# Instructor's Manual 

to accompany

# BASIC ENVIRONMENTAL TECHNOLOGY 

Water Supply, Waste Management, and Pollution Control

Fifth Edition

Jerry A. Nathanson

## PEARSON

Prentice
Hall

Upper Saddle River, New Jersey
Columbus, Ohio

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

[^0]
## PEARSON

## Prentice

This manual provides instructors with (a) text page references and Internet URLs where answers to the end-of-chapter Review Questions can be found, (b) worked out solutions to each of the Practice Problems, and (c) supplemental problems and 100 multiple choice questions (and answers) that can be incorporated in tests or a final examination.

Generally, answers to end-of-chapter Practice Problems are rounded-off to reflect the precision of the data and/or the accuracy of the assumed factors in the problems. These answers are also listed in Appendix F of the text for students to use in checking their work. (The author has made every attempt to keep errors to a minimum. He can be notified of any mistakes that may be found in the text or in this manual at: nathanson1@comcast.net).

## CHAPTER 1 BASIC CONCEPTS

## Review Question Page References

(1) 1-2
(15) 14
(29) 14
(2) $2-4$
(16) 15
(30) 16
(3) 6
(17) 17
(4) 7
(18) 18
(31) http://www.epa.gov/epahome/laws.htm
(32) http://www.usgs.gov/nawqa/
(5) 7
(19) 17-19
(6) 8-9
(20) 18, 19
(7) $9-10$
(21) 18, 19
(8) 10
(22) 19
(9) 10-11
(23) 20
(10) 10-11
(24) 21
(11) 11
(25) 21-22
(12) 11-12
(26) 22
(13) 12
(27) 23
(14) 8-13
(28) 23
(There are no Practice Problems for Chapter 1)

## CHAPTER 2

## Review Question Pace References

| $(1)$ | 27 | $(6)$ | 31 | $(11) 37$ | $(16)$ | 49 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $(2)$ | 28 | $(7)$ | 33 | $(12) 39$ | $(17)$ | 49 |
| $(3)$ | 28 | $(8)$ | 34 | $(13) 41$ | $(18)$ | 50 |
| $(4)$ | 28 | $(9)$ | 35 | $(14) 45-47$ | $(19)$ | 50 |
| $(5)$ | 30 | $(10)$ | 36 | $(15) 49$ | $(20)$ | 51 |

(21) (22) www.iihs.uiowa.edu/projects/index.html
(23) www.usbr.gov/wrrl (24) www.envirosources.com

## Solutions to Practice Problems

1. $\mathrm{P}=0.43 \times \mathrm{h}$ (Equation $2-2 \mathrm{~b}$ )
$\mathrm{P}=0.43 \times 50 \mathrm{ft}=22 \mathrm{psi}$ at the bottom of the reservoir
$\mathrm{P}=0.43 \times(50-30)=0.43 \times 20 \mathrm{ft}=8.6 \mathrm{psi}$ above the bottom
2. $h=0.1 \times P=0.1 \times 50=5 \mathrm{~m}$ (Equation 2-3a)
3. Depth of water above the valve: $h=(78 m-50 m)+2 m=30 m$ $\mathrm{P}=9.8 \mathrm{xh}=9.8 \times 30=294 \mathrm{kPa} \approx 290 \mathrm{kPa}$ (Equation 2-2a)
4. $h=2.3 \times P=2.3 \times 50=115 \mathrm{ft}$, in the water main
$\mathrm{h}=115-40=75 \mathrm{ft}$
$\mathrm{P}=0.43 \times 75=32 \mathrm{psi}, 40 \mathrm{ft}$ above the main (Equation 2-2b)
5. Gage pressure $P=30+9.8 \times 1=39.8 \mathrm{kPa} \approx 40 \mathrm{kPa}$

Pressure head $($ in tube $)=0.1 \times 40 \mathrm{kPa}=4 \mathrm{~m}$
6. $\mathrm{Q}=\mathrm{A} \times \mathrm{V}$ (Eq. 2-4), therefore $\mathrm{V}=\mathrm{Q} / \mathrm{A}$
$A=\pi D^{2} / 4=\pi(0.3)^{2} / 4=0.0707 \mathrm{~m}^{2}$
$100 \mathrm{~L} / \mathrm{s} \times 1 \mathrm{~m}^{3} / 1000 \mathrm{~L}=0.1 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{V}=0.1 \mathrm{~m}^{3} / \mathrm{s} / 0.707 \mathrm{~m}^{2}=1.4 \mathrm{~m} / \mathrm{s}$
7. $Q=(500 \mathrm{gal} / \mathrm{min}) \times(1 \mathrm{~min} / 60 \mathrm{sec}) \times\left(1 \mathrm{ft}^{3} / 7.5 \mathrm{gal}\right)=1.11 \mathrm{cfs}$
$A=Q / V$ (from Eq. 2-4)
$\mathrm{A}=1.11 \mathrm{ft}^{3} / \mathrm{sec} / 1.4 \mathrm{ft} / \mathrm{sec}=0.794 \mathrm{ft}^{2}$
$A=\pi D^{2} / 4$, therefore $D=\sqrt{ } 4 A / \pi=\sqrt{ }(4)(0.794) / \pi=1 \mathrm{ft}=12 \mathrm{in}$.
8. $\mathrm{Q}=\mathrm{A}_{1} \times \mathrm{V}_{1}=\mathrm{A}_{2} \times \mathrm{V}_{2}$ (Eq. 2-5)

