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2 [ LIMITS

2.1 Limits of Sequences

1. (8) A sequenceisan ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers.

(b) Theterms a,, approach 8 asn becomeslarge. In fact, we can make a,, as closeto 8 aswe like by taking n sufficiently
large.

(c) Theterms a,, become large as n becomes large. In fact, we can make a,, aslarge aswe like by taking n sufficiently large.

2. (a) From Definition 1, a convergent sequence is a sequence for which lim a,, exists. Examples: {1/n}, {1/2"}

n— oo

(b) A divergent sequence is a sequence for which lim a, doesnot exist. Examples: {n}, {sinn}

n—oo

3. The graph shows a declinein the world record for the men’s 100-meter sprint as¢ increases. It istempting to say that this
sequence will approach zero, however, it isimportant to remember that the sequence represents data from a physical
competition. Thus, the sequence likely has anonzero limit ast — oo since human physiology will ultimately limit how fast a
human can sprint 100-meters. This means that there is a certain world record time which athletes can never surpass.

4. (&) If the sequence does not have alimit ast — oo, then the world record distances for the women’s hammer throw may

increase indefinitely as¢t — oo. That is, the sequence is divergent.

(b) 1t seems unlikely that the world record hammer throw distance will increase indefinitely. Human physiology will
ultimately limit the maximum distance a woman can throw. Therefore, barring evolutionary changes to human physiology,
it seems likely that the sequence will converge.

> n an n an 0.35
1| 02000 | 6 | 03000 L
2| 02500 | 7 | 03043 I
3| 02727 || 8 | 03077 Fo.
4| 02857 | 9 | 03103 .
5| 02941 || 10 | 03125

The sequence appears to converge to a number between 0.30 and 0.35. Calculating the limit gives

2
n

n2 o lim 1 1 1
lim a, = lim ———— = lim > = s = = —. This agrees with the value predicted
n2 n—oo N n—oo
from the data.

6. 5.5 The sequence appears to converge to a number
n| an |l n o between 3.9 and 4.0. Calculating the limit gives
1 (50000 | 6 | 3.7500 .

. . 2 3
2| 37500 | 7 | 37755 lim a, = lim (4 S F) _
3| 36667 | 8 | 3.7969 ettt 4 — 04 0 = 4. So we expect the sequence to
436875 | 9 | 38148 converge to 4 as we plot more terms.
5| 37200 | 10 | 3.8300 02 5' !
(©)"2016'Cengage'learning. All Rights Reserved:"May not be scanned, copied; or, duplicated, or posted to'apublicly accessible websiteyin whole or in‘part: 71

\/{ sit TestBankDeal .comto get conplete for all chapters

S


https://testbankdeal.com/download/biocalculus-calculus-probability-and-statistics-for-the-life-sciences-1st-edition-stewart-solutions-manual/

72 0 CHAPTER2 LIMITS

7. 4 The sequence appears to converge to approximately 3. Calculating
n an .. . . . n H
1 | 23333 thelimit gives lim a, = lim (3+ (~3)") =3+0=3.This
2 | 3.4444 * . agrees with the value predicted from the data.
3| 27087 | et
4 | 31975 :
5 | 2.8683 )

0 T N R B | TN IR N N | 11

6 | 3.0878 2
7 | 29415
8 | 3.0390
9 | 2.9740
10 | 3.0173

8. 3 The sequence does not appear to converge since the values of a,, do
n an . . . .

not approach afixed number. We can verify this by trying to
1 | 05000 . approachafr y thisby trying
. * calculate the limit:
2 | 0.8284 i . " n
3 | 1.0%81 . lim ap = lim ——— = lim n = lim ————
r ° n—oo " n—oo n—oo n—oo ]. 1 :
4 | 13333 . Vil ntl —=+ =
° n \/ﬁ n

5 | 15451 ot The denominator approaches 0 while the numerator remains constant
6 | 17394 so the limit does not exist, as expected.
7 | 1.9200
8 | 2.0896
9 | 2.2500
10 | 2.4025

9. lim a —lim——llimi—o Converges

" noo " n— 00 3n4 o 3 n—oo Tl4 o g

S0 lim a, = lim i =5 lim (%) =5-0=0 Converges

1
3. n—oo n—oo 3N n— oo

10. a, = 3% is a geometric sequence with r =

2 —
oap=20dn7l 5l tim o, — lim 24 lim ~ — lim — —=240—-0=2 Corverges
n2 n n2 n— oo n— oo n—ooo N = m—oo N2
n—-1_ 5, 1 2 1 2 . .
12. a,, = =n°— -9 lim a, = lim n* — lim — = lim n®* Whennislarge, n°islargeso lim a, = oo and
n n n— oo n— oo n—oo N n—oo n— oo
the sequence diverges.
3+5 3 .3 .
3+ 5n +on —+5 lim — 4+ lim 5 0+5 5
13 lim a, = lim == lim 2f7n = lim g = ’H‘”g RO - Ak Converges
n n n—oo N n—oo
3 _
3 L 31 17% lirnl—lirni3 1-0
14. lim a, = lim T = lim 3n = lim nl = 22 n—»oonl = 150 =1 Converges
7’L3 n n— oo n—oo 1
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an, =1-(0.2)",50 lim a, =1—-0=1 [by (3)withr =0.2]. Converges

. L ln ln ) L ln ) ln_ B
an =2""4+6 —<2> +<6> Sonllnéoa"_nlin;o(2> +n1520<6> =0+0=0

[by (8) withr = F andr = ¢] Converges

n? n? /W NG

n .
17. a, = = = ,S0a, — ocoasn — oo since lim /n = oo and
V3 +dn  n3 Fdnji/n3 /1 +4/n2 ’”Hw\/_
lim \/1+4/n? =1. Diverges
18. a, =sin(nw/2) = a1 =sin(n/2) =1, a =sin(r) =0, a3z =sin(37/2) = —1, a4 =sin(27) =0,

19.

