## Chapter 2

## Geometry

### 2.1 Lines and Angles

1. 

$\angle A B E=90^{\circ}$ because it is a vertically opposite angle to $\angle C B D$ which is also a right angle.
2.

Angles $\angle P O R$ and $\angle Q O R$ are complementary angles, so sum to $90^{\circ}$

$$
\begin{aligned}
\angle P O R+\angle Q O R & =90^{\circ} \\
32^{\circ}+\angle Q O R & =90^{\circ} \\
\angle Q O R & =90^{\circ}-32^{\circ} \\
\angle Q O R & =58^{\circ}
\end{aligned}
$$

3. 

4 pairs of adjacent angles:
$\angle B O C$ and $\angle C O A$ share common ray $O C$
$\angle C O A$ and $\angle A O D$ share common ray $O A$
$\angle A O D$ and $\angle D O B$ share common ray $O D$
$\angle D O B$ and $\angle B O C$ share common ray $O B$
4.

(a) Using Eq. (2.1), we have

$$
\begin{aligned}
\frac{775}{565} & =\frac{x}{655} \\
x & =\frac{775(655)}{565} \\
x & =898 \mathrm{~mm}(\text { the same answer as Example 5) }
\end{aligned}
$$

(b) More vertical, since the distance along the beam is longer for the same horizontal run, which can only be achieved if the angle increases from horizontal (see sketch).
5.
$\angle E B D$ and $\angle D B C$ are acute angles (i.e., $<90^{\circ}$ ) .
6.
$\angle A B E$ and $\angle C B E$ are right angles (i.e., $=90^{\circ}$ ) .
7.
$\angle A B C$ is a straight angle (i.e., $=180^{\circ}$ ).
8.
$\angle A B D$ is an obtuse angle (i.e., between $90^{\circ}$ and $180^{\circ}$ ).
9.

The complement of $\angle C B D=65^{\circ}$ is $\angle D B E$

$$
\begin{aligned}
\angle C B D+\angle D B E & =90^{\circ} \\
65^{\circ}+\angle D B E & =90^{\circ} \\
\angle D B E & =90^{\circ}-65^{\circ} \\
\angle D B E & =25^{\circ}
\end{aligned}
$$

10. 

The supplement of $\angle C B D=65^{\circ}$ is $\angle A B D$

$$
\begin{aligned}
\angle C B D+\angle A B D & =180^{\circ} \\
65^{\circ}+\angle A B D & =180^{\circ} \\
\angle A B D & =180^{\circ}-65^{\circ} \\
\angle A B D & =115^{\circ}
\end{aligned}
$$

11. 

Sides $B D$ and $B C$ are adjacent to $\angle D B C$.
12.

The angle adjacent to $\angle D B C$ is $\angle D B E$ since they share the common side BD , and $\angle D B E$ is acute because it is less than $90^{\circ}$
13.
$\angle A O B=\angle A O E+\angle E O B$
but $\angle A O E=90^{\circ}$ because it is vertically opposite to $\angle D O F$ a given right angle,
and $\angle E O B=50^{\circ}$ because it is vertically opposite to $\angle C O F$ a given angle of $50^{\circ}$, so $\angle A O B=90^{\circ}+50^{\circ}=140^{\circ}$
14.
$\angle A O C$ is complementary to $\angle C O F$ a given angle of $50^{\circ}$,
$\angle A O C+\angle C O F=90^{\circ}$
$\angle A O C+50^{\circ}=90^{\circ}$
$\angle A O C=90^{\circ}-50^{\circ}$
$\angle A O C=40^{\circ}$
15.
$\angle B O D$ is vertically opposite to $\angle A O C$ a found angle of $40^{\circ}$ (see Question 14), so
$\angle B O D=\angle A O C$
$\angle B O D=40^{\circ}$
16.
$\angle 1$ is supplementary to $145^{\circ}$, so
$\angle 1=180^{\circ}-145^{\circ}=35^{\circ}$
$\angle 2=\angle 1=35^{\circ}$
$\angle 3$ is supplementary to $\angle 2$, so
$\angle 3=180^{\circ}-\angle 2$
$\angle 3=180^{\circ}-35^{\circ}$
$\angle 3=145^{\circ}$
17.
$\angle 1$ is supplementary to $145^{\circ}$, so
$\angle 1=180^{\circ}-145^{\circ}=35^{\circ}$
$\angle 2=\angle 1=35^{\circ}$
$\angle 4$ is vertically opposite to $\angle 2$, so
$\angle 4=\angle 2$
$\angle 4=35^{\circ}$
18.
$\angle 1$ is supplementary to $145^{\circ}$, so
$\angle 1=180^{\circ}-145^{\circ}=35^{\circ}$
$\angle 2=\angle 1=35^{\circ}$
$\angle 5$ is supplementary to $\angle 2$, so
$\angle 5=180^{\circ}-\angle 2$
$\angle 5=180^{\circ}-35^{\circ}$
$\angle 5=145^{\circ}$
19.
$\angle 1=62^{\circ}$ since they are vertically opposite
20.
$\angle 1=62^{\circ}$ since they are vertically opposite
$\angle 2$ is a corresponding angle to $\angle 5$, so
$\angle 2=\angle 5$
since $\angle 1$ and $\angle 5$ are supplementary angles,
$\angle 5+\angle 1=180^{\circ}$
$\angle 2+\angle 1=180^{\circ}$
$\angle 2=180^{\circ}-\angle 1$
$\angle 2=180^{\circ}-62^{\circ}$
$\angle 2=118^{\circ}$
21.
$\angle 6=90-62^{\circ}$ since they are complementary angles
$\angle 6=28^{\circ}$
$\angle 3$ is an alternate-interior angle to $\angle 6$, so
$\angle 3=\angle 6$
$\angle 3=28^{\circ}$
22.
$\angle 3=28^{\circ}$ (see Question 21)
since $\angle 4$ and $\angle 3$ are supplementary angles,
$\angle 4+\angle 3=180^{\circ}$
$\angle 4=180^{\circ}-\angle 3$
$\angle 4=180^{\circ}-28$
$\angle 4=152^{\circ}$
23.
$\angle E D F=\angle B A D=44^{\circ}$ because they are corresponding angles
$\angle B D E=90^{\circ}$
$\angle B D F=\angle B D E+\angle E D F$
$\angle B D F=90^{\circ}+44^{\circ}$
$\angle B D F=134^{\circ}$
24.
$\angle C B E=\angle B A D=44^{\circ}$ because they are corresponding angles
$\angle D B E$ and $\angle C B E$ are complementary so

$$
\begin{aligned}
\angle D B E+\angle C B E & =90^{\circ} \\
\angle D B E & =90^{\circ}-\angle C B E \\
\angle D B E & =90^{\circ}-44^{\circ} \\
\angle D B E & =46^{\circ} \\
\text { and } \angle A B E & =\angle A B D+\angle D B E \\
\angle A B E & =90^{\circ}+46^{\circ} \\
\angle A B E & =136^{\circ}
\end{aligned}
$$

25. 

$\angle C B E=\angle B A D=44^{\circ}$ because they are corresponding angles
$\angle D E B$ and $\angle C B E$ are alternate interior angles, so
$\angle D E B=\angle C B E$
$\angle D E B=44^{\circ}$
26.

$$
\begin{aligned}
\angle C B E= & \angle B A D=44^{\circ} \text { because they are corresponding angles } \\
& \angle D B E \text { and } \angle C B E \text { are complementary so }
\end{aligned}
$$

$$
\begin{aligned}
\angle D B E+\angle C B E & =90^{\circ} \\
\angle D B E & =90^{\circ}-\angle C B E \\
\angle D B E & =90^{\circ}-44^{\circ} \\
\angle D B E & =46^{\circ}
\end{aligned}
$$

27. 

$\angle E D F=\angle B A D=44^{\circ}$ because they are corresponding angles
Angles $\angle A D B, \angle B D E$, and $\angle E D F$ make a straight angle

$$
\begin{aligned}
\angle A D B+\angle B D E+\angle E D F & =180^{\circ} \\
\angle A D B & =180^{\circ}-\angle B D E-\angle E D F \\
\angle A D B & =180^{\circ}-90^{\circ}-44^{\circ} \\
\angle A D B & =46^{\circ} \\
\angle D F E & =\angle A D B \text { because they are corresponding angles } \\
\angle D F E & =46^{\circ}
\end{aligned}
$$

28. 

$\angle A D E=\angle A D B+\angle B D E$
$\angle A D B=46^{\circ}$ (see Question 27)
$\angle B D E=90^{\circ}$
$\angle A D E=46^{\circ}+90^{\circ}$
$\angle A D E=136^{\circ}$
29. Using Eq. (2.1),

$$
\frac{a}{4.75}=\frac{3.05}{3.20}
$$

$a=4.75 \cdot \frac{3.05}{3.20}$
$a=4.53 \mathrm{~m}$
30. Using Eq. (2.1),

$$
\begin{aligned}
\frac{b}{6.25} & =\frac{3.05}{3.20} \\
b & =6.25 \cdot \frac{3.05}{3.20} \\
b & =5.96 \mathrm{~m}
\end{aligned}
$$

31. Using Eq. (2.1),

$$
\begin{aligned}
\frac{c}{3.20} & =\frac{5.05}{4.75} \\
c & =\frac{(3.20)(5.05)}{4.75} \\
c & =3.40 \mathrm{~m}
\end{aligned}
$$

32. Using Eq. (2.1),
$\frac{d}{6.25}=\frac{5.05}{4.75}$

$$
\begin{aligned}
& d=\frac{(6.25)(5.05)}{4.75} \\
& d=6.64 \mathrm{~m}
\end{aligned}
$$

33. 

$$
\angle B C E=47^{\circ} \text { since those angles are alternate interior angles. }
$$

$\angle B C D$ and $\angle B C E$ are supplementary angles

$$
\begin{aligned}
\angle B C D+\angle B C E & =180^{\circ} \\
\angle B C D & =180^{\circ}-47^{\circ} \\
\angle B C D & =133^{\circ}
\end{aligned}
$$

34. 



$$
\angle C O E=34^{\circ}
$$

$\angle C O D$ is a straight angle, so
the total angle between the reflected
and refracted beams, $\angle E O F$ is

$$
\begin{aligned}
\angle C O E+\angle E O F+\angle D O F & =180^{\circ} \\
34^{\circ}+\angle E O F+12^{\circ} & =180^{\circ} \\
\angle E O F & =180^{\circ}-46^{\circ} \\
\angle E O F & =134^{\circ}
\end{aligned}
$$

This angle is a reflex angle.
35. Using Eq. (2.1),

$$
\begin{aligned}
\frac{x}{825} & =\frac{555}{519} \\
x & =\frac{(825)(555)}{519} \\
x & =882 \mathrm{~m}
\end{aligned}
$$

36. Using Eq. (2.1),
$\frac{A B}{3}=\frac{B C}{2}=$
$A B=\frac{3(2.15)}{2}$
$A B=3.225 \mathrm{~cm}$
$A C=A B+B C$
$A C=3.225 \mathrm{~cm}+2.15 \mathrm{~cm}$
$A C=5.375 \mathrm{~cm}$
$A C=5.38 \mathrm{~cm}$
37. 

$\angle 1+\angle 2+\angle 3=180^{\circ}$, because $\angle 1, \angle 2$, and $\angle 3$ form a straight angle.
38.
$\angle 1=\angle 4$ since they are alternate interior angles
$\angle 3=\angle 5$ since they are alternate interior angles
$\angle 1+\angle 2+\angle 3=180^{\circ}$, because $\angle 1, \angle 2$, and $\angle 3$ form a straight angle, so $\angle 4+\angle 2+\angle 5=180^{\circ}$
39.

The sum of the angles with vertices at $A, B$, and $D$ is $180^{\circ}$.
Since those angles are unknown quantities, the sum of interior angles in a closed triangle is $180^{\circ}$.
40.