Since $A=\pi D^{2} / 4$, we can write
$D_{1}{ }^{2} \times V_{1}=D_{2}{ }^{2} \times V_{2}$ and $V_{2}=V_{1} \times\left(D_{1}{ }^{2} / D_{2}{ }^{2}\right)$
In the constriction, $V_{2}=(2 \mathrm{~m} / \mathrm{s}) \times(4)=8 \mathrm{~m} / \mathrm{s}$
9. Area of pipe $A=\pi(0.3)^{2} / 4=0.0707 \mathrm{~m}^{2}$

Area of pipe $B=\pi(0.1)^{2} / 4=0.00785 \mathrm{~m}^{2}$
Area of pipe $C=\pi(0.2)^{2} / 4=0.03142 \mathrm{~m}^{2}$
$Q_{A}=Q_{B}+Q_{C}=0.00785 \mathrm{~m}^{2} \times 2 \mathrm{~m} / \mathrm{s}+0.03142 \mathrm{~m}^{2} \times 1 \mathrm{~m} / \mathrm{s}$
$=0.04712 \mathrm{~m}^{3} / \mathrm{s}$ (from continuity of flow: $Q_{\mathrm{IN}}=Q_{\mathrm{out}}$ )

$$
V_{A}=Q_{A} / A_{A}=0.4712 / 0.0707 \approx 0.67 \mathrm{~m} / \mathrm{s}(\text { from Eq. 2-4) }
$$

10. $\mathrm{p}_{1} / \mathrm{w}+\mathrm{V}_{1}^{2} / 2 \mathrm{~g}=\mathrm{p}_{2} / \mathrm{W}+\mathrm{V}_{2}^{2} / 2 \mathrm{~g}($ Eq. 2-8)

$$
\begin{array}{ll}
\mathrm{A}_{1}=\pi(1.33)^{2} / 4=1.4 \mathrm{ft}^{2} & \mathrm{~A}_{2}=\pi(0.67)^{2} / 4=0.349 \mathrm{ft}^{2} \\
\mathrm{~V}_{1}=6 / 1.4=4.29 \mathrm{ft} / \mathrm{sec} & \mathrm{~V}_{2}=6 / 0.349=17.2 \mathrm{ft} / \mathrm{sec}
\end{array}
$$

$\mathrm{w}=62.4 \mathrm{lb} / \mathrm{ft}^{3}$ and $\mathrm{g}=32.2 \mathrm{ft} / \mathrm{sec}^{2}$
From Eq. 2-8, and multiplying psi $\times 144 \mathrm{in}^{2} / \mathrm{ft}^{2}$ to get $\mathrm{lb} / \mathrm{ft}^{2}$
$50(144) / 62.4+4.29^{2} / 2(32.2)=p_{2}(144) / 62.4+17.2^{2} / 2(32.2)$
$115.38+0.28578=2.3076 p_{2}+4.5937$
$\mathrm{p}_{2}=111.07 / 2.307 \approx 48 \mathrm{psi}$
11. $\mathrm{p}_{1} / \mathrm{w}+\mathrm{v}_{1}{ }^{2} / 2 \mathrm{~g}=\mathrm{p}_{2} / \mathrm{w}+\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g}$ (Eq. 2-8)
$A_{1}=\pi(0.300)^{2} / 4=0.0707 \mathrm{~m}^{2} \quad \mathrm{~A}_{2}=\pi(0.100)^{2} / 4=0.00785 \mathrm{~m}^{2}$
$\mathrm{Q}=50 \mathrm{~L} / \mathrm{s} \times 1 \mathrm{~m}^{3} / 1000 \mathrm{~L}=0.05 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{V}_{1}=0.05 / 0.0707=0.70721 \mathrm{~m} / \mathrm{sec} \quad \mathrm{V}_{2}=0.05 / 0.00785=6.369 \mathrm{~m} / \mathrm{sec}$
$\mathrm{w}=9.81 \mathrm{kN} / \mathrm{m}^{3}$ and $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$; From Eq. 2-8,
$700 / 2(9.81)+0.70721^{2} / 2(9.81)=p_{2} / 2(9.81)+6.369^{2} / 2(9.81)$
$35.67789+0.02549=0.05097 p_{2}+2.06775$ and $p_{2}=660 \mathrm{kPa}$
12. From Figure 2.15, with $Q=200 \mathrm{~L} / \mathrm{s}$ and $\mathrm{D}=600 \mathrm{~mm}$, read $\mathrm{S}=0.0013$.

