 'l'hmust\ the. pipe g:
m = &f@ Ucu.(l- l{gli.'\Z,Tr‘r‘dr = chLZWL (r‘ - '%;)dl‘

2 4 * Ug TR"
Mm = ZTfUc_L. Y_%:' B %’é’i] = ZWS’UC-L 'ZI_"" = S"‘%L'—"

28
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2.26 C.mtd] Thus | Ue, = 2 m
SR

It we are to maintain the same mass Flow rate (e, M, =

(;'\7_\ while doubls‘n.s the radius of the pipe (ive., R, = ZE,\) then

dof - ..4/“(2"‘“1 pl - _4M (2 m,
Xl Rr* 31\'?3) G 2 RS (g'rr?-{'
DMAWS one b\.& the other =and no*iwj that m,=m, !

4
_‘_i_E_ = El _C.i_e. - \ d
dx\'.’. Ez* dr|, "~ (—é-é-)% {

2.21‘ lefrus appl\j the in‘\'usra\ form of the momentum eeruah‘M.

Since. we are interested in the dregq, we oaly need ¥o consider
the ¥-component of s vector equation. Refer o the. solutim
for Problem 2.F for Hhe discussim of the condinuity equativa
of fas flow.

ZF = 2003 o Vy divel) + § (5N AdA) Y,

Si'\ce_ the pressure is constant over the external Sw@-ece,
of the control volume, the onh\ fore for Hhe left-hand side 1s

the Force of the atrfotl on the flud withid the cowtvol
Volume ) which s the neqative of He draq perunit span,

“d= e § (UR)(= Ty
- @ 7
vo [ fegt-aoa) =
- @ -
e 5 [Le gt +42) ()| S

29
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223 Caed) | 1[0 4 2 (Gee)J e

— © -
v b [t -0f) (- T4)]u
-— ©) >

T\lc{-e that because of the. appmlimaﬁons that we have
employed , the Vdoc(—h.) at the boundasies(D) and (D acl-ml[j
exceeds Up , while the stahe pruswe eMuns u.nc.\/\a.wgg&.

infreduced b\) our

- "
These are "secmd-order incomsistencies

Clowo model appm\(ima.h‘av\s.
No*: also that Yo IS Some unsPcc.(ﬁecl 'Q—md'?on of L,
The. exact Lnctiona | mla#cmsk\‘\o is not impertent,

Usmﬁ the result from the application o€ the CDV\+;-4(—LN'\A‘
QQ\M.‘“M in ?f‘oblem 2,40

ZJ‘OL Ve C“Y. =UQH

Thus 2 243 ®
U (2| L
+ ST_{—?-(JS—\ -+ fU«n[ ‘fo Vg, d’):_\
a
Can be written:

~d = -SU:(ZH\—l- gU.:%' + SU": %—i— SU:H

3 sUe H
Ca= —4— = 23— L oot
7§V © z5Ue
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2.28 l
This (s Very similar to Problem 2.21) e«capf that the

side Poundares of He contol volume are streamlines, Thus,
inskead of using the continug equation to determine the

flowo H\rovﬁ\m sdes (D amdL@ as Wes dove R Problew 2,21,
the continuihy eguotbon must be wsed to determime Hie relation

between Hu and Hp,
Acsé“\; %\a PrcSSb\rc, Ts consont over <h‘3\e ex’mmal Surpact

¢f the control volume o His S\'u:clj., u\cnw\Pms:nHe Llow.
Thus, the onl force a.c.hvua on the Stish.m of Hie -Q(Nuc\
parcticles uﬂlm the. conbrol voluwme s the v\cqahv& ol the C\m:)

—d= % S [(u&,ﬂ (-49)] U,
- ®

+ g Sip [(-uu, ﬂ—bf—-v@'(fdﬂ(*%ﬁﬂ

— @

* S“D [(Uo,—‘l—b/c\ +«)1\ (’Cdujﬂ((),,f‘—\
@

There. is no Mmomentum 'h-anspor‘l' across Doundavies @
am&@ stnce they are streamlines.
\-X 3 /-I-H-o

—d= ¢, [2H1+5U [3% +§U [3%

gUo: [ZHU—%’HJ

31
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2.28 Contd.) We can wse the tateyral continuity equakim 1o
defermine the relabion between Hy and Hp WMS S"}“caclﬁ,
mc_cmpre_ss\ue flow ;

