

Section 1.2

1.2.9 (d) Circular cross section means that $P=2 \pi r, A=\pi r^{2}$, and thus $P / A=2 / r$, where r is the radius. Also $\gamma=0$.
1.2.9 (e) $u(x, t)=u(t)$ implies that

$$
c \rho \frac{d u}{d t}=-\frac{2 h}{r} u .
$$

The solution of this first-order linear differential equation with constant coefficients, which satisfies the initial condition $u(0)=u_{0}$, is

$$
u(t)=u_{0} \exp \left[-\frac{2 h}{c \rho r} t\right]
$$

Section 1.3

1.3.2 $\partial u / \partial x$ is continuous if $K_{0}\left(x_{0}-\right)=K_{0}\left(x_{0}+\right)$, that is, if the conductivity is continuous.

Section 1.4

1.4.1 (a) Equilibrium satisfies (1.4.14), $d^{2} u / d x^{2}=0$, whose general solution is (1.4.17), $u=c_{1}+c_{2} x$. The boundary condition $u(0)=0$ implies $c_{1}=0$ and $u(L)=T$ implies $c_{2}=T / L$ so that $u=T x / L$.
1.4.1 (d) Equilibrium satisfies (1.4.14), $d^{2} u / d x^{2}=0$, whose general solution (1.4.17), $u=c_{1}+c_{2} x$. From the boundary conditions, $u(0)=T$ yields $T=c_{1}$ and $d u / d x(L)=\alpha$ yields $\alpha=c_{2}$. Thus $u=T+\alpha x$.
1.4.1 (f) In equilibrium, (1.2.9) becomes $d^{2} u / d x^{2}=-Q / K_{0}=-x^{2}$, whose general solution (by integrating twice) is $u=-x^{4} / 12+c_{1}+c_{2} x$. The boundary condition $u(0)=T$ yields $c_{1}=T$, while $d u / d x(L)=0$ yields $c_{2}=L^{3} / 3$. Thus $u=-x^{4} / 12+L^{3} x / 3+T$.
1.4.1 (h) Equilibrium satisfies $d^{2} u / d x^{2}=0$. One integration yields $d u / d x=c_{2}$, the second integration yields the general solution $u=c_{1}+c_{2} x$.

$$
\begin{aligned}
x=0: & c_{2}-\left(c_{1}-T\right)=0 \\
x=L: & c_{2}=\alpha \text { and thus } c_{1}=T+\alpha
\end{aligned}
$$

Therefore, $u=(T+\alpha)+\alpha x=T+\alpha(x+1)$.
1.4.7 (a) For equilibrium:

$$
\frac{d^{2} u}{d x^{2}}=-1 \text { implies } u=-\frac{x^{2}}{2}+c_{1} x+c_{2} \text { and } \frac{d u}{d x}=-x+c_{1}
$$

From the boundary conditions $\frac{d u}{d x}(0)=1$ and $\frac{d u}{d x}(L)=\beta, c_{1}=1$ and $-L+c_{1}=\beta$ which is consistent only if $\beta+L=1$. If $\beta=1-L$, there is an equilibrium solution $\left(u=-\frac{x^{2}}{2}+x+c_{2}\right)$. If $\beta \neq 1-L$, there isn't an equilibrium solution. The difficulty is caused by the heat flow being specified at both ends and a source specified inside. An equilibrium will exist only if these three are in balance. This balance can be mathematically verified from conservation of energy:

$$
\frac{d}{d t} \int_{0}^{L} c \rho u d x=-\frac{d u}{d x}(0)+\frac{d u}{d x}(L)+\int_{0}^{L} Q_{0} d x=-1+\beta+L
$$

If $\beta+L=1$, then the total thermal energy is constant and the initial energy $=$ the final energy:

$$
\int_{0}^{L} f(x) d x=\int_{0}^{L}\left(-\frac{x^{2}}{2}+x+c_{2}\right) d x, \quad \text { which determines } c_{2}
$$

If $\beta+L \neq 1$, then the total thermal energy is always changing in time and an equilibrium is never reached.

