CHAPTER 2 - HYDRAULICS

Review Question Page References

(1) 24	(8) 30	(15) 42
(2) 24	(9) 31	(16) 44
(3) 25	(10) 32	(17) 44
(4) 25	(11) 33	(18) 44
(5) 27	(12) 35	(19) 45
(6) 28	(13) 36	(20) 45
(7) 30	(14) 40-42	(21) 46
		(22) www.iihr.uiowa.edu/researd

Solutions to Practice Problems

- P = 0.43 x h (Equation 2-2b)
 P = 0.43 x 50 ft = 22 psi at the bottom of the reservoir
 P = 0.43 x (50 -30) = 0.43 x 20 ft = 8.6 psi above the bottom
- 2. $h = 0.1 \times P = 0.1 \times 50 = 5 \text{ m}$ (Equation 2-3a)
- 3. Depth of water above the valve: h = (78 m 50 m) + 2 m = 30 m P = 9.8 x + 6 = 9.8 m = 100 mP = 9.8 m = 100 m
- 4. h = 2.3 x P = 2.3 x 50 = 115 ft, in the water main h = 115 - 40 = 75 ft P = 0.43 x 75 = 32 psi, 40 ft above the main (Equation 2-2b)
- 5. Gage pressure P = $30 + 9.8 \times 1 = 39.8 \text{ kPa} \approx 40 \text{ kPa}$ Pressure head (in tube) = $0.1 \times 40 \text{ kPa} = 4 \text{ m}$
- 6. Q= A x V (Eq. 2-4), therefore V = Q/A A = $\pi D^2/4 = \pi (0.3)^2/4 = 0.0707 \text{ m}^2$ 100L/s x 1 m³/1000L=0.1 m³/s V = 0.1 m³/s 0.707m² = 1.4 m/s
- 7. Q = (500 gal/min) x (1 min/60 sec) x (1 ft³/7.5 gal) = 1.11 cfs A = Q/V (from Eq. 2-4) A = 1.11 ft³/sec /1.4 ft/sec = 0.794 ft² A = π D²/4, therefore D = $\sqrt{4}$ A/ π = $\sqrt{(4)(0.794)}/\pi$ = 1 ft = 12 in.
- 8. Q=A1 x V1 = A2 x V2 (Eq.2-5) Since A = $\pi D^2/4$, we can write $D_1^2 x V_1 = D_2^2 x V_2$ and $V_2 = V_1 x (D_1^2/D_2^2)$ In the constriction, $V_2 = (2 \text{ m/s}) x (4) = 8 \text{ m/s}$

```
9. Area of pipe A = \pi (0.3)^2/4 = 0.0707 \text{ m}^2
     Area of pipe B = \pi(0.1)^2/4 = 0.00785 \text{ m}^2
     Area of pipe C= \pi(0.2)^2/4 = 0.03142 \text{ m}^2
    Q_A = Q_B + Q_C = 0.00785 \text{ m}^2 \text{ x 2 m/s} + 0.03142 \text{ m}^2 \text{ x 1 m/s}
           = 0.04712 m<sup>3</sup>/s (from continuity of flow: Q_{IN} = Q_{OUT})
           V_A = Q_A/A_A = 0.4712/0.0707 \approx 0.67 \text{ m/s} \text{ (from Eq. 2-4)}
10. p_1/w + V_1^2/2g = p_2/W + V_2^2/2g
                                                 (Eq.2-8)
       A_1 = \pi (1.33)^2 / 4 = 1.4 \text{ ft}^2
                                                          A_2 = \pi (0.67)^2/4 = 0.349 \text{ ft}^2
       V_1 = 6/1.4 = 4.29 \text{ ft/sec}
                                                          V_2 = 6/0.349 = 17.2 \text{ ft/sec}
       w = 62.4 \text{ lb/ft}^3 \text{ and } g = 32.2 \text{ ft/sec}^2
       From Eq. 2-8, and multiplying psi x 144 in<sup>2</sup>/ft<sup>2</sup> to get lb/ft<sup>2</sup>
        50(144)/62.4 + 4.29^{2}/2(32.2) = p_{2}(144)/62.4 + 17.2^{2}/2(32.2)
        115.38 + 0.28578 = 2.3076p_2 + 4.5937
        p_2 = 111.07 / 2.307 \approx 48 \text{ psi}
11. p_1/w + v_1^2/2q = p_2/w + v_2^2/2q
                                                 (Eq.2-8)
       A_1 = \pi (0.300)^2 / 4 = 0.0707 \text{ m}^2 A_2 = \pi (0.1 \ 00)^2 / 4 = 0.00785 \text{ m}^2
       Q = 50 \text{ L/s } \times 1 \text{ m}^3/1000 \text{ L} = 0.05 \text{ m}^3/\text{s}
       V_1 = 0.05/0.0707 = 0.70721 m/sec V_2 = 0.05/0.00785 = 6.369 m/sec
        w = 9.81 \text{ kN/m}^3 and q = 9.81 \text{ m/s}^2; From Eq. 2-8,
        700/2(9.81) + 0.70721^{2}/2(9.81) = p_{2}/2(9.81) + 6.369^{2}/2(9.81)
        35.67789 + 0.02549 = 0.05097p_2 + 2.06775 and p_2 = 660 kPa
12. From Figure 2.15, with Q = 200 L/s and D = 600 mm, read S = 0.0013. Therefore h_L = S \times L =
       0.0013 \times 1000 \text{ m} = 1.3 \text{ m}
       Pressure drop p = 9.8 \times 1.3 \approx 12.7 \approx 13 \text{ kPa per km}
13. h_L = 2.3 \times 20 = 46 \text{ ft} and S = 46/5280 = 0.0087 \text{ (where 1 mi} = 5280 \text{ ft)}
       From Figure 2.15, with Q = 1000 gpm and S = 0.0087, read D = 10.3 in.
       Use a 12 in. standard diameter pipe
14. S = 10/1000 = 0.01
       From the nomograph (Figure 2.15) read Q \approx 100 \text{ L/s} = 0.1 \text{ m}^3/\text{s}
      Check with Eq. 2-9: Q = 0.28 \times 100 \times 0.3^{2.63} \times 0.01^{0.54} \approx 0.1 \text{ m}^3/\text{s OK}
15. Use (Eq. 2-10): Q = C \times A_2 \times \{(2g(p_1 - p_2)/w)/(1 - (A_2/A_1)^2)^{1/2}\}
       where A_1 = \pi(6)^2/4 = 28.27 in and A_2 = \pi(3)^2/4 = 7.07 in
       g = 32.2 \text{ ft/s}^2 = 386.4 \text{ in/s}^2
```