+Hu ‘_(uw’\ﬁ ( ‘d‘j\ {( ) -03) '(de\]

<——-——®-———_>

x SHD [(+ HDHUQ (de\]

Thus, U, 2Hu - —m—i—

T I -Z—H% . =0
Therefore,  Up2Hy = U, Hp
as was shown i Prblem 2.1, Hy =+ H
d= SU: IHD"%HD—SZ' j',;gU,,; Hp
JE- 35U"(5e) L. ootex

.t =
23Vo < -,L_g..U,,,z c o

As one would exped', we have 30&&/\ the same
fesult as was obtained in Problewm Z.26. Them.ﬁng

the result Is not dependeatt™ on the Towlr| volume,

32
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?_2_@ TWis is the Haird problem A Hais ’m'lorj\.} to illustrate
that the df‘e-cs coe i ctent is not dependent on the control
Volume  chosen in the formulabion of +he ?roblcwt,prburd:,«ﬁ
the viscous boumdary lager Ts withia the bounds of Hhe
Contol voluwme,

Ap?\\y‘v\cs the inteqral momentum equation Ry the Sk&dj’

incompressible flow with the stabc pressure constent over
the extemal swfice ol the condol velume,

-d= -S szz:: [(Um /L\\ ° (— /L\({LO] UQ,
- Y @

-~
Nol-c fhe, Simi[acifies be:huea\ this e.xpressfm and that of
Problem 2.27. We are using, Vo (q this problem , tnskead

33
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2.2 Contd.)

O‘c ‘Uqg) +O rC—PfQSQ_Vd' H\C_ *" CDW\?O"‘%+ oc- UC«‘DC_‘.
sutside of the uTscous mgnm. Note also, 4o s Ssome (msecq‘—
;\‘ec& -va\dim 091(. H‘butuer, S\ace we afe WSt ‘H\e_

Tl\{-ﬁira\ tedhnique , the S?c.c,(#c_s of the Anchion will not
matter. In'h’.graﬁwﬁ,

Cd e - qUS(ARY wgUl(u) + 5 k(¥

0

-1
U'z. 1 | W
+3.ﬁz(—$—

)
o

v sUs(H) + sUs [2 S:uocw}
Note thot the sum of dhe first, secand, and Fifth terms on
the r(s\«\'—\r\bv\c\. side s - % Uc:(z H\, whiel s Yhe Lirst
term on the right - hand stde of the c_orrespomkm] e,grua'lfm
in the sclution ol Probem 2.18. Thus, as we might expects
the momentum exiting fhe control voluwe between -2K £\

< "'H‘ 3Y\d Hé \J <28 Q.‘{" 5\"6‘\1\)/\@ 1S c_m\—bj ‘P&\Qn(ﬂd b\j
ﬂle_ t‘n(:lw./. of momentum between -Zl-\—&\i < -H and H‘ﬁj <24
at station (D. Thus,

2 2 z L
S - g0 (H) + W % g+ sUa 200
USil\r] the C-on’\iaui"n-x GQ,\LCJ{M
3110 g dtal) + § 5 V-5 dA =0
The Qrst duw Ts 2ero for Steady Hlow. The second ferm (5!

0 2, H

—¢Uo(4H) + g Ua(H) + 38U FH |, *$UaZir |,
L
+gUa (W) + Z¢ Sovodx--o
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2.29 Contd.]

As a resuly
L
(o]

As we Sound tn Trodem 2.18. Subsh"‘u\'\"ftﬁ His iato the
W om entum e@mhbv\)

zf |
Q4 = d = %guw %J-—L—oouﬂ-
2§ ¢ gl

Compering  the results of Problems 2.2%, 2.28, ondl 229, we
See that the resuliing dra.c‘ coefliient s Hhe same for
all three control volumes (whida all enclose ¢he viscous
we\(e,w.