$\angle 1+\angle 2+\angle 3=180^{\circ}$ since those angles form a straight angle $\angle 1=\angle 4$ since they are alternate interior angles
$\angle 4+\angle 2+\angle 3=180^{\circ}$
$\angle 5+\angle 6+\angle 7=180^{\circ}$ since those angles form a straight angle
$\angle 7$ alternate interior angle is shown
For the interior angles of the closed geometric figure ABCD ,

$$
\begin{aligned}
& \text { sum }=\angle 4+(\angle 2+\angle 3)+\angle 7+(\angle 5+\angle 6) \\
& \text { sum }=\angle 4+\angle 2+\angle 3+\angle 5+\angle 6+\angle 7 \\
& \text { sum }=180^{\circ}+180^{\circ} \\
& \text { sum }=360^{\circ}
\end{aligned}
$$

### 2.2 Triangles

1. 

$$
\angle 5=45^{\circ}
$$

$\angle 3=45^{\circ}$ since $\angle 3$ and $\angle 5$ are alternate interior angles.
$\angle 1, \angle 2$, and $\angle 3$ make a stright angle, so

$$
\begin{array}{r}
\angle 1+\angle 2+\angle 3=180^{\circ} \\
70^{\circ}+\angle 2+45^{\circ}=180^{\circ}
\end{array}
$$

$$
\angle 2=65^{\circ}
$$

2. 

$A=\frac{1}{2} b h$
$A=\frac{1}{2}(61.2)(5.75)$
$A=176 \mathrm{~cm}^{2}$
3.
$A C^{2}=A B^{2}+B C^{2}$
$A C^{2}=6.25^{2}+3.20^{2}$
$A C=\sqrt{6.25^{2}+3.20^{2}}$
$A C=7.02 \mathrm{~m}$
4. Using Eq. (2.1),

$$
\begin{aligned}
\frac{h}{3.00} & =\frac{24.0}{4.00} \\
h & =\frac{(3.00)(24.0)}{4.00} \\
h & =18.0 \mathrm{~m}
\end{aligned}
$$

5. 

$$
\begin{aligned}
\angle A+\angle B+\angle C & =180^{\circ} \\
\angle A+40^{\circ}+84^{\circ} & =180^{\circ} \\
\angle A & =56^{\circ}
\end{aligned}
$$

6. 

$\angle A+\angle B+\angle C=180^{\circ}$
$\angle A+48^{\circ}+90^{\circ}=180^{\circ}$
$\angle A=42^{\circ}$
7.

This is an isosceles triangle, so the base angles are equal.

$$
\begin{aligned}
\angle B & =\angle C=66^{\circ} \\
\angle A+\angle B+\angle C & =180^{\circ} \\
\angle A+66^{\circ}+66^{\circ} & =180^{\circ} \\
\angle A & =180^{\circ}-\left(66^{\circ}+66^{\circ}\right) \\
\angle A & =48^{\circ}
\end{aligned}
$$

8. 

This is an isosceles triangle, so the base angles are equal.

$$
\angle A=\angle B
$$

$\angle A+\angle B+\angle C=180^{\circ}$
$\angle A+\angle A+110^{\circ}=180^{\circ}$

$$
\begin{array}{r}
2 \angle A=70^{\circ} \\
\angle A=35^{\circ}
\end{array}
$$

9. 

$A=\frac{1}{2} b h$
$A=\frac{1}{2}(7.6)(2.2)$
$A=8.4 \mathrm{~m}^{2}$
10.
$A=\frac{1}{2} b h$
$A=\frac{1}{2}(16.0)(7.62)$
$A=61.0 \mathrm{~mm}^{2}$
11. By Hero's formula,
$p=205+322+415=942 \mathrm{~cm}$
$s=\frac{942}{2}=471 \mathrm{~cm}$
$A=\sqrt{s(s-a)(s-b)(s-c)}$
$A=\sqrt{471 \mathrm{~cm} \cdot(471-205) \mathrm{cm} \cdot(471-322) \mathrm{cm} \cdot(471-415) \mathrm{cm}}$
$A=\sqrt{471(266)(149)(56) \mathrm{cm}^{4}}$
$A=32300 \mathrm{~cm}^{2}$
12. By Hero's formula,
$p=86.2+23.5+68.4=178.1 \mathrm{~m}$
$s=\frac{178.1}{2}=89.05 \mathrm{~m}$
$A=\sqrt{s(s-a)(s-b)(s-c)}$
$A=\sqrt{89.05(89.05-86.2)(89.05-23.5)(89.05-68.4)}$
$A=586 \mathrm{~m}^{2}$
13.

One leg can represent the base, the other leg the height.
$A=\frac{1}{2} b h$
$A=\frac{1}{2}(3.46)(2.55)$
$A=4.41 \mathrm{~cm}^{2}$
14.

One leg can represent the base, the other leg the height.
$A=\frac{1}{2} b h$
$A=\frac{1}{2}(234)(343)$
$A=40100 \mathrm{~mm}^{2}$
15. By Hero's formula,
$s=\frac{p}{2}=\frac{0.986+0.986+0.884}{2} \mathrm{~m}=1.428 \mathrm{~m}$
$A=\sqrt{s(s-a)(s-b)(s-c)}$
$A=\sqrt{1.428(1.428-0.986)(1.428-0.986)(1.428-0.884)}$
$A=0.390 \mathrm{~m}^{2}$
16. By Hero's formula,
$s=\frac{3(322)}{2}=483 \mathrm{dm}$
$A=\sqrt{s(s-a)^{3}}$
$A=\sqrt{483(483-322)^{3}}$
$A=44900 \mathrm{dm}^{2}$
17. We add the lengths of the sides to get

$$
\begin{aligned}
& p=205+322+415 \\
& p=942 \mathrm{~cm}
\end{aligned}
$$

18. We add the lengths of the sides to get

$$
p=23.5+86.2+68.4
$$

$p=178.1 \mathrm{~m}$
19. We add the lengths of the sides to get $p=3(21.5)=64.5 \mathrm{~cm}$
20. We add the lengths of the sides to get

$$
p=2(2.45)+3.22=8.12 \mathrm{~mm}
$$

21. 

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c & =\sqrt{a^{2}+b^{2}} \\
c & =\sqrt{13.8^{2}+22.7^{2}} \\
c & =26.6 \mathrm{~mm}
\end{aligned}
$$

22. 

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c & =\sqrt{a^{2}+b^{2}} \\
c & =\sqrt{2.48^{2}+1.45^{2}} \\
c & =2.87 \mathrm{~m}
\end{aligned}
$$

23. 

$c^{2}=a^{2}+b^{2}$
$b=\sqrt{c^{2}-a^{2}}$
$b=\sqrt{551^{2}-175^{2}}$
$b=522 \mathrm{~cm}$
24.
$c^{2}=a^{2}+b^{2}$
$a=\sqrt{c^{2}-b^{2}}$
$a=\sqrt{0.836^{2}-0.474^{2}}$
$a=0.689 \mathrm{~km}$
25.

All interior angles in a triangle add to $180^{\circ}$

$$
\begin{aligned}
23^{\circ}+\angle B+90^{\circ} & =180^{\circ} \\
\angle B & =180^{\circ}-90^{\circ}-23^{\circ} \\
\angle B & =67^{\circ}
\end{aligned}
$$

26. 

$c^{2}=a^{2}+b^{2}$
$c=\sqrt{a^{2}+b^{2}}$
$c=\sqrt{38.4^{2}+90.5^{2}}$
$c=98.3 \mathrm{~cm}$
27.

Length $c$ is found in Question 26, $c=98.30977 \mathrm{~cm}$
$p=98.30977+90.5+38.4=227.2 \mathrm{~cm}$
28.
$A=\frac{1}{2} b h$
$A=\frac{1}{2}(90.5)(38.4)$
$A=1740 \mathrm{~cm}^{2}$
29.


$$
\begin{aligned}
\triangle A D C & \sim \triangle A^{\prime} D C^{\prime} \\
\angle D A^{\prime} C^{\prime} & =A / 2 \\
\angle B A^{\prime} D & =\angle \text { between bisectors }
\end{aligned}
$$

From $\triangle B A^{\prime} C^{\prime}$, and all angles in a triangle must sum to $180^{\circ}$

$$
\begin{aligned}
\frac{B}{2}+\left(\angle B A^{\prime} D+A / 2\right)+90^{\circ} & =180^{\circ} \\
\angle B A^{\prime} D & =90^{\circ}-\left(\frac{A}{2}+\frac{B}{2}\right) \\
\angle B A^{\prime} D & =90^{\circ}-\left(\frac{A+B}{2}\right)
\end{aligned}
$$

But $\triangle A B C$ is a right triangle, and all angles in a triangle must sum to $180^{\circ}$,
so $A+B=90^{\circ}$

$$
\angle B A^{\prime} D=90^{\circ}-\frac{90^{\circ}}{2}
$$

$$
\angle B A^{\prime} D=45^{\circ}
$$

30. 


$\angle A=\angle D$ since $\triangle A F D$ is isosceles.
Since $A F=F D(\triangle A F D$ is isosceles $)$ and since $B$ and $C$ are midpoints,
$A B=C D$
$A E=D E$ because $E$ is a midpoint of $A D$,
so if two of the three sides are identical, the last side is the same too.
so $\triangle A B E=\triangle E C D$
Therefore, $B E=E C$ from which it follows that the inner $\triangle B C E$ is isosceles.
Also, since $A B=C D=F B=F C$
$\triangle A B E=\triangle E C D=\triangle B F C=\triangle B C E$
and all four triangles are similar triangles to the original $\triangle A F D$
So, $\triangle B C E$ is also $1 / 4$ of the area of the original $\triangle A F D$.
31.

An equilateral triangle.
32.

Yes, if one of the angles of the triangle is obtuse.
For example, see $\triangle A B C$ below.

33.

$\angle A+\angle B=90^{\circ}$
$\angle 1+\angle B=90^{\circ}$
$\angle A=\angle 1$
redraw $\triangle B D C$ as

$\angle 1+\angle 2=90^{\circ}$
$\angle 1+\angle B=90^{\circ}$
$\angle 2=\angle B$
and $\triangle A D C$ as

$\triangle B D C$ and $\triangle A D C$ are similar.
34.


Comparing the original triangle to the two smaller triangles (see Question 33) shows that all three are similar.
35.
$\angle L M K$ and $\angle O M N$ are vertically opposite angles and thus equal.
Since each triangle has a right angle, the remaining angle in each triangle
must be the same.
$\angle K L M=\angle M O N$.
The triangles $\triangle M K L$ and $\triangle M N O$ have all the same angles, so therefore
the triangles are similar:
$\triangle M K L \sim \triangle M N O$
36.
$\angle A C B=\angle A D C=90^{\circ}$
$\angle D A C=\angle B A C$ since they share the common vertex $A$.
Since all angles in any triangle sum to $180^{\circ}$,
$\angle D C A=180-90-\angle B A C$,
$\angle A B C=180-90-\angle B A C$,
Therefore, all the angles in $\triangle A C B$ and $\triangle A D C$ are equivalent, so $\triangle A C B \sim \triangle A D C$
37.

$$
\begin{aligned}
K M & =K N-M N \\
K M & =15-9 \\
K M & =6 \\
\text { Since } \Delta M K L & \sim \Delta M N O \\
\frac{L M}{K M} & =\frac{O M}{M N} \\
\frac{L M}{6} & =\frac{12}{9} \\
L M & =\frac{(6)(12)}{9} \\
L M & =8
\end{aligned}
$$

38. 

Since $\triangle A D C \sim \triangle A C B$

$$
\begin{aligned}
\frac{A B}{A C} & =\frac{A C}{A D} \\
\frac{A B}{12} & =\frac{12}{9} \\
A B & =\frac{(12)(12)}{9} \\
A B & =16
\end{aligned}
$$

39. 


$\triangle A B C$ is isosceles,
so $\angle C A B=\angle C B A$
But all interior angles in a triangle sum to $180^{\circ}$
$\angle C A B+\angle C B A+50^{\circ}=180^{\circ}$
$2 \angle C A B=130^{\circ}$
$\angle C A B=65^{\circ}$
40.

But all interior angles in a triangle sum to $180^{\circ}$
angle between tower and wire $=180^{\circ}-90^{\circ}-52^{\circ}=38^{\circ}$

41.
$s=\frac{p}{2}=\frac{2(76.6)+30.6}{2}=91.9 \mathrm{~cm}$
By Hero’s formula,
$A=\sqrt{s(s-a)(s-b)(s-c)}$
$A=\sqrt{91.9(91.9-76.6)(91.9-76.6)(91.6-30.6)}$
$A=1150 \mathrm{~cm}^{2}$
42.
$s=\frac{p}{2}=\frac{3(1600)}{2}=2400 \mathrm{~km}$
By Hero's formula,
$A=\sqrt{s(s-a)(s-b)(s-c)}$
$A=\sqrt{2400(2400-1600)^{3}}$
$A=1,100,000 \mathrm{~km}^{2}$
43.

