Solutions to end-of-chapter problems Basics of Engineering Economy, $2^{\text {nd }}$ edition Leland Blank and Anthony Tarquin

Chapter 2

Factors: How Time and Interest Affect Money

2.1 (a) $(\mathrm{F} / \mathrm{P}, 10 \%, 20)=6.7275$
(b) $(\mathrm{A} / \mathrm{F}, 4 \%, 8)=0.10853$
(c) $(\mathrm{P} / \mathrm{A}, 8 \%, 20)=9.8181$
(d) $(\mathrm{A} / \mathrm{P}, 20 \%, 28)=0.20122$
(e) $(\mathrm{F} / \mathrm{A}, 30 \%, 15)=167.2863$
$2.2 \quad \mathrm{P}=30,000(\mathrm{P} / \mathrm{F}, 10 \%, 8)$
$=30,000(0.4665)$
$=\$ 13,995$
$2.3 \quad \mathrm{~F}=15,000(\mathrm{~F} / \mathrm{P}, 6 \%, 25)$
$=15,000(4.2919)$
$=64,378.50$
2.4 (a) $\mathrm{F}=885,000+100,000(\mathrm{~F} / \mathrm{P}, 10 \%, 3)$
$=885,000+100,000(1.3310)$
$=\$ 1,018,000$
(b) Spreadsheet function is $=-\mathrm{FV}(10 \%, 3,, 100000)+885000$

Display is $\$ 1,018,000$
$2.5 \quad$ (a) $\mathrm{P}=19,000(\mathrm{P} / \mathrm{F}, 10 \%, 7)$
$=19,000(0.5132)$
$=\$ 9750.80$
(b) If the calculator function is $\mathrm{PV}(10,7,0,19000)$, display is $\mathrm{P}=\$-9750.00$
(c) If the spreadsheet function is $=-\mathrm{PV}(10 \%, 7,19000)$, display is $\$ 9750.00$
2.6 (a) Total for 7 lots is $7(120,000)=\$ 840,000$

$$
\begin{aligned}
\mathrm{P} & =840,000(\mathrm{P} / \mathrm{F}, 10 \%, 2) \\
& =840,000(0.8264) \\
& =\$ 694,176
\end{aligned}
$$

(b) If the calculator function is $\mathrm{PV}(10,2,0,840000)$, display is $\mathrm{P}=\$-694,214.88$
(c) If the spreadsheet function is $=-\mathrm{PV}(10 \%, 2,, 840000)$, display is $\$ 694,214.88$
2.7 (a) $\mathrm{F}=3000(\mathrm{~F} / \mathrm{P}, 10 \%, 12)+5000(\mathrm{~F} / \mathrm{P}, 10 \%, 8)$
$=3000(3.1384)+5000(2.1436)$
$=\$ 20,133.20$
(b) Sum two calculator functions

$$
\begin{aligned}
& \mathrm{FV}(10,12,,-3000)+\mathrm{FV}(10,8,-5000) \\
& 9,415.29+10,717.94=\$ 20,133.23
\end{aligned}
$$

(c) If the spreadsheet function is $=-\mathrm{FV}(10 \%, 12,3000)-\mathrm{FV}(10 \%, 8,, 5000)$, the display is $\$ 20,133.23$
2.8 (a) $\mathrm{P}=30,000,000(\mathrm{P} / \mathrm{F}, 10 \%, 5)-15,000,000$
$=30,000,000(0.6209)-15,000,000$
$=\$ 3,627,000$
(b) If the spreadsheet function is $=-\mathrm{PV}(10 \%, 5,30000000)-15,000000$, the display is $\$ 3,627,640$

The increased decimal accuracy of a spreadsheet function indicates an increased the required amount of $\$ 640$.

$$
\begin{aligned}
2.9 \quad \mathrm{~F} & =280,000(\mathrm{~F} / \mathrm{P}, 12 \%, 2) \\
& =280,000(1.2544) \\
& =\$ 351,232
\end{aligned}
$$

$2.10 \quad \mathrm{~A}=12,700,000(\mathrm{~A} / \mathrm{P}, 20 \%, 8)$
$=12,700,000(0.26061)$
$=\$ 3,309,747$
$2.11 \quad \mathrm{P}=6000(\mathrm{P} / \mathrm{A}, 10 \%, 10)$
$=6000(6.1446)$
$=\$ 36,867.60$
2.12 (a) $\mathrm{A}=60,000(\mathrm{~A} / \mathrm{P}, 8 \%, 5)$
$=60,000(0.25406)$
$=\$ 15,027.60$
(b) If calculator function is $\operatorname{PMT}(8,5,-60000,0)$, the answer is $\$ 15,027.39$
(c) A spreadsheet function of $=-\operatorname{PMT}(8 \%, 5,60000)$ displays $\$ 15,027.39$

$$
\begin{aligned}
2.13 \quad \mathrm{~A} & =20,000,000(\mathrm{~A} / \mathrm{P}, 10 \%, 6) \\
& =20,000,000(0.22961) \\
& =\$ 4,592,200
\end{aligned}
$$

$$
\begin{aligned}
2.14 \quad \mathrm{~A} & =50,000(\mathrm{~A} / \mathrm{F}, 20 \%, 3) \\
& =50,000(0.27473) \\
& =\$ 13,736.50
\end{aligned}
$$

2.15 (a) $17,000,000(\mathrm{~A} / \mathrm{P}, \mathrm{i}, 8)=2,737,680$

$$
(\mathrm{A} / \mathrm{P}, \mathrm{i}, 8)=0.16104
$$

From interest tables at $n=8, i=6 \%$ per year
(b) Calculator function is $\mathrm{i}(8,-2737680,17000000,0)$ to obtain $\mathrm{i}=6.00 \%$
(c) If the spreadsheet function is $=\operatorname{RATE}(8,-2737680,17000000)$, display is 6.00\%
2.16 (a) $\mathrm{A}=3,000,000(10)(\mathrm{A} / \mathrm{P}, 8 \%, 10)$

$$
\begin{aligned}
& =30,000,000(0.14903) \\
& =\$ 4,470,900
\end{aligned}
$$

(b) If calculator function is $\operatorname{PMT}(8,10,-30000000,0)$, the answer is $\$ 4,470,884.66$
(c) If the spreadsheet function is $=-\operatorname{PMT}(8 \%, 10,30000000)$, display is $\mathrm{A}=\$ 4,470,884.66$
$2.17 \quad \mathrm{P}=1,400,000(\mathrm{~F} / \mathrm{P}, 7 \%, 4)$
$=1,400,000(1.3108)$
$=\$ 1,835,120$
$2.18 \quad \mathrm{P}=600,000(\mathrm{P} / \mathrm{F}, 12 \%, 4)$
$=600,000(0.6355)$
$=\$ 381,300$
2.19 (a) $\mathrm{A}=225,000(\mathrm{~A} / \mathrm{P}, 15 \%, 4)$

$$
\begin{aligned}
& =225,000(0.35027) \\
& =\$ 78,811
\end{aligned}
$$

(b) Recall amount $=78,811 / 0.10$

$$
=\$ 788,110 \text { per year }
$$

$2.20 \quad \mathrm{P}=100,000((\mathrm{P} / \mathrm{F}, 12 \%, 2)$
$=100,000(0.7972)$
$=\$ 79,720$
$2.21 \quad \mathrm{~F}=65,000(\mathrm{~F} / \mathrm{P}, 4 \%, 5)$
$=65,000(1.2167)$
= \$79,086

```
\(2.22 \quad \mathrm{P}=(280,000-90,000)(\mathrm{P} / \mathrm{A}, 10 \%, 5)\)
    = 190,000(3.7908)
    \(=\$ 720,252\)
```