2.30] Let us a?pl\3 the t‘a?rer&rel form of Hie momentum equa-
tion. Since we are interested ta He draC_S ac,hkn) on the |
acrfoil , which is 3"‘30&& widh the X-3xis, Wé. need ow(j Consides
the X-Co.wpm\e,-\'l' of this vechr efg(tm.:lfm,

0= B s Vi dawol) + € (V- AdA)Vy

Stnce atmospheric Pressure acks over the ewhire exierna|
surface of the control volume , the onLJ Rree ac;h'«u) on the
flud parhicles within the control volume (\‘.e., the left-hand
side. of this eq(uah'aw\ is the ne;‘a-h'vc of the dra.:). Further~
more, the flow is steady and the frst dem o the m‘akwl'-kan.&
side. s 2ero. The flow ts incompressible (o the dms\'\"j (s
Conshng, Thus,

-d= 4 3 Xj: [(Ua,ﬂ * (’td‘jﬂ U“’
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2.30 Cont d]

+ S Sj: i\:um(i-OSCos “—I\Q/'\‘* Mfk'(t\d“ﬁ} U"O("—

0,5 cos —‘Z_TEH] + Zg l'_UooL + Wy -} (1&1\ Ueo

Sa= gUdy|T e SUSJ-H L1 -cos Tt vous coszﬂ““.\
¥ 28Un | va dy

We Can use -\'\'\e_ m'\tcsral -corm og» ‘\'l'\& un‘hnuu*‘l—l tq,\nk‘hM
o find S Uy 44

‘? S—H (Ua, i\ . (—-Ld\h X 'g gj: [Ucn((" 0.5 cos %\/E

+4\)’,ﬂ-@‘dj\ -+ Zj’f: [_Umf-i-«;‘:ﬂ.’{d,c=0
+H "
-H + gUao g_:‘(‘(- 0.Scos %} dj

L
~+ Z_-Sy Vo d¥ = O

"SU“"j

- gV ( (2H) + § Us (21)
- g Ua T8¢ 1ﬂ+ Zg U dt = O
Tku.S) Z-SS A dy = .g(,)w .f__"_'l_
gu\osﬁhﬁnﬁ Hus result tato the momentum e,gfu.dwm

+H

R} 2 +H
-d = -¢Ue (2H) + §Us (‘jl-H - % sa 73 -H
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2.30 Contd)
"':“?‘ (—% + %%, SM‘L;L

. § e H [f“F“'}f"F = -l ‘toTF—:f‘-_
d
d = = O,
d J,:gUooLC 01933

l As with ?(‘olo(e,m 2.30, let us a?p(j the inh%ral ec‘m:h‘ms

‘to solue this prodem, Ac&"" stnez atmosphesic prssure acts
over the external swhace of the contol volume , the oml
firce. achhrq on the fluid pacticdes within the chh'ul Voluwe, iL€.,

the left-hand side of the Mhﬁre\ oW emtum, equation , i's He
Ma*\\rt ot the 4’2%« Furl‘kermwc) the fow s ska.dxj so that
'\'MQ_ Q‘\\'S'&' ferm on e r\skk- Sd& oc “%\L me(\\u-l-u’u C?‘U\*hm

|$ %&ro) mcow.[)ress.(:le_ So-}haﬁ' d’e\e. c\,e,v\mlm‘ (s cmshud" av\&
Sucfaces O M&@ are streamlies. ’n\MS, there i no -ﬂw,t

o(- Mmu{'uw\ eCross "H\E_SQ S{'reamlmes,

-d = "‘30; S*Hud3 . ﬁ i [Um (1- 0.5 cos —ﬁ':)
times d\.}]U (1-0.5 cos -&_3

= - gUs (2Hy) + ¢Us S (1- 10 cos 74

~Hp D

= |

e Ty
+ 0.25 coS Zﬂp\ dus
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2.31 Contd.)
. 2 j
-d= - .gUw (ZHU\ + §U°° [3 - 2_‘{_12 5in ?H‘D
* D
2Hp . T
EICRE -

-d = - fUmL(ZHu\ + g%:(?l—*p\ - guooz-,Z'FHDC‘l+1\
2\ (dp  H
+ U (B '3\
US;NS the results from Peoblem 2.13 that
Hy = (1- %r—) Ho
SARER LR SR ]

d= <UZ H, (0.38¢60)
The dreq coefficient is:
Cq4 = d = gUm‘(o.ozgc\(o.s%eQ

= 0.01933
L E S

Agaif\, Comparison of the results from Problems 2.30 aad 2.31
Shows that the drao coefficient dees not depend on the

Control volume chiosen.