One leg can represent the base, the other leg the height.
$A=\frac{1}{2} b h$
$A=\frac{1}{2}(3.2)(6.0)$
$A=9.6 \mathrm{~m}^{2}$
44.
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{a^{2}+b^{2}}$
$c=\sqrt{750^{2}+550^{2}}$
$c=930 \mathrm{~m}$
45.


$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
b & =\sqrt{c^{2}-a^{2}} \\
b & =\sqrt{6.0^{2}-1.8^{2}} \\
b & =5.7 \mathrm{~m}
\end{aligned}
$$

46. 



On $\triangle A B O$
the idea that the side opposite the $30^{\circ}$ angle is half the hypotenuse gives
$A B=1.00 \mathrm{~m}$
Using Pythagorean theorem gives

$$
\begin{aligned}
A O^{2} & =A B^{2}+B O^{2} \\
B O & =\sqrt{A O^{2}-A B^{2}} \\
B O & =\sqrt{2^{2}-1^{2}} \\
B O & =\sqrt{3} \mathrm{~m}
\end{aligned}
$$

Using an identical technique on each successive triangle moving clockwise,
$B C=\frac{\sqrt{3}}{2} \mathrm{~m}$
$C O=\sqrt{3-\frac{3}{4}}$
$C O=1.50 \mathrm{~m}$
$C D=0.750 \mathrm{~m}$
$D O=\sqrt{1.50^{2}-(0.750)^{2}}$
$D O=1.30 \mathrm{~m}$
$D E=0.650 \mathrm{~m}$
$x=\sqrt{1.30^{2}-(0.650)^{2}}$
$x=1.125 \mathrm{~m}$
$x=1.12 \mathrm{~m}$
47.

A


Diagonal AB
$A B=\sqrt{18^{2}+12^{2}}=\sqrt{468} \mathrm{~m}$
Diagonal AC

$$
\begin{aligned}
& A C=\sqrt{A B^{2}+8^{2}} \\
& A C=\sqrt{468+64} \mathrm{~m} \\
& A C=\sqrt{532} \mathrm{~m} \\
& A C=23.1 \mathrm{~m}
\end{aligned}
$$

48. By Eq. (2.1),

$$
\begin{aligned}
\frac{45.6 \mathrm{~cm}}{x} & =\frac{1.20 \mathrm{~cm}}{1.00 \mathrm{~m}} \\
x & =\frac{45.6 \mathrm{~cm}(1.00 \mathrm{~m})}{1.20 \mathrm{~cm}} \\
x & =38.0 \mathrm{~m}
\end{aligned}
$$

49. 



By Eq. (2.1),

$$
\begin{aligned}
\frac{z}{4.5} & =\frac{1.2}{0.9} \\
z & =\frac{(4.5)(1.2)}{0.9} \\
z & =6.0 \mathrm{~m} \\
x^{2} & =z^{2}+4.5^{2} \\
x & =\sqrt{56.25} \mathrm{~m} \\
x & =7.5 \mathrm{~m} \\
y^{2} & =(1.2+6)^{2}+5.4^{2} \\
x & =\sqrt{81.0} \mathrm{~m} \\
y & =9.0 \mathrm{~m}
\end{aligned}
$$

50. 



$$
\begin{aligned}
w^{2} & =0.85^{2}+0.85^{2} \\
w & =\sqrt{1.445} \mathrm{~m} \\
w & =1.2 \mathrm{~m}
\end{aligned}
$$

51. 



By Eq. (2.1),

$$
\begin{aligned}
\frac{d}{2.75} & =\frac{1.5}{2.0} \\
d & =\frac{2.75(1.5)}{2.0} \\
d & =2.0625 \mathrm{~m} \\
l^{2} & =2.75^{2}+d^{2} \\
l & =\sqrt{2.75^{2}+2.0625^{2}} \\
l & =3.4 \mathrm{~m}
\end{aligned}
$$

52. 

$$
\begin{aligned}
\frac{E D}{A B} & =\frac{D C}{B C} \\
\frac{E D}{80.0} & =\frac{312}{50.0} \\
E D & =\frac{(80.0)(312)}{50.0} \\
E D & =499 \mathrm{~m}
\end{aligned}
$$

53. 

Redraw $\triangle B C P$ as



$$
\begin{aligned}
\text { since } \triangle B C P & \square \triangle A D P \\
\frac{6.00}{12.0-P D} & =\frac{10.0}{P D} \\
6 P D & =120-10 P D \\
16 P D & =120 \\
P D & =7.50 \mathrm{~km} \\
P C & =12.0-P D \\
P C & =4.50 \mathrm{~km} \\
l & =P B+P A \\
l & =\sqrt{4.50^{2}+6.00^{2}}+\sqrt{7.50^{2}+10.0^{2}} \\
l & =7.50+12.5 \\
l & =20.0 \mathrm{~km}
\end{aligned}
$$

54. 

Original area:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{o}}=\frac{1}{2} b h \\
& \mathrm{~A}_{\mathrm{o}}=\frac{1}{2} x(x-12)
\end{aligned}
$$

New area:

$$
\begin{aligned}
& \mathrm{A}_{n}=\frac{1}{2} b h \\
& \mathrm{~A}_{n}=\frac{1}{2} x(x-12+16) \\
& \mathrm{A}_{n}=\frac{1}{2} x(x+4)
\end{aligned}
$$

If the new area is $160 \mathrm{~cm}^{2}$ larger than the original,
$\mathrm{A}_{n}-\mathrm{A}_{\mathrm{o}}=160$
$\frac{1}{2} x(x+4)-\frac{1}{2} x(x-12)=160$

$$
\frac{1}{2} x^{2}+2 x-\frac{1}{2} x^{2}+6 x=160
$$

$$
8 x=160
$$

$$
x=20 \mathrm{~cm} \text { is the orignal width }
$$

$$
d=x-12
$$

$d=8 \mathrm{~cm}$ is the original depth

### 2.3 Quadrilaterals

1. 


trapezoid
2.
$L=4 s+2 w+2 l$
$L=4(540)+2(540)+2(920)$
$L=5080 \mathrm{~mm}$
3.

$$
\begin{aligned}
A_{1} & =\frac{1}{2} b h=\frac{1}{2}(72)(55)=1980=2000 \mathrm{~m}^{2} \\
A_{2} & =b h=72(55)=3960=4000 \mathrm{~m}^{2} \\
A_{3} & =\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(55)(72+35) \\
A_{3} & =2942.5=2900 \mathrm{~m}^{2} \\
A_{\text {tot }} & =1980+3960+2942.5=8900 \mathrm{~m}^{2}
\end{aligned}
$$

4. 

$$
\begin{aligned}
2(w+3.0)+2 w & =26.4 \\
2 w+6.0+2 w & =26.4 \\
4 w & =20.4 \\
w & =5.1 \mathrm{~mm} \\
w+3.0 & =8.1 \mathrm{~mm}
\end{aligned}
$$

5. 

$p=4 s=4(65)=260 \mathrm{~m}$
6. $p=4(2.46)=9.84 \mathrm{~km}$
7.
$p=2(0.920)+2(0.742)=3.324 \mathrm{~mm}$
8. $p=2(142)+2(126)=536 \mathrm{~cm}$
9.
$p=2 l+2 w=2(3.7)+2(2.7)=12.8 m$
10.
$p=2(27.3)+2(14.2)=83.0 \mathrm{~mm}$
11.
$p=36.2+73.0+44.0+61.2=214.4 \mathrm{dm}$
12.
$p=272+392+223+672=1559 \mathrm{~cm}$
13.
$A=s^{2}=2.7^{2}=7.3 \mathrm{~mm}^{2}$
14.
$A=15.6^{2}=243 \mathrm{~m}^{2}$
15.
$A=l w=0.920(0.742)=0.683 \mathrm{~km}^{2}$
16.
$A=l w=142(126)=17900 \mathrm{~cm}^{2}$
17.
$A=b h=3.7(2.5)=9.2 \mathrm{~m}^{2}$
18.
$A=b h=27.3(12.6)=344 \mathrm{~mm}^{2}$
19.
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

$$
=\frac{1}{2}(29.8)(61.2+73.0)
$$

$$
=2.00 \times 10^{3} \mathrm{dm}^{2}
$$

20. 

$$
\begin{aligned}
A & =\frac{1}{2} h\left(b_{1}+b_{2}\right) \\
& =\frac{1}{2}(201)(392+672) \\
& =107000 \mathrm{~cm}^{2}
\end{aligned}
$$

21. 

$p=2 b+4 a$
22.
$p=a+b+b+a+(b-a)+(b-a)$
$p=2 a+2 b+2 b-2 a$
$p=4 b$
23.
$A=b h+a^{2}$
24.
$A=\frac{1}{2} a[b+b-a]+\frac{1}{2} a[b+b-a]$
$A=a b-\frac{1}{2} a^{2}+a b-\frac{1}{2} a^{2}$
$A=2 a b-a^{2}$
25.

The parallelogram is a rectangle.
26.

The triangles are congruent. Corresponding sides and angles are equal.
27.


$$
\begin{aligned}
s^{2}+s^{2} & =24.0^{2} \\
2 s^{2} & =576 \\
s^{2} & =\frac{576}{2} \\
A & =s^{2}=288 \mathrm{~cm}^{2}
\end{aligned}
$$

28. 

A

B

F
C $\quad E$

G
$\angle C A D$ and $\angle F C A$ are alternate interior angles, and so
$\angle C A D=\angle F C A$
$\angle C A B=\frac{1}{2} \angle C A D$ because of the angle bisector $A E$
$\angle C A B=\frac{1}{2} \angle F C A$
$\angle A C E$ and $\angle F C A$ are supplementary angles, so
$\angle A C E=180^{\circ}-\angle F C A$
$\angle A C B=\frac{1}{2} \angle A C E$ because of the angle bisector $C D$
$\angle A C B=90^{\circ}-\frac{1}{2} \angle F C A$

Analysing $\triangle A B C$, all interior angles should sum to $180^{\circ}$

$$
\begin{aligned}
\angle C A B+\angle A B C+\angle A C B & =180^{\circ} \\
\frac{1}{2} \angle F C A+\angle A B C+\left(90^{\circ}-\frac{1}{2} \angle F C A\right) & =180^{\circ} \\
\angle A B C & =90^{\circ}
\end{aligned}
$$

29. 

The diagonal always divides the rhombus into two congruent triangles. All outer sides are always equal.
30.

The hypotenuse of the right triangle is
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{16^{2}+12^{2}}$
$c=\sqrt{400}$
$c=20$
In a rhombus, all four sides are equivalent, so
$p=4(20)=80 \mathrm{~mm}$
31.

For the courtyard
$s=\frac{p}{4}=\frac{324}{4}=81.0 \mathrm{~m}$
For the outer edge of the walkway, each side will be
$x=81.0+6.00=87.0 \mathrm{~m}$
$p=4 x$
$p=4(87.0)$
$p=348 \mathrm{~m}$
32.

$w=h-450$

$$
\begin{aligned}
p & =2 h+2(h-450) \\
4500 & =2 h+2 h-900 \\
5400 & =4 h \\
h & =1350 \mathrm{~mm} \\
w & =h-450 \\
w & =900 \mathrm{~mm}
\end{aligned}
$$

33. 



If width increases by 1500 mm and length decreases
by 4500 mm the dimensions will be equal (a square).

$$
\begin{aligned}
w+1500 & =4 w-4500 \\
6000 & =3 w \\
w & =2000 \mathrm{~mm} \\
4 w & =8000 \mathrm{~mm}
\end{aligned}
$$

34. 

$A=b h$
$A=1.80$ (3.50)
$A=6.30 \mathrm{~m}^{2}$
35.