Therefore $h_{L}=S \times L=0.0013 \times 1000 \mathrm{~m}=1.3 \mathrm{~m}$
Pressure drop $p=9.8 \times 1.3=12.7 \approx 13 \mathrm{kPa}$ per km
13. $h_{L}=2.3 \times 20=46 \mathrm{ft}$ and $\mathrm{S}=46 / 5280=0.0087$ (where $1 \mathrm{mi}=5280 \mathrm{ft}$ )

From Figure 2.15, with $Q=1000 \mathrm{gpm}$ and $\mathrm{S}=0.0087$, read $\mathrm{D}=10.3 \mathrm{in}$. Use a 12 in . standard diameter pipe
14. $S=10 / 1000=0.01$

From the nomograph (Figure 2.15) read $Q \approx 100 \mathrm{~L} / \mathrm{s}=0.1 \mathrm{~m}^{3} / \mathrm{s}$ Check with Eq. 2-9: $Q=0.28 \times 100 \times 0.3^{2.63} \times 0.01^{0.54} \approx 0.1 \mathrm{~m}^{3} / \mathrm{s} \mathrm{OK}$
15. Use (Eq. 2-10): $Q=C \times A_{2} \times\left\{\left(2 g\left(p_{1}-p_{2}\right) / w\right) /\left(1-\left(A_{2} / A_{1}\right)^{2}\right\}^{1 / 2}\right.$
where $\mathrm{A}_{1}=\pi(6)^{2} / 4=28.27 \mathrm{in}^{2}$ and $\mathrm{A}_{2}=\pi(3)^{2} / 4=7.07 \mathrm{in}^{2}$

$$
\begin{aligned}
& \mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2}=386.4 \mathrm{in} / \mathrm{s}^{2} \\
& \mathrm{w}=62.4 \mathrm{lb} / \mathrm{ft}^{3} \times 1 \mathrm{ft}^{3} / 12^{3} \mathrm{in}^{3}=0.0361 \mathrm{lb} / \mathrm{in}^{3} \\
& \mathrm{Q}=0.98 \times 7.07 \times\left\{(2(386.4)(10) / 0.0361) /\left(1-(7.07 / 28.27)^{2}\right)\right\}^{1 / 2} \\
& \mathrm{Q}=0.98 \times 7.07 \times \sqrt{2} 28,354=3311 \mathrm{in}^{3} / \mathrm{s}=1.9 \mathrm{cfs} \approx 2 \mathrm{cfs}
\end{aligned}
$$

16. Use (Eq. 2-10): $Q=C \times A_{2} \times\left\{\left(2 g\left(p_{1}-p_{2}\right) / w\right) /\left(1-\left(A_{2} / A_{1}\right)^{2}\right)\right\}^{1 / 2}$

$$
\begin{aligned}
& A_{1}=\pi(0.15)^{2} / 4=0.01767 \mathrm{~m}^{2} \text { and } A^{2}=\pi(0.075)^{2} / 4=0.00442 \mathrm{~m}^{2} \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{w}=9.81 \mathrm{kN} / \mathrm{m}^{3} \\
& 1-\left(A_{2} / A_{1}\right)^{2}=1-(0.00442 / 0.01767)^{2}=0.93743 \\
& Q=0.98 \times 0.00442 \times\{(2(9.81)(100) / 9.81) / 0.93743)\}^{1 / 2}=0.063 \mathrm{~m}^{3} / \mathrm{s} \\
& \left(\text { or, } Q=0.063 \mathrm{~m} / \mathrm{s} \times 1000 \mathrm{Lm}^{3}=63 \mathrm{~L} / \mathrm{s}\right)
\end{aligned}
$$

17. Use Manning's nomograph (Figure 2.21): With $\mathrm{D}=800 \mathrm{~mm}=80 \mathrm{~cm}$, and

$$
S=0.2 \%=0.002 \text {, read } Q=0: 56 \mathrm{~m}^{3} / \mathrm{s}=560 \mathrm{~L} / \mathrm{s} \text { and } \mathrm{V}=1.17 \mathrm{~m} / \mathrm{s}
$$

18. $S=1.5 / 1000=0.015$; from Fig. 2.21, $Q \approx 1800 \mathrm{gpm}$ and $V \approx 2.3 \mathrm{ft} / \mathrm{s}$
19. $Q=200 \mathrm{~L} / \mathrm{s}=0.2 \mathrm{~m}^{3} / \mathrm{s}$; from Fig. 2.21, $\mathrm{D} \approx 42 \mathrm{~cm}$; use 450 mm pipe
20. $\mathrm{Q}=7 \mathrm{mgd}=7,000,000 \mathrm{gal} /$ day $x 1$ day $/ 1440 \mathrm{~min} \approx 4900 \mathrm{gpm}$

From Fig. 2.21, with 36 in and $4900 \mathrm{gpm}: \mathrm{S}=0.00027, \mathrm{~V}=1.54 \mathrm{ft} / \mathrm{s}$
Since $1.54 \mathrm{ft} / \mathrm{s}$ is less than the minimum self-cleansing velocity of
$2 \mathrm{ft} / \mathrm{s}$, it is necessary to increase the slope of the 36 in pipe.
From Fig. 2.21, with 36 in and $2 \mathrm{ft} / \mathrm{s}$ : $\mathrm{S}=0.00047=0.047 \% \approx 0.05 \%$
21. For full-flow conditions, with $D=300 \mathrm{~mm}$ and $S=0.02$, read from