 $W = 62.4 \text{ lb/ft}^3 \times 1 \text{ ft}^3/12^3 \text{ in}^3 = 0.0361 \text{ lb/in}^3$

```
Q = 0.98 x 7.07 x {(2(386.4)(10)/0.0361)1(1 - (7.07/28.27)^2)} <sup>1/2</sup> Q= 0.98 x 7.07 x \sqrt{228,354} = 3311 in<sup>3</sup>/s = 1.9 cfs ≈ 2 cfs
```

- 16. Use (Eq. 2-10): Q = C x A₂ x { $(2g(p_1 p_2)/w)/(1 (A_2/A_1)^2)$ } $^{1/2}$ A₁= $\pi(0.15)^2/4 = 0.01767$ m² and A₂ = $\pi(0.075)^2/4 = 0.00442$ m² g = 9.81 m/s² w = 9.81 kN/m³ $1 (A_2/A_1)^2 = 1 (0.00442/0.01767)^2 = 0.93743$ Q = 0.98 x 0.00442 x {(2(9.81)(100)/9.81)/0.93743} $^{1/2}$ = 0.063 m³/s (or, Q = 0.063 m³/s x 1000 L/m³ = 63 L/s)
- 17. Use Manning's nomograph (Figure 2.21): With D = 800 mm = 80 cm, n=0.013 and S = 0.2% = 0.002, read Q= $0.56 \text{ m}^3\text{/s} = 560 \text{ L/s}$ and V = 1.17 m/s
- 18. S = 1.5/1000 = 0.015; from Fig. 2.21, Q \approx 1800 gpm and V \approx 2.3 ft/s
- 19. Q= 200 L/s = 0.2 m³/s; from Fig. 2.21, D \approx 42 cm; Use 450 mm pipe
- 20. Q = 7 mgd = 7,000,000 gal/day x 1 day/1440 min \approx 4900 gpm From Fig. 2.21, with n=0.013, D=36 in and Q=4900 gpm: S = 0.00027, V = 1.54 ft/s Since 1.54 ft/s is less than the minimum self-cleansing velocity of 2 ft/s, it is necessary to increase the slope of the 36 in pipe. From Fig. 2.21, with 36 in and 2 ft/s: S = 0.00047 = 0.047% = 0.05%
- 21. For full-flow conditions, with D = 300 mm and S = 0.02, read from

Fig. 2.21: Q = 0.135 m³/s = 135 L/s and V = 2m/s q/Q =
$$50/135 = 0.37$$
 From Fig. 2.22, d/D = 0.42 and v/V = 0.92 Depth at partial flow d = $0.42 \times 300 = 126$ mm ≈ 130 mm Velocity at partial flow v = $0.92 \times 2 \approx 1.8$ m/s

- 22. For full-flow conditions, from Fig. 2.21 read Q = 1800 gpm. From Fig. 2.22, the maximum value of q/Q = 1.08 when d/D = 0.93. Therefore, the highest discharge capacity for the 18" in pipe, $q_{max} = 1800 \times 1.08 \approx 1900$ gpm, would occur at a depth of $d = 18 \times 0.93 \approx 17$ in.
- 23. For full-flow conditions, from Fig. 2.21 read Q = 0.55 m³/s = 550 L/s. From Fig.2.22, the maximum value of v/V = 1.15 when d/D = 0.82. Therefore, the highest flow velocity for the 900 mm pipe, $v_{max} = 0.9 \times 1.15 \approx 1$ m/s, would occur at a depth of d = 900 x 0.82 \approx 740 mm. When the flow occurs at that depth, q/Q = 1.05 and the discharge q = 580 L/s
- 24. S = 0.5/100 = 0.005For full-flow conditions, Q = 0.44 m³/s = 440 L/s and V = 1.6 m/s Since d/D = 200/600 = 0.33, from Fig. 2.22 q/Q = 0.23 and v/V = 0.8 Therefore, q = 440 x $0.23 \approx 100$ L/s and v = 1.6 x $0.8 \approx 1.3$ m/s

25.
$$Q = A \times V = 2 \times 0.75 \times 25/75 = 0.5 \text{ m}^3/\text{s} = 500 \text{ L/s}$$

- 26. From Eq. 2-12, $Q = 2.5 \times (4/12)^{2.5} = 0.16 \text{ cfs}$
- 27. 150 mm x 1 in/25.4 mm x 1 ft/12 in = 0.492 ft From Eq. 2-12, Q = 2.5 x $(0.492)^{2.5}$ = 0.425 cfs x 28.32 L/ft³ ≈ 12 L/s
- 28. From Eq. 2-13, Q = 3.4 x (20/12) x (10/12)^{1.5} = 4.3 cfs \approx 120 L/s