$2.23 \quad \mathrm{~F}=649(\mathrm{~F} / \mathrm{P}, 8 \%, 2)$
$=649(1.1664)$
$=\$ 757$
2.24 The value of the system is the interest saved on $\$ 20$ million for 2 years.

$$
\begin{aligned}
\mathrm{F} & =20,000,000(\mathrm{~F} / \mathrm{P}, 8 \%, 2) \\
& =20,000,000(1.1664) \\
& =\$ 23,328,000
\end{aligned}
$$

$$
\begin{aligned}
\text { Interest } & =23,328,000-20,000,000 \\
& =\$ 3,328,000
\end{aligned}
$$

$2.25 \quad \mathrm{P}=2,100,000(\mathrm{P} / \mathrm{F}, 10 \%, 2)$
$=2,100,000(0.8264)$
$=\$ 1,735,440$
$2.26 \quad \mathrm{P}=40,000(\mathrm{P} / \mathrm{F}, 12 \%, 4)$
$=40,000(0.6355)$
$=\$ 25,420$
2.27 (a) $\mathrm{A}=850,000(\mathrm{~A} / \mathrm{F}, 18 \%, 5)$
$=850,000(0.13978)$
$=\$ 118,813$
(b) Spreadsheet function $=\mathrm{PMT}(18 \%, 5,, 850000)$ results in a minus sign.
$2.28 \quad \mathrm{P}=95,000,000(\mathrm{P} / \mathrm{F}, 12 \%, 3)$
$=95,000,000(0.7118)$
$=\$ 67,621,000$
$2.29 \quad \mathrm{~F}=375,000(\mathrm{~F} / \mathrm{P}, 10 \%, 6)$
$=375,000(1.7716)$
$=\$ 664,350$
$2.30 \quad \mathrm{~F}=150,000(\mathrm{~F} / \mathrm{P}, 8 \%, 8)$
$=150,000(1.8509)$
$=\$ 277,635$
2.31 (a) $\mathrm{P}=7000(\mathrm{P} / \mathrm{F}, 10 \%, 2)+9000(\mathrm{P} / \mathrm{F}, 10 \%, 4)+15,000(\mathrm{P} / \mathrm{F}, 10 \%, 5)$
$=7000(0.8264)+9000(0.6830)+15,000(0.6209)$
$=\$ 21,245.30$
(b) Three calculator functions are added.
-PV(10,2,0,7000) - PV(10,4,0,9000) - PV(10,5,0,15000)
Total is $5785.12+6147.12+9313,82=\$ 21,246.06$
$2.32 \quad \begin{aligned} \mathrm{P} & =600,000(0.10)(\mathrm{P} / \mathrm{F}, 10 \%, 2)+1,350,000(0.10)(\mathrm{P} / \mathrm{F}, 10 \%, 5) \\ & =60,000(0.8264)+135,000(0.6209) \\ & =\$ 133,406\end{aligned}$
$2.33 \mathrm{P}=8,000,000(\mathrm{P} / \mathrm{A}, 10 \%, 5)$
$=8,000,000(3.7908)$
$=\$ 30,326,400$
$2.34 \mathrm{~A}=10,000,000(\mathrm{~A} / \mathrm{P}, 10 \%, 10)$
$=10,000,000(0.16275)$
$=\$ 1,627,500$
$2.35 \mathrm{~A}=140,000(4000)(\mathrm{A} / \mathrm{P}, 10 \%, 4)$
$=560,000,000(0.31547)$
= \$176,663,200
$2.36 \mathrm{P}=1,500,000(\mathrm{P} / \mathrm{A}, 8 \%, 4)$
$=1,500,000(3.3121)$
$=\$ 4,968,150$
$2.37 \mathrm{~A}=3,250,000(\mathrm{~A} / \mathrm{P}, 15 \%, 6)$
$=3,250,000(0.26424)$
$=\$ 858,780$
$2.38 \quad \mathrm{P}=280,000(\mathrm{P} / \mathrm{A}, 18 \%, 8)$
$=280,000(4.0776)$
$=\$ 1,141,728$
$2.39 \mathrm{~A}=3,500,000(\mathrm{~A} / \mathrm{P}, 25 \%, 5)$
$=3,500,000(0.37185)$
$=\$ 1,301,475$
$2.40 \mathrm{~A}=5000(7)(\mathrm{A} / \mathrm{P}, 10 \%, 10)$
$=35,000(0.16275)$
$=\$ 5696.25$
2.41

$$
\text { (a) } \begin{aligned}
\mathrm{F} & =70,000(\mathrm{~F} / \mathrm{P}, 12 \%, 6)+90,000(\mathrm{~F} / \mathrm{P}, 12 \%, 4) \\
& =70,000(1.9738)+90,000(1.5735) \\
& =\$ 279,781
\end{aligned}
$$

(b) Spreadsheet function is $=-\mathrm{FV}(12 \%, 6,0,70000)-\mathrm{FV}(12 \%, 4,0,90000)$ to obtain $\$ 279,784.33$
2.42

$$
\begin{aligned}
\mathrm{F} & =(458-360)(0.90)(20,000)(\mathrm{P} / \mathrm{A}, 10 \%, 5) \\
& =1,764,000(3.7908) \\
& =\$ 6,686,971
\end{aligned}
$$

(a) Let CF_{4} be the amount in year 4

$$
\begin{aligned}
& 100,000(\mathrm{~F} / \mathrm{P}, 9 \%, 3)+75,000(\mathrm{~F} / \mathrm{P}, 9 \%, 2)+\mathrm{CF}_{4}(\mathrm{~F} / \mathrm{P}, 9 \%, 1)=290,000 \\
& 100,000(1.2950)+75,000(1.1881)+\mathrm{CF}_{4}(1.0900)=290,000 \\
& (1.09) \mathrm{CF}_{4}=71.392 .50 \\
& \mathrm{CF}_{4}=\$ 65,497.71
\end{aligned}
$$

(b) F in year 5 for 2 known amounts

$$
=-\mathrm{FV}(9 \%, 3,0,100000)-\mathrm{FV}(9 \%, 2,0,75000)
$$

P in year 4 of \$290,000 minus amount above (assume it's in cell H9) $=-\mathrm{PV}(9 \%, 1,0,290000-\mathrm{H} 9)$

Answer is $\$ 65,495.05$
2.44

$$
\begin{aligned}
\mathrm{P} & =225,000(\mathrm{P} / \mathrm{A}, 15 \%, 3) \\
& =225,000(2.2832) \\
& =\$ 513,720
\end{aligned}
$$

2.45

$$
\begin{aligned}
400,000 & =50,000(\mathrm{~F} / \mathrm{A}, 12 \%, \mathrm{n}) \\
(\mathrm{F} / \mathrm{A}, 12 \%, \mathrm{n}) & =8.0000
\end{aligned}
$$