Fig. 2.21: $\mathrm{Q}=0.135 \mathrm{~m}^{3} / \mathrm{s}=135 \mathrm{~L} / \mathrm{s}$ and $\mathrm{V}=2 \mathrm{~m} / \mathrm{s}$ $q / Q=50 / 135=0.37$ From Fig. 2.22, $d / D=0.42$ and $v / V=0.92$ Depth at partial flow $\mathrm{d}=0.42 \times 300=126 \mathrm{~mm} \approx 130 \mathrm{~mm}$ Velocity at partial flow $v=0.92 \times 2 \approx 1.8 \mathrm{~m} / \mathrm{s}$
22. For full-flow conditions, from Fig. 2.21 read $Q=1800$ gpm. From Fig. 2.22, the maximum value of $q / Q=1.08$ when $d / D=0.93$. Therefore, the highest discharge capacity for the 18 in pipe, $q_{\max }=1800 \times 1.08 \approx 1900 \mathrm{gpm}$, would occur at a depth of $d=18 \times 0.93 \approx 17 \mathrm{in}$.
23. For full-flow conditions, from Fig. 2.21 read $Q=0.55 \mathrm{~m}^{3} / \mathrm{s}=550 \mathrm{~L} / \mathrm{s}$. From Fig. 2.22 , the maximum value of $v / V=1.15$ when $d / D=0.82$. Therefore, the highest flow velocity for the 900 mm pipe, $\mathrm{v}_{\text {max }}=$
$0.9 \times 1.15 \approx 1 \mathrm{~m} / \mathrm{s}$, would occur at a depth of $\mathrm{d}=900 \times 0.82 \approx 740 \mathrm{~mm}$
When the flow occurs at that depth, $q / Q=1.05$ and the discharge $q=580 \mathrm{~L} / \mathrm{s}$
24. $S=0.5 / 100=0.005$

For full-flow conditions, $Q=0.44 \mathrm{~m}^{3} / \mathrm{s}=440 \mathrm{~L} / \mathrm{s}$ and $\mathrm{V}=1.6 \mathrm{~m} / \mathrm{s}$ Since $d / D=200 / 600=0.33$, from Fig. $2.22 q / Q=0.23$ and $v / V=0.8$
Therefore, $q=440 \times 0.23 \approx 100 \mathrm{~L} / \mathrm{s}$ and $v=1.6 \times 0.8 \approx 1.3 \mathrm{~m} / \mathrm{s}$
25. $Q=A \times V=2 \times 0.75 \times 25 / 75=0.5 \mathrm{~m}^{3} / \mathrm{s}=500 \mathrm{~L} / \mathrm{s}$
26. From Eq. $2-12, Q=2.5 \times(4 / 12)^{2.5}=0.16 \mathrm{cfs}$
27. $150 \mathrm{~mm} \times 1 \mathrm{in} / 25.4 \mathrm{~mm} \times 1 \mathrm{ft} / 12 \mathrm{in}=0.492 \mathrm{ft}$

From Eq. $2-12, Q=2.5 \times(0.492)^{2.5}=0.425 \mathrm{cfs} \times 28.32 \mathrm{~L} / \mathrm{ft}^{3} \approx 12 \mathrm{~L} / \mathrm{s}$
28. From Eq. $2-13, Q=3.4 \times(20 / 12) \times(10 / 12)^{1.5}=4.3 \mathrm{cfs} \approx 120 \mathrm{~L} / \mathrm{s}$

## Review Question Page References

(1) 57
(7) 61
(13) 64
(19) 71
(25) 79
(2) 58
(8) 61
(14) 66
(20) 71
(26) 79
(3) 58
(9) 62
(15) 67
(21) 72
(27) 79
(4) 58
(10) 63
(16) 70
(22) 74
(28) 79
(5) 60
(11) 63
(17) 70
(23) 75
(29) 80
(6) 60
(12) 63
(18) 71
(24) 79
(30) 81
(31) http://hydrolab.arsL/sda.gov
(32) www.epa.gov/surf
(33) www.envirosources.com

## Solutions to Practice Problems

1. Intensity $=500 \mathrm{~mm} / 10 \mathrm{~h}=50 \mathrm{~mm} / \mathrm{h}$

Volume $=$ depth $\times$ area $=0.5 \mathrm{~m} \times 750000 \mathrm{~m}^{3}=375000 \mathrm{~m}^{3}=375 \mathrm{ML}$
2. Intensity $=1 \mathrm{in} . / 0.5 \mathrm{~h}=2 \mathrm{in} . / \mathrm{h}$

Volume $=$ depth $x$ area $=1 \mathrm{in} . x 1 \mathrm{ft} / 12 \mathrm{in} . x 96 \mathrm{ac}=8 \mathrm{ac}-\mathrm{ft}$
Volume $=8 \mathrm{ac}-\mathrm{ft} \times 43,560 \mathrm{ft}^{2} / \mathrm{ac} \approx 350,000 \mathrm{ft}^{3}$
3. (a) $100 \mathrm{~mm} / \mathrm{h}(4 \mathrm{in} . / \mathrm{h}) ;$ (b) $45 \mathrm{~mm} / \mathrm{h}(1.7 \mathrm{in} . / \mathrm{h})$; (c) $50 \mathrm{~mm} / \mathrm{h}(2 \mathrm{in} . / \mathrm{h})$
4. $75 \mathrm{~mm} / 0.5 \mathrm{~h}=150 \mathrm{~mm} / \mathrm{h}$; line up 30 min and $150 \mathrm{~mm} / \mathrm{h}$ in Fig. 3.5. The intersection falls on the 100-yr storm curve. The probability of a greater storm occurring within the next year is $P=1 / 100=0.01=1 \%$
5. From Eq. 3-3, $i=3000 /(90+20)=27 \mathrm{~mm} / \mathrm{h}$
6. $P=1 / N=1 / 20=0.05=5 \%$
7. Low Flow Rank Probability Low Flow Rank Probability