2.32) (a) \Qd?e.m‘/\c\ +o Table 1.2, we find that, at sea level,

3
. { .
\?m= 0.0025%6 ‘_‘e‘f_)‘_‘_f_ 5 Mo = 3. 10x107T ﬁé

1.3
TL\U_S’ Kcoo - ' gm \-)(:Dd - (0-001‘51"3 (200\( {2 - 1.8*‘05'
4 Mo 3.340%i0°t

Qe,Qerr\‘t\.g 4o the discussion of the drag on @ylinders and
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2.32 Cmtd] Spheres in Chapter 3 (soe the dak ’Pmswh& o
Fig.s.so\, we see that s chmlds number s below the
cridical Value, Therefore, if the %olf— bal| were smooth ,the
@ocz\ood3 bow\darj laxf,r would be laminar and Vhe dreﬁ
woeuld be rc\aﬁvdxj high. Form draq domirates for the
lBM“\(\ar flow over a smaoba Sow ball. go\ujhe.n?ﬁ the Su.r"-ace_
of the golf ball (such a5 through tee wse of dimples) would

canse the ‘Fbrdooci\i\ beu..,.&,_..»‘ \a\\er to be furbwlent, rc.s\;.\\'\\5
N si"ar&f‘\cu‘rh) 'de\a\-ic.d Separation  awd ceduced Foem df‘a.s.
Mm = Us 200

= = O.
Go 49.02\ S19 S

Problem 2.32b Solution

Given: An aircraft flying at a velocity of 1810 m/s at an altitude of 30 km with a length of
32.8m.

The properties of air at 30 km are given in Table 1.2:

p. =0018411kg/m’ ., =1.4753x10"kg/s-m a, =3017lm/s

The Reynolds number is found from:

re . PU.L_(0.018411kg/m* Ji810m/ sY32.8m) _
TR 1.4753%10 kg /s -m
Notice that the Reynolds number for this hypersonic transport is relatively large.

7.405x10’

The Mach number is found from:

M. = U, 1810m/s

= 3017Imls

39
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Z_'?’_:"J (a'\ Mm"' 2.0 at an altitude oQ 20km, US;A_S Table {2
- k
2, = 295,069 2 s Mo .421Lx\0 SE'%. , g = 0-08¢3 7“%3

(oore) L(8.0)(295 0en)| (10 4) _ .. e
14216 » 10”3

Acbaw\, the Qeksno\ds Number for & kl‘gk-seec& airplane is

in excess of 107

(b\ \QegernnS o the Previous frob\em, we Lound the

Erglish unit values for the de.nsf‘\\x and, for Hhe vrscos\'-}j

at sea level, Thus, <28 0__

_ (2.’51’5%[0"3 Lb_c'__S_)[ 160"""\ 350 }_ ] (1- O Ft\

Eeao L "
3oxo-t lEs
B

Qem' L=

Reas,L = 5.963 %|0°

2.34) Since both chde.s are reversible
39(— Tds  and  Sdw=pdv

Let us first compute the changes which oceur du.nm’ each
Porkion of the cycle.

For t Pprocess (.t\ 8
() M: Qg = g éq, S Tds
where  d3zc, &L 4R &Y (s)
For 2 pukn+ 9es | P= %1:

Thus, & we differentiate!
dp= - ET' dv + -R-d-l—
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Z.34 C.mtd]

- - dr RTdv [V d
oot s [dp+ v._"]ﬁ=;,f+%l

SU.bSHhL’Hf\ﬁ Has expression into e_q_mh?w\(a\) we oH*aMI

 Tus = CvTSl-e + C\,,T_dl
P v i
Thus, = (“Tds = |° ¢, T de dv
) q‘AB g'/* S SA Cy P + KAC?T__
. B v dv _ 3
=0 + KACP%——;/— = E%EgAdv
- C

= ()

Ahd w = g’BSW" XB dv =
AB T Jp %W ), PV = PA(VB"'UA)
Secil’Mev\‘\' RC.: Yge = §§ g%: SC(; Tds

c
. dp. S c

Thus, %8c = &é)j“ (’Pc_‘ﬁs\»' Wge = f; ow = S: pdv=0
Seqment CcD. X 5 5
4
Gep = S‘: écg\_z L Tds = XCC\,T%E + LC?T:(,U“