From 12% interest table, n is between 5 and 6 years. Therefore, $n=6$
2.46

$$
\begin{aligned}
\mathrm{F} & =\mathrm{P}(\mathrm{~F} / \mathrm{P}, 10 \%, \mathrm{n}) \\
3 \mathrm{P} & =\mathrm{P}(\mathrm{~F} / \mathrm{P}, 10 \%, \mathrm{n}) \\
(\mathrm{F} / \mathrm{P}, 10 \%, \mathrm{n}) & =3.000
\end{aligned}
$$

From 10% interest tables, n is between 11 and 12 years. Therefore, $\mathrm{n}=12$ years
2.47 (a) $1,200,000=400,000(\mathrm{~F} / \mathrm{P}, 10 \%, \mathrm{n})+50,000(\mathrm{~F} / \mathrm{A}, 10 \%, \mathrm{n})$

Solve for n by trial and error:
Try $\mathrm{n}=5: 400,000(\mathrm{~F} / \mathrm{P}, 10 \%, 5)+50,000(\mathrm{~F} / \mathrm{A}, 10 \%, 5)$

$$
\begin{aligned}
& 400,000(1.6105)+50,000(6.1051) \\
& 949,455<1,200,000 \quad n \text { too low }
\end{aligned}
$$

Try n $=8: 400,000(2.1436)+50,000(11.4359)$
$1,429,235>1,200,000 \quad n$ too high

By continued interpolation, n is between 6 and 7. Therefore, $\mathrm{n}=7$ years
(b) Spreadsheet function $=\operatorname{NPER}(10 \%,-50000,-400000,1200000)$ displays 6.67
2.48
$2,000,000(\mathrm{~F} / \mathrm{P}, 7 \%, \mathrm{n})=158,000(\mathrm{~F} / \mathrm{A}, 7 \%, \mathrm{n})$
Solve for n by trial and error (in \$ thousands):
Try $\mathrm{n}=30: 2,000,000(\mathrm{~F} / \mathrm{P}, 7 \%, 30)=158,000(\mathrm{~F} / \mathrm{A}, 7 \%, 30)$

$$
2,000,000(7.6123)=158,000(94.4608)
$$

$$
15,224,600>14,924,806 \quad n \text { too low }
$$

Try $\mathrm{n}=32: 2,000,000(8.7153)=158,000(110.2182)$

$$
17,430,600>17,414,476 \quad n \text { too low }
$$

Try $\mathrm{n}=33: 2,000,000(9.3253)=158,000(118.9334)$

$$
18,650,600<18,791,447 \quad n \text { too high }
$$

By interpolation, n is between 32 and 33 , and close to 32 years.
Spreadsheet function is $=\operatorname{NPER}(7 \%,-158000,2000000)$ to display 32.1 years
(a) $\mathrm{P}=26,000(\mathrm{P} / \mathrm{A}, 10 \%, 5)+2000(\mathrm{P} / \mathrm{G}, 10 \%, 5)$
$=26,000(3.7908)+2000(6.8618)$
$=\$ 112,284$
(b) Spreadsheet: enter each annual cost in adjacent cells and use the NPV function to display $\mathrm{P}=\$ 112,284$

Calculators have no function for gradients; use the PV function on each cash flow and add the five P values to get $\$ 112,284.55$
2.50

$$
\begin{aligned}
\mathrm{A} & =72,000+1000(\mathrm{~A} / \mathrm{G}, 8 \%, 5) \\
& =72,000+1000(1.8465) \\
& =\$ 73,846
\end{aligned}
$$

2.51 (a) $84,000=15,000+\mathrm{G}(\mathrm{A} / \mathrm{G}, 10 \%, 5)$ $84,000=15,000+\mathrm{G}(1.8101)$ $\mathrm{G}=\$ 38,119$
(b) The annual increase of over $\$ 38,000$ is substantially larger than the first-year cost of $\$ 15,000$

$$
\begin{aligned}
2.52 \quad \mathrm{~A} & =9000-560(\mathrm{~A} / \mathrm{G}, 10 \%, 5) \\
& =9000-560(1.8101) \\
& =\$ 7986
\end{aligned}
$$

$$
\begin{aligned}
2.5314,000 & =8000(\mathrm{P} / \mathrm{A}, 10 \%, 4)-\mathrm{G}(\mathrm{P} / \mathrm{G}, 10 \%, 4) \\
14,000 & =8000(3.1699)-\mathrm{G}(4.3781) \\
\mathrm{G} & =\$ 2594.55
\end{aligned}
$$

$2.54 \quad \mathrm{P}=20,000(\mathrm{P} / \mathrm{A}, 10 \%, 10)+2000(\mathrm{P} / \mathrm{G}, 10 \%, 10)$
$=20,000(6.1446)+2000(22.8913)$
$=\$ 168,675$
$2.55 \mathrm{~A}=100,000+10,000(\mathrm{~A} / \mathrm{G}, 10 \%, 5)$
$=100,000+10,000(1.8101)$
$=\$ 118,101$

$$
\begin{aligned}
\mathrm{F} & =118,101(\mathrm{~F} / \mathrm{A}, 10 \%, 5) \\
& =118,101(6.1051) \\
& =\$ 721,018
\end{aligned}
$$

$2.56 \quad \mathrm{P}=0.50(\mathrm{P} / \mathrm{A}, 10 \%, 5)+0.10(\mathrm{P} / \mathrm{G}, 10 \%, 5)$
$=0.50(3.7908)+0.10(6.8618)$
$=\$ 2.58$
2.57 (a) Income $=390,000-2(15,000)$

$$
=\$ 360,000
$$

(b) $\mathrm{A}=390,000-15,000(\mathrm{~A} / \mathrm{G}, 10 \%, 5)$

$$
=390,000-15,000(1.8101)
$$

$$
=\$ 362,848.50
$$

$2.58 \quad 475,000=25,000(\mathrm{P} / \mathrm{A}, 10 \%, 6)+\mathrm{G}(\mathrm{P} / \mathrm{G}, 10 \%, 6)$
$475,000=25,000(4.3553)+\mathrm{G}(9.6842)$
$9.6842 \mathrm{G}=366,117.50$
$\mathrm{G}=\$ 37,805.65$
2.59 Factors: First find P and then convert to F

$$
\begin{aligned}
\mathrm{P} & =1,000,000(\mathrm{P} / \mathrm{A}, 10 \%, 5)+200,000(\mathrm{P} / \mathrm{G}, 10 \%, 5) \\
& =1,000,000(3.7908)+200,000(6.8618) \\
& =\$ 5,163,160 \\
\mathrm{~F} & =5,163,160(\mathrm{~F} / \mathrm{P}, 10 \%, 5) \\
& =5,613,160(1.6105) \\
& =\$ 8,315,269
\end{aligned}
$$

Spreadsheet: Enter gradient series in cells, e.g., B2 through B6; use FV function with embedded NPV function $=-\mathrm{FV}(10 \%, 5, \mathrm{NPV}(10 \%, \mathrm{~B} 2: \mathrm{B} 6))$ to display $\$ 8,315,300$
2.60 Convert F to A or P and then plug values into A / G or P / G equation. Using A :

$$
\begin{aligned}
\mathrm{A} & =500,000(\mathrm{~A} / \mathrm{F}, 10 \%, 10) \\
& =500,000(0.06275) \\
& =\$ 31,375
\end{aligned}
$$