| 57 | 1 | 0.059 | 45 | 9 | 0.529 | Multiply vertical axis values on Figure 3.16 |
| :--- | :--- | :--- | :--- | :---: | :---: | :--- |
| 53 | 2 | 0.117 | 44 | 10 | 0.588 | by 10, and plot Low Flow versus |
| 50 | 3 | 0.176 | 42 | 11 | 0.647 | Probability. Read MA7CD10 flow to be |
| 50 | 4 | 0.235 | 41 | 12 | 0.706 | approximately $35 \mathrm{~m}^{3} / \mathrm{s}$ (where the |
| 50 | 5 | 0.294 | 40 | 13 | 0.765 | recurrence value $=10$ yrs.) |
| 48 | 6 | 0.353 | 39 | 14 | 0.824 |  |
| 47 | 7 | 0.412 | 36 | 15 | 0.882 |  |
| 45 | 8 | 0.471 | 33 | 16 | 0.941 |  |

## 8. (a) \& (b)


9.

Cumulative Flows mil al

| Month | Flow | Month | Flow | Month | Flow | Month | Flow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jan | 20 | Apr | 52 | Jul | 108 | Oct | 119 |
| Feb | 40 | May | 62. | Aug | 111 | Nov | 149 |
| Mar | 50 | Jun | 100 | Sep | 113 | Dec | 199 |

The required reservoir volume is approximately 40 million gallons.

10. $\mathrm{V}=\mathrm{K} \times \mathrm{S}$ (Darcy's Law, Equation 3-4)
$V=0.05 \mathrm{~mm} / \mathrm{s} \times 0.5 / 100=0.05 \times 0.005=0.00025 \mathrm{~mm} / \mathrm{s}$
$\mathrm{V}=0.00025 \mathrm{~mm} / \mathrm{s} \times 3600 \mathrm{~s} / \mathrm{h} \times 24 \mathrm{~h} / \mathrm{d}=0.9 \mathrm{~mm} / \mathrm{h} \approx 22 \mathrm{~mm} / \mathrm{d}$
11. $\mathrm{K}=\mathrm{VIS}$ (From Eq. 3-4)
$V=0.05 \mathrm{~m} / \mathrm{h} \times 1000 \mathrm{~mm} / \mathrm{m} \times 1 \mathrm{~h} / 3600 \mathrm{~s}=0.0139 \mathrm{~mm} / \mathrm{s}$
$K=0.0139 / 0.035 \approx 0.4 \mathrm{~mm} / \mathrm{s}$ (For sand, $K=0.01$ to $10 \mathrm{~mm} / \mathrm{s}$ )
12. Yield $=2 \mathrm{~m}^{3} / \mathrm{h} / \mathrm{m} \times 15 \mathrm{~m}=30 \mathrm{~m}^{3} / \mathrm{h}$

$$
10 \% \text { of } 30=3 ; \text { new yield } \approx 33 \mathrm{~m}^{3} / \mathrm{h}
$$

## Review Question Page References

| $(1)$ | 90 | $(11) 98$ | $(21) 104$ | $(31)$ | 108 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(2)$ | 93 | $(12) 98$ | $(22) 105$ | $(32)$ | 110 |
| $(3)$ | 93 | $(13) 98$ | $(23) 105$ | $(33)$ | 110 |
| $(4)$ | 94 | $(14)-$ | $(24) 106$ | $(34)$ | 112 |
| $(5)$ | - | $(15) 102$ | $(25) 106$ | $(35)$ | 112 |
| $(6)$ | 94 | $(16) 101$ | $(26) 106$ | $(36)$ | 112 |
| $(7)$ | 94 | $(17) 102$ | $(27) 107$ | $(37)$ | 113 |
| $(8)$ | 95 | $(18) 102$ | $(28) 107$ | $(38)$ | 114 |
| $(9)$ | 96 | $(19) 103$ | $(29) 108$ | $(39)$ | 115 |
| $(10) 98$ | $(20) 103$ | $(30) 108$ | $(40)$ | 117 |  |

(41) www.wqa.org
(42) www.epa.gov/nerlcwww
(43) www.envirosources.com

## Solutions to Practice Problems

1. $275 \mathrm{ppm}=275 \mathrm{mg} / \mathrm{L}$ (since $1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{L}$ ) $275 \mathrm{mg} / \mathrm{L} \times 1 \mathrm{gpg} / 17.1 \mathrm{mg} / \mathrm{L}=16.1 \mathrm{gpg}$
2. $4 \times 17.1=68 \mathrm{mg} / \mathrm{L}$ of hardness as $\mathrm{CaCO}_{3}$