Section 1.5

1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes $\frac{d}{d r}\left(r \frac{d u}{d r}\right)=0$. Integrating once yields $r d u / d r=c_{1}$ and integrating a second time (after dividing by r) yields $u=c_{1} \ln r+c_{2}$. An alternate general solution is $u=c_{1} \ln \left(r / r_{1}\right)+c_{3}$. The boundary condition $u\left(r_{1}\right)=T_{1}$ yields $c_{3}=T_{1}$, while $u\left(r_{2}\right)=T_{2}$ yields $c_{1}=\left(T_{2}-T_{1}\right) / \ln \left(r_{2} / r_{1}\right)$. Thus, $u=\frac{1}{\ln \left(r_{2} / r_{1}\right)}\left[\left(T_{2}-T_{1}\right) \ln r / r_{1}+T_{1} \ln \left(r_{2} / r_{1}\right)\right]$.
1.5.11 For equilibrium, the radial flow at $r=a, 2 \pi a \beta$, must equal the radial flow at $r=b, 2 \pi b$. Thus $\beta=b / a$.
1.5.13 From exercise 1.5.12, in equilibrium $\frac{d}{d r}\left(r^{2} \frac{d u}{d r}\right)=0$. Integrating once yields $r^{2} d u / d r=c_{1}$ and integrating a second time (after dividing by r^{2}) yields $u=-c_{1} / r+c_{2}$. The boundary conditions $u(4)=80$ and $u(1)=0$ yields $80=-c_{1} / 4+c_{2}$ and $0=-c_{1}+c_{2}$. Thus $c_{1}=c_{2}=320 / 3$ or $u=\frac{320}{3}\left(1-\frac{1}{r}\right)$.

Chapter 2. Method of Separation of Variables

Section 2.3

2.3.1 (a) $u(r, t)=\phi(r) h(t)$ yields $\phi \frac{d h}{d t}=\frac{k h}{r} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)$. Dividing by $k \phi h$ yields $\frac{1}{k h} \frac{d h}{d t}=\frac{1}{r \phi} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)=-\lambda$ or $\frac{d h}{d t}=-\lambda k h$ and $\frac{1}{r} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)=-\lambda \phi$.
2.3.1 (c) $u(x, y)=\phi(x) h(y)$ yields $h \frac{d^{2} \phi}{d x^{2}}+\phi \frac{d^{2} h}{d y^{2}}=0$. Dividing by ϕh yields $\frac{1}{\phi} \frac{d^{2} \phi}{d x^{2}}=-\frac{1}{h} \frac{d^{2} h}{d y^{2}}=-\lambda$ or $\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi$ and $\frac{d^{2} h}{d y^{2}}=\lambda h$.
2.3.1 (e) $u(x, t)=\phi(x) h(t)$ yields $\phi(x) \frac{d h}{d t}=k h(t) \frac{d^{4} \phi}{d x^{4}}$. Dividing by $k \phi h$, yields $\frac{1}{k h} \frac{d h}{d t}=\frac{1}{\phi} \frac{d^{4} \phi}{d x^{4}}=\lambda$.