$31,375=20,000+\mathrm{G}(\mathrm{A} / \mathrm{G}, 10 \%, 10)$
$31,375=20,000+G(3.7255)$
$\mathrm{G}=\$ 3053.28$
$2.61 \mathrm{~A}=7,000,000-500,000(\mathrm{~A} / \mathrm{G}, 10 \%, 5)$
$=7,000,000-500,000(1.8101)$
$=\$ 6,094,950$
2.62 First find P and then convert to F

$$
\begin{aligned}
\mathrm{P} & =300,000(\mathrm{P} / \mathrm{A}, 10 \%, 5)-25,000(\mathrm{P} / \mathrm{G}, 10 \%, 5) \\
& =300,000(3.7908)-25,000(6.8618) \\
& =\$ 965,695
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F} & =965,695(\mathrm{~F} / \mathrm{P}, 10 \%, 5) \\
& =965,695(1.6105) \\
& =\$ 1,555,252
\end{aligned}
$$

2.63

$$
\begin{aligned}
\mathrm{P} & =950,000(800)(\mathrm{P} / \mathrm{A}, 10 \%, 5)+950,000(800)(0.15)(\mathrm{P} / \mathrm{G}, 10 \%, 5) \\
& =760,000,000(3.7908)+142,500(800)(6.8618) \\
& =\$ 3,663,253,200
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F} & =3,663,253,200(\mathrm{~F} / \mathrm{P}, 10 \%, 5) \\
& =3,663,253,200(1.6105) \\
& =\$ 5,899,669,279
\end{aligned}
$$

2.64

$$
\begin{aligned}
\mathrm{P} & =(23,000) \frac{1-(1.02 / 1.10)^{5}}{(0.10-0.02)} \\
& =\$ 90,405
\end{aligned}
$$

2.65 Find present worth of geometric gradient, then F after 20 years

$$
\begin{aligned}
\mathrm{P} & =(0.12)(60,000) \frac{1-(1.04 / 1.07)^{20}}{(0.07-0.04)} \\
& =\$ 104,105.31 \\
\mathrm{~F} & =104,105.31(\mathrm{~F} / \mathrm{P}, 7 \%, 20) \\
& =104,105.31(3.8697) \\
& =\$ 402,856
\end{aligned}
$$

2.66 $\quad \mathrm{P}=900\left[1-(1.10 / 1.08)^{10}\right] /(0.08-0.10)$
= \$9063.21

In present worth terms, the $\$ 11,000$ extra cost is not fully recovered by the savings.
2.67 First find P and then convert to A . (in million-people units)

$$
\begin{aligned}
\mathrm{P} & =15,000(10)\left[1-(1.15 / 1.08)^{5}\right] /(0.08-0.15) \\
& =\$ 790,491,225,000 \\
\mathrm{~A} & =790,491,225,000(\mathrm{~A} / \mathrm{P}, 8 \%, 5) \\
& =790,491,225,000(0.25046) \\
& =\$ 197.986 \text { billion } \quad \text { (spreadsheet answer is } \$ 197,983,629,604)
\end{aligned}
$$

2.68 First find P and then convert to A

$$
\begin{aligned}
\mathrm{P} & =8000[10 /(1+0.10)] \\
& =\$ 72,727 \\
\mathrm{~A} & =72,727(\mathrm{~A} / \mathrm{P}, 10 \%, 10) \\
& =72,727(0.16275) \\
& =\$ 11,836
\end{aligned}
$$

2.69 Solve for A_{1} in geometric gradient equation

$$
\begin{aligned}
65,000 & =\mathrm{A}_{1}\left[1-(1.08 / 1.10)^{3}\right] /(0.10-0.08) \\
2.67799 \mathrm{~A}_{1} & =65,000 \\
\mathrm{~A}_{1} & =\$ 24,272
\end{aligned}
$$

2.70 Solve for P in geometric gradient equation and then convert to A
$\mathrm{A}_{1}=5,000,000(0.01)=50,000$

$$
\begin{aligned}
\mathrm{P} & =50,000\left[1-(1.10 / 1.08)^{5}\right] /(0.08-0.10) \\
& =\$ 240,215
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A} & =240,215(\mathrm{~A} / \mathrm{P}, 8 \%, 5) \\
& =240,215(0.25046) \\
& =\$ 60,164
\end{aligned}
$$

2.71 First find P and then convert to F

$$
\begin{aligned}
\mathrm{P} & =5000\left[1-(1.15 / 1.10)^{12}\right] /(0.10-0.15) \\
& =\$ 70,475.50
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F} & =70,475.50(\mathrm{~F} / \mathrm{P}, 10 \%, 12) \\
& =70,475.50(3.1384) \\
& =\$ 221,180
\end{aligned}
$$

2.72

$$
\text { (a) } \begin{aligned}
80,000 & =\mathrm{A}_{1}\left[1-(0.92 / 1.10)^{10}\right] /(0.10+0.08) \\
4.6251 \mathrm{~A}_{1} & =80,000 \\
\mathrm{~A}_{1} & =\$ 17,297
\end{aligned}
$$

(b) Read Section A. 4 first. Enter series into cells with any starting value for year 1. Use the NPV function to determine P. In Goal Seek, set the NPV cell equal to 80,000 ; designate the changing cell at the cell with the starting value in year 1. When OK is entered, the display is $\$ 17,297$
2.73 Solve for A_{1} in geometric gradient equation and then find cost in year 3

$$
\begin{aligned}
400,000 & =\mathrm{A}_{1}\left[1-(1.04 / 1.10)^{5}\right] /(0.10-0.04) \\
4.0759 \mathrm{~A}_{1} & =400,000 \\
\mathrm{~A}_{1} & =\$ 98,138
\end{aligned}
$$

$$
\begin{aligned}
\text { Cost in year } 3 & =98,138(1.04)^{2} \\
& =\$ 106,146
\end{aligned}
$$

2.74 Solve for A_{1} in geometric gradient equation

$$
\begin{aligned}
900,000 & =\mathrm{A}_{1}\left[1-(1.05 / 1.15)^{5}\right] /(0.15-0.05) \\
3.65462 \mathrm{~A}_{1} & =900,000 \\
\mathrm{~A}_{1} & =\$ 246,263
\end{aligned}
$$

2.75 First find P and then convert to F

$$
\begin{aligned}
\mathrm{P} & =5000\left[1-(0.95 / 1.08)^{5}\right] /(0.08+0.05) \\
& =\$ 18,207
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F} & =18,207(\mathrm{~F} / \mathrm{P}, 8 \%, 5) \\
& =18,207(1.4693) \\
& =\$ 26,751
\end{aligned}
$$

2.76 Since $4^{\text {th }}$ deposit is known to be $\$ 1250$, increase it by 5% each year to year one

$$
\begin{aligned}
\mathrm{A}_{1} & =1250 /(0.95)^{3} \\
& =\$ 1457.94
\end{aligned}
$$

$2.77 \mathrm{P}=60,000+40,000(\mathrm{P} / \mathrm{A}, 10 \%, 3)$
$=60,000+40,000(2.4869)$
$=\$ 159,476$

$$
\begin{aligned}
\mathrm{F} & =8000(\mathrm{~F} / \mathrm{A}, 10 \%, 5) \\
& =8000(6.1051) \\
& =\$ 48,841
\end{aligned}
$$