20.

21.

22.

23.

24.

25.

26.

27.

as = sin(b7w/2) = 1. Observe that a,, cycles between the values 1,0, and -1 as n increases. Hence the sequence does not
converge.

an =cos(nm/2) = a1 =cos(m/2) =0, a2 =cos(w)=—1, az=cos(3n/2) =0, as=cos(2m)=1,
as = cos(b7/2) = 0. Observethat a,, cyclesbetween thevalues 1, 0, and —1 as n increases. Hence the sequence does not
converge.

n = 2 = (g)n 0 lim a, = lim (g)n = oosinceg ~ 1.05 >1 Diverges

n—oo n—o0
10" .
n , lim 1
lim a, = lim 10 = lim =20"_ — lim ! = n—oo = oo because the

n—oo n—oo 149" nooo 149" noeo 1 + 9 ! lim 1 n+ lim 9 !
10™ 10m 10 n—oo \ 10 n—oo \ 10

denominator approaches 0 while the numerator remains constant.  Diverges

1/3
3 1/3 n— lim —/ 0
. . n . . 1/2 n—oo nl/6
lim ap = lim —Y" = lim =] n _ __0
nl—{goa nl—>Holo n + % nl—>nolo n1/2 + n1/4 nl—>n;o Tll/2 + n1/4 lim 1 T lim 34 1 —+ 0
nl/2 n— 00 n—oo nl/

Converges

2 2
an = ln(2n2 +1)— ln(n2 +1)=In (2n + 1) =In (M> — In2asn — co. Converges

n?+1 1+1/n?
3n+2 323n " " ]
an =~ =~ = 9(3)", %0 lim a, =9 lim ()" =9-0=0by (3 withr = 2. Converges
n —-n —n —2n
an:%'e :ILHOaSnHoobecauselJre*z”H1ande"—e*"Hoo. Converges
e n __ e*’n en_efn

n+1

an =ln(n+1)—lnn=1n< ) =ln(1+%> —1In(1)=0asn — co. Converges

The sequence appears to converge to 2. Assume the limit exists so that

n Qan n an

1 1.0000 5 1.9375 lim An++1 = hm an = a, then an+1 = %an +1 =

2| 15000 | 6 | 1.9688 lim anp1 = lim (Fan+1) = a=3za+1 = a=2
3| 17500 || 7 | 1.9844 e e

4| 18750 | 8 | 19922 |  Therefore, lim a, = 2.
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28.

29.

30.

31.

32.
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The sequence appears to converge to 0.75. Assume the limit exists so that

n an n an

1 2.0000 5 0.7654 lim n+1 = lim a, = a, then An+1 = 1-— %an =

2103333 6 | 0.7449 lim any1 = lim (1 — %an) = a=1-— %a = a=3/4

3| 08889 || 7| 07517 e e

4 | 07037 || 8 | 0.7494 Therefore, nlinio an = 3.

n Qn n an . .

1| 20000 5 | 17,0000 The sequence is divergent.

2| 3.0000 || 6 | 33.0000

3| 50000 |[ 7 | 65.0000

4 | 9.0000 (| 8 | 129.0000

n Qan L .

1| 10000 The sequence appears to converge to 5. Assume the limit exists so that

2 | 22361 lim ap41 = lim an, = a,thenan+1 = Vban = lim ant1 = lim v/ba, =
3| 3343 a=+vba = a*=5a = ala—5 =0 = a=00ra=5

4 | 4.0888 . N . ) )

Therefore, if thelimit existsit will be either 0 or 5. Since thefirst 8 terms of the sequence appear
5 | 45215
to approach 5, we surmise that lim a,, = 5.

6 | 4.7547 n—oo

7 | 4.8758

8 | 4.9375

n Qn L .

1 | 10000 The sequence appears to converge to 2. Assume the limit exists so that

2130000 |l ans =l o= e = T2 = i s = lim o
3 | 1.5000 6

4 | 2.4000 =1 = d+a-6=0 = (@-2)(a+3)=0 = a=-300a=2
> | 17647 Therefore, if the limit existsit will be either —3 or 2, but since all terms of the sequence are
6| 21002 positive, we seethat lim a, = 2.

7 | 1.8926 noee

8 | 2.0742

n Qan . .

1 | 3.0000 The sequence cycles between 3 and 5, hence it is divergent.