2.3.1 (f) $u(x, t)=\phi(x) h(t)$ yields $\phi(x) \frac{d^{2} h}{d t^{2}}=c^{2} h(t) \frac{d^{2} \phi}{d x^{2}}$. Dividing by $c^{2} \phi h$, yields $\frac{1}{c^{2} h} \frac{d^{2} h}{d t^{2}}=\frac{1}{\phi} \frac{d^{2} \phi}{d x^{2}}=-\lambda$.
2.3.2 (b) $\lambda=(n \pi / L)^{2}$ with $L=1$ so that $\lambda=n^{2} \pi^{2}, n=1,2, \ldots$
2.3.2 (d)
(i) If $\lambda>0, \phi=c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x . \phi(0)=0$ implies $c_{1}=0$, while $\frac{d \phi}{d x}(L)=0$ implies $c_{2} \sqrt{\lambda} \cos \sqrt{\lambda} L=0$. Thus $\sqrt{\lambda} L=-\pi / 2+n \pi(n=1,2, \ldots)$.
(ii) If $\lambda=0, \phi=c_{1}+c_{2} x$. $\phi(0)=0$ implies $c_{1}=0$ and $d \phi / d x(L)=0$ implies $c_{2}=0$. Therefore $\lambda=0$ is not an eigenvalue.
(iii) If $\lambda<0$, let $\lambda=-s$ and $\phi=c_{1} \cosh \sqrt{s} x+c_{2} \sinh \sqrt{s} x . \phi(0)=0$ implies $c_{1}=0$ and $d \phi / d x(L)=0$ implies $c_{2} \sqrt{s} \cosh \sqrt{s} L=0$. Thus $c_{2}=0$ and hence there are no eigenvalues with $\lambda<0$.
2.3.2 (f) The simpliest method is to let $x^{\prime}=x-a$. Then $d^{2} \phi / d x^{2}+\lambda \phi=0$ with $\phi(0)=0$ and $\phi(b-a)=0$. Thus (from p. 46) $L=b-a$ and $\lambda=[n \pi /(b-a)]^{2}, n=1,2, \ldots$.
2.3.3 From (2.3.30), $u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} e^{-k(n \pi / L)^{2} t}$. The initial condition yields $2 \cos \frac{3 \pi x}{L}=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}$. From (2.3.35), $B_{n}=\frac{2}{L} \int_{0}^{L} 2 \cos \frac{3 \pi x}{L} \sin \frac{n \pi x}{L} d x$.
2.3.4 (a) Total heat energy $=\int_{0}^{L} c \rho u A d x=c \rho A \sum_{n=1}^{\infty} B_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t \frac{1-\cos n \pi}{\frac{n \pi}{L}}}$, using (2.3.30) where B_{n} satisfies (2.3.35).
2.3.4 (b)
heat flux to right $=-K_{0} \partial u / \partial x$ total heat flow to right $=-K_{0} A \partial u / \partial x$ heat flow out at $x=0=\left.K_{0} A \frac{\partial u}{\partial x}\right|_{x=0}$ heat flow out $(x=L)=-\left.K_{0} A \frac{\partial u}{\partial x}\right|_{x=L}$
2.3.4 (c) From conservation of thermal energy, $\frac{d}{d t} \int_{0}^{L} u d x=\left.k \frac{\partial u}{\partial x}\right|_{0} ^{L}=k \frac{\partial u}{\partial x}(L)-k \frac{\partial u}{\partial x}(0)$. Integrating from $t=0$ yields