D
Thus, q/c.b = QP % SC duJ = C?% (‘\lD—'Uc_\ 3—“‘-’1
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2.34C.mt<0 D
= YC_ SW = ‘Pc (’\/p - ’Vc\
Seameat DA N N
oA A d S dy
Cx,pl\‘.‘. SD Sq(: & Tds - SDCVT_@K_" DCPT Y

Gon = Cv%g dp = v A (py - po)
A A
and wpp = [osw= | pdu =0

L‘.’—J‘" us now Gdd up the. values Qor cach OC the S%MEV\{TS:

§

wgcon X T Gre T Ase + Geo ¥ Gon

- v
- E%)ﬁ (vg-un) + CVRB (Pc."?s\

CE e_. <Up—- ‘Uc_\ + Sl_.ﬁ. (,PA PP)
Noﬂmi that vp=Up and Jg =4 ; Haa’r Po=Pg and Pe=Po
&Mc—oﬁ?% = Cp '%%(“B—‘VA\ + G %(PQ‘T’Q

et (oy-98) + 6o 98 (gurpd)

- % (PC - fk\('\lg -'VA\ + % (PC‘PA\(MB-UA3
Pc‘?&)(“r‘)ﬁb g_ﬁ_\%ﬁﬂ = (Pk‘PcW”B"UP*\

Cp -Cy = E . No‘(‘e also H\.a..“") swnce (‘\JB"UA\ 70
and  siace (Pp- fe <0, $A6CD 3§\‘,<O, Tws, heat s

swnce

42
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2.34 C.mtd]
transfered to the Sur(‘ou.nc.\imas from the air in the
System.
&ABCDA W E Whe  Wge + Wep wny

Pa (Vg -VA)+ 0 + e (Vp -U) + 0

AL = 9 ) = (e -4 = (pa- ) (g - v )
Note Hat Sw < O also. Thus, work is done \93 the
Surro»mdb\ﬂs athe air ia Hals systum.

Fim\l\j\ note Hhat

&”‘BCDA 59( B &ABCDAS"" =0
as should be the case for & dosed X

% (b) The process represented by AB is & constant pressure
PPQCQSS in UJl/U\TCJ'\ l‘\ea{— rS ad_d_e_d +~° ‘H‘\.Q S\fsw. ‘T‘ke

Process represemted by BC is a constent velume process in
which heat s added to the systwm. The process represeated
b\.\ CD is a cnr\s‘i‘an{-— ?mssm, coo((v\c‘ Pfocess) wha (e DA

repre eatfs 3 Constant-volume, coaling process ,
(C\ and CC\\ Aj P
thchoA 5 - &A:SCDP?N = (b -pe) (05 s - (P - PJ (%)

- O . A5 UOOuld be Cl‘?‘-c—hd, 'H\& ‘Fl\'S{" law o‘c- ‘H\m_
is sohisfied for this process,

]

e,

d\\nathcs
Process (?Q
<a> For Procc',SS (,CL)

02 Cu-Up)* I s ond 0 = Cylp-pa) + U,

43
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2.34 C.mtd] |

where G = <™ ad Cp- Je -

Ve = Va Pe - a
Ev.a\“;,*i-\j the cxpression o the heat Quy for
Segme,nk AC‘.

C C C
Gac = S; %q = g Tds - SA: C'T%a ¥ SAC"T%L

A

R

C
= & 0 Teatpp runlep s INENEATY
Exa.mln‘\/wb Has c&pmsafw\, iF s dear Yhat,
- SA So = - gcs
Gor = Jo 9% N
c A
TS, Gnen = SA oq * Xc 5. = 0
S‘W\'\\ar\\s, c
Wae = SQ ow = SA’PCW

C C
= -CELXAUC\P +%S pdv
A

1

¢
S [C (v-un)+pa) dv

A A

EXaml«G«S fhis expression, i TS dear that:

A C

Wep = SC_ ow = - Sk ow; so that
C A

Wach = SI\ Sw-rgc ow =0

(B For the precess d.c.srﬁ«\a_*!‘u( AC heat is added +o the

System 3 while +he sulsm s cooled for the S‘ujmud'
Acs(rav\a&cd CA.
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2.34 Cont CU
(c) and ()