The trapezoid has lower base 9300 mm and upper base 5300 mm , making the lower side 4000 mm longer than the upper side.
This means that a right triangle in each corner can be built with
hypotenuse $c$ of 3300 mm and horizontal leg (base b) of 2000 mm

$$
\begin{aligned}
c^{2} & =b^{2}+h^{2} \\
h & =\sqrt{c^{2}-b^{2}} \\
h & =\sqrt{3300^{2}-2000^{2}} \\
h & =\sqrt{6890000} \\
A_{\text {paint }} & =2(\text { area of trapezoid }- \text { area of window }) \\
A_{\text {paint }} & =2\left(\frac{1}{2} h\left(b_{1}+b_{2}\right)-l w\right) \\
A_{\text {paint }} & =2\left(\frac{1}{2} \sqrt{6890000} \cdot(9300+5300)-1200(4200)\right) \\
A_{\text {paint }} & =28243262 \mathrm{~mm}^{2} \\
V_{\text {paint }} & =28243262 \mathrm{~mm}^{2} \times\left(\frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}\right)^{2} \times \frac{1 \mathrm{~L}}{12 \mathrm{~m}^{2}} \\
V_{\text {paint }} & =2.4 \mathrm{~L} \text { of paint (to two significant digits) }
\end{aligned}
$$

36. 



$$
\begin{aligned}
75^{2} & =37.5^{2}+h^{2} \\
h & =\sqrt{75.0^{2}-(37.5)^{2}} \\
h & =64.9519 \mathrm{~cm} \\
A & =\text { area of } 6 \text { identical trapezoids } \\
A & =6\left[\frac{1}{2} h\left(b_{1}+b_{2}\right)\right] \\
A & =3(64.9519 \mathrm{~cm})(75.0+150) \mathrm{cm} \\
A & =43800 \mathrm{~cm}^{2}
\end{aligned}
$$

37. 



For the right triangle,
$A=\frac{1}{2} b h$
$A=\frac{1}{2}(2.27)(1.86)$
$A=2.1111 \mathrm{~km}^{2}$
For obtuse triangle,
$s=\frac{1.46+1.74+d}{2}$
$s=\frac{1.46+1.74+2.934706}{2}$
$s=3.06735 \mathrm{~km}$
$A=\sqrt{s(s-1.46)(s-d)(s-1.74)}$
$A=\sqrt{3.06735(3.06735-1.46)(3.06735-2.934706)(3.06735-1.74)}$
$A=0.931707 \mathrm{~km}^{2}$
$A_{\text {quadrilateral }}=$ Sum of areas of two triangles
$A=2.1111 \mathrm{~km}^{2}+0.931707 \mathrm{~km}^{2}$
$A=3.04 \mathrm{~km}^{2}$
38.


Cost $=$ cost of wall + cost of fence
$13200=50(2 w)+5(2 w)+5 w+5 w$
$13200=120 w$
$w=110 \mathrm{~m}$
$l=2 w$
$l=220 \mathrm{~m}$
39.
$360^{\circ}$. A diagonal divides a quadrilateral into two
triangles, and the sum of the interior angles of each triangle is $180^{\circ}$.
40.


The rhombus consists of four triangles, the areas of which are equal
since the sides are all consistently $\frac{1}{2} d_{1}$ and $\frac{1}{2} d_{2}$
$A=4\left(\frac{1}{2} b h\right)$
$A=4\left(\frac{1}{2}\left(\frac{1}{2} d_{2}\right)\left(\frac{1}{2} d_{1}\right)\right)$
$A=\frac{1}{2} d_{1} d_{2}$

### 2.4 Circles

1. $\angle O A B+O B A+\angle A O B=180^{\circ}$

$$
\begin{aligned}
\angle O A B+90^{\circ}+72^{\circ} & =180^{\circ} \\
\angle O A B & =18^{\circ}
\end{aligned}
$$

2. $A=\pi r^{2}=\pi(2.4)^{2}$
$A=18 \mathrm{~km}^{2}$
3. $p=2 s+\frac{2 \pi s}{4}=2 s+\frac{\pi s}{2}$
$p=2(3.25)+\frac{\pi(3.25)}{2}$
$p=11.6$ in.
$A=\frac{\pi s^{2}}{4}=\frac{\pi(3.25)}{4}$
$A=8.30$ in $^{2}$
4. $A C=2 \cdot \angle A B C$

$$
=2\left(25^{\circ}\right)
$$

$$
=50^{\circ}
$$

5. (a) $A D$ is a secant line.
(b) $A F$ is a tangent line.
6. (a) $E C$ and $B C$ are chords.
(b) $\angle E C O$ is an inscribed angle.
7. (a) $A F \perp O E$.
(b) $\square O C E$ is isosceles.
8. (a) $E C$ and $E C$ enclose a segment.
(b) Radii $O E$ and $O B$ enclose a sector with an acute central angle.
9. $c=2 \pi r=2 \pi(275)=1730 \mathrm{~cm}$
10. $c=2 \pi r=2 \pi(0.563)=3.54 \mathrm{~m}$
11. $d=2 r ; c=\pi d=\pi(23.1)=72.6 \mathrm{~mm}$
12. $c=\pi d=\pi(8.2)=26 \mathrm{dm}$
13. $A=\pi r^{2}=\pi(0.0952)^{2}=0.0285 \mathrm{~km}^{2}$
14. $A=\pi r^{2}=\pi(45.8)^{2}=6590 \mathrm{~cm}^{2}$
15. $A=\pi(d / 2)^{2}=\pi(2.33 / 2)^{2}=4.26 \mathrm{~m}^{2}$
16. $A=\frac{1}{4} \pi d^{2}=\frac{1}{4} \pi(1256)^{2}=1239000 \mathrm{~mm}^{2}$
17. $\angle C B T=90^{\circ}-\angle A B C=90^{\circ}-65^{\circ}=25^{\circ}$
18. $\angle B C T=90^{\circ}$, any angle such as $\angle B C A$ inscribed in a semicircle is a right angle and $\angle B C T$ is supplementary to $\angle B C A$.
19. A tangent to a circle is perpendicular to the radius drawn to the point of contact. Therefore,
$\angle A B T=90^{\circ}$
$\angle C B T=\angle A B T-\angle A B C=90^{\circ}-65^{\circ}=25^{\circ}$;
$\angle C A B=25^{\circ}$
20. $\angle B T C=65^{\circ} ; \angle C B T=35^{\circ}$ since it is
complementary to $\angle A B C=65^{\circ}$.
$\left(\angle C B T=35^{\circ}\right)+\angle B T C=90^{\circ}$
Therefore $\angle B T C=65^{\circ}$
21. $B^{\prime} C=2\left(60^{\circ}\right)=120^{\circ}$
22. 

$$
\begin{aligned}
B C & =2\left(60^{\circ}\right)=120^{\circ} \\
A B+80^{\circ}+120^{\circ} & =360^{\circ} \\
A B B & =160^{\circ}
\end{aligned}
$$

23. $\angle A B C=(1 / 2)\left(80^{\circ}\right)=40^{\circ}$ since the measure of an inscribed angle is one-half its intercepted arc.
24. $\angle A C B=\frac{1}{2}\left(160^{\circ}\right)=80^{\circ}$
25. $022.5^{\circ}=022.5^{\circ}\left(\frac{\pi \mathrm{rad}}{180^{\circ}}\right)=0.393 \mathrm{rad}$
26. $60.0^{\circ}=60.0^{\circ} \cdot \frac{\pi \mathrm{rad}}{180^{\circ}}=1.05 \mathrm{rad}$
27. $125.2^{\circ}=125.2\left(\frac{\pi \mathrm{rad}}{180^{\circ}}\right)=2.185 \mathrm{rad}$
28. $323.0^{\circ}=323.0^{\circ} \cdot \frac{\pi \mathrm{rad}}{180^{\circ}}=5.64 \mathrm{rad}$
29. Perimeter $=\frac{1}{4}(2 \pi r)+2 r=\frac{\pi r}{2}+2 r$
30. Perimeter $=a+b+\frac{1}{4} \cdot 2 \pi r+r$
31. Area $=\frac{1}{4} \pi r^{2}-\frac{1}{2} r^{2}$
32. Area $=\frac{1}{2}(a r)+\frac{1}{4} \pi r^{2}$
33. All are on the same diameter.
34. 


$A B=45^{\circ}$
$\frac{s}{2 p r}=\frac{45^{\circ}}{360^{\circ}}$

$$
s=\frac{p}{4} \times r
$$

35. 


$A$ of sector $=A$ of quarter circle $-A$ of triangle
$A=\frac{1}{4} \cdot \pi(6.00)^{2}-\frac{1}{2}(6.00)(6.00)$
$A=10.3 \mathrm{~cm}^{2}$
36. $\angle A C B=\angle D C E$ (vertical angles)
$\angle B A C=\angle D E C$ and
$\angle A B C=\angle C D E$ (alternate interior angles)
The triangles are similar since corresponding angles are equal.
37. $C=2 \pi r=2 \pi(6375)=40060 \mathrm{~km}$
38. $11(2 \pi r)=109$

$$
r=1.58 \mathrm{~mm}
$$

39. $\frac{A_{\text {basketball }}}{A_{\text {hoop }}}=\frac{\pi\left(\frac{30.5}{2}\right)^{2}}{\pi\left(\frac{45.7}{2}\right)^{2}}=\frac{0.445}{1}$
40. flow rate $=\frac{\text { volume }}{\text { time }}=\frac{\pi r_{1}^{2} L}{t}$
41. flow rate $=\frac{\pi r_{2}^{2}}{t}=\frac{2 \pi r_{1}^{2}}{t}$

$$
\begin{aligned}
& r_{2}^{2}=2 \cdot r_{1}^{2} \\
& r_{2}=\sqrt{2} r_{1}
\end{aligned}
$$

41. 

$$
\begin{aligned}
c & =112 \\
c & =\pi d \\
d & =c / \pi \\
& =112 / \pi \\
& =35.7 \mathrm{~cm}
\end{aligned}
$$

42. $A=\pi\left(\frac{15.8}{2}\right)^{2}=196 \mathrm{~cm}^{2}$
43. $A=\frac{\pi}{2}\left(90^{2}-45^{2}\right)$

$$
A=9500 \mathrm{~cm}^{2}
$$

44. 

Let $D=$ diameter of large conduit, then
$D=3 d$, where $d=$ diameter of smaller conduit
$F=\frac{\text { area large conduit }}{\text { area } 7 \text { small conduits }}$

$$
=\frac{7 \pi \frac{d^{2}}{4}}{\pi \frac{D^{2}}{4}}
$$

$$
=\frac{7 d^{2}}{D^{2}}=\frac{7 d^{2}}{(3 d)^{2}}=\frac{7 d^{2}}{9 d^{2}}
$$

$F=\frac{7}{9}$
The smaller conduits occupy $\frac{7}{9}$ of the larger conduits.
45. $A$ of room $=A$ of rectangle $+\frac{3}{4} A$ of circle

$$
\begin{aligned}
& A=8100(12000)+\frac{3}{4} \pi(320)^{2} \\
& A=9.7 \times 10^{7} \mathrm{~mm}^{2}
\end{aligned}
$$

46. Length $=(2) \frac{3}{4}(2 \pi)(5.5)+(4)(5.5)=73.8 \mathrm{~cm}$
47. Horizontally and opposite to original direction
48. Let $A$ be the left end point at which the dashed lines intersect and $C$ be the center of the gear. Draw a line from $C$ bisecting the $20^{\circ}$ angle. Call the intersection of this line and the extension of the upper dashed line $B$, then

$$
\begin{aligned}
\frac{360^{\circ}}{24 \text { teeth }} & =\frac{15^{\circ}}{\text { tooth }} \Rightarrow \angle A C B=7.5^{\circ} \\
\angle A B C & =180^{\circ}-\frac{20^{\circ}}{2}=170^{\circ} \\
\angle \frac{1}{2} x+\angle A B C+\angle A C B & =180^{\circ} \\
\angle \frac{1}{2} x+170^{\circ}+7.5^{\circ} & =180^{\circ} \\
\angle \frac{1}{2} x & =2.5^{\circ} \\
x & =5^{\circ}
\end{aligned}
$$

49. $s=\theta r$
$s=(2.8)\left(\frac{450}{2} \mathrm{~km}\right)$
$s=630 \mathrm{~km}$

### 2.5 Measurement of Irregular Areas

1. 