This level is not objectionable; it is considered to be soft water and not cause scaling problems or interfere noticeably with lathering.
3. Since $1 \mathrm{mg} / \mathrm{L}=8.34 \mathrm{lb} / \mathrm{mil}$ gal, we can write
$50 \mathrm{mg} / \mathrm{L} \times(8.34 \mathrm{lb} / \mathrm{mil}$ gal $) /(1 \mathrm{mg} / \mathrm{L}) \times 3 \mathrm{mil}$ gal $/$ day $=1250 \mathrm{lb} / \mathrm{d}$
4. $30 \mathrm{ac}-\mathrm{ft} \times 43,560 \mathrm{ft}^{3} / \mathrm{ac}-\mathrm{ft} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=9,775,000 \mathrm{gal}$
$50 \mathrm{lb} / 9.775 \mathrm{mil}$ gal $x(1 \mathrm{mg} / \mathrm{L}) /(8.34 \mathrm{lb} / \mathrm{mil}$ gal $)=0.6 \mathrm{mg} / \mathrm{L}$
5. 1 L of water has a mass of 1 kg
$2 \mathrm{ppm}=2 \mathrm{mg} / \mathrm{L}=2 \mathrm{~kg} / \mathrm{ML}$ (multiply $\mathrm{mg} / \mathrm{L}$ by $10^{6} / 10^{6}$ )
$2 \mathrm{~kg} / \mathrm{ML} \times 5 \mathrm{ML}=10 \mathrm{~kg}$ of chlorine
6. $\mathrm{lb} / \mathrm{d}=$ concentration in $\mathrm{ppm} \times$ flow rate in $\mathrm{mgd} \times 8.34$
$\mathrm{lb} / \mathrm{d}=0.5 \mathrm{ppm} \times 25 \mathrm{mil}$ gal/d $\times(8.34 \mathrm{lb} / \mathrm{mil}$ gal $) /(1 \mathrm{ppm}) \sim 100 \mathrm{lb} / \mathrm{d}$
7. $0.005 \mathrm{mg} / 0.200 \mathrm{~L}=0.025 \mathrm{mg} / \mathrm{L}=25 \mu \mathrm{~g} / \mathrm{L}=25 \mathrm{ppb}$
8. $\mathrm{BOD}_{5}=14-6=8 \mathrm{mg} / \mathrm{L}$; there apparently is some organic material in the stream, but it is not possible to determine if the organics are from decaying leaves and animal wastes or from sewage, from this one test alone.
9. We could say that the $\mathrm{BOD}_{5}$ of the stream is at least $14 \mathrm{mg} / \mathrm{L}$, but it could also be higher than that. Since this exceeds $10 \mathrm{mg} / \mathrm{L}$, it is likely that the stream is polluted with sewage.
10. $B O D_{t}=B O D_{L} \times\left(1-10^{-k t}\right\}$
(Equation 4-2)
Since $\mathrm{t}=5 \mathrm{~d}$ and $\mathrm{k}=0.15 / \mathrm{d}, \mathrm{kxt}=0.75$
$\mathrm{BOD}_{\mathrm{L}}=270 /\left(1-10^{-0.75}\right)=304 \approx 300 \mathrm{mg} / \mathrm{L}$
11. $\mathrm{BOD}_{5}=\left(\mathrm{DO}_{0}-\mathrm{DO}_{5}\right) \times 300 / \mathrm{V}$ (Equation 4-3)
$\mathrm{BOD}_{5}=(9.2-4.7) \times 300 / 5=270 \mathrm{mg} / \mathrm{L}$
$\mathrm{BOD}_{\mathrm{L}}=270 /\left(1-10^{-0.14 \times 5}\right)=337 \approx 340 \mathrm{mg} / \mathrm{L}$

12; $\mathrm{BOD}_{5}=280 \times\left(1-10^{-0.1 \times 5}\right)=190 \mathrm{mg} / \mathrm{L}$ (Eq. 4-2)

$$
\begin{array}{cc}
190=\left(9.0-D O_{5}\right) \times 300 / 5 \quad(\text { Eq. } 4-3) \\
\mathrm{DO}_{5}=9.0-(190 / 60)=9.9-3.2=5.8 \mathrm{mg} / \mathrm{L}
\end{array}
$$

13. $\operatorname{TDS}=(\mathrm{A}-\mathrm{B}) \times 1000 / \mathrm{C} \quad$ (Equation 4-4)

TDS $=(38845 \mathrm{mg}-38820 \mathrm{mg}) \times 1000 / 50 \mathrm{ml}=500 \mathrm{mg} / \mathrm{L}$
14. $T S S=(A-B) \times 1000 / C \quad$ (Equation 4-4)

TSS $=(580-545) \times 1000 / 100=350 \mathrm{mg} / \mathrm{L}$
$(560-545) /(580-545) \times 100=43 \%$ volatile solids
15. coliforms $/ 100 \mathrm{~mL}=22 \times 100 / 10=220$ per 100 mL
16. From Table 4.4, the MPN of this sample $=120$ per 100 ml

| (1) 123 | (8) 128 | (14) 133 | (21) 138 | (28) www.epa.gov/owow/iakes/lakes.htm/ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (2) 124 | (9) 129 | (15) 134 | (22) | 140 | (29) www.epa.gov/owow/estuaries/about1.html |
| (3) 124 | (10) 130 | (16) 135 | (23) | 140 | (30) www.epa.gov/owowwtr1 |
| (4) 125 | (11) 130 | (17) 135 | (24) | 141 | (31) www.envirosources.com |
| (5) 126 | (12) 132 | (18) 136 | (25) | 142 |  |
| (6) 126 | (13) 132 | (19) 138 | (26) 143 |  |  |
| (7) 127 |  | (20) 138 | (27) www.epa.gov/iwi |  |  |