%Sl\c—/\ 59\,- %Méw-‘- 0-0=0

consistent with the first law of Wermm&s.jnamccs G

this Process.
Note *hat the nek heat fransferred From the sw‘shw\
to the Swrown&?nﬂs A\Lr?l\.c) Process (), whieh i

C’?k* ’?AL’UB "’UA\> is not equal ‘o the net heat transherred
Boom the ax.\s\~e.vv\ + the SRCNMA?NSS dun‘nﬁ precess L?C\,wk‘&

's zero. Since the Firsk law o H’\e_f‘Modtjr\aMICS must be
Satisfied Gl has been shswn o be S‘a-h\sglc.dv , Hhe same
is true for the wodk done during the two Processes. Both
the heat trensfer and the work done are path dependent

fher\ omene,

2.3S§ (&) Yes, e_m‘ro?u‘ Is a ‘]’beerH ad s therckore,
independent of the path & e process,
(b\ Even if the Processes Wefe irveversible > & = Sa weuld

be the same as determined ta Prblem (2.25), Entvop

s a 'Pf‘operhj and its C\/\a.o\.se., &he.re_{:wg) de_Pmc\s on\j on ‘H‘\Q
gas propechies at the ead pots of +he proeess, fecall that,
once any fwo properties of 2 gos (which is equitiorium )
ofe kﬁouon, ‘H/\e. ren/\afn?r\ﬁ '.Ppopc_r‘ﬁes of the gas Can be
determined. Thus, (?Q and Ve) and CPA and qu\ are the Sawe

Whether the process is reversible or irreversible , Sc - Sa

does wot dependl on the Path of dhe Jrocess,

45

o



c02.gxd 1/30/09 11:12 AM Page 46 CF

© 2014 by John J. Bertin, Russ Cummings. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

,___JZ‘?’C’ When deciving  equation (2.32), we used the definiHms
foc T which were %inn on Paqes 3% and 38. Thus, the flwd mugt
safishy the cribersia given on paqe 3% Ahat Hhe stress

Components ane o Linear funckion o the componensts of the
cate of strain, that the relatitme between the shress

Components and the rate -of - skraia components are iavariant
to coocdinate Transformations, and that the shress components
reduce To the hydrostatic pressure. when all vdou'\-] %racliw‘l-s
3re Zero,

In cdditon, we Tcg\occc& efecks ssociated with U h‘g\»\
qes Temperatuces, which result in dissadiatin, ionization,
and  chemical reachions. E.q, the nitrogen molecules of air
be.siq Yo dissociate at approximately 4000K . Thus, when
H\e. 'l‘em‘;erah.ut ot the_ fsas is E—X‘k’e—md:s "‘5‘3"\, one. must consi-

der additional energy transber mechanisms, such as radiative
heat transier

2\34) For the adisbahc , iaviseid Flow, the terms of the

f‘fgk“'- hand side ot eq(ua’dcm (2.52;\ are zefo, Thus, equ\‘\‘m
(2.322) becomes .

dh _ d
S ~ -0
But Tds = due + pdu
whicdh can be rewntten u.sia% the definition for the

enHAz\p\) (ue= h- ?\J) and  the definihon for the speeific
voluwe (o\) = %—» . Thus,

4
dt dt
Which is equal to 2ero Lor this flow, Hence, $¥=0.
Note that, if this flow is |'m'\1"autj isentropic and e

ds - dh
?Tﬁ-—?a—g"\)g-e :fi_g;%
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2.3% Cmtd] the Flud a\oo\j eadh streamline W\dtrsoes
adwbatic, reversible changes, the flow is everywhere isen-
tropic . The N@u&rem«e.n‘\‘ ol veversile Hows implies that
the How is tnvisad. treace ,the results obtatned usin
the thermodynanuic relations in the problem are cousistent
with those obtained using Keluin's Theorem,

T the bow\c\ar\-i layer near the sucface, the cffects
ot viscosity and of heat fransfer produce variakiows in the

'QY\*TOP aV\d in ﬁ\ﬁ S{‘aan&h}ﬂ &ql‘kglpj be_mel/\ nt‘“gkbm'\‘)
streamliines,

2.38| At 10,000 fect, the free-stream shific fempesature is
483,03°. U = 130 M'i/k-: 190. 6% F‘t/s."l'ku.s) we Can use
these. 1o calculate the total enthalpy !