$2.79 \quad \mathrm{~F}=200,000(\mathrm{~F} / \mathrm{A}, 10 \%, 6)$
$=200,000(7.7156)$
$=\$ 1,543,120$

$$
\begin{align*}
\mathrm{P} & =97,000(\mathrm{P} / \mathrm{A}, 10 \%, 4)(\mathrm{P} / \mathrm{F}, 10 \%, 1) \\
& =97,000(3.1699)(0.9091) \\
& =\$ 279,530
\end{align*}
$$

2.81 F in year $17=5000(\mathrm{~F} / \mathrm{A}, 8 \%, 18)$

$$
\begin{aligned}
& =5000(37.4502) \\
& =\$ 187,251
\end{aligned}
$$

Use this F value as a present worth to calculate A for the next 5 years

$$
\begin{aligned}
\mathrm{A} & =187,251(\mathrm{~A} / \mathrm{P}, 8 \%, 5) \\
& =187,251(0.25046) \\
& =\$ 46,899
\end{aligned}
$$

2.82 Fin year $8=100(\mathrm{~F} / \mathrm{A}, 10 \%, 3)(\mathrm{F} / \mathrm{P}, 10 \%, 6)+200(\mathrm{~F} / \mathrm{A}, 10 \%, 4)(\mathrm{F} / \mathrm{P}, 10 \%, 2)$

$$
\begin{aligned}
& =100(3.3100)(1.7716)+200(4.6410)(1.21) \\
& =\$ 1709.52
\end{aligned}
$$

$$
\begin{align*}
(\mathrm{a}) \mathrm{F} & =(62,000,000 / 10)(\mathrm{F} / \mathrm{A}, 8 \%, 10)(\mathrm{F} / \mathrm{P}, 8 \%, 2)+(9,000,000 / 2)(\mathrm{F} / \mathrm{A}, 8 \%, 2) \\
& =6,200,000(14.4866)(1.1664)+4,500,000(2.08) \\
& =\$ 114,122,456
\end{align*}
$$

(b) Calculator functions are $\mathrm{FV}(8,2,0, \mathrm{FV}(8,10,6200000)+\mathrm{FV}(8,2,4500000)$
2.84 (a) 1. For $\$ 5000$ in year 0 , find A in years 1-9

$$
\begin{aligned}
\mathrm{A}_{1} & =5000(\mathrm{~A} / \mathrm{P}, 10 \%, 9) \\
& =5000(0.17364) \\
& =\$ 868.20
\end{aligned}
$$

2. For $\$ 4000$ in years $1-9$, the A is

$$
\mathrm{A}_{2}=\$ 4000
$$

3. For the extra $\$ 1000$ in years 5-9, convert to A in years 1-9

$$
\begin{aligned}
\mathrm{A}_{3} & =1000(\mathrm{~F} / \mathrm{A}, 10 \%, 5)(\mathrm{A} / \mathrm{F}, 10 \%, 9) \\
& =1000(6.1051)(0.07364) \\
& =\$ 449.58
\end{aligned}
$$

$$
\begin{aligned}
\text { Total } \mathrm{A} & =\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3} \\
& =868.20+4000+449.58 \\
& =\$ 5318
\end{aligned}
$$

(b)

	A	B
1	Year	Cash flow, \$
2	0	5000
3	1	4000
4	2	4000
5	3	4000
6	4	4000
7	5	5000
8	6	5000
9	7	5000
10	8	5000
11	9	5000
12	A	
13	Function	-PMT(10\%,9,NPV(10\%,B3:B11) + B2)
\ldots		

2.85 Find the future worth $\mathrm{F}_{\text {paid }}$ of 3 payments in year 4

$$
\begin{aligned}
\mathrm{F}_{\text {paid }} & =2,000,000(\mathrm{~F} / \mathrm{A}, 8 \%, 3)(\mathrm{F} / \mathrm{P}, 8 \%, 1) \\
& =2,000,000(3.2464)(1.08) \\
& =\$ 7,012,224
\end{aligned}
$$

Find total amount owed $\mathrm{F}_{\text {owed }}$ after 4 years

$$
\begin{aligned}
\mathrm{F}_{\text {owed }} & =10,000,000(\mathrm{~F} / \mathrm{P}, 8 \%, 4) \\
& =10,000,000(1.3605) \\
& =\$ 13,606,000
\end{aligned}
$$

Due in year $4=13,606,000-7,012,224$

$$
=\$ 6,593,776
$$

2.86 (a) First find present worth of $\mathrm{A}=\$ 200$ in years 1 through 7

$$
\begin{aligned}
\mathrm{P} & =200(\mathrm{P} / \mathrm{A}, 10 \%, 7) \\
& =200(4.8684) \\
& =\$ 973.68
\end{aligned}
$$

Set present worth of given cash flows equal to $\$ 973.68$ and solve for CF_{3}

$$
\begin{aligned}
973.68 & =200+200(\mathrm{P} / \mathrm{A}, 10 \%, 2)+C F_{3}(\mathrm{P} / \mathrm{F}, 10 \%, 3)+200(\mathrm{P} / \mathrm{A}, 10 \%, 4)(\mathrm{P} / \mathrm{F}, 10 \%, 3) \\
973.68 & =200+200(1.7355)+C F_{3}(0.7513)+200(3.1699)(0.7513) \\
973.68 & =\$ 1023.41+0.7513 C F_{3} \\
C F_{3} & =\$-66.19
\end{aligned}
$$

A negative cash flow of $\$ 66.19$ makes $\mathrm{A}=\$ 200$ per year
(b) Use PMT with an embedded NPV function to calculate annual equivalent. Goal Seek tool sets PMT value at 200 and the year 3 cash flow is the changing cell. Answer is $\mathrm{CF}_{3}=\$-66.19$.
2.87 Find P in year 7, move to year 25, and then solve for A

$$
\begin{aligned}
\mathrm{P}_{7} & =50,000(\mathrm{P} / \mathrm{A}, 8 \%, 3) \\
& =50,000(2.5771) \\
& =\$ 128,855
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}_{25} & =128,855(\mathrm{~F} / \mathrm{P}, 8 \%, 18) \\
& =128,855(3.9960) \\
& =\$ 514,905
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A} & =514,905(\mathrm{~A} / \mathrm{P}, 8 \%, 35) \\
& =514,905(0.08580) \\
& =\$ 44,179
\end{aligned}
$$

2.88 Find P in year 0 then convert to F . In $\$$ million units,

$$
\begin{aligned}
\mathrm{P}_{0} & =450-40(\mathrm{P} / \mathrm{F}, 10 \%, 1)+200(\mathrm{P} / \mathrm{A}, 10 \%, 6)(\mathrm{P} / \mathrm{F}, 10 \%, 1) \\
& =450-40(0.9091)+200(4.3553)(0.9091) \\
& =\$ 1205.52
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}_{7} & =1205.52(\mathrm{~F} / \mathrm{P}, 10 \%, 7) \\
& =1205.52(1.9487) \\
& =\$ 2349.20
\end{aligned}
$$