2 | 5.0000

3 | 3.0000

4 | 5.0000

5 | 3.0000

6 | 5.0000

7 | 3.0000

8 | 5.0000
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33.
n an
1| 1.0000 The sequence appears to converge to 2. Assume the limit exists so that
2 | 17321 lim any1 = lim an =a,thenant1 =v2+an = lim apgy1 = lim vV24+a, =
3| 19319 a=v2+a = ad*-a-2=0 = (a—-2)(a+1)=0 = a=-lora=2
4 19829 Therefore, if the limit existsit will be either —1 or 2, but since all terms of the sequence are
5| 1.9957
positive, we seethat lim a, = 2.
6 | 1.9989 n—00
7 | 1.9997
8 | 1.9999
34 The sequence appears to converge to 5. Assume the limit exists so that
n An
1 | 100.0000 Jm anyy = lim an = a, then
2 | 501250 1 25 y lim L 25
3| 253119 it =g <a" - Z) TR T <“ + Z) - o=
4 | 13.1498
l (a+§) = 2a=a—|—§ = a’=25 = a=-50a=5
5 7.5255 2 a a
6 5.4238 Therefore, if the limit existsit will be either —5 or 5, but since al terms of the sequence are
7 | 5.0166 positive, we seethat lim a, = 5.
8 | 5.0000 e

35. (&) The quantity of the drug in the body after thefirst tablet is 100 mg. After the second tablet, thereis 100 mg plus 20%
of thefirst 100- mg tablet, that is, [100 + 100(0.20)] = 120 mg. After the third tablet, the quantity is
[100 + 120(0.20)] = 124 mg.

(b) After then'™ + 1 tablet, thereis 100 mg plus 20% of the n** tablet, so that Q,,+1 = 100 + (0.20) Q.

(c) From Formula (6), the solution to Q.1 = 100 + (0.20) Q», Qo = 0 mg is

1-0.20" 100 oy N
m) — (1—0.20") = 125 (1 — 0.20")

Q. = (0.20)" (0) + 100 ( = 580

n—o00 n— oo

(d) Inthelong run, we have lim @, = lim 125 (1 —0.20") =125 ( lim 1 — lim 0.20") =125(1—0) = 125 mg

36. (8) The concentration of the drug in the body after thefirst injection is 1.5 mg/mL. After the second injection, there is
1.5 mg/mL plus 10% (90% reduction) of the concentration from the first injection, that is,
[1.5 + 1.5(0.10)] = 1.65 mg/mL. After the third injection, the concentrationis[1.5 4+ 1.65(0.10)] = 1.665 mg,/mL.

(b) The drug concentration is 0.1C,, (90% reduction) just before the n*® + 1 injection, after which the concentration increases
by 1.5 mg/mL. Hence Cp,+1 = 0.1C, + 1.5.

(c) From Formula (6), the solution to Cr,+1 = 0.1C,, + 1.5, Co = 0 mg/mL is

1-0.1" 1.5 B N
m) =55 (1 -01 =3 (101"

Cpn = (0.1)" (0)+ 15 ( .

(d) The limiting value of the concentration is

(1-0.1") = g ( lim 1— lim 0.1") _

n— o0 n— oo

lim C, = 1i

n— oo n—o00

wl ot
wl ot
wl ot

(1-0)== ~~1.667 mg/mL.
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37.

38.

39.

40.

41.

42.

43.

44,

45,
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(a) The quantity of the drug in the body after the first tablet is 150 mg. After the second tablet, thereis 150 mg plus 5%
of thefirst 150- mg tablet, that is, [150 + 150(0.05)] mg. After the third tablet, the quantity is
[150 + 150(0.05) + 150(0.05)%] = 157.875 mg. After n tablets, the quantity (in mg) is

150(1 — 0.05™) 3000
1—-0.05 19

(b) The number of milligrams remaining in the body inthelong runis lim [298%(1 — 0.05™)] = 3%5%(1 — 0) ~ 157.895,

150 + 150(0.05) + - - - + 150(0.05)™~*. We can use Formula 5 to write this as (1 —-0.05m).
only 0.02 mg more than the amount after 3 tablets.

(&) Theresidual concentration just before the second injection is De~*T'; before the third, De =T + De 2T before the
e—aT(l _ e—anT)

(n+1)st, De T + De=*2T 4 ... 4+ De~ T Thissumisequal to = [Formula 3].
— e a
_— o . DeT(1—e ") Dpe?T(1-0) T D
(b) The limiting pre-injection concentration 'Snlinéo rpp—— i g ey el
D . .
© — >C = D=>C(e"" —1),s0theminimal dosageis D = C'(e*” —1).
el —1
(a) Many people would guessthat = < 1, but note that = consists of an infinite number of 9s.
9 9 9 9 x 9 S . . .
b)  =099999... = — + — + — cee = ——, which isageometric serieswith a; = 0.9 and
(b 10 + 100 + 1000 + 10,000 + Zl 10™ g “
.09 0.9 .
=0.1.1 mi = — =1,thati =1.
r=20 tssu 51_0.1 09 thatis,

(¢) The number 1 has two decimal representations, 1.00000 . .. and 0.99999. ...

(d) Except for 0, al rational numbers that have a terminating decimal representation can be written in more than one way. For
example, 0.5 can be written as0.49999 . . . aswell as0.50000. . ..

an=(0B—-—n)an-1,a1 =1 = a2=(5-2)(1)=3,a3=(5-3)3) =6,as =(5—4)(6) =6,a5 =(5—5)(6) =0,
as = (5 —6)(0) = 0, .and so on. Observe that the fifth term and higher will all be zero. So the sum of all the termsin the
sequence is found by adding the first four terms: a1 + a2 + a3+ a4 =1+3+ 6+ 6 = 16.