H'(; = L\\ + "lz'_U|L
P(SSU.M;N} fhat the Flow is a2 Perged' an'. Ht'-‘-Cp—ﬁ; and
4 = cpTy , we can write)
— J?2
t - T -+ L.

l ZCP
So that:

£e\*
90, LA
Te = 483.03 °R ~+ (190.67 3

2 (o.2404 ,—Ef%ﬁ(#&z ALY )(32,n4 '5*—"’—'5‘-)

Btu \b§ s*
Te = 48303 R + 3.02°R- 486.05°R

The kinetic ene_ratj tfeom s m\aHVd‘-‘ small . As a result,
the totel (or stagnati m) tempersture is not muda
qreater than the static Temperature, Therefore, conveckve

hea*iluﬁ would not be a Pr‘a\o(uw for aircraft '@(3?’\% ot
this speed.
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239) For 2n airplane pl‘:&“"ﬁ o& 80,000 feet, 3, = ‘5'44&1%
and T; = 39169°0. Thus, Uy =M = 2932.86 &,
Fouowil\.s the relatims developed Lo the |ast problem;

T U (2332, 50)
= + = - .
t 'Y 7o, 39169 + 2(0.2404) (#28&2) (32.1%4)

Thus, Te= 39169 + H4S3= 112,22°¢C

Conge chive lneah‘n.j suld be = s\‘zn\%‘ cant groblem Lo ic -~
cra (:[\3\‘&;\ at these speeds, The okl femperature (s

in exass of 6SO°F, which coud atfect the streagtle o
many matesials Su.\oju,\'t& fo dis enviconment:

ﬂ\e. hﬁl 'l"’-M‘)ﬂ'a‘\'\LPt QO'\.LLA kave_ bee_v\ CA\C%[BJ‘LAL
wsing the relafion:
Te = Tt ‘:‘-;lﬁ,;‘) or Te=Ty(1+ fz'_—’r{f\
which will be developed i the next problews,

2,40‘ we start wiHy the in+c3ral form of the encfsgs
eau.di{o/\ for 2 one-dimensicaal 5 S+cadj , adiabahc flow :

AT
o= e Y

For » ?u&d— Q8s. Ht-'-'CPT; and h=CT. Thus, e can
rewrite Hus e%u.q.ﬁ'm as;

qp— - z.
T = CpT+ $U

of T 2
- Ly
T ' 1T

Bv.:\.' we 2lso kﬂbu) 'Hma'\' C?'-‘ %-&- -For a ?e:&d- 33,3’,
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2.40Cmt<0 Thus, Te = <1 N %Mz)—r

which defines the relabhion behween the +o‘"'a\ *‘QMPQFa‘\'\.\FQ (T;'\)
he stabc ﬁmpuaiure (T\) and Mada aumbes (N\ for the
adigbatc 'C\ou ot a ?Uptci’ CSBS.

The e—"'\'m("s Cha“\e' e_q,wdfm\ 15,

-
S-Sc= Gl - p ¢n1—§-
For e (Sen\'!‘offc Llowd of o '?crg-ec_‘\' gas P

AR T

T —RLV\%:‘O
Yer-1)
Thus, " (_;r_r__;) ¥-1 =Xn(\%:>

Desi%aaﬁns the Shy\ah‘m condibon of o qas whel s
brought to fest ‘H'\msl,\ an isentropic process (G, ove
whida s both adiabehe and ceversible ) rc_P/«gsgyd’c:l b"j

'HAQ Sv.smbo{ “&" a.% ‘Hl\e \‘Q,Qe_re,u\c_c, CDA&(’HGV\ *F“.
{ i i

N

- (I_B‘F—T _ [ 1
£\ T - ¥-1 M

¥ t t+ XLy

This eq‘uazﬁm can be wused 1o caleulate Hhe stafic pres-
sure of a PerCe»d‘ RS whidh has Uu'\d,cr%cna an TSU\\TOPTC
Expansion ‘g‘(‘oM e S‘l‘asf\an‘\‘ 383 (LOLLQSQ Yrtsswr& (s ?‘t\
ande wWhese "“e.uperam is T{) To 2 Mack nuwmber Nf.
Condifims are those %or e isentropic Flow of 2 pecfect

%ES ‘
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