$$
\underbrace{\int_{0}^{L} u(x, t) d x}_{\begin{array}{c}
\text { heat energy } \\
\text { at } t
\end{array}}-\underbrace{\int_{0}^{L} u(x, 0) d x}_{\begin{array}{c}
\text { initial heat } \\
\text { energy }
\end{array}}=\underbrace{k \int_{0}^{t}\left[\frac{\partial u}{\partial x}(L)\right.}_{\begin{array}{c}
\text { integral of } \\
\text { flow in at } \\
x=L
\end{array}}-\underbrace{\left.\frac{\partial u}{\partial x}(0)\right] d x}_{\begin{array}{c}
\text { integral of } \\
\text { flow out at } \\
x=L
\end{array}} .
$$

2.3.8 (a) The general solution of $k \frac{d^{2} u}{d x^{2}}=\alpha u(\alpha>0)$ is $u(x)=a \cosh \sqrt{\frac{\alpha}{k}} x+b \sinh \sqrt{\frac{\alpha}{k}} x$. The boundary condition $u(0)=0$ yields $a=0$, while $u(L)=0$ yields $b=0$. Thus $u=0$.
2.3.8 (b) Separation of variables, $u=\phi(x) h(t)$ or $\phi \frac{d h}{d t}+\alpha \phi h=k h \frac{d^{2} \phi}{d x^{2}}$, yields two ordinary differential equations (divide by $k \phi h$): $\frac{1}{k h} \frac{d h}{d t}+\frac{\alpha}{k}=\frac{1}{\phi} \frac{d^{2} \phi}{d x^{2}}=-\lambda$. Applying the boundary conditions, yields the eigenvalues $\lambda=(n \pi / L)^{2}$ and corresponding eigenfunctions $\phi=\sin \frac{n \pi x}{L}$. The time-dependent part are exponentials, $h=e^{-\lambda k t} e^{-\alpha t}$. Thus by superposition, $u(x, t)=e^{-\alpha t} \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} e^{-k(n \pi / L)^{2} t}$, where the initial conditions $u(x, 0)=f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}$ yields $b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x$. As $t \rightarrow \infty$, $u \rightarrow 0$, the only equilibrium solution.
2.3.9 (a) If $\alpha<0$, the general equilibrium solution is $u(x)=a \cos \sqrt{\frac{-\alpha}{k}} x+b \sin \sqrt{\frac{-\alpha}{k}} x$. The boundary condition $u(0)=0$ yields $a=0$, while $u(L)=0$ yields $b \sin \sqrt{\frac{-\alpha}{k}} L=0$. Thus if $\sqrt{\frac{-\alpha}{k}} L \neq n \pi, u=0$ is the only equilibrium solution. However, if $\sqrt{\frac{-\alpha}{k}} L=n \pi$, then $u=A \sin \frac{n \pi x}{L}$ is an equilibrium solution.
2.3.9 (b) Solution obtained in 2.3.8 is correct. If $-\frac{\alpha}{k}=\left(\frac{\pi}{L}\right)^{2}, u(x, t) \rightarrow b_{1} \sin \frac{\pi x}{L}$, the equilibrium solution. If $-\frac{\alpha}{k}<\left(\frac{\pi}{L}\right)^{2}$, then $u \rightarrow 0$ as $t \rightarrow \infty$. However, if $-\frac{\alpha}{k}>\left(\frac{\pi}{L}\right)^{2}, u \rightarrow \infty\left(\right.$ if $\left.b_{1} \neq 0\right)$. Note that $b_{1}>0$ if $f(x) \geq 0$. Other more unusual events can occur if $b_{1}=0$. [Essentially, the other possible equilibrium solutions are unstable.]

Section 2.4

2.4.1 The solution is given by (2.4.19), where the coefficients satisfy (2.4.21) and hence (2.4.23-24).
(a) $A_{0}=\frac{1}{L} \int_{L / 2}^{L} 1 d x=\frac{1}{2}, A_{n}=\frac{2}{L} \int_{L / 2}^{L} \cos \frac{n \pi x}{L} d x=\left.\frac{2}{L} \cdot \frac{L}{n \pi} \sin \frac{n \pi x}{L}\right|_{L / 2} ^{L}=-\frac{2}{n \pi} \sin \frac{n \pi}{2}$
(b) by inspection $A_{0}=6, A_{3}=4$, others $=0$.
(c) $A_{0}=\frac{-2}{L} \int_{0}^{L} \sin \frac{\pi x}{L} d x=\left.\frac{2}{\pi} \cos \frac{\pi x}{L}\right|_{0} ^{L}=\frac{2}{\pi}(1-\cos \pi)=4 / \pi, A_{n}=\frac{-4}{L} \int_{0}^{L} \sin \frac{\pi x}{L} \cos \frac{n \pi x}{L} d x$
(d) by inspection $A_{8}=-3$, others $=0$.
2.4.3 Let $x^{\prime}=x-\pi$. Then the boundary value problem becomes $d^{2} \phi / d x^{2}=-\lambda \phi$ subject to $\phi(-\pi)=\phi(\pi)$ and $d \phi / d x^{\prime}(-\pi)=d \phi / d x^{\prime}(\pi)$. Thus, the eigenvalues are $\lambda=(n \pi / L)^{2}=n^{2} \pi^{2}$, since $L=\pi, n=$ $0,1,2, \ldots$ with the corresponding eigenfunctions being both $\sin n \pi x^{\prime} / L=\sin n(x-\pi)=(-1)^{n} \sin n x=>$ $\sin n x$ and $\cos n \pi x^{\prime} / L=\cos n(x-\pi)=(-1)^{n} \cos n x=>\cos n x$.