The use of smaller intervals improves the approximation since the total omitted area or the total extra area is smaller. Also, since the number of intervals would be 10 (an even number) Simpson's Rule could be employed to achieve a more accurate estimate.
2.

Using data from the south end as stated gives only five intervals.
Therefore, the trapezoidal rule must be used since Simpson's rule cannot be used for an odd number of intervals.
3.

Simpson's rule should be more accurate in that it accounts better for the arcs between points on the curve, and since the number of intervals (6) is even, Simpson's Rule can be used.

## 4.

The calculated area would be too high since each trapezoid would include more area than under the curve. The shape of the curve is such that a straight line approximation for the curve will always overestimate the area below the curve (the curve dips below the straight line approximation).
5.
$A_{\text {rap }}=\frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right]$
$A_{\text {trap }}=\frac{2.0}{2}[0.0+2(6.4)+2(7.4)+2(7.0)+2(6.1)+2(5.2)+2(5.0)+2(5.1)+0.0]$
$A_{\text {trap }}=84.4=84 \mathrm{~m}^{2}$ to two significant digits
6.
$A_{\text {simp }}=\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right)$
$A_{\text {simp }}=\frac{2}{3}[0+4(6.4)+2(7.4)+4(7.0)+2(6.1)+4(5.2)+2(5.0)+4(5.1)+0]$
$A_{\text {simp }}=87.8667 \mathrm{~m}^{2}=88 \mathrm{~m}^{2}$ (to two significant digits)
7.
$A_{\text {simp }}=\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right)$
$A_{\text {simp }}=\frac{0.30}{3}[0+4(0.16)+2(0.23)+4(0.32)+2(0.35)+4(0.30)+0.20]$
$A_{\text {simp }}=0.448 \mathrm{~m}^{2}=0.45 \mathrm{~m}^{2}$ (rounded to 2 significant digits)
8.

$$
A_{\text {trap }}=\frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right]
$$

$$
A_{\text {trap }}=\frac{0.3}{2}[0+2(0.16)+2(0.23)+2(0.32)+2(0.35)+2(0.30)+0.20]
$$

$A_{\text {trap }}=0.438 \mathrm{~m}^{2}=0.44 \mathrm{~m}^{2}$ (rounded to 2 significant digits)
9.
$A_{\text {trap }}=\frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right]$
$A_{\text {trap }}=\frac{0.5}{2}[0.6+2(2.2)+2(4.7)+2(3.1)+2(3.6)+2(1.6)+2(2.2)+2(1.5)+0.8]$
$A_{\text {trap }}=9.8 \mathrm{~km}^{2}$
10.

$$
\begin{aligned}
& A_{\text {simp }}=\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right) \\
& A_{\text {simp }}=\frac{0.5}{3}[0.6+4(2.2)+2(4.7)+4(3.1)+2(3.6)+4(1.6)+2(2.2)+4(1.5)+0.8]
\end{aligned}
$$

$$
A_{\mathrm{simp}}=9.3333 \mathrm{~km}^{2}=9.3 \mathrm{~km}^{2} \text { (rounded to } 2 \text { significant digits) }
$$

11. 

$A_{\text {rap }}=\frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right]$
$A_{\text {trap }}=\frac{6.0}{2}[7+2(15)+2(7)+2(11)+2(13)+2(10)+2(9)+2(12)+2(8)+3]$
$A_{\text {trap }}=\left(540 \mathrm{~mm}^{2}\right)\left(\frac{6 \mathrm{~km}}{1 \mathrm{~mm}}\right)^{2}$
$A_{\text {trap }}=19000 \mathrm{~km}^{2}$
12.

$$
\begin{aligned}
& A_{\text {simp }}=\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right) \\
& A_{\text {simp }}=\frac{1.5}{3}[0+4(5.0)+2(7.2)+4(8.3)+2(8.6)+4(8.3)+2(7.2)+4(5.0)+0.0] \\
& A_{\text {simp }}=76.2 \mathrm{~m}^{2}=76 \mathrm{~m}^{2}
\end{aligned}
$$

13. 

$$
\begin{aligned}
& A_{\text {trap }}= \frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right] \\
& \begin{aligned}
A_{\text {trap }}= & \frac{2.0}{2}[0+2(5.2)+2(14.1)+2(19.9)+2(22.0)+2(23.4)+2(23.6)+2(22.5) \\
& \quad+2(17.9)+2(16.5)+2(13.5)+2(9.1)+0]
\end{aligned} \\
& A_{\text {trap }}= 375.4 \mathrm{~km}^{2}=380 \mathrm{~km}^{2}
\end{aligned}
$$

14. 

$$
\begin{aligned}
A_{\text {simp }}= & \frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right) \\
A_{\text {simp }}= & \frac{2}{3}[0+4(5.2)+2(14.1)+4(19.9)+2(22.0)+4(23.4)+2(23.6)+4(22.5) \\
& \quad+2(17.9)+4(16.5)+2(13.5)+4(9.1)+0] \\
A_{\text {simp }}= & 379.07 \mathrm{~km}^{2}=380 \mathrm{~km}^{2}
\end{aligned}
$$

15. 

$A_{\text {simp }}=\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right)$
$A_{\text {simp }}=\frac{50}{3}[5+4(12)+2(17)+4(21)+2(22)+4(25)+2(26)+4(16)+2(10)+4(8)+0]$
$A_{\text {simp }}=8050 \mathrm{~m}^{2}=8.0 \times 10^{3} \mathrm{~m}^{2}$
16.

$$
\begin{aligned}
A_{\text {trap }} & =\frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right] \\
A_{\text {trap }} & =\frac{2.0}{2}[3.5+2(6.0)+2(7.6)+2(10.8)+2(16.2)+2(18.2)+2(19.0)+2(17.8)+2(12.5)+8.2] \\
A_{\text {trap }} & =228.7 \mathrm{~cm}^{2} \\
A_{\text {circles }} & =2\left(\frac{\pi d^{2}}{4}\right) \\
A_{\text {circles }} & =\frac{\pi(2.50 \mathrm{~cm})^{2}}{2}=9.817477 \mathrm{~cm}^{2} \\
A_{\text {total }} & =228.7 \mathrm{~cm}^{2}-9.817477 \mathrm{~cm}^{2} \\
A_{\text {total }} & =218.88 \mathrm{~cm}^{2}=220 \mathrm{~cm}^{2}
\end{aligned}
$$

17. 

$A_{\text {trap }}=\frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right]$
$A_{\text {trap }}=\frac{0.500}{2}[0.0+2(1.732)+2(2.000)+2(1.732)+0.0]$
$A_{\text {trap }}=2.73 \mathrm{~cm}^{2}$
This value is less than $3.14 \mathrm{~cm}^{2}$ because all of the trapezoids are inscribed.
18.
$A_{\text {trap }}=\frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right]$
$A_{\text {trap }}=\frac{0.250}{2}\left[\begin{array}{l}0.000+2(1.323)+2(1.732)+2(1.936)+2(2.000) \\ +2(1.936)+2(1.732)+2(1.323)+0.000\end{array}\right]$
$A_{\text {trap }}=3.00 \mathrm{~cm}^{2}$
The trapezoids are smaller so they can get closer to the boundary, and less area is missed from the calculation.
19.
$A_{\text {simp }}=\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right)$
$A_{\text {simp }}=\frac{0.500}{3}[0.000+4(1.732)+2(2.000)+4(1.732)+0.000]$
$A_{\text {simp }}=2.98 \mathrm{~cm}^{2}$
The ends of the areas are curved so they can get closer to the boundary, including more area in the calculation.
20.
$A_{\text {simp }}=\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right)$
$A_{\text {simp }}=\frac{0.250}{3}\left[\begin{array}{l}0.000+4(1.323)+2(1.732)+4(1.936)+2(2.000) \\ +4(1.936)+2(1.732)+4(1.323)+0.000\end{array}\right]$
$A_{\text {simp }}=3.08 \mathrm{~cm}^{2}$
The areas are smaller so they can get closer to the boundary.

### 2.6 Solid Geometric Figures

1. 

$V_{1}=l w h$
$V_{2}=(2 l)(w)(2 h)$
$V_{2}=4 l w h$
$V_{2}=4 V_{1}$
The volume increases by a factor of 4 .
2.
$s^{2}=r^{2}+h^{2}$
$h=\sqrt{s^{2}-r^{2}}$
$h=\sqrt{17.5^{2}-11.9^{2}}$
$h=12.8 \mathrm{~cm}$
3.
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \pi\left(\frac{11.9 \mathrm{~cm}}{2}\right)^{2}(2(10.4 \mathrm{~cm}))$
$V=771 \mathrm{~cm}^{3}$
4.
$V=\pi r^{2} h+\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)$
$V=\pi(12.0)^{2}\left(\frac{40}{2}\right)+\frac{2}{3} \pi(12.0)^{3}$
$V=12666.902 \mathrm{~m}^{3}$
$V=12700 \mathrm{~m}^{3}$
5.
$V=s^{3}$
$V=(7.15 \mathrm{~cm})^{3}$
$V=366 \mathrm{~cm}^{3}$
6.
$V=\pi r^{2} h$
$V=\pi(23.5 \mathrm{~cm})^{2}(48.4 \mathrm{~cm})$
$V=83971.3 \mathrm{~cm}^{3}$
$V=8.40 \times 10^{4} \mathrm{~cm}^{3}$
7.
$A=2 \pi r^{2}+2 \pi r h$
$A=2 \pi(689)^{2}+2 \pi(689)(233)$
$A=3991444 \mathrm{~m}^{2}$
$A=3.99 \times 10^{6} \mathrm{~m}^{2}$
8.
$A=4 \pi r^{2}$
$A=4 \pi(0.067 \mathrm{~mm})^{2}$
$A=0.056 \mathrm{~mm}^{2}$
9.
$V=\frac{4}{3} \pi r^{3}$
$V=\frac{4}{3} \pi(0.877 \mathrm{~m})^{3}$
$V=2.83 \mathrm{~m}^{3}$
10.
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \pi(25.1 \mathrm{~mm})^{2}(5.66 \mathrm{~mm})$
$V=3730 \mathrm{~mm}^{3}$
11.
$S=\pi r s$
$S=\pi(78.0 \mathrm{~cm})(83.8 \mathrm{~cm})$
$S=20534.71 \mathrm{~cm}^{2}$
$S=20500 \mathrm{~cm}^{2}$
12.
$S=\frac{1}{2} p s$
$S=\frac{1}{2}(345 \mathrm{~m})(272 \mathrm{~m})$
$S=46900 \mathrm{~m}^{2}$
13.
$V=\frac{1}{3} B h$
$V=\frac{1}{3}(76 \mathrm{~cm})^{2}(130 \mathrm{~cm})$
$V=250293 \mathrm{~cm}^{3}$
$V=2.5 \times 10^{5} \mathrm{~cm}^{3}$
14.
$V=B h$
$V=(29.0 \mathrm{~cm})^{2}(11.2 \mathrm{~cm})$
$V=9419.2 \mathrm{~cm}^{3}$
$V=9420 \mathrm{~cm}^{3}$
15.
$S=p h$
$S=(3 \times 1.092 \mathrm{~m})(1.025 \mathrm{~m})$
$S=3.358 \mathrm{~m}^{2}$
16.
$S=2 \pi r h$
$S=2 \pi\left(\frac{d}{2}\right) h$
$S=\pi(250 \mathrm{~mm})(347 \mathrm{~mm})$
$S=272533 \mathrm{~mm}^{2}$
$S=270000 \mathrm{~mm}^{2}$
$S=2.7 \times 10^{5} \mathrm{~mm}^{2}$
17.
$V=\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)$
$V=\frac{2 \pi}{3}\left(\frac{d}{2}\right)^{3}$
$V=\frac{2 \pi}{3}\left(\frac{0.83 \mathrm{~cm}}{2}\right)^{3}$
$V=0.14969 \mathrm{~cm}^{3}$
$V=0.15 \mathrm{~cm}^{3}$
18.