Solutions to Practice Problems

1. $c_{d}=\left(c_{s} Q_{s}+c_{w} Q_{w}\right) /\left(Q_{s}+Q_{w}\right)$
(Equation 5-1)
TDS $=(100 \times 6+500 \times 1.5) /(6+1.5)=177 \approx 180 \mathrm{mg} / \mathrm{L}$
2. $c_{d}=\left(c_{s} Q_{s}+c_{W} Q_{w}\right) /\left(Q_{s}+Q_{w}\right)$
(Equation 5-1)
$10=\left(3 \times Q_{s}+100 \times 1.5\right) /\left(Q_{s}+1.5\right)$
$10 Q_{\mathrm{s}}+15=3 \mathrm{Q}_{\mathrm{s}}+150 \quad \mathrm{Q}_{\mathrm{s}}=135 / 7=19.3 \approx 20 \mathrm{ML} / \mathrm{d}$
3. $D_{i}=11-8=3 \mathrm{mg} / \mathrm{L}$; with Equation $5-2$, find critical time as follows:
$\mathrm{t}_{\mathrm{c}}=\{1 /(0.4-0.1)\} \times \log \{(0.4 / 0.1) \times(1-3 \times(0.4-0.1) /(0.1 \times 25))\}=$ $(1 / 0.3) \times \log \{4 \times(1-0.36)\}=(1 / 0.3) \times \log 2.56=1.36$ days
Using Equation 5-3, solve for the critical oxygen deficit:

$$
\begin{aligned}
\mathrm{D}_{\mathrm{c}} & =(0.1 \times 25 / 0.4-0.1) \times\left\{10^{-0.1 \times 1.36}-10^{-0.4 \times 1.36}\right\}+3 \times 10^{-0.4 \times 1.36} \\
& =8.33 \times 0.455+3 \times 0.286=4.6 \mathrm{mg} / \mathrm{L} ; \mathrm{DO}_{\min }=11-4.6=6.4 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

4. $\mathrm{BOD}_{5}=(6 \times 16+28 \times 4) /(16+4)=10.4 \mathrm{mg} / \mathrm{L}($ Equation $5-1)$

From Equation 4-2, $10.4=\mathrm{BOD}_{\mathrm{L}} \times\left(1-10^{-0.1 \times 5}\right)$;
Solve for the ultimate BOD: $\mathrm{BOD}_{\mathrm{L}}=10.4 / 0.68337=15.2 \mathrm{mg} / \mathrm{L}$
Compute the initial DO level and the DO deficit below the mixing zone:
$\mathrm{DO}=(7 \times 16+2 \times 4) /(16+4)=6.0 \mathrm{mg} / \mathrm{L} ; \mathrm{DO}_{\mathrm{i}}=10.0-6.0=4.0 \mathrm{mg} / \mathrm{L}$
Compute the critical time, using Equation 5-2:
$\mathrm{t}_{\mathrm{c}}=1 /(0.3-0.1) \times \log \{(0.3 / 0.1) \times(1-4.0 \times(0.3-0.1) /(0.1 \times 15.2)\}=0.7631 \mathrm{~d}$
4. (continued)

Compute the critical oxygen deficit, using Equation 5-3:
$D_{c}=\left(0.1 \times 15.2 /(0.3-0.1) \times\left\{10^{-0.1 \times 0.7631}-10^{-0.3 \times 0.7631}\right\}\right.$
$+4 \times 10^{-0.3 \times 0.7631}=7.6 \times 0.279+4 \times 0.590=4.5 \mathrm{mg} / \mathrm{L}$
Minimum DO $=10.0-4.5=5.5 \mathrm{mg} / \mathrm{L}$
Distance downstream where the minimum DO occurs:
Distance $=$ velocity $\times$ time $=0.1 \mathrm{~m} / \mathrm{s} \times 0.7631 \mathrm{~d} \times 24 \mathrm{~h} / \mathrm{d} \times 3600 \mathrm{~s} / \mathrm{h}$ $=6593 \mathrm{~m} \approx 6.6 \mathrm{~km}$
5. $\mathrm{DO}=(3 \times 6+10 \times 30) /(6+30)=318 / 36=8.8 \mathrm{mg} / \mathrm{L}$
6. $\mathrm{BOD}_{5}=(2 \times 30+10 \times 5) /(2+10)=110 / 12=9.17 \mathrm{mg} / \mathrm{L} \quad$ Eq. $5-1$

From Equation 4-2, $9.17=B O D_{\mathrm{L}} \times\left(1-10^{-0.1 \times 5}\right)$;
Solve for the ultimate $\mathrm{BOD}: \mathrm{BOD}_{\mathrm{L}}=9.17 / 0.68337=13.4 \mathrm{mg} / \mathrm{L}$
Compute the initial DO level and the DO deficit below the mixing zone:
$\mathrm{DO}=(3 \times 2+9 \times 10) /(2+10)=8.0 \mathrm{mg} / \mathrm{L} ; \mathrm{DO}_{\mathrm{i}}=12.0-8.0=4.0 \mathrm{mg} / \mathrm{L}$
Compute the critical time, using Equation 5-2:

$$
\begin{aligned}
\mathrm{t}_{\mathrm{c}}= & 1 /(0.3-0.1) \times \log \{(0.3 / 0.1) \times(1-4.0 \times(0.3-0.1) /(0.1 \times 13.4)\}=0.412 \mathrm{~d} \\
& 9.89 \mathrm{~h} \approx 10 \mathrm{~h}
\end{aligned}
$$