$2.89 \mathrm{P}=850+400(\mathrm{P} / \mathrm{A}, 10 \%, 5)-100(\mathrm{P} / \mathrm{F}, 10 \%, 1)+100(\mathrm{P} / \mathrm{F}, 10 \%, 5)$
$=850+400(3.7908)-100(0.9091)+100(0.6209)$
$=\$ 2337.50$
$\mathrm{A}=2337.50(\mathrm{~A} / \mathrm{P}, 10 \%, 5)$
$=2337.50(0.26380)$
$=\$ 616.63$
2.90 Power savings $=1,000,000(0.15)=\$ 150,000$

Payments to engineer $=150,000(0.60)=\$ 90,000$ per year
(a) $\mathrm{P}=90,000(\mathrm{P} / \mathrm{A}, 10 \%, 3)(\mathrm{P} / \mathrm{F}, 10 \%, 1)$
$=90,000(2.4869)(0.9091)$
$=\$ 203,476$
(b) $\mathrm{F}=90,000(\mathrm{~F} / \mathrm{A}, 10 \%, 3)$
$=90,000(3.3100)$
$=\$ 297,900$
2.91 Factors: (a) $\mathrm{P}=31,000(\mathrm{P} / \mathrm{A}, 8 \%, 3)+20,000(\mathrm{P} / \mathrm{A}, 8 \%, 5)(\mathrm{P} / \mathrm{F}, 8 \%, 3)$

$$
\begin{aligned}
& =31,000(2.5771)+20,000(3.9927)(0.7938) \\
& =\$ 143,278
\end{aligned}
$$

(b) $\mathrm{A}=143,278(\mathrm{~A} / \mathrm{P}, 8 \%, 8)$
$=143,278(0.17401)$

$$
=\$ 24,932
$$

Spreadsheet:

4	A	B	C
1	Year	Cash flow, \$	Functions
2	0		
3	1	31000	
4	2	31000	
5	3	31000	
6	4	20000	
7	5	20000	
8	6	20000	
9	7	20000	
10	8	20000	
11	$\mathrm{P}=$	\$143,281	${fdcc3f6bf-0bc9-4cfa-be8e-a1fba5aaf2c1}=-\mathrm{PMT}(8 \%, 8, \mathrm{B11})$

$$
\begin{aligned}
2.92 & =13,500+67,500(\mathrm{P} / \mathrm{F}, 12 \%, 1) \\
& =13,500+67,500(0.8929) \\
& =\$ 73,770.75
\end{aligned}
$$

$$
\mathrm{A}=73,770.75(\mathrm{~A} / \mathrm{P}, 12 \%, 5)
$$

$$
=73,770.75(0.27741)
$$

$$
=\$ 20,465
$$

2.93 Find F in year 7 and convert to A

$$
\begin{aligned}
\mathrm{F}_{7} & =4,000,000(\mathrm{~F} / \mathrm{A}, 10 \%, 8)+1,000,000(\mathrm{~F} / \mathrm{A}, 10 \%, 4) \\
& =4,000,000(11.4359)+1,000,000(4.6410) \\
& =\$ 50,384,600 \\
\mathrm{~A} & =50,384,600(\mathrm{~A} / \mathrm{F}, 10 \%, 7) \\
& =50,384,600(0.10541) \\
& =\$ 5,311,041
\end{aligned}
$$

2.94 In \$ billion units,

Gross revenue first 2 years $=5.8(0.701)=\$ 4.0658$
Gross revenue last 2 years $=6.2(0.701)=\$ 4.3462$

$$
\begin{aligned}
\mathrm{F} & =4.0658(\mathrm{~F} / \mathrm{A}, 14 \%, 2)(\mathrm{F} / \mathrm{P}, 14 \%, 2)+4.3462(\mathrm{~F} / \mathrm{A}, 14 \%, 2) \\
& =4.0658(2.1400)(1.2996)+4.3462(2.1400) \\
& =\$ 20.6084 \text { billion }
\end{aligned}
$$

2.95 (a) Net income, years $1-8=\$ 7,000,000$

$$
\begin{aligned}
\mathrm{A} & =-20,000,000(\mathrm{~A} / \mathrm{P}, 10 \%, 8)+7,000,000 \\
& =-20,000,000(0.18744)+7,000,000 \\
& =\$ 3,251,200
\end{aligned}
$$

(b) $\mathrm{F}=3,251,200(\mathrm{~F} / \mathrm{A}, 10 \%, 8)$

$$
=3,251,200(11.4359)
$$

$$
=\$ 37,180,398
$$

2.96
(a) $1,500,000(\mathrm{~F} / \mathrm{P}, 10 \%, 5)+\mathrm{A}(\mathrm{F} / \mathrm{A}, 10 \%, 5)=15,000,000$
$1,500,000(1.6105)+\mathrm{A}(6.1051)=15,000,000$
$6.1051 \mathrm{~A}=12,584,250$ $\mathrm{A}=\$ 2,061,268$
(b) If entries are in cells B2 through B7, the payment is found using $=-\mathrm{FV}(10 \%, 5, \mathrm{NPV}(10 \%, \mathrm{~B} 3: \mathrm{B} 7)+\mathrm{B} 2)$. Goal Seek value for this cell is $\$ 15$ million and the changing cell is the year 1 cash flow. Answer is $\$ 2,061,266$.
2.97 First find F in year 8 and then solve for A

$$
\begin{aligned}
\mathrm{F}_{8} & =15,000(\mathrm{~F} / \mathrm{A}, 8 \%, 7)+10,000(\mathrm{~F} / \mathrm{A}, 8 \%, 4) \\
& =15,000(8.9228)+10,000(4.5061) \\
& =\$ 178,903 \\
\mathrm{~A} & =178,903(\mathrm{~A} / \mathrm{F}, 8 \%, 8) \\
& =178,903(0.09401) \\
& =\$ 16,819
\end{aligned}
$$

2.98 In \$ million units

$$
\begin{aligned}
\mathrm{P} & =1.4(\mathrm{P} / \mathrm{A}, 6 \%, 2)+[1.4(\mathrm{P} / \mathrm{A}, 6 \%, 13)+0.03(\mathrm{P} / \mathrm{G}, 6 \%, 13)](\mathrm{P} / \mathrm{F}, 6 \%, 2) \\
& =1.4(1.8334)+[1.4(8.8527)+0.03(45.9629)](0.8900) \\
& =\$ 14.824 \quad(\$ 14,824,434)
\end{aligned}
$$

2.99 P in year $-1=10,000(\mathrm{P} / \mathrm{A}, 12 \%, 21)+1500(\mathrm{P} / \mathrm{G}, 12 \%, 21)$

$$
\begin{aligned}
& =10,000(7.562)+1500(46.8188) \\
& =\$ 145,848.20
\end{aligned}
$$

F in year $20=145,848.20(\mathrm{~F} / \mathrm{P}, 12 \%, 21)$

$$
=145,848.20(10.8038)
$$

$$
=\$ 1,575,715
$$

2.100 Find P in year -1 for geometric gradient, than move to year 0 to find P

$$
\begin{aligned}
\mathrm{P}_{-1} & =(30,000) \frac{1-(1.05 / 1.10)^{8}}{(0.10-0.05)} \\
& =\$ 186,454 \\
\mathrm{~F}=\mathrm{P}_{0} & =186,454(\mathrm{~F} / \mathrm{P}, 10 \%, 1) \\
& =186,454(1.10) \\
& =\$ 205,099
\end{aligned}
$$