To analyze the right triangle formed by the center of the pyramid base, the top of the pyramid, and any lateral facelength $s$, notice that the bottom of that triangle has width of half the square base side length.
$b=\frac{22.4}{2}=11.2$
$s^{2}=h^{2}+b^{2}$
$h=\sqrt{s^{2}-b^{2}}$
$h=\sqrt{14.2^{2}-11.2^{2}}$
$h=8.72926 \mathrm{~m}$
$V=\frac{1}{3} B h$
$V=\frac{1}{3}(22.4 \mathrm{~m})^{2}(8.72926 \mathrm{~m})$
$V=1459.998 \mathrm{~m}^{3}$
$V=1460 \mathrm{~m}^{3}$
19.
$s^{2}=h^{2}+r^{2}$
$s=\sqrt{h^{2}+r^{2}}$
$s=\sqrt{0.274^{2}+3.39^{2}}$
$s=3.401055 \mathrm{~cm}$
$A=\pi r^{2}+\pi r s$
$A=\pi(3.39 \mathrm{~cm})^{2}+\pi(3.39 \mathrm{~cm})(3.401055 \mathrm{~cm})$
$A=72.3 \mathrm{~cm}^{2}$
20.

There are four triangles in this shape, all having the same area.
Using Hero's formula for each triangle:
$s=\frac{1}{2}(a+b+c)$
$s=\frac{1}{2}(3 \times 3.67 \mathrm{dm})$
$s=5.505 \mathrm{dm}$
$A=\sqrt{s(s-a)(s-b)(s-c)}$
$A=\sqrt{5.505(1.835)^{3}}$
$A=\sqrt{5.505(1.835)^{3}}$
$A=5.832205 \mathrm{dm}^{2}$
The total surface area A consists of four of these triangles,
$A=4 \times 5.832205 \mathrm{dm}^{2}$
$A=23.3 \mathrm{dm}^{2}$

Or, we could determine the lateral side length $h$ (triangle heights) from the Pythagorean Theorem
$a^{2}=h^{2}+\left(\frac{a}{2}\right)^{2}$
$h=\sqrt{3.67^{2}-\left(\frac{3.67}{2}\right)^{2}}$
$h=3.17831 \mathrm{dm}$
There are four triangles of the same area, so total surface area is:
$A=4 \times \frac{1}{2} b h$
$A=2(3.67 \mathrm{dm})(3.17831 \mathrm{dm})$
$A=23.3 \mathrm{dm}^{2}$
21.
$V=\frac{4}{3} \pi r^{3}$
$V=\frac{4}{3} \pi\left(\frac{d}{2}\right)^{3}$
$V=\frac{4}{3} \pi \frac{d^{3}}{8}$
$V=\frac{1}{6} \pi d^{3}$
22.
$A=A_{\text {flat }}+A_{\text {curved }}$
$A=\pi r^{2}+\frac{1}{2} \cdot 4 \pi r^{2}$
$A=\pi r^{2}+2 \pi r^{2}$
$A=3 \pi r^{3}$
23.

Let $r=$ radius of cone,
Let $h=$ height of the cone
$\frac{V_{\text {cylinder }}}{V_{\text {cone }}}=\frac{\pi(2 r)^{2} \frac{h}{2}}{\frac{1}{3} \pi r^{2} h}$
$\frac{V_{\text {cylinder }}}{V_{\text {cone }}}=\frac{2 \pi r^{2} h}{\frac{1}{3} \pi r^{2} h}$
$\frac{V_{\text {cylinder }}}{V_{\text {cone }}}=6$
24.
$A_{\text {conebase }}=\frac{1}{4} \mathrm{~A}$
$\pi r^{2}=\frac{1}{4}\left(\pi r^{2}+\pi r s\right)$
$4 \pi r^{2}=\pi r^{2}+\pi r s$
$3 \pi r^{2}=\pi r s$

$$
\frac{r}{s}=\frac{1}{3}
$$

25. 

$\frac{A_{\text {final }}}{A_{\text {original }}}=\frac{4 \pi(2 r)^{2}}{4 \pi r^{2}}$
$\frac{A_{\text {final }}}{A_{\text {original }}}=\frac{16 \pi r^{2}}{4 \pi r^{2}}$
$\frac{A_{\text {final }}}{A_{\text {original }}}=4$
26.
$w=$ weight density $\times$ volume
$w=\gamma V$
$w=9800 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}(3.00 \mathrm{~cm})\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)\left(1.00 \mathrm{~km}^{2}\right)\left(\frac{1000 \mathrm{~m}}{\mathrm{~km}}\right)^{2}$
$w=2.94 \times 10^{8} \mathrm{~N}$
27.
$A=A_{\text {base }}+A_{\text {ends }}+A_{\text {sides }}$
$A=2 l w+2 w h+2 l h$
$A=2(12.0)(9.50)+2(9.50)(8.75)+2(12.0)(8.75)$
$A=604 \mathrm{~cm}^{2}$
28.

The volume of pool can be represented by a trapezoidal right prism
$V=A_{\text {trapezoid }} \times$ width
$V=\frac{1}{2} h\left(b_{1}+b_{2}\right) \cdot w$
$V=\frac{1}{2}(24.0)(2.60+1.00) \cdot(15.0)$
$V=648 \mathrm{~m}^{3}$
29.
$V=\pi r^{2} h$
$V=\pi\left(\frac{d}{2}\right)^{2} h$
$V=\frac{\pi}{4}(0.76 \mathrm{~m})^{2}(540000 \mathrm{~m})$
$V=244969 \mathrm{~m}^{3}$
$V=2.4 \times 10^{5} \mathrm{~m}^{3}$
30.

There are three rectangles and two triangles in this shape.
The triangles have hypotenuse
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{3^{2}+4^{2}}$
$c=5.00 \mathrm{~cm}$
$A=A_{\text {rec tan gles }}+A_{\text {rriangles }}$
$A=(8.50)(5.00)+(8.50)(3.00)+(8.50)(4.00)+2\left(\frac{1}{2}\right)(4.00)(3.00)$
$A=114 \mathrm{~cm}^{2}$
31.
$V=\frac{1}{3} B H$
$V=\frac{1}{3}\left(230^{2}\right)(150)$
$V=2645000 \mathrm{~m}^{3}$
$V=2.6 \times 10^{6} \mathrm{~m}^{3}$
32.

Use the Pythagorean Thoerem

$$
\begin{aligned}
s^{2} & =h^{2}+r^{2} \\
s & =\sqrt{h^{2}+r^{2}} \\
s & =\sqrt{8.90^{2}+4.60^{2}} \\
s & =10.0185 \mathrm{~cm} \\
S & =\pi r s \\
S & =\pi(4.60 \mathrm{~cm})(10.0185 \mathrm{~cm}) \\
S & =145 \mathrm{~cm}^{2}
\end{aligned}
$$

33. 

$V=\frac{4}{3} \pi r^{3}$
$V=\frac{4}{3} \pi\left(\frac{d}{2}\right)^{3}$
$V=\frac{4}{3} \pi\left(\frac{50.3}{2}\right)^{3}$
$V=66635 \mathrm{~m}^{3}$
$V=66600 \mathrm{~m}^{3}$
34.
$V=\frac{4}{3} \pi r^{3}+\pi r^{2} h$
$V=\frac{4}{3} \pi(0.61)^{3}+\pi(0.61)^{2}(1.98)$
$V=3.27 \mathrm{~m}^{3}$
35.

The lateral side length can be determined from the Pythagorean Theorem

$$
\begin{aligned}
s^{2} & =8.0^{2}+h^{2} \\
s & =\sqrt{8.0^{2}+40.0^{2}} \\
s & =40.792 \mathrm{~mm} \\
A & =x^{2}+\frac{1}{2} p s \\
A & =16^{2}+\frac{1}{2}(4 \times 16)(40.792) \\
A & =1560 \mathrm{~mm}^{2}
\end{aligned}
$$

36. 



Let $n=$ number of revolutions of the lateral surface area $S$ $n \cdot S=76$
$n \cdot 2 \pi r h=76$

$$
\begin{aligned}
& n=\frac{76}{2 \pi\left(\frac{d}{2}\right) h} \\
& n=\frac{76}{\pi d h} \\
& n=\frac{76 \mathrm{~m}^{2}}{\pi(0.60 \mathrm{~m})(0.96 \mathrm{~m})} \\
& n=42 \text { revolutions }
\end{aligned}
$$

37. 

$c=2 \pi r$
$75.7=2 \pi r$
$r=\frac{75.7}{2 \pi}$
$V=\frac{4}{3} \pi r^{3}$
$V=\frac{4}{3} \pi\left(\frac{75.7}{2 \pi}\right)^{3}$
$V=7330 \mathrm{~cm}^{3}$
38.
$S=2 \pi r h$
$S=2 \pi\left(\frac{d}{2}\right) h$
$S=\pi d h$
Assuming the label overlaps on both ends of the can by 0.50 cm
$S=\pi(8.50 \mathrm{~cm})(11.5+0.5+0.5)$
$S=334 \mathrm{~cm}^{2}$
39.
$V=V_{\text {cylinder }}+V_{\text {cone }}$
$V=\pi r_{\text {cylinder }}{ }^{2} h_{\text {cylinder }}+\frac{1}{3} \pi r_{\text {cone }}{ }^{2} h_{\text {cone }}$
$V=\pi(0.625 / 2)^{2}(2.75)+\frac{1}{3} \pi(1.25 / 2)^{2}(0.625)$
$V=1.09935 \mathrm{~cm}^{3}$
$V=1.10 \mathrm{~cm}^{3}$
40.


$$
\begin{aligned}
\frac{9}{12} & =\frac{y}{12-x} \\
y & =\frac{3}{4}(12-x) \\
& \text { To achieve half the volume of the cone } \\
\frac{V_{\text {cone }}}{2} & =V_{\text {fluid }} \\
\frac{\frac{1}{3} \pi r_{\text {cone }}{ }^{2} h_{\text {cone }}}{2} & =\frac{1}{3} \pi r_{\text {fluid }}{ }^{2} h_{\text {fluid }} \\
\frac{\frac{1}{3} \pi\left(9^{2}\right) 12}{2} & =\frac{1}{3} \pi\left(\frac{3}{4}(12-x)\right)^{2}(12-x) \\
\frac{9^{2} \cdot 12}{2} & =\left(\frac{3}{4}(12-x)\right)^{2} \cdot(12-x) \\
486 & =0.5625(12-x)^{3} \\
864 & =(12-x)^{3} \\
\sqrt[3]{864} & =12-x \\
x & =12-\sqrt[3]{864} \\
x & =2.48 \mathrm{~cm}
\end{aligned}
$$

## Review Exercises

1. 

$\angle C G H$ and given angle $148^{\circ}$ are corresponding angles, so
$\angle C G H=148^{\circ}$
$\angle C G E$ and $\angle C G H$ are supplementary angles so
$\angle C G E+\angle C G H=180^{\circ}$
$\angle C G E=180^{\circ}-148^{\circ}$
$\angle C G E=32^{\circ}$
2.
$\angle C G E=32^{\circ}$ from Question 1
$\angle C G E$ and $\angle E G F$ are complementary angles so
$\angle C G E+\angle E G F=90^{\circ}$
$\angle E G F=90^{\circ}-32^{\circ}$
$\angle E G F=58^{\circ}$
3.
$\angle C G E=32^{\circ}$ from Question 1
$\angle C G E$ and $\angle D G H$ are vertically opposite angles
$\angle D G H=\angle C G E$
$\angle D G H=32^{\circ}$
4.
$\angle C G E=32^{\circ}$ from Question 1
$\angle E G I=\angle C G E+90^{\circ}$
$\angle E G I=32^{\circ}+90^{\circ}$
$\angle E G I=122^{\circ}$
5.
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{9^{2}+40^{2}}$
$c=\sqrt{1681}$
$c=41$
6.
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{14^{2}+48^{2}}$
$c=\sqrt{2500}$
$c=50$
7.
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{400^{2}+580^{2}}$
$c=\sqrt{496400}$
$c=704.55659815$
$c=700$
8.
$c^{2}=a^{2}+b^{2}$
$a^{2}=c^{2}-b^{2}$
$a=\sqrt{65^{2}-56^{2}}$
$a=\sqrt{1089}$
$a=33$
9.
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{6.30^{2}+3.80^{2}}$
$c=\sqrt{54.13}$
$c=7.357309291$
$c=7.36$
10.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c & =\sqrt{126^{2}+25.1^{2}} \\
c & =\sqrt{16506.01} \\
c & =128.4757175 \\
c & =128
\end{aligned}
$$

11. 