08 = 1% + 1102 + --- isageometric serieswith a = 1% andr = 1—10 It convergesto lir = % = g
0.46 = % + % + -+ isageometric serieswith a = % andr = 1—(1)0 It convergesto 1 i o= 14%3/1%%0 = g
2516 =2+ %2 + 51)—(1)5 4+ Now?—(l)g +?—(1)S + --- isageometric serieswitha = 51)—(1)5 andr = %03 It convergesto
T = TR = g0 = ag TS 25T =2+ gag = g = gy
10.135 = 10.1 + f—; + 13—055 +---. Now 13—053 + 13—055 + --- isageometric serieswitha = 3—053 andr = 1—(1)2 It converges
O = 72707 = o7 = gy T 0.8 = 101+ g = TG - Tt - T
1.53@:1.53+f—;+f—;+---.Now%+f—026+~- isageometricserieswitha:f—(iandr:l—éz.

a 42/10*  42/10* 42

It convergesto = = = .
90T T T -1/10° ~ 99/10° ~ 9900

42 153 42 15,147 42 15,189 5063

Thus, 1.5342 = 153+ 5506 = 100 * 9900 ~ 9900 9900 ~ 9900 * 3300°

© 2016 Cengage'LLearning:“All"Rights Reserved. May not, be'scanned; copied, or duplicated; or posted to a publicly accessiblewebsite, in whole'orin part:



SECTION2.1 LIMITSOF SEQUENCES O 77

— 12,345 | 12,345 12,345 | 12,345

46. 7.12345—7-1—1—05 -‘rw-ﬁ-'“. Now 105 + 1010
a  12,345/10°  12,345/10° 12,345

1—r  1-1/105 — 99,999/105 = 99,999

12,345 699,993 = 12,345 712,338 or 237,446
99,999 99,999 © 99,999 99,999 33,333 °

12,345 and s — 1
105 105"

+ --- isageometric serieswith a =

It converges to

Thus, 7.12345 = 7 +

47. 1 Computer software was used to plot the first 10 points of the recursion equation

Te+1 = 2x+(1 — x¢), o = 0.1. The sequence appears to converge to a value of
0.5. Assume the limit exists so that tlim Tip1 = tlim x: = x, then
— 00 — 00

e ® o o o o T4yl = th(l — It) = thm Tt41 = thm 21‘75(1 — $t) =

. r=2z(l—2z) = 2(1—-22)=0 = x=00rz=1/2. Therefore,if the

limit existsit will be either 0 or 3. Since the graph of the sequence appearsto

0 approach 3, we seethat lim x; = 3.
t—oo

48. 0.9 Computer software was used to plot the first 10 points of the recursion equation

i1 = 2.6z(1 — x¢), zo = 0.8. The sequence appears to converge to a value of
0.6. Assume the limit exists so that tlim Try1 = tlim x: = x, then

. e * o 0. Tir1 = 2.624(1 — ) = tlim Tip1 = tlim 2.6x:(1—x) =
r=26z(1—2) = x(1.6—262)=0 = z=00rz=3~0.615.

1 D T Therefore,ifthelimitexistsitwillbeeitherOor%.Sincethegraphofthe

sequence appears to approach =, we see that Jim 2, = 2.
— 00

49.
I Computer software was used to plot the first 10 points of the recursion equation

T
L]
[]
L]
L]

Ze+1 = 3.2x4(1 — x¢), xo = 0.2. The sequence does not appear to convergeto a

. . . . o fixed value. Instead, the terms oscillate between values near 0.5 and 0.8.

T T T T T T

Computer software was used to plot the first 20 points of the recursion equation
41 = 3.52(1 — x¢), zo = 0.4. The sequence does not appear to convergeto a
L fixed value. Instead, the terms oscillate between values near 0.45 and 0.85.

o
N
S
[N
[e]
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51 1
L . L . : Computer software was used to plot the first 30 points of the recursion equation
B . * e Zi+1 = 3.8z (1 — x¢), zo = 0.1. The sequence does not appear to convergeto a
. . ¢ fixed value. The terms fluctuate substantially in value exhibiting chaotic behavior.
0 1 1 1 1 1 30
52. 1
N _' . Computer software was used to plot the first 50 points of the recursion equation
. -.. <~ % 2441 = 3.924(1 — 24), zo = 0.6. The sequence does not appear to convergeto a
‘e . fixed value. The terms fluctuate substantially in value exhibiting chaotic behavior.
0 : : : : 50

53. Computer software was used to plot the first 20 points of the recursion equation z,+1 = %:}:t (1 —a¢), withzo = 0.2 and

xo = 0.2001. The plots indicate that the solutions are nearly identical, converging to zero ast increases.

0.4 0.4

X =02 Xxo=0.2001

0 JZI 0 ‘ 21
—0.1 —0.1

54. Computer software was used to plot the first 20 points of the recursion equation 41 = 4x¢(1 — ), withzo = 0.2 and
2o = 0.2001. The recursion with 2o = 0.2 behaves chaotically whereas the recursion with o = 0.2001 converges to zero.
The plotsindicate that asmall changein initial conditions can significantly impact the behaviour of arecursive sequence.

. =02 xo=0.2001
0L M et 21 . ‘
0 21
—0.2 —-0.2
55. 1 Computer software was used to plot the first 10 points of the recursion equation
Ter1 = 2wie” 7t 29 = 0.2. The sequence appears to converge to avalue near 0.7.
e o o o o Assume the limit exists so that tlim Tiy1 = tlim x; = x, then
d —00 — 00
. Try1 = 2wie” Tt = tlim Tyl = tlim 2rie” "t = x=2xe " =

z(1-2¢")=0 = z=00rz=In2~0.693. Therefore, if the limit
4 10 existsit will be either 0 or In 2. Since the graph of the sequence appearsto
01 approach In 2, we see that tlim xt =In2.
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1.4 Computer software was used to plot the first 10 points of the recursion equation

Tr41 = 3xee” t, xo = 0.4. The sequence appearsto convergeto avalueof 1.1.
e ® o o o 0 o Assume the limit exists so that tlim Ti41 :tlim x: = x, then

Tip1 = 3xe” ¥t = lim z441 = lim 3ze”™ ™ = =3z " =
t—oo t—oo

z(1-3e%)=0 = a=00rz=In3~ 1.099. Therefore, if the limit
existsit will be either 0 or In 3. Since the graph of the sequence appears to

approach In 3, we surmise that tlim xt =In3.