Section 2.5

2.5.1 (a) Separation of variables, $u(x, y)=h(x) \phi(y)$, implies that $\frac{1}{h} \frac{d^{2} h}{d x^{2}}=-\frac{1}{\phi} \frac{d^{2} \phi}{d y^{2}}=-\lambda$. Thus $d^{2} h / d x^{2}=$ $-\lambda h$ subject to $h^{\prime}(0)=0$ and $h^{\prime}(L)=0$. Thus as before, $\lambda=(n \pi / L)^{2}, n=0, l, 2, \ldots$ with $h(x)=$ $\cos n \pi x / L$. Furthermore, $\frac{d^{2} \phi}{d y^{2}}=\lambda \phi=\left(\frac{n \pi}{L}\right)^{2} \phi$ so that
$n=0: \phi=c_{1}+c_{2} y$, where $\phi(0)=0$ yields $c_{1}=0$
$n \neq 0: \phi=c_{1} \cosh \frac{n \pi y}{L}+c_{2} \sinh \frac{n \pi y}{L}$, where $\phi(0)=0$ yields $c_{1}=0$.
The result of superposition is

$$
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \sinh \frac{n \pi y}{L}
$$

The nonhomogeneous boundary condition yields

$$
f(x)=A_{0} H+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi H}{L} \cos \frac{n \pi x}{L}
$$

so that

$$
A_{0} H=\frac{1}{L} \int_{0}^{L} f(x) d x \text { and } A_{n} \sinh \frac{n \pi H}{L}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

2.5.1 (c) Separation of variables, $u=h(x) \phi(y)$, yields $\frac{1}{h} \frac{d^{2} h}{d x^{2}}=-\frac{1}{\phi} \frac{d^{2} \phi}{d y^{2}}=\lambda$. The boundary conditions $\phi(0)=0$ and $\phi(H)=0$ yield an eigenvalue problem in y, whose solution is $\lambda=(n \pi / H)^{2}$ with $\phi=\sin n \pi y / H, n=1,2,3, \ldots$ The solution of the x-dependent equation is $h(x)=\cosh n \pi x / H$ using $d h / d x(0)=0$. By superposition:

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} \cosh \frac{n \pi x}{H} \sin \frac{n \pi y}{H}
$$

The nonhomogeneous boundary condition at $x=L$ yields $g(y)=\sum_{n=1}^{\infty} A_{n} \cosh \frac{n \pi L}{H} \sin \frac{n \pi y}{H}$, so that A_{n} is determined by $A_{n} \cosh \frac{n \pi L}{H}=\frac{2}{H} \int_{0}^{H} g(y) \sin \frac{n \pi y}{H} d y$.
2.5.1 (e) Separation of variables, $u=\phi(x) h(y)$, yields the eigenvalues $\lambda=(n \pi / L)^{2}$ and corresponding eigenfunctions $\phi=\sin n \pi x / L, n=1,2,3, \ldots$ The y-dependent differential equation, $\frac{d^{2} h}{d y^{2}}=\left(\frac{n \pi}{L}\right)^{2} h$, satisfies $h(0)-\frac{d h}{d y}(0)=0$. The general solution $h=c_{1} \cosh \frac{n \pi y}{L}+c_{2} \sinh \frac{n \pi y}{L}$ obeys $h(0)=c_{1}$, while $\frac{d h}{d y}=\frac{n \pi}{L}\left(c_{1} \sinh \frac{n \pi y}{L}+c_{2} \cosh \frac{n \pi y}{L}\right)$ obeys $\frac{d h}{d y}(0)=c_{2} \frac{n \pi}{L}$. Thus, $c_{1}=c_{2} \frac{n \pi}{L}$ and hence $h_{n}(y)=$ $\cosh \frac{n \pi y}{L}+\frac{L}{n \pi} \sinh \frac{n \pi y}{L}$. Superposition yields

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} h_{n}(y) \sin n \pi x / L
$$

where A_{n} is determined from the boundary condition, $f(x)=\sum_{n=1}^{\infty} A_{n} h_{n}(H) \sin n \pi x / L$, and hence

$$
A_{n} h_{n}(H)=\frac{2}{L} \int_{0}^{L} f(x) \sin n \pi x / L d x
$$

2.5.2 (a) From physical reasoning (or exercise 1.5.8), the total heat flow across the boundary must equal zero in equilibrium (without sources, i.e. Laplace's equation). Thus $\int_{0}^{L} f(x) d x=0$ for a solution.
2.5.3 In order for u to be bounded as $r \rightarrow \infty, c_{1}=0$ in (2.5.43) and $\bar{c}_{2}=0$ in (2.5.44). Thus,

$$
u(r, \theta)=\sum_{n=0}^{\infty} A_{n} r^{-n} \cos n \theta+\sum_{n=1}^{\infty} B_{n} r^{-n} \sin n \theta
$$

