CHAPTER 2

2.1

```
>> q0 = 12;R = 50;L = 5;C = 1e-4;
>> t = linspace(0,.7);
>> q = q0* exp(-R*t/(2*L)).*cos(sqrt(1/(L*C)-(R/(2*L))^2)*t);
>> plot(t,q)
```



```
2.2
>> z = linspace(-4,4);
>> f = 1/sqrt(2*pi)*exp(-z.^2/2);
>> plot(z,f)
>> xlabel('z')
>> ylabel('frequency')
```


PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
2.3 (a)
>> t = linspace(5,29,5)
t =
```



```
(b)
>> x = linspace(-3,4,8)
X =
    lllllllll
```


2.4 (a)

```
>> \(v=-3: 0.5: 1\)
V =
\(-3.0000-2.5000-2.0000-1.5000-1.0000-0.5000 \quad 0 \quad 0.50001 .0000\)
```


(b)

```
>> \(r=8:-0.5: 0\)
\(r=\)
Columns 1 through 6
\begin{tabular}{|c|c|c|c|c|c|}
\hline 8.0000 & 7.5000 & 7.0000 & 6.5000 & 6.0000 & 5.5000 \\
\hline \multicolumn{6}{|l|}{Columns 7 through 12} \\
\hline 5.0000 & 4.5000 & 4.0000 & 3.5000 & 3.0000 & 2.5000 \\
\hline Columns 13 & through 17 & & & & \\
\hline 2.0000 & 1.5000 & 1.0000 & 0.5000 & 0 & \\
\hline
\end{tabular}
2.5
\(\gg F=\left[\begin{array}{lllll}11 & 12 & 15 & 9 & 12\end{array}\right] ;\)
>> \(x=[0.0130 .0200 .009\) 0.010 0.012];
> \(\mathrm{k}=\mathrm{F} . / \mathrm{x}\)
k =
1. \(0 \mathrm{e}+003\) *
\(0.8462 \quad 0.6000 \quad 1.6667 \quad 0.9000 \quad 1.0000\)
\(\gg U=.5^{*} \mathrm{k} .{ }^{*} \mathrm{x} \cdot{ }^{\wedge} 2\)
U =
\(0.07150 .0 .06750 .0450 \quad 0.0720\)
>> max(U)
ans =
0.1200
2.6
>> TF = 32:3.6:82.4;
>> TC = 5/9*(TF-32);
\(\gg\) rho \(=5.5289 \mathrm{e}-8^{*}\) TC.^3-8.5016e-6*TC.^2+6.5622e-5*TC+0.99987;
>> plot(TC,rho)
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.


```
2.7
>> \(A=\left[\begin{array}{lll}.035 & .0001 & 10\end{array}\right.\) 2;
0.020 .000281 ;
0.0150 .001191 .5 ;
0.030 .000824 3;
0.0220 .000315 2.5]
A =
\(0.0350 \quad 0.0001\)
10.0000
2.0000
\(0.0200 \quad 0.0002\)
\(8.0000 \quad 1.0000\)
0.0150
0.0010
19.0000
1.5000
0.0300
0.0008
24.0000
3.0000
0.0220
0.0003
15.0000
2.5000
\(\gg U=\operatorname{sqrt}(A(:, 2)) \cdot / A(:, 1) \cdot{ }^{*}\left(A(:, 3) \cdot{ }^{*} A(:, 4) \cdot /(A(:, 3)+2 * A(:, 4))\right) \cdot \wedge(2 / 3)\)
U =
0.3624
0.6094
2.5053
1.6900
1.1971
```

```
2.8
>> t = 10:10:60;
>> c = [\begin{array}{llllll}{3.4 2.6 1.6 1.3 1.0 0.5];}\end{array};
>> tf = 0:75;
>> cf = 4.84*exp(-0.034*tf);
>> plot(t,c,'s',tf,cf,':')
>> xlim([0 75])
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.


```
2.9
>> t = 10:10:60;
\(\gg c=\left[\begin{array}{lllll}3.4 & 2.6 & 1.6 & 1.3 & 1.0 \\ > & 0.5\end{array}\right] ;\)
\(\gg \mathrm{tf}=0: 70 ;\)
\(\gg c f=4.84^{*} \exp \left(-0.034^{*} t f\right)\);
>> semilogy(t, c, 's',tf,cf,'--')
```


The result is a straight line. The reason for this outcome can be understood by taking the common logarithm of the function to give,
$\log _{10} c=\log _{10} 4.84-0.034 t \log _{10} e$

Because $\log _{10} e=0.4343$, this simplifies to the equation for a straight line,

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$\log _{10} c=0.6848-0.0148 t$