71 O 2 1 1 1 1 1 1 1 1 1 10
5
Computer software was used to plot the first 10 points of the recursion equation
L z++1 = 10x¢e” "t, zo = 0.8. The sequence does not appear to converge to a fixed
value of z;. Instead, the terms oscillate between values near 0.9 and 3.7.
_l O 1 1 1 1 1 1 1 1 1 11
10
Computer software was used to plot the first 10 points of the recursion equation
¢ ¢ Te+1 = 20x:e” ", zo = 0.9. The sequence does not appear to converge to a fixed
vaue of z;. The terms fluctuate substantially in value exhibiting chaotic behaviour.
—1 0 L e 11 ® 111 e 11

Let A, represent the removed area of the Sierpinski carpet after the nth step of construction. In the first step, one square of

area1 isremoved so A; = % In the second step, 8 squares each of area% (%) = glz are removed, so
8 1 8 1 8 . .
A= A1 + 29 + 2 =79 14 5/ In the third step, 8 squares are removed for each of the 8 squares removed in the

previous step. So there are atotal of 8 - 8 = 82 squares removed each having an area of % (9—12) = 9% This gives
82 1 8 8 1 8 (8
AS—A2+———(1+—)+——§ 1+§+<§>

¥ =39 9 92 . Observing the pattern in the first few terms of the sequence,
we deduce the general formulafor the nthtermto be A,, =

8 8\ 2 g8\ ! .
1+ = - - . Thetermsin
+9+<9) + +(9) ] i

1
9
parentheses represent the sum of a geometric sequence with o = 1 and » = 8/9. Using Equation (5), we can write

A, = é [%] =1- (g) . Asn increases, nan;O A, = nliigo {1 — (g) } = 1. Hence the area of the

removed squaresis 1 implying that the Sierpinski carpet has zero area.
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60. |CD| = bsinf, |DE| = |CD|sind = bsin? 0, |EF| = |DE|sinf = bsin® 6, . ... Therefore,

sin 6

|CD‘+‘DE|+|EF|+|FG‘+:bnglsln QZb(_l—siHQ

> since thisis ageometric serieswith » = sin 6

and |sinf| <1 [because0 < 6 < 3.

PROJECT Modeling the Dynamics of Viral Infections

1. Vira replication is an example of exponential growth. The exponential growth recursion formulais N (¢ + 1) = RN (t) where
R isthe growth rate and N (¢) isthe number of viral particles at time¢. In Section 1.6, we saw the general solution of this
recursionis N; = Ny - R*. With R = 3 and Ny = 1, the recursion equation is Ny, 1 = 3N; and the general solution is

Nt == 3t.

2. Let ¢; bethe amount of time spent in phase 1 of the infection. Solving for ¢, in the equation N;, = Np - R™ using logarithms:

In(Nt, /No)

R The immune response initiateswhen N;, = 2 - 10°. Therefore the time it

In (R) =In (Ny, /No) = t1 =
In(2 - 10%) — In(No)

takes for theimmune responseto kick inis¢; = n(3)

~ 13.2 — 0.91In(No). Hence, thelarger the initial
viral size the sooner the immune system responds.

3. Let t bethe amount of time since the immune response initiated, Rimmune be the replication rate during the immune response,
and dimmune be the number of viruses killed by the immune system at each timestep. The second phase of the infection is
modeled by a two-step recursion. First, the virus replicates producing N* = RimmuneVt, Viruses. Then, the immune system
killsvirusesleaving Ni,+1 = N™ — dimmune |€ftover. Combining the two steps gives the recursion formula

Nt2+1 = Rimmuneth - dimmune-

4. Theviral population will decrease over timeif AN < 0 at each timestep. Solving thisinequality for Ny, :

di mmune

Niy41 — Nty <0 = (Rimmune — 1) Nty — dimmune < 0 = Ny, < —————— wherewe assumed Rimmune > 1.
(Rimmune - 1)

Substituting the constants Rimmune = % -3 = 1.5 and dimmune = 500, 000 gives N, < 1,000, 000. Therefore, the immune
response will cause the infection to subside over time if the viral count isless than one million. Thisis not possible since the

immune response initiates only once the virus reaches two million copies.