(a) The boundary condition yields $A_{0}=\ln 2, A_{3} a^{-3}=4$, other $A_{n}=0, B_{n}=0$.
(b) The boundary conditions yield (2.5.46) with a^{-n} replacing a^{n}. Thus, the coefficients are determined by (2.5.47) with a^{n} replaced by a^{-n}
2.5.4 By substituting (2.5.47) into (2.5.45) and interchanging the orders of summation and integration

$$
u(r, \theta)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\bar{\theta})\left[\frac{1}{2}+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n}(\cos n \theta \cos n \bar{\theta}+\sin n \theta \sin n \bar{\theta})\right] d \bar{\theta}
$$

Noting the trigonometric addition formula and $\cos z=R_{e}\left[e^{i z}\right]$, we obtain

$$
u(r, \theta)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\bar{\theta})\left[-\frac{1}{2}+\operatorname{Re} \sum_{n=0}^{\infty}\left(\frac{r}{a}\right)^{n} e^{i n(\theta-\bar{\theta})}\right] d \bar{\theta}
$$

Summing the geometric series enables the bracketed term to be replaced by

$$
-\frac{1}{2}+R e \frac{1}{1-\frac{r}{a} e^{i(\theta-\bar{\theta})}}=-\frac{1}{2}+\frac{1-\frac{r}{a} \cos (\theta-\bar{\theta})}{1+\frac{r^{2}}{a^{2}}-\frac{2 r}{a} \cos (\theta-\bar{\theta})}=\frac{\frac{1}{2}-\frac{1}{2} \frac{r^{2}}{a^{2}}}{1+\frac{r^{2}}{a^{2}}-\frac{2 r}{a} \cos (\theta-\bar{\theta})}
$$

2.5.5 (a) The eigenvalue problem is $d^{2} \phi / d \theta^{2}=-\lambda \phi$ subject to $d \phi / d \theta(0)=0$ and $\phi(\pi / 2)=0$. It can be shown that $\lambda>0$ so that $\phi=\cos \sqrt{\lambda} \theta$ where $\phi(\pi / 2)=0$ implies that $\cos \sqrt{\lambda} \pi / 2=0$ or $\sqrt{\lambda} \pi / 2=$ $-\pi / 2+n \pi, n=1,2,3, \ldots$ The eigenvalues are $\lambda=(2 n-1)^{2}$. The radially dependent term satisfies (2.5.40), and hence the boundedness condition at $r=0$ yields $G(r)=r^{2 n-1}$. Superposition yields

$$
u(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{2 n-1} \cos (2 n-1) \theta
$$

The nonhomogeneous boundary condition becomes

$$
f(\theta)=\sum_{n=1}^{\infty} A_{n} \cos (2 n-1) \theta \quad \text { or } \quad A_{n}=\frac{4}{\pi} \int_{0}^{\pi / 2} f(\theta) \cos (2 n-1) \theta d \theta
$$

2.5.5 (c) The boundary conditions of (2.5.37) must be replaced by $\phi(0)=0$ and $\phi(\pi / 2)=0$. Thus, $L=\pi / 2$, so that $\lambda=(n \pi / L)^{2}=(2 n)^{2}$ and $\phi=\sin \frac{n \pi \theta}{L}=\sin 2 n \theta$. The radial part that remains bounded at $r=0$ is $G=r^{\sqrt{\lambda}}=r^{2 n}$. By superposition,

$$
u(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{2 n} \sin 2 n \theta
$$

To apply the nonhomogeneous boundary condition, we differentiate with respect to r :

$$
\frac{\partial u}{\partial r}=\sum_{n=1}^{\infty} A_{n}(2 n) r^{2 n-1} \sin 2 n \theta
$$