```
2.10
>> v = 10:10:80;
>> F = [25 70 380 550 610 1220 830 1450];
>> vf = 0:90;
>> Ff = 0.2741*vf.^1.9842;
>> plot(v,F,'d',vf,Ff,':')
```


2.11

>> v = 10:10:80;
>> F = [25 703805506101220830 1450];
>> vf = 0:90;
> $\mathrm{Ff}=0.2741^{*} \mathrm{vf} . \wedge 1.9842$;
>> loglog(v,F,'d',vf,Ff,':')

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

2.12

```
>> x = linspace(0,3*pi/2);
>> s = sin(x);
>> sf = x-x.^3/factorial(3)+x.^5/factorial(5)-x.^7/factorial(7);
>> plot(x,s,x,sf,'--')
```


2.13 (a)
>> $m=[83.660 .272 .191 .192 .965 .3$ 80.9];
$\gg v t=[53.448 .550 .955 .75447 .7$ 51.1];
>> $\mathrm{g}=9.81$; rho=1.225;
$\gg A=[0.4540 .4010 .4530 .4850 .5320 .4740 .486] ;$
>> cd=g*m./vt.^2;
>> CD=2*cd/rho./A

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$C D=$
1.0343
1.0222
0.9839
0.9697
0.9591
0.9698
1.0210
(b)
>> CDavg=mean(CD),CDmin=min(CD),CDmax=max (CD)
CDavg $=$
0.9943

CDmin =
0.9591

CDmax $=$
1.0343
(b)
>> subplot (1, 2,1);plot(m,A,'o')
>> xlabel('mass (kg)');ylabel('area (m^2)')
>> title('area versus mass')
>> subplot(1,2,2);plot(m,CD,'o')
>> xlabel('mass (kg)');ylabel('CD')
>> title('dimensionless drag versus mass')

2.14 (a)

t = 0:pi/50:10*pi;
subplot (2, 1, 1) ; plot (exp(-0.1*t).*sin(t), exp(-0.1*t).*cos(t))
title('(a)')
subplot (2, 1, 2) ; plot3(exp(-0.1*t).*sin(t), exp(-0.1*t).*cos(t), t);
title('(b)')

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

2.15 (a)

>> $x=2 ;$
>> x ^ 3;
$\gg y=8-x$
$y=$
6
(b)
>> q = 4:2:10;
$\gg r=[784 ; 36-2] ;$
$\gg \operatorname{sum}(q)$ * $r(2,3)$
ans =
-56

```
2.16
>> y0=0;v0=30;g=9.81;
>> x=0:5:100;
>> theta0=15*pi/180;
>> y1=tan(theta0)*x-g/(2*v0^2**os(theta0)^2)*x.^2+y0;
>> theta0=30*pi/180;
>> y2=tan(theta0)*x-g/(2*v0^2* cos(theta0)^2)*x.^2+y0;
>> theta0=45*pi/180;
>> y3=tan(theta0)*x-g/(2*v0^2*}\operatorname{cos}(theta0)^2)*x.^2+y0
>> theta0=60*pi/180;
>> y4=tan(theta0)*x-g/(2*v0^2**os(theta0)^2)*x.^2+y0;
>> theta0=75*pi/180;
>> y5=tan(theta0)*x-g/(2*v0^2**os(theta0)^2)*x.^2+y0;
>> y=[y1' y2' y3' y4' y5']
>> plot(x,y)
>> axis([0 100 0 50])
>> legend('15','30','45','60','75')
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

2.17

>> R=8.314;E=1e5;A=7E16;
>> Ta=273:5:333;
$\gg \mathrm{k}=\mathrm{A} * \exp \left(-\mathrm{E} . /\left(\mathrm{R}^{*} \mathrm{Ta}\right)\right)$
$\mathrm{k}=$
Columns 1 through 10
0.0051
0.0113
0.0244
0.0510
0.1040
0.2070
0.4030
$0.7677 \quad 1.4326 \quad 2.6213$
Columns 11 through 13
4.7076
8.3048
14.4030
>> subplot(1,2,1);plot(Ta,k)
>> subplot(1,2,2);semilogy(1./Ta,k)

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The result in (b) is a straight line. The reason for this outcome can be understood by taking the common logarithm of the function to give,
$\log _{10} k=\log _{10} A-\left(\frac{E}{R} \log _{10} e\right) \frac{1}{T_{a}}$

Thus, a plot of $\log _{10} k$ versus $1 / T_{a}$ is linear with a slope of $-(E / R) \log _{10} e=-5.2237 \times 10^{3}$ and an intercept of $\log _{10} A=16.8451$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