$c^{2}=a^{2}+b^{2}$
$a^{2}=c^{2}-b^{2}$
$a=\sqrt{36.1^{2}-29.3^{2}}$
$a=\sqrt{444.72}$
$a=21.088839$
$a=21.1$
12.
$c^{2}=a^{2}+b^{2}$
$b^{2}=c^{2}-a^{2}$
$b=\sqrt{0.885^{2}-0.782^{2}}$
$b=\sqrt{0.171701}$
$b=0.41436819$
$b=0.414$
13.
$p=3 s$
$p=3(8.5 \mathrm{~mm})$
$p=25.5 \mathrm{~mm}$
14.
$p=4 s$
$p=4(15.2 \mathrm{~cm})$
$p=60.8 \mathrm{~cm}$
15.
$A=\frac{1}{2} b h$
$A=\frac{1}{2}(3.25 \mathrm{~m})(1.88 \mathrm{~m})$
$A=3.06 \mathrm{~m}^{2}$
16.
$s=\frac{1}{2}(a+b+c)$
$s=\frac{1}{2}(175+138+119)$
$s=216 \mathrm{~cm}$
$A=\sqrt{s(s-a)(s-b)(s-c)}$
$A=\sqrt{216(216-175)(216-138)(216-119)}$
$A=\sqrt{216(41)(78)(97)}$
$A=\sqrt{67004496}$
$A=8185.627404 \mathrm{~cm}^{2}$
$A=8190 \mathrm{~cm}^{2}$
17.
$c=2 \pi r$
$c=\pi d$
$c=\pi(98.4 \mathrm{~mm})$
$c=309.1327171 \mathrm{~mm}$
$c=309 \mathrm{~mm}$
18.
$p=2 l+2 w$
$p=2(2.98 \mathrm{dm})+2(1.86 \mathrm{dm})$
$p=9.68 \mathrm{dm}$
19.
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$A=\frac{1}{2}(34.2 \mathrm{~cm})(67.2 \mathrm{~cm}+126.7 \mathrm{~cm})$
$A=3315.69 \mathrm{~cm}^{2}$
$A=3320 \mathrm{~cm}^{2}$
20.
$A=\pi r^{2}$
$A=\pi\left(\frac{d}{2}\right)^{2}$
$A=\frac{\pi d^{2}}{4}$
$A=\frac{\pi(32.8 \mathrm{~m})^{2}}{4}$
$A=844.9627601 \mathrm{~m}^{2}$
$A=845 \mathrm{~m}^{2}$
21.
$V=B h$
$V=\frac{1}{2} b l \cdot h$
$V=\frac{1}{2}(26.0 \mathrm{~cm} \times 34.0 \mathrm{~cm})(14.0 \mathrm{~cm})$
$V=6188 \mathrm{~cm}^{3}$
$V=6190 \mathrm{~cm}^{3}$
22.
$V=\pi r^{2} h$
$V=\pi(36.0 \mathrm{~cm})^{2}(2.40 \mathrm{~cm})$
$V=9771.60979 \mathrm{~cm}^{3}$
$V=9770 \mathrm{~cm}^{3}$
23.
$V=\frac{1}{3} B h$
$V=\frac{1}{3}\left(3850 \mathrm{~m}^{2}\right)(125 \mathrm{~m})$
$V=160416.6667 \mathrm{~m}^{3}$
$V=1.60 \times 10^{5} \mathrm{~m}^{3}$
24.
$V=\frac{4}{3} \pi r^{3}$
$V=\frac{4}{3} \pi\left(\frac{22.1 \mathrm{~mm}}{2}\right)^{3}$
$V=5651.652404 \mathrm{~mm}^{3}$
$V=5650 \mathrm{~mm}^{3}$
25.
$A=6 s^{2}$
$A=6(0.520 \mathrm{~m})^{2}$
$A=1.6224 \mathrm{~m}^{2}$
$A=1.62 \mathrm{~m}^{2}$
26.
$A=2 \pi r^{2}+2 \pi r h$
$A=2 \pi\left(\frac{d}{2}\right)^{2}+2 \pi\left(\frac{d}{2}\right) h$
$A=\frac{\pi d^{2}}{2}+\pi d h$
$A=\frac{\pi(1.20 \mathrm{~cm})^{2}}{2}+\pi(1.20 \mathrm{~cm})(5.80 \mathrm{~cm})$
$A=24.12743158 \mathrm{~cm}^{2}$
$A=24.1 \mathrm{~cm}^{2}$
27.
$s^{2}=r^{2}+h^{2}$
$s=\sqrt{1.82^{2}+11.5^{2}}$
$s=\sqrt{135.5624}$
$s=11.64312673 \mathrm{~mm}$
$S=\pi r s$
$S=\pi(1.82 \mathrm{~mm})(11.64312673 \mathrm{~mm})$
$S=66.57188974 \mathrm{~mm}^{2}$
$S=66.6 \mathrm{~mm}^{2}$
28.
$A=4 \pi r^{2}$
$A=4 \pi\left(\frac{12760 \mathrm{~km}}{2}\right)^{2}$
$A=511506576 \mathrm{~km}^{2}$
$A=5.115 \times 10^{8} \mathrm{~km}^{2}$
29.
$\angle B T A=\frac{50^{\circ}}{2}=25^{\circ}$
30.
$\angle T B A=90^{\circ}$ since an angle inscribed in a semicircle is $90^{\circ}$ $\angle B T A=25^{\circ}$ from Question 29

All angles in $\triangle B T A$ must sum to $180^{\circ}$
$\angle T A B+\angle B T A+\angle T B A=180^{\circ}$
$\angle T A B=180^{\circ}-90^{\circ}-25^{\circ}$ $\angle T A B=65^{\circ}$
31.
$\angle B T C$ is a complementary angle to $\angle B T A$
$\angle B T A=25^{\circ}$ from Question 29
$\angle B T C+\angle B T A=90^{\circ}$
$\angle B T C=90^{\circ}-25^{\circ}$
$\angle B T C=65^{\circ}$
32.
$\angle A B T=90^{\circ}$ since any angle inscribed in a semi-circle is $90^{\circ}$
33.
$\angle A B E$ and $\angle A D C$ are corresponding angles since $\triangle A B E \sim \triangle A D C$
$\angle A B E=\angle A D C$
$\angle A B E=53^{\circ}$
34.
$A D^{2}=A C^{2}+C D^{2}$
$A D=\sqrt{(4+4)^{2}+6^{2}}$
$A D=\sqrt{100}$
$A D=10$
35.
since $\triangle A B E \sim \triangle A D C$

$$
\begin{aligned}
\frac{B E}{C D} & =\frac{A B}{A D} \\
\frac{B E}{6} & =\frac{4}{10} \\
B E & =\frac{6(4)}{10} \\
B E & =2.4
\end{aligned}
$$

36. 

since $\triangle A B E \sim \triangle A D C$

$$
\begin{aligned}
\frac{A E}{A C} & =\frac{A B}{A D} \\
\frac{A E}{8} & =\frac{4}{10} \\
A E & =\frac{4(8)}{10} \\
A E & =3.2
\end{aligned}
$$

37. 

$p=$ base of triangle + hypotenuse of triangle + semicircle perimeter
$p=b+\sqrt{b^{2}+(2 a)^{2}}+\frac{1}{2} \pi(2 a)$
$p=b+\sqrt{b^{2}+4 a^{2}}+\pi a$
38.
$p=$ perimeter of semicircle +4 square lengths
$p=\frac{1}{2}(2 \pi s)+4 s$
$p=\pi s+4 s$
39.
$A=$ area of triangle + area of semicircle
$A=\frac{1}{2} b(2 a)+\frac{1}{2} \cdot \pi(a)^{2}$
$A=a b+\frac{1}{2} \pi a^{2}$
40.
$A=$ area of semicircle + area square
$A=\frac{1}{2}\left(\pi s^{2}\right)+s^{2}$
41.

A square is a rectangle with four equal sides.
A rectangle is a parallelogram with perpendicular intersecting sides so a square is a parallelogram.
A rhombus is a parallelogram with four equal sides and since a square is a parallelogram, a square is a rhombus.
42.

If two triangles share two angles that are the same, then the third angle must also be the same in both triangles.
The triangles are similar to each other because they all have the same angles, and the sides must be proportional.
43.
$A=\pi r^{2}$
If the radius of the circle is multplied by $n$, then the area of the new circle is:
$A=\pi(n r)^{2}$
$A=\pi\left(n^{2} r^{2}\right)$
$A=n^{2}\left(\pi r^{2}\right)$
The area of the circle is multiplied by $n^{2}$, when the radius is multplied by $n$.
Any plane geometric figure scaled by $n$ in each dimension will increase its area by $n^{2}$.
44.
$V=s^{3}$
If the length of a cube's side is multplied by $n$, then the volume of the new cube is:
$V=(n s)^{3}$
$V=\left(n^{3} s^{3}\right)$
$V=n^{3}\left(s^{3}\right)$
The volume of the cube is multiplied by $n^{3}$, when the length of the side is multplied by $n$.
This will be true of any geometric figure scaled by $n$ in all dimensions.
45.

$\angle B E C=\angle A E D$, since they are vertically opposite angles
$\angle B C A=\angle A D B$, both are inscribed in $A B$
$\angle C B D=\angle C A D$, both are inscribed in $E D$
which shows $\triangle A E D \square \triangle B E C$
$\frac{a}{d}=\frac{b}{c}$
46.


The two angles $\angle A B C$ and $\angle A D C$ of the quadrilateral
at the point where the tangents touch the circle are each $90^{\circ}$.
The four angles of the quadrilateral will add up to $360^{\circ}$.

$$
\begin{aligned}
\angle A B C+\angle A D C+\angle B A D+\angle B C D & =360^{\circ} \\
90^{\circ}+90^{\circ}+36^{\circ}+\angle B C D & =360^{\circ} \\
\angle B C D & =144^{\circ}
\end{aligned}
$$

47. 

The three angles of the triangle will add up to $180^{\circ}$.
If the tip of the isosceles triangle is $38^{\circ}$, find the other two equal angles.
2(base angle) $+38^{\circ}=180^{\circ}$
2 (base angle) $=142^{\circ}$
base angle $=71^{\circ}$
48.

The two volumes are equal

$$
\begin{aligned}
V_{\text {sphere }} & =V_{\text {sheet }} \\
\frac{4}{3} \pi r_{\text {sphere }}{ }^{3} & =\pi r_{\text {sheet }}{ }^{2} t \\
\frac{4}{3}\left(\frac{d_{\text {sphere }}}{2}\right)^{3} & =\left(\frac{d_{\text {sheet }}}{2}\right)^{2} t \\
\frac{d_{\text {sphere }}{ }^{3}}{6} & =\frac{d_{\text {sheet }}{ }^{2}}{4} t \\
t & =\frac{2}{3} \cdot \frac{d_{\text {sphere }}{ }^{3}}{d_{\text {sheet }}{ }^{2}} \\
t & =\frac{2}{3} \cdot \frac{(1.50 \mathrm{~cm})^{3}}{(14.0 \mathrm{~cm})^{2}} \\
t & =0.011479591 \mathrm{~cm} \\
t & =0.0115 \mathrm{~cm}
\end{aligned}
$$

The flattened sphere is 0.0115 cm thick.
49.

$c^{2}=a^{2}+b^{2}$
$c=\sqrt{(1.20 \mathrm{~m})^{2}+(7.80 \mathrm{~m})^{2}}$
$c=\sqrt{62.28 \mathrm{~m}^{2}}$
$c=7.891767863 \mathrm{~m}$
$c=7.89 \mathrm{~m}$
50.

$c^{2}=a^{2}+b^{2}$
$c=\sqrt{(640 \mathrm{~m})^{2}+(3200 \mathrm{~m})^{2}}$
$c^{2}=\sqrt{10649600 \mathrm{~m}^{2}}$
$c=3263.372489 \mathrm{~m}$
$c=3300 \mathrm{~m}$
51.