Compute the critical oxygen deficit, using Equation 5-3:
$D_{c}=\left(0.1 \times 13.4 /(0.3-0.1) \times\left\{10^{-0.1 \times 0.412}-10^{-0.3 \times 0.412}\right\}\right.$
$+4 \times 10^{-0.3 \times 0.412}=1.053+3.01=4.1 \mathrm{mg} / \mathrm{L}$
Minimum DO = 12.0-4.1 = $7.9 \mathrm{mg} / \mathrm{L}$
Distance downstream where the minimum DO occurs:
Distance $=$ velocity $\times$ time $=20 \mathrm{ft} / \mathrm{min} \times 9.89 \mathrm{~h} 1 / 60 \mathrm{~h} / \mathrm{min} \times 3600 \mathrm{~s} / \mathrm{h}$ $=11,868 \mathrm{ft} \approx 2.2$ miles

## CHAPTER 6 DRINKING WATER PURIFICATION

## Review Question Page References

(1) 150
(9) 159
(17) 164
(25) 169
(33) 176
(2) 150
(10) 158
(18) 164
(26) 170
(34) www.idadesa.org/pdf/ABCs1.pdf
(3) *
(11) 160
(19) 166
(27) 171
(4) 151
(12) 160
(20) 167
(28) 175
(5) 151
(13) 161
(21) 166
(29) 174
(6) 151
(14) 161
(22) 168
(30) 174
(7) 155
(15) 161
(23) 168
(31) 175
(8) 157
(16) 163
(24) 168
(32) 175
(36) www.epa.gov/ogwdw/pwsinv.html
(37) www.envirosources.com

* Community systems are public systems that serve year-round residents while noncommunity systems serve travelers or intermittent users (e.g., camping sites and motels).


## Solutions to Practice Problems

1. Tank volume $V=\pi(50)^{2} / 4 \times 9 \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=132,183 \mathrm{gal}$

Eq. 6-1: detention time $T_{D}=V / Q=132,183 \mathrm{gal} / 15,000 \mathrm{gal} / \mathrm{d} \approx 8.8 \mathrm{~d}$
(This is an unrealistic time for practical purposes. Typical detention times are about 2 h .)
2. From Eq. $6-1, V=T_{D} \times Q=3 \mathrm{~h} \times(1 \mathrm{~d} / 24 \mathrm{~h}) \times 10 \mathrm{ML} / \mathrm{d}=1.25 \mathrm{ML}$
$\mathrm{V}=1.25 \mathrm{ML}=\left(1.25 \times 10^{6} \mathrm{~L}\right) \times\left(1 \mathrm{~m}^{3} / 1000 \mathrm{~L}\right)=1250 \mathrm{~m}^{3}$
$S W D=1250 \mathrm{~m}^{3} /(10 \times 25) \mathrm{m}^{2}=5 \mathrm{~m}$
3. $V_{O}=500 \mathrm{gal} / \mathrm{d} \mathrm{ft}^{2} \times 1 \mathrm{ft}^{3} / 7.48 \mathrm{gal}=66.8 \mathrm{ft} / \mathrm{d}$ $66.8 \mathrm{ft} / \mathrm{d} \times 1 \mathrm{~d} / 24 \mathrm{~h} \times 1 \mathrm{~h} / 60 \mathrm{~m} \times 12 \mathrm{in} . / \mathrm{ft} \approx 0.5 \mathrm{in} . / \mathrm{min}$
4. Eq. $6-1: V=T_{D} \times Q=3 \mathrm{~h} \times 2 \mathrm{mil} \mathrm{gal} / \mathrm{d} \times 1 \mathrm{~d} / 24 \mathrm{~h}=0.25 \mathrm{mil} \mathrm{gal}$
$V=250,000 \mathrm{gal} \times 1 \mathrm{ft}^{3} / 7.48 \mathrm{gal}=33,400 \mathrm{ft}^{3}$
From Eq. 6-2: $A_{S}=Q / V=2,000,000 / 800=2500 \mathrm{ft}^{2}$
Since $A=\pi D^{2} / 4$, we get diameter $D=\sqrt{ } 4 A / \pi$ and
$D=\sqrt{ } 4 \times 2500 / \pi=56.4 \mathrm{ft} ; S W D=33,400 / 2500=13.4 \mathrm{ft}$


[^0]:    Copyright © 2008 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.
    Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department.

    Pearson Prentice Hall ${ }^{\text {TM }}$ is a trademark of Pearson Education, Inc.
    Pearson ${ }^{\circledR}$ is a registered trademark of Pearson plc
    Prentice Hall ${ }^{\circledR}$ is a registered trademark of Pearson Education, Inc.

    Instructors of classes using Nathanson, Basic Environmental Technology, Fifth Edition, may reproduce material from the instructor's manual for classroom use.