5. Therecursion for the third phase can be obtained from the second phase recursion formula by replacing the replication and
desth rates with the new values. This gives Ny, +1 = RangNe; — darug Where t3 is the amount of time since the start of drug
treatment.

ddrug
(Rawg — 1)
Substituting the constants Rgrug = 1.25 and darug = 25, 000, 000 gives Ny, < 100, 000, 000. Therefore, the drug and immune

6. Similar to Problem 4, we solve for V¢, intheinequality AN = Ni,41 — N, < 0 and find that Ny, <

system will cause the infection to subside over time if the viral count is less than 100 million. Thisis possible provided drug

treatment begins before the viral count reaches 100 million.
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7. From Formula (6), the general solution to the recursion equation Ni,+1 = RimmuneNt, — dimmune IS given

1-R? : — o
by Ny = R neNo — dimmune (T”“’"“”e) . Solving for t2 in this expression gives
— Himmune
dimmune dimmune t Nt + dimmune(l - Rimmune)71

N,, = R N — -~ Rtz _ 1Vt N

2 mmune ( ot 1- Rimmune) 1 — Rimmune mmune No + dimmune(l - Rimmune)71

A R -1
to = In {N ty + dimmune(1 — Rimmune) - ] / In Rimmune. Note that the number of viral particles at the start of phasetwo is
No + dimmune(l - Rimmune)7

No = 2 -10°. Substituting Rimmune = 1.5, dimmune = 500, 000 and the critical viral load N;, = 100 - 10° into the equation

givesty =

=~ 11.33 h. Thisisthe amount of time spent in phase two after which the infection cannot be controlled.

In(2 - 10%) — In(1)

n(3) ~ 13.21 h. Thus, thetota timeist = t1 + t2 ~ 24.54 h.

From Problem 2, phase two begins after t; =

Hence, drug treatment must be started within approximately one day (24 hours) of the initial infection in order to control the

viral count.
8. A general expression for the time it takesto reach the critical viral load is obtained by combining the expressions for ¢, and ¢

In l: th + dimmune(l - Rimmune)71
In(2 - 106) _ In(No) 2106 4 dimmune(1 — Rimmune) ~*
IH(R) IH(R) In Rimmune

from Problems2 and 7. Thisgivest = t1 + t2 =

Substituting Rimmune = 0.5R, dimmune = 5 - 10°, No = no and Ny, = 100 - 10° gives

. [100- 10% + (5-10%)(1 — 0.5R) ™!
_ In(2-10%)  In(no) 2-106 + (5-105)(1 — 0.5R)~!

. Note: We haveinh I h 2.10°
(R m(R) In (0.5R) ote: We have inherently assumed that ng < 0°,

so that sometimeis spent in phase 1.

9. After 24 hours, the infection has been in the immune response phase for t2 = 24 — 13.21 = 10.79 h.

Using the general expression for N, from Problem 7 the number of viruses after 24 hoursis

1—1.5%107

Nio.79 = (1.5'%7)(2 - 10%) — (5 - 10°) ( —

) ~ 80, 555, 008. Sincethisislessthan the critical viral load (100

million), drug intervention will be effective in controlling the virus. Rewriting the equation for ¢ for the drug phase gives

ta = 1 th + ddrug(1 - Rdrug)_1
3 = 1n 1
NO + ddrug(l - Rdrug)

values Ny, = 0, No = 80, 555,008, Raug = 1.25 and dgrug = 25,000, 000 yieldsts = 7.34 h. Therefore, it takes

] / In Rang Where ts isthe amount of time since the drug treatment started. Substituting

approximately 7 hours after starting the drug treatment to completely eliminate the virus.

2.2 Limits of Functions at Infinity

1. (8) Asz becomeslarge, the values of f(x) approach 5.
(b) Asz becomeslarge negative, the values of f(x) approach 3.
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2. (a) The graph of afunction can intersect a horizontal asymptote. It can even intersect its horizontal asymptote an infinite
number of times.

|~ \ .
Vv

(b) The graph of afunction can have 0, 1, or 2 horizontal asymptotes. Representative examples are shown.

.

y y y

5

No horizontal asymptote One horizontal asymptote Two horizontal asymptotes

3. If f(x) = 2%/2%, then acalculator gives £(0) = 0, f(1) = 0.5, f(2) = 1, f(3) = 1.125, f(4) = 1, f(5) = 0.78125,
f(6) = 0.5625, f(7) = 0.3828125, f(8) = 0.25, £(9) = 0.158203125, f(10) = 0.09765625, f(20) ~ 0.00038147,
f(50) ~ 2.2204 x 10~'2, £(100) ~ 7.8886 x 10~%".

It appearsthat lim (2%/2%) = 0.

4. (8) Fromagraph of f(z) = (1 — 2/z)” inawindow of [0, 10,000] by [0, 0.2], we estimate that lim f(z) = 0.14

T —00

(to two decimal places.)
(b) From the table, we estimate that lim f(x) = 0.1353 (to four decimal places.)
z f(z) e
10,000 | 0.135308

100,000 | 0.135333
1,000,000 | 0.135335

1 . 1/x Jim (/) Jim (1/z) 0 0
= lim = ===0

amoo 22+ 3  wooo (22 +3)/z  lim (24 3/z)  lim 2+3 lim (1/z) 2+3(0) 2

. 1
345/c Jm3+51lm = 54 50)

. 3x+5 B3z +5)/z .
6. lim = lim ~—*— = lim = = =3
vooo x—4  wmeo (x—4)/z  emeel—d4fr 1y L 1—4(0)
r— 00 r—oo I
C 3c-2 . (Be—2)/c . 3-2/z Jm3-2lml/z 5 50 3
7. lim = lim —— = lim = = - = ==
z—0 20 +1  a—oo 2z4+1)/z 250 241/z lim 2+ lim 1/x 240 2
2 _ 2 3 3 _
8 lim - = g LT, Yo — 1w