The bc at $r=1, f(\theta)=\sum_{n=1}^{\infty} 2 n A_{n} \sin 2 n \theta$, determines $A_{n}, 2 n A_{n}=\frac{4}{\pi} \int_{0}^{\pi / 2} f(\theta) \sin 2 n \theta d \theta$.
2.5.6 (a) The boundary conditions of (2.5.37) must be replaced by $\phi(0)=0$ and $\phi(\pi)=0$. Thus $L=\pi$, so that the eigenvalues are $\lambda=(n \pi / L)^{2}=n^{2}$ and corresponding eigenfunctions $\phi=\sin n \pi \theta / L=$ $\sin n \theta, n=1,2,3, \ldots$ The radial part which is bounded at $r=0$ is $G=r^{\sqrt{\lambda}}=r^{n}$. Thus by superposition

$$
u(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{n} \sin n \theta
$$

The bc at $r=a, g(\theta)=\sum_{n=1}^{\infty} A_{n} a^{n} \sin n \theta$, determines $A_{n}, A_{n} a^{n}=\frac{2}{\pi} \int_{0}^{\pi} g(\theta) \sin n \theta d \theta$.
2.5.7 (b) The boundary conditions of (2.5.37) must be replaced by $\phi^{\prime}(0)=0$ and $\phi^{\prime}(\pi / 3)=0$. This will yield a cosine series with $L=\pi / 3, \lambda=(n \pi / L)^{2}=(3 n)^{2}$ and $\phi=\cos n \pi \theta / L=\cos 3 n \theta, n=0,1,2, \ldots$. The radial part which is bounded at $r=0$ is $G=r^{\sqrt{\lambda}}=r^{3 n}$. Thus by superposition

$$
u(r, \theta)=\sum_{n=0}^{\infty} A_{n} r^{3 n} \cos 3 n \theta
$$

The boundary condition at $r=a, g(\theta)=\sum_{n=0}^{\infty} A_{n} a^{3 n} \cos 3 n \theta$, determines $A_{n}: A_{0}=\frac{3}{\pi} \int_{0}^{\pi / 3} g(\theta) d \theta$ and $(n \neq 0) A_{n} a^{3 n}=\frac{6}{\pi} \int_{0}^{\pi / 3} g(\theta) \cos 3 n \theta d \theta$.
2.5.8 (a) There is a full Fourier series in θ. It is easier (but equivalent) to choose radial solutions that satisfy the corresponding homogeneous boundary condition. Instead of r^{n} and $r^{-n}(1$ and $\ln r$ for $n=0)$, we choose $\phi_{1}(r)$ such that $\phi_{1}(a)=0$ and $\phi_{2}(r)$ such that $\phi_{2}(b)=0$:

$$
\phi_{1}(r)=\left\{\begin{array}{ll}
\ln (r / a) & n=0 \\
\left(\frac{r}{a}\right)^{n}-\left(\frac{a}{r}\right)^{n} & n \neq 0
\end{array} \quad \phi_{2}(r)= \begin{cases}\ln (r / b) & n=0 \\
\left(\frac{r}{b}\right)^{n}-\left(\frac{b}{r}\right)^{n} & n \neq 0\end{cases}\right.
$$

Visit TestBankDeal.com to get complete for all chapters
 Then by superposition

$$
u(r, \theta)=\sum_{n=0}^{\infty} \cos n \theta\left[A_{n} \phi_{1}(r)+B_{n} \phi_{2}(r)\right]+\sum_{n=1}^{\infty} \sin n \theta\left[C_{n} \phi_{1}(r)+D_{n} \phi_{2}(r)\right] .
$$

The boundary conditions at $r=a$ and $r=b$,

$$
\begin{aligned}
f(\theta) & =\sum_{n=0}^{\infty} \cos n \theta\left[A_{n} \phi_{1}(a)+B_{n} \phi_{2}(a)\right]+\sum_{n=1}^{\infty} \sin n \theta\left[C_{n} \phi_{1}(a)+D_{n} \phi_{2}(a)\right] \\
g(\theta) & =\sum_{n=0}^{\infty} \cos n \theta\left[A_{n} \phi_{1}(b)+B_{n} \phi_{2}(b)\right]+\sum_{n=1}^{\infty} \sin n \theta\left[C_{n} \phi_{1}(b)+D_{n} \phi_{2}(b)\right]
\end{aligned}
$$

easily determine $A_{n}, B_{n}, C_{n}, D_{n}$ since $\phi_{1}(a)=0$ and $\phi_{2}(b)=0: D_{n} \phi_{2}(a)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin n \theta d \theta$, etc.
2.5.9 (a) The boundary conditions of (2.5.37) must be replaced by $\phi(0)=0$ and $\phi(\pi / 2)=0$. This is a sine series with $L=\pi / 2$ so that $\lambda=(n \pi / L)^{2}=(2 n)^{2}$ and the eigenfunctions are $\phi=\sin n \pi \theta / L=$ $\sin 2 n \theta, n=1,2,3, \ldots$. The radial part which is zero at $r=a$ is $G=(r / a)^{2 n}-(a / r)^{2 n}$. Thus by superposition,

$$
u(r, \theta)=\sum_{n=1}^{\infty} A_{n}\left[\left(\frac{r}{a}\right)^{2 n}-\left(\frac{a}{r}\right)^{2 n}\right] \sin 2 n \theta
$$