2.101 (a) Factors: Find P in year -1 using gradient factor and then move forward 1 year

$$
\begin{aligned}
\mathrm{P}_{-1} & =2,500,000(\mathrm{P} / \mathrm{A}, 10 \%, 11)+200,000(\mathrm{P} / \mathrm{G}, 10 \%, 11) \\
& =2,500,000(6.4951)+200,000(26.3963) \\
& =\$ 21,517,010
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}=\mathrm{P}_{0} & =21,517,010(\mathrm{~F} / \mathrm{P}, 10 \%, 1) \\
& =22,836,825(1.1000) \\
& =\$ 23,668,711
\end{aligned}
$$

(b) Spreadsheet: If entries are in cells B2 through B12, the function $=\mathrm{NPV}(10 \%, \mathrm{~B} 3: \mathrm{B} 12)+\mathrm{B} 2$ displays $\$ 23,668,600$, which is the future worth F of the P in year -1
$2.102 \mathrm{~A}=550,000(\mathrm{~A} / \mathrm{P}, 10 \%, 12)+550,000+40,000(\mathrm{~A} / \mathrm{G}, 10 \%, 12)$
$=550,000(0.14676)+550,000+40,000(4.3884)$
$=\$ 806,254$
2.103 Find P in year -6 using arithmetic gradient factor and then find F today

$$
\begin{aligned}
\mathrm{P}_{-6} & =10,000(\mathrm{P} / \mathrm{A}, 12 \%, 6)+1000(\mathrm{P} / \mathrm{G}, 12 \%, 6) \\
& =10,000(4.1114)+1000(8.9302) \\
& =41,114+8930.20 \\
& =\$ 50,044.20 \\
\mathrm{~F} & =50,044.20(\mathrm{~F} / \mathrm{P}, 12 \%, 6) \\
& =122,439(1.9738) \\
& =\$ 98,777
\end{aligned}
$$

2.104 Development cost, year $0=600,000(\mathrm{~F} / \mathrm{A}, 15 \%, 3)$

$$
\begin{aligned}
& =600,000(3.4725) \\
& =\$ 2,083,500
\end{aligned}
$$

$\begin{aligned} \text { Present worth of income, year }-1 & =250,000(\mathrm{P} / \mathrm{A}, 15 \%, 6)+\mathrm{G}(\mathrm{P} / \mathrm{G}, 15 \%, 6) \\ & =250,000(3.7845)+\mathrm{G}(7.9368)\end{aligned}$
Move development cost to year -1 and set equal to income

$$
\begin{aligned}
2,083,500(\mathrm{P} / \mathrm{F}, 15 \%, 1) & =250,000(3.7845)+\mathrm{G}(7.9368) \\
2,083,500(0.8696) & =250,000(3.7845)+\mathrm{G}(7.9368) \\
\mathrm{G} & =\$ 109,072
\end{aligned}
$$

2.105 Move $\$ 20,000$ to year 0 , add and subtract $\$ 1600$ in year 4 to use gradient, and solve for x

$$
\left.\begin{array}{rl}
20,000(\mathrm{P} / \mathrm{F}, 10 \%, 8)= & 1000(\mathrm{P} / \mathrm{A}, 10 \%, 8)+200(\mathrm{P} / \mathrm{G}, 10 \%, 8)-1600(\mathrm{P} / \mathrm{F}, 10 \%, 4) \\
& \quad \mathrm{x}(\mathrm{P} / \mathrm{F}, 10 \%, 4)
\end{array}\right)
$$

2.106 (a) Add and subtract $\$ 2400$ and $\$ 2600$ in periods 3 and 4 , respectively, to use gradient

$$
\begin{aligned}
30,000= & 2000+200(\mathrm{~A} / \mathrm{G}, 10 \%, 8)-2400(\mathrm{P} / \mathrm{F}, 10 \%, 3)(\mathrm{A} / \mathrm{P}, 10 \%, 8) \\
& -2600(\mathrm{P} / \mathrm{F}, 10 \%, 4)(\mathrm{A} / \mathrm{P}, 10 \%, 8)+\mathrm{x}(\mathrm{P} / \mathrm{F}, 10 \%, 3)(\mathrm{A} / \mathrm{P}, 10 \%, 8) \\
& +2 \mathrm{x}(\mathrm{P} / \mathrm{F}, 10 \%, 4)(\mathrm{A} / \mathrm{P}, 10 \%, 8)
\end{aligned}
$$

$$
\begin{aligned}
30,000= & 2000+200(3.0045)-2400(0.7513)(0.18744) \\
& -2600(0.6830)(0.18744)+x(0.7513)(0.18744) \\
& +2 x(0.6830)(0.18744)
\end{aligned}
$$

$$
\begin{aligned}
30,000 & =2000+600.90-337.98-332.86+0.14082 x+0.25604 x \\
x & =\$ 70,730
\end{aligned}
$$

(b) Spreadsheet uses Goal Seek to find $\mathrm{x}=\$ 70,726$

\square	A	B	C
1	Year	Cash Flow, \$	70726.04
2	0		Functions
3	1	2,000	${ }^{2} 2000$
4	2	2,200	${fcb10aabd-7f0f-47a2-af08-1157a101b102}=2 * B \$ 5$
7	5	2,800	${f54d98bbc-9615-4c86-8bc8-dea56fca61f9}=B 7+200$
9	7	3,200	${fce7f83c2-b5a2-4ebb-89de-1cef48b3b867}=-\mathrm{PMT}(10 \%, 8, \mathrm{NPV}(10 \%, \mathrm{~B} 3: \mathrm{B} 10)+\mathrm{B} 2)$

2.107 Find P in year 1 for geometric gradient; move back to year 0

$$
\begin{aligned}
\mathrm{P}_{1} & =22,000\left[1-(1.08 / 1.10)^{9}\right] /(0.10-0.08) \\
& =\$ 167,450
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}_{0} & =22,000(\mathrm{P} / \mathrm{F}, 10 \%, 1)+\mathrm{P}_{1}(\mathrm{P} / \mathrm{F}, 10 \%, 1) \\
& =22,000(0.9091)+167,450(0.9091) \\
& =\$ 172,229
\end{aligned}
$$

2.108 Find P in year 2 , then move back to year 0

$$
\begin{aligned}
\mathrm{P}_{2} & =11,500\left[1-(1.10 / 1.15)^{8}\right] /(0.15-0.10) \\
& =\$ 68,829 \\
\mathrm{P}_{0} & =11,500(\mathrm{P} / \mathrm{A}, 15 \%, 2)+\mathrm{P}_{2}(\mathrm{P} / \mathrm{F}, 15 \%, 2) \\
& =11,500(1.6257)+68,829(0.7561) \\
& =\$ 70,737
\end{aligned}
$$