zo0 g3 —x+1  aboo (23 —x+1)/23 200l —1/2241/23

Jim 1/2° — lim 1/a 0-0 _,

" hm 1— lim 1/22+ lim 1/ 1-0+0
xr—00 xr—00

&Tr— 00
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. 2
9 lim l—z—2° lim (1—m—m2)/r2_xgr_noo(1/m —1/z-1)
Testeo 22 -7 0 e—-oo (222 —T)/22 lim (2 —7/2?)
. 2 . .
A O - i O - Bt 01 1
lim 2—7 lim (1/22) 2-17(0) 2
. 4x® 4627 -2 . (42® + 622 —2)/2? . 4+6/z—2/2* 4+0-0
10. lim —————F = lim = lim = =2
z—oo 228 —4x 4+ 5 a>-oco (228 —4x+5)/23  25-002—4/22+5/23 2-040
3\ 5\ 7"
11.tliEn O.6t:tli£n (g> :tlizn (§> =oosince5/3 > 1and —t — co ast — —oo
.5 . N
12. lim 1—m:0$ncelo — 00 8T — 00
B3l VI o )2 P41 0+1
Ctoo 2t —12  t—oo (2t —t2)/12 toee 2/t—1 0-—1
. t— v/t . (t—tvt) /132 . 162 —1 0-1 1
14. lim = l1im = lim = [eg——
t—oo 2t3/2 4+ 3t — 5 t—oo (283/2 43t — 5) /t3/2  t—o0 24 3/t1/2 —5/t3/2  240-0 2
2 2 2 2/ 4 2 212
15 Tim (22° +1) ~ lim (22° +1)%/x ~ lim [(22° + 1) /27
amoo (2= 1)%(2% +2) e [(w—1)2(2? +2)]/2t omoe (22 — 2204 1)/2%][(2? + z)/2?]
— lim (2+1/2%) _ . @et0*
T zoee (1—2/z+1/22)(1+1/z)  (1—-0+0)(1+0)
x? x?/x? 1 .
16. lim —— = lim —— = lim —— Slncex2 =+ztforz >0
z—oo \/xd + 1 z—oo \/xp4 + 1/1‘2 T—00 (.I4 + 1)/J34 [ ]
= lim ! = ! =1
e—c0 \/1+1/zt V140
V922 1+ z — 3z) (a2 3 VOrZ 1 z)" — (3z)°
z—00 z—00 V922 4+ = + 3z z—oo  4/9x2 + x4 3z
. (92 +2) — 927 . T 1/z
= !lim ——~ —-lim — . 1=
gm0 912 ¥+ x4+ 3z oo 92+x+3z 1l/z
. x/x . 1 1 1 1
= lim = lim = = ==
v—oo \ /922 /22 + x /a2 4+ 3x/x @ 9+ 1/z+3 VO9+3 3+3 6
2 V=T 2 715
18, lim (Va?+az— a2 +bz) = lim (V2?2 +ax — Va? +bx ) (Va2 + ax + Va? + bx )
w00 z—00 Va2 +ar + V22 + bz
. (2% 4+ ax) — (2* + bx) . [(a —b)x]/x
= lim = lim
z—oo /22 4+ ax + V2 + br T (\/x2+ax—|—\/x2+bx)/vx2
~ lim a—b _ a—1b _a—b
e \/T+afe+/T+b/z  VI+0+V1+0 2
6 6 6 6
19. li = = == =92
S 3 e ~37 m e 340 3
20. Forz > 0,v/z2 +1>+Vz2 =x. Soasz — oo, wehave vz2 + 1 — oo, thatis, lim vz2 + 1 = co.
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21 lim ot — 32+ fim (x* — 322 +x)/2>  [divide by the highest power i Eo3/T /2%

so00 X3 — 1+ 2 oo (23 — 2+ 2)/a3 of « in the denominator o—oo 1 —1/22 +2/x3

since the numerator increases without bound and the denominator approaches 1 asx — oo.

22. lim (e™* 4 2cos 3x) doesnot exist. lim e~ * = 0, but lim (2 cos 3z) does not exist because the values of 2 cos 3z

T—00

oscillate between the values of —2 and 2 infinitely often, so the given limit does not exist.

23. lim (z*42°) = lim 2°(1+1) [factor outthelargest power of 1] = —oco becausez® — —coand1/z+1— 1

T— —00 r— —00

aSxr — —00.

Or: lim ($4 + m5) = lim z* (1 -I—CU) = —o0.
14+2° . (1+2%/2"  [divideby the highest power ~ lim 1/2* + 2® -

24 "cBr—noo i+ 1 2——oo (x4 4+ 1)/xt of z in the denominator oo 14 1/24

since the numerator increases without bound and the denominator approaches 1 asx — —oo.

25. Ast increases, 1/t* approaches zero, s lim eV — om0 —q

3z —3z —6x
L . — 1- 1-—
26. Divide numerator and denominator by 3*: lim € —° - € = lim — & - = 0
z—o0 3% 4 =3¢ z—oo 1 4 e 6% 1+0

1—e — lim (1—e")fe” . 1/e"—1 0-1 1

27, i = - = =
eito T+ 267 amoo (L+2e%) /e abeoljer+2 042 2

28 lim_[In(2®) ~ In(a” + 1)] = lim_ {m (x;’i 1)} ~ lim_ {hl (Tll/:ﬁ” —In (1_J1ro) —In(1) = 0

29. R(N)=5N/(c+ N) = R(c)=Sc/(c+c)=5/2. Hence cisthenutrient concentration at which the growth rateis
half of the maximum possible value. Thisis often referred to as the half-saturation constant.