The nonhomogeneous boundary condition, $f(\theta)=\sum_{n=1}^{\infty} A_{n}\left[\left(\frac{b}{a}\right)^{2 n}-\left(\frac{a}{b}\right)^{2 n}\right] \sin 2 n \theta$, determines A_{n} : $A_{n}\left[\left(\frac{b}{a}\right)^{2 n}-\left(\frac{a}{b}\right)^{2 n}\right]=\frac{4}{\pi} \int_{0}^{\pi / 2} f(\theta) \sin 2 n \theta d \theta$.
2.5.9 (b) The two homogeneous boundary conditions are in r, and hence $\phi(r)$ must be an eigenvalue problem. By separation of variables, $u=\phi(r) G(\theta), d^{2} G / d \theta^{2}=\lambda G$ and $r^{2} \frac{d^{2} \phi}{d r^{2}}+r \frac{d \phi}{d r}+\lambda \phi=0$. The radial equation is equidimensional (see p.78) and solutions are in the form $\phi=r^{p}$. Thus $p^{2}=-\lambda$ (with $\lambda>0$) so that $p= \pm i \sqrt{\lambda} . r^{ \pm i \sqrt{\lambda}}=e^{ \pm i \sqrt{\lambda} \ln r}$. Thus real solutions are $\cos (\sqrt{\lambda} \ln r)$ and $\sin (\sqrt{\lambda} \ln r)$. It is more convenient to use independent solutions which simplify at $r=a, \cos [\sqrt{\lambda} \ln (r / a)]$ and $\sin [\sqrt{\lambda} \ln (r / a)]$. Thus the general solution is

$$
\phi=c_{1} \cos [\sqrt{\lambda} \ln (r / a)]+c_{2} \sin [\sqrt{\lambda} \ln (r / a)] .
$$

The homogeneous condition $\phi(a)=0$ yields $0=c_{1}$, while $\phi(b)=0$ implies $\sin [\sqrt{\lambda} \ln (r / a)]=0$. Thus $\sqrt{\lambda} \ln (b / a)=n \pi, n=1,2,3, \ldots$ and the corresponding eigenfunctions are $\phi=\sin \left[n \pi \frac{\ln (r / a)}{\ln (b / a)}\right]$. The solution of the θ-equation satisfying $G(0)=0$ is $G=\sinh \sqrt{\lambda} \theta=\sinh \frac{n \pi \theta}{\ln (b / a)}$. Thus by superposition

$$
u=\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi \theta}{\ln (b / a)} \sin \left[n \pi \frac{\ln (r / a)}{\ln (b / a)}\right] .
$$

The nonhomogeneous boundary condition,

$$
f(r)=\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi^{2}}{2 \ln (b / a)} \sin \left[n \pi \frac{\ln (r / a)}{\ln (b / a)}\right]
$$

will determine A_{n}. One method (for another, see exercise 5.3.9) is to let $z=\ln (r / a) / \ln (b / a)$. Then $a<r<b$, lets $0<z<1$. This is a sine series in z (with $L=1$) and hence

$$
A_{n} \sinh \frac{n \pi^{2}}{2 \ln (b / a)}=2 \int_{0}^{1} f(r) \sin \left[n \pi \frac{\ln (r / a)}{\ln (b / a)}\right] d z
$$

But $d z=d r / r \ln (b / a)$. Thus

$$
A_{n} \sinh \frac{n \pi^{2}}{2 \ln (b / a)}=\frac{2}{\ln (b / a)} \int_{0}^{1} f(r) \sin \left[n \pi \frac{\ln (r / a)}{\ln (b / a)}\right] d r / r .
$$