2.109 (a) Find P in year 4 for the geometric gradient, then move all cash flows to future

$$
\begin{aligned}
\mathrm{P}_{4} & =500,000\left[1-(1.15 / 1.12)^{16}\right] /(0.12-0.15) \\
& =\$ 8,773,844
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F} & =500,000(\mathrm{~F} / \mathrm{A}, 12 \%, 4)(\mathrm{F} / \mathrm{P}, 12 \%, 16)+\mathrm{P}_{4}(\mathrm{~F} / \mathrm{P}, 12 \%, 16) \\
& =500,000(4.7793)(6.1304)+8,773,844(6.1304) \\
& =\$ 68,436,684
\end{aligned}
$$

2.110 Find P in year 3, then find present worth of all cash flows

$$
P_{3}=4,100,000\left[1-(0.90 / 1.06)^{17}\right] /(0.06+0.10)
$$

(b) Spreadsheet

	A	B
1	Year	Cash Flow, \$
2	0	
3	1	500,000
4	2	500,000
5	3	500,000
6	4	500,000
7	5	500,000
8	6	575,000
9	7	661,250
10	8	760,438
11	9	874,503
12	10	$1,005,679$
13	11	$1,156,530$
14	12	$1,330,010$
15	13	$1,529,511$
16	14	$1,758,938$
17	15	$2,022,779$
18	16	$2,326,196$
19	17	$2,675,125$
20	18	$3,076,394$
21	19	$3,537,853$
22	20	$4,068,531$
23		$\$ 68,436,701.40$
24	$=-\mathrm{FV}(12 \%, 20, \mathrm{NPV}(12 \%, \mathrm{~B} 3: 822)+\mathrm{B} 2)$	

$$
=\$ 24,037,964
$$

$$
\begin{aligned}
\mathrm{P}_{0} & =4,100,000(\mathrm{P} / \mathrm{A}, 6 \%, 3)+\mathrm{P}_{3}(\mathrm{P} / \mathrm{F}, 6 \%, 3) \\
& =4,100,000(2.6730)+24,037,964(0.8396) \\
& =\$ 31,141,574
\end{aligned}
$$

2.111 Find P in year 5, then find future worth of all cash flow:

$$
\begin{aligned}
\mathrm{P}_{5} & =4000\left[1-(0.85 / 1.10)^{9}\right] /(0.10+0.15) \\
& =\$ 14,428
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F} & =\left[4000(\mathrm{~F} / \mathrm{A}, 10 \%, 5)+\mathrm{P}_{5}\right](\mathrm{F} / \mathrm{P}, 10 \%, 9) \\
& =[4000(6.1051)+14,428](2.3579) \\
& =[24,420+14,428](2.3579) \\
& =\$ 91,601
\end{aligned}
$$

2.112 Answer is (a)

$$
2.113 \begin{aligned}
\mathrm{F} & =1000(\mathrm{~F} / \mathrm{P}, 8 \%, 10) \\
& =1000(2.1589) \\
& =\$ 2159
\end{aligned}
$$

Answer is (a)
$2.114 \mathrm{~A}=2,800,000(\mathrm{~A} / \mathrm{F}, 6 \%, 10)$

$$
=\$ 212,436
$$

Answer is (d)
$\begin{aligned} 2.115 \mathrm{~A} & =10,000,000((\mathrm{~A} / \mathrm{P}, 15 \%, 7) \\ & =\$ 2,403,600\end{aligned}$
Answer is (a)
$2.116 \quad \mathrm{P}_{29}=100,000(\mathrm{P} / \mathrm{A}, 8 \%, 20)$
$=100,000(9.8181)$
$=\$ 981,810$

$$
\begin{aligned}
\mathrm{F}_{29} & =\mathrm{P}_{29} \\
\mathrm{~A} & =\mathrm{F}_{29}(\mathrm{~A} / \mathrm{F}, 8 \%, 29) \\
& =\$ 981,810(\mathrm{~A} / \mathrm{F}, 8 \%, 29) \\
& =\$ 981,810(0.00962) \\
& =\$ 9445
\end{aligned}
$$

Answer is (d)

$$
\begin{aligned}
2.117 \mathrm{~A} & =50,000,000(\mathrm{P} / \mathrm{F}, 4 \%, 1)(\mathrm{A} / \mathrm{P}, 4 \%, 21) \\
& =50,000,000(0.9615)(0.07128) \\
& =\$ 3,426,786
\end{aligned}
$$

Answer is (b)
$2.118 \mathrm{~F}=50,000(\mathrm{~F} / \mathrm{P}, 18 \%, 7)$
$=50,000(3.1855)$
$=\$ 159,275$
Answer is (b)
$2.119 \mathrm{~F}=100,000(\mathrm{~F} / \mathrm{A}, 18 \%, 5)$
$=100,000(7.1542)$
$=\$ 715,420$
Answer is (c)
$\begin{aligned} 2.120 \mathrm{P} & =100,000(\mathrm{P} / \mathrm{F}, 10 \%, 2) \\ & =\$ 100,000(0.8264) \\ & =\$ 82,640\end{aligned}$
Answer is (b)
$2.121 \quad 10,000=2 x(\mathrm{P} / \mathrm{F}, 10 \%, 2)+\mathrm{x}(\mathrm{P} / \mathrm{F}, 10 \%, 4)$
$10,000=2 \mathrm{x}(0.8264)+\mathrm{x}(0.6830)$
$2.3358 \mathrm{x}=10,000$
$x=\$ 4281$
Answer is (a)
$2.122 \mathrm{P}=100,000(\mathrm{P} / \mathrm{A}, 10 \%, 5)-5000(\mathrm{P} / \mathrm{G}, 10 \%, 5)$
$=100,000(3.7908)-5000(6.8618)$
$=\$ 344,771$
Answer is (a)
$2.123 \quad 24,000=3000(\mathrm{P} / \mathrm{A}, 8 \%, \mathrm{n})$
$(\mathrm{P} / \mathrm{A}, 8 \%, \mathrm{n})=8.000$
From 8% tables, n is between 13 and 14
Answer is (c)

$$
\begin{aligned}
2.124 \quad 1000(\mathrm{~F} / \mathrm{P}, 10 \%, 20)+1000(\mathrm{~F} / \mathrm{P}, 10 \%, \mathrm{n}) & =8870 \\
1000(6.7275)+1000(\mathrm{~F} / \mathrm{P}, 10 \%, \mathrm{n}) & =8870 \\
1000(\mathrm{~F} / \mathrm{P}, 10 \%, \mathrm{n}) & =2142.5 \\
(\mathrm{~F} / \mathrm{P}, 10 \%, \mathrm{n}) & =2.1425 \\
\mathrm{n} & =8
\end{aligned}
$$

Deposit year $=20-8=12$
Answer is (d)
$2.125 \mathrm{P}=8,000(\mathrm{P} / \mathrm{A}, 10 \%, 5)+900(\mathrm{P} / \mathrm{G}, 10 \%, 5)$
$=8,000(3.7908)+900(6.8618)$
$=\$ 36,502$
Answer is (d)

$$
\begin{aligned}
2.126 \mathrm{P}_{-1} & =\mathrm{A}_{1}(\mathrm{n} / 1+\mathrm{i}) \\
& =9000[8 /(1.08)] \\
& =\$ 66,667 \\
\mathrm{P}_{0} & =\mathrm{P}_{-1}(\mathrm{~F} / \mathrm{P}, 8 \%, 1) \\
& =66,667(1.0800) \\
& =\$ 72,000
\end{aligned}
$$

Answer is (c)