An equilateral triangle has 3 equal sides,
so all edges of the triangle and square are 2 cm
$p=6(2 \mathrm{~cm})=12 \mathrm{~cm}$
52.
$A=$ Area of square + Area of 4 semi-circles
$A=s^{2}+4\left(\frac{\pi r^{2}}{2}\right)$
$A=s^{2}+2 \pi r^{2}$
$A=s^{2}+2 \pi\left(\frac{s}{2}\right)^{2}$
$A=s^{2}+\frac{\pi s^{2}}{2}$
$A=(4.50 \mathrm{~m})^{2}+\frac{\pi(4.50 \mathrm{~m})^{2}}{2}$
$A=52.05862562 \mathrm{~m}^{2}$
$A=52.1 \mathrm{~m}^{2}$
53.


Since line segments $B C, A D$, and $E F$ are parallel,
the segments $A B$ and $C D$ are proportional to $A F$ and $D E$

$$
\begin{aligned}
\frac{A B}{C D} & =\frac{A F}{D E} \\
\frac{A B}{38 \mathrm{~m}} & =\frac{42 \mathrm{~m}}{54 \mathrm{~m}} \\
A B & =\frac{38 \mathrm{~m}(42 \mathrm{~m})}{54 \mathrm{~m}} \\
A B & =29.55555556 \mathrm{~m} \\
A B & =30 \mathrm{~m}
\end{aligned}
$$

54. 



Since the triangles are similar, their sides are proportional.

$$
\begin{aligned}
\frac{h}{145+84} & =\frac{125}{145} \\
h & =\frac{125(229)}{145} \\
h & =197.41379 \mathrm{~m}
\end{aligned}
$$

Lot $A$ is a triangle
$A_{A}=\frac{1}{2}(145 \mathrm{~m})(125 \mathrm{~m})=9060 \mathrm{~m}^{2}$
Lot $B$ is a trapezoid
$A_{B}=\frac{1}{2}(125 \mathrm{~m}+197.41379 \mathrm{~m})(84.0 \mathrm{~m})=13500 \mathrm{~m}^{2}$
55.

Since the triangles are proportional

$$
\begin{aligned}
\frac{B F}{A E} & =\frac{M B}{A M} \\
\frac{B F}{1.6 \mathrm{~m}} & =\frac{4.5 \mathrm{~m}}{1.2 \mathrm{~m}} \\
B F & =\frac{4.5 \mathrm{~m}(1.6 \mathrm{~m})}{1.2 \mathrm{~m}} \\
B F & =6.0 \mathrm{~m}
\end{aligned}
$$

56. 

The triangles are proportional so,

$$
\begin{aligned}
\frac{D E}{B C} & =\frac{A D}{A B} \\
\frac{D E}{33.0 \mathrm{~cm}} & =\frac{16.0 \mathrm{~cm}}{24.0 \mathrm{~cm}} \\
D E & =\frac{16.0 \mathrm{~cm}(33.0 \mathrm{~cm})}{24.0 \mathrm{~cm}} \\
D E & =22.0 \mathrm{~cm}
\end{aligned}
$$

57. 

The longest distance between points on the photograph is
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{(20.0 \mathrm{~cm})^{2}+(25.0 \mathrm{~cm})^{2}}$
$c=\sqrt{1025 \mathrm{~cm}^{2}}$
$c=32.01562119 \mathrm{~cm}$
Find the distance in km represented by the longest measure on the map

$$
\begin{aligned}
& x=(32.01562119 \mathrm{~cm})\left(\frac{18450}{1}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)\left(\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}\right) \\
& x=5.906882 \mathrm{~km} \\
& x=5.91 \mathrm{~km}
\end{aligned}
$$

58. 

$M A=\frac{\pi r_{L}{ }^{2}}{\pi r_{S}{ }^{2}}$
$d_{L}=$ diameter of large piston in cm
$d_{S}=$ diameter of small piston in cm
$M A=\frac{\pi\left(\frac{d_{L}}{2}\right)^{2}}{\pi\left(\frac{d_{S}}{2}\right)^{2}}$
$M A=\left(\frac{d_{L}}{d_{s}}\right)^{2}$
$M A=\left(\frac{3.10}{2.25}\right)^{2}$
$M A=1.898271605$
$M A=1.90$
59.


The diameter of the satellite's orbit is Earth diameter plus two times its distance from the surface of Earth.
$c=\pi D$
$c=\pi(12700 \mathrm{~km}+2(345 \mathrm{~km}))$
$c=\pi(12700 \mathrm{~km}+690 \mathrm{~km})$
$c=42100 \mathrm{~km}$
60.


$$
\begin{aligned}
& A=l w \\
& A=x(x+15) \\
& A=x^{2}+15 x
\end{aligned}
$$

The diagonal is given, so

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
(x+15)^{2}+x^{2} & =131^{2} \\
x^{2}+30 x+225+x^{2} & =17161 \\
2 x^{2}+30 x & =16936
\end{aligned}
$$

The left side is twice the area!

$$
\begin{aligned}
2\left(x^{2}+15 x\right) & =16936 \\
2 A & =16936 \\
A & =\frac{16936}{2} \\
A & =8470 \mathrm{~m}^{2}
\end{aligned}
$$

61. 

Area of the drywall is the area of the rectangle subtract the two circular cutouts.

$$
\begin{aligned}
& A=l w-2\left(\pi r^{2}\right) \\
& A=l w-2\left(\frac{\pi d^{2}}{4}\right) \\
& A=l w-\frac{\pi d^{2}}{2} \\
& A=(1200 \mathrm{~mm})(2400 \mathrm{~mm})-\frac{\pi(350 \mathrm{~mm})^{2}}{2} \\
& A=2687577.45 \mathrm{~mm}^{2} \\
& A=2.7 \times 10^{6} \mathrm{~mm}^{2}
\end{aligned}
$$

62. 



The triangles are similar so,

$$
\begin{aligned}
& \frac{d}{\frac{12700}{2}}=\frac{d+150000000}{\frac{1380000}{2}} \\
& \frac{d}{6350}=\frac{d+150000000}{690000}
\end{aligned}
$$

$690000 d=6350(d+150000000)$
$690000 d=6350 d+952500000000$
$683650 d=952500000000$

$$
\begin{aligned}
& d=\frac{952500000000}{683650} \\
& d=1393256.783 \mathrm{~km} \\
& d=1.39 \times 10^{6} \mathrm{~km}
\end{aligned}
$$

63. 

$A=\frac{h}{3}\left[y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\ldots+2 y_{n-2}+4 y_{n-1}+y_{n}\right]$
$A=\frac{250}{3}\left[\begin{array}{l}220+4(530)+2(480)+4(320+190+260) \\ +2(510)+4(350)+2(730)+4(560)+240\end{array}\right]$
$A=\frac{250}{3}(12740)$
$A=1061666 \mathrm{~m}^{2}$
$A=1.1 \times 10^{6} \mathrm{~m}^{2}$
64.
$V=\frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right]$
$V=\frac{250}{2}[560+2(1780)+2(4650)+2(6730)+2(5600)+2(6280)+2(2260)+230]$
$V=\frac{250}{2}(55390)$
$V=6923750 \mathrm{~m}^{3}$
$V=6.92 \times 10^{6} \mathrm{~m}^{3}$

## 65.

$V=\pi r^{2} h$
$V=\frac{\pi d^{2}}{4} h$
$V=\frac{\pi(4.32 \mathrm{~m})^{2}}{4}(13.2 \mathrm{~m})$
$V=193.47787 \mathrm{~m}^{3}$
$V=193 \mathrm{~m}^{3}$
66.


Area of cross-section is the area of six equilateral triangles with sides of 2.50 m each Using Hero's formula,

$$
\begin{aligned}
s & =\frac{1}{2}(a+b+c) \\
s & =\frac{1}{2}(2.5+2.5+2.5) \\
s & =3.75 \mathrm{~m} \\
A & =\sqrt{s(s-a)(s-b)(s-c)} \\
A & =\sqrt{3.75(3.75-2.5)^{3}} \\
A & =2.70633 \mathrm{~m}^{2} \\
V & =\text { area of cross section } \times \text { height } \\
V & =6\left[2.70633 \mathrm{~m}^{2}\right](6.75 \mathrm{~m}) \\
V & =109.6063402 \mathrm{~m}^{3} \\
V & =1.10 \times 10^{2} \mathrm{~m}^{3}
\end{aligned}
$$

67. 


$c^{2}=a^{2}+b^{2}$
$a^{2}=c^{2}-b^{2}$
$a=\sqrt{(500.10 \mathrm{~m})^{2}-(500.00 \mathrm{~m})^{2}}$
$a=\sqrt{100.01 \mathrm{~m}^{2}}$
$a=10.000 \mathrm{~m}$
68.
$c=$ distance apart in km
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{(2.4 \mathrm{~km})^{2}+(3.7 \mathrm{~km})^{2}}$
$c=\sqrt{19.45 \mathrm{~km}^{2}}$
$c=4.410215414 \mathrm{~km}$
$c=4.4 \mathrm{~km}$
69.
$V=V_{\text {cylinder }}+V_{\text {dome }}$
$V=\pi r^{2} h+\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)$
Note the height if the cylinder is the total height less the radius of the hemisphere.
$V=\pi(0.380 \mathrm{~m})^{2}(2.05 \mathrm{~m}-0.380 \mathrm{~m})+\frac{2}{3} \pi(0.380 \mathrm{~m})^{3}$
$V=0.872512433 \mathrm{~m}^{3}$
Convert $\mathrm{m}^{3}$ to L ,
$V=0.872512433 \mathrm{~m}^{3}\left(\frac{1000 \mathrm{~L}}{\mathrm{~m}^{3}}\right)$
$V=872.512433 \mathrm{~L}$
$V=873 \mathrm{~L}$
70.


Given $x=2.50 \mathrm{~m}$
Find the lateral height $s$ of the pyramid's triangles
$s^{2}=a^{2}+b^{2}$
$s^{2}=(3.25-x)^{2}+\left(\frac{x}{2}\right)^{2}$
$s^{2}=(0.75 \mathrm{~m})^{2}+(1.25 \mathrm{~m})^{2}$
$s=\sqrt{2.125 \mathrm{~m}^{2}}$
$s=1.457737974 \mathrm{~m}$
tent surface area $=$ surface area of pyramid + surface area of cube
tent surface area $=4$ triangles +4 squares

$$
\begin{aligned}
& A=4\left(\frac{1}{2} x s\right)+4 x^{2} \\
& A=2(2.50 \mathrm{~m})(1.457738 \mathrm{~m})+4(2.50 \mathrm{~m})^{2} \\
& A=32.2887 \mathrm{~m}^{2} \\
& A=32.3 \mathrm{~m}^{2}
\end{aligned}
$$

71. 

$$
\begin{aligned}
\frac{w}{h} & =\frac{16}{9} \\
w & =\frac{16 h}{9} \\
107^{2} & =w^{2}+h^{2} \\
11449 & =\left(\frac{16 h}{9}\right)^{2}+h^{2} \\
11449 & =\frac{256}{81} h^{2}+h^{2} \\
11449 & =\frac{337}{81} h^{2} \\
h^{2} & =\frac{81(11449)}{337} \\
h & =\sqrt{2751.836795 \mathrm{~cm}} \\
h & =52.457952645 \mathrm{~cm} \\
h & =52.5 \mathrm{~cm} \\
w & =\frac{16 h}{9} \\
w & =\frac{16(52.457952645 \mathrm{~cm})}{9} \\
w & =93.25858247 \mathrm{~cm} \\
w & =93.3 \mathrm{~cm}
\end{aligned}
$$

72. 



$$
\begin{aligned}
& r^{2}=1620^{2}-1590^{2} \\
& r^{2}=96300 \mathrm{~km}^{2} \\
& A=\pi r^{2} \\
& A=\pi\left(96300 \mathrm{~km}^{2}\right) \\
& A=302535.3725 \mathrm{~km}^{2} \\
& A=303000 \mathrm{~km}^{2}
\end{aligned}
$$

73. 



The area is the sum of the areas of three triangles, one with sides 454, 454, and 281 and two with sides 281, 281, and 454. The semi-perimeters are given
by
$s_{1}=\frac{281+281+454}{2}=508$
$s_{2}=\frac{454+454+281}{2}=594.5$
$A=2 \sqrt{508(508-281)(508-281)(508-454)}+\sqrt{594.5(594.5-454)(594.5-454)(594.5-281)}$
$A=136000 \mathrm{~m}^{2}$