0.14[S] . 0.14 {dividenumerator and} 014

30. li = 1 —_— = _ : = —— =0.14. Sotheli =0.14i
@ [s]linoov [S]Enoo 0.015 4+ [9] [s]linoo 0.015/[S] 4+ 1 | denominator by [S] 0+1 0 elinev =0.141sa

horizontal asymptote. Therefore, as the concentration increases, the enzymatic reaction rate will approach 0.14. Note, we
did not need to consider the limit as [S]— —oo because concentrations must be positive in value.

(b) 0.2
oL
| | | |
0 0.5
(]
) L 8v L (8v) /v? divide by the highest power
3. lim N(v) = lim I+20+02 Jim. (1 + 20 + v2) /02 of v in the denominator
8/v 0

= i = =
M TR v 2for 1 0051 0
Therefore, as the mortality rate increases, the number of new infections approaches zero.
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82. (3 lim L(t) = lim [Loo — (Loo — Lo)e ] = Loo — (Loo — L0)(0) = Loo. Therefore, asthe fish ages the mean length

approaches Lo .
(b) 60
( The constant & affects the rate at which the function

approaches the horizontal asymptote L. Increasing k

I ’;zg causes the Bertalanffy growth function to approach the
-7 -—--k=0.38 horizontal asymptote at a faster rate.
k=0.3
: 3
3. B(t) = SX—EN = lim B(t) = lim 8 x 107 _8x 107 =8 x 107. Thismeansthat in the long run the
1+ 3¢—0.71¢ 00 {0 1 4 3e—0-71¢ 140

biomass of the Pacific halibut will tend to 8 x 107 kg.

34. (a) After t minutes, 25t liters of brine with 30 g of salt per liter has been pumped into the tank, so it contains
(5000 + 25¢) liters of water and 25¢ - 30 = 750t grams of salt. Therefore, the salt concentration at time ¢ will be
750t 30t g

t == = —.
o) 5000425t 200+t L

. .3 30t/1 30
b) 1 t) = lim ——— = =
(b) lim C(t) = lim o55=— = lim 200/t +t/t  0+1

being pumped into the tank.

= 30. So the salt concentration approaches that of the brine

35.7* <0.0001 = In(e”)<In(0.0001) = -z <In(0.0001) = =z > —In(0.0001) ~ 9.21, S0z must be
bigger than 9.21.

x
o . L T . T 11
BIw=gm = =l s = TS !
x

f(z) >099 = xLH >099 = x>099z+1) = 00lz>099 = =z>099/0.01 = z>099

37. () tll>nc:lo u(t) = tllrgo v* (1 - efgt/”*) =0v"(1-0)=0"

(b) Substituting the values v* = 7.5 and v(t) = 0.99 x 7.5 into the velocity function gives 0.99 x 7.5 = (7.5)(1 — e~ 9%/"")

7.5) In(0.01)

= 0.99(7.5) = (7.5) (1—e*t<9~8)/<7-5>) S OB/ _ g0 = ¢ = S = 3528

2.3 Limits of Functions at Finite Numbers

1. Asz approaches 2, f(x) approaches 5. [Or, the values of f(z) can be made as closeto 5 aswe like by taking = sufficiently
closeto 2 (but = # 2).] Yes, the graph could have ahole a (2, 5) and be defined such that f(2) = 3.

2. Asz approaches 1 from theleft, f(x) approaches 3; and as = approaches 1 from theright, f(x) approaches 7. No, the limit
does not exist because the left- and right-hand limits are different.

3@ hHﬁlS f(x) = oo meansthat the values of f(z) can be made arbitrarily large (as large as we please) by taking
sufficiently close to —3 (but not equal to —3).
(b) hm+ f(x) = —oo meansthat the values of f(x) can be made arbitrarily large negative by taking z sufficiently closeto 4
r—4

through values larger than 4.
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4. (a) Asx approaches 2 from theleft, thevalues of f(z) approach 3,s0 lim f(z) = 3.
T—2—

(b) Asz approaches 2 from the right, the values of f(x) approach 1, so lim+ flz)=1.
r—2
(© lirn2 f (z) does not exist since the left-hand limit does not equal the right-hand limit.

(d) Whenz =2,y = 3,50 f(2) = 3.
(e) Asx approaches 4, the values of f(x) approach 4, so linr}1 flx)=4.

(f) Thereisno value of f(x) whenz = 4, so f(4) does not exist.

. (8) Asx approaches 1, the values of f(x) approach 2, so liml flz)=2.

(b) Asz approaches 3 from the left, the values of f(z) approach 1,s0 lim f(x) = 1.
x—3"
(c) Asz approaches 3 from theright, the values of f(z) approach4, so lim f(z) =4.
r—3

(d) /lims f(z) does not exist since the left-hand limit does not equal the right-hand limit.

(&) Whenz =3,y =3,%0 f(3) =3.

. (8 h(x) approaches 4 as x approaches —3 fromtheleft, so lim h(z) = 4.

r——3"

(b) h(x) approaches 4 as = approaches —3 fromtheright, so lim h(z) = 4.

r——3

(© linf_l3 h(z) = 4 because the limitsin part () and part (b) are equal.

(d) h(—3) isnot defined, so it doesn’t exist.
(€) h(x) approaches 1 as x approaches 0 from theleft, so lim A(z) = 1.

z—0—

(f) h(z) approaches —1 as = approaches 0 from theright, so lim h(z) = —1.

x—0
(9) /lin}) h(x) does not exist because the limitsin part (€) and part (f) are not equal.
(h) h(0) = 1 sincethe point (0, 1) ison the graph of A.
(i) Since lim h(z) =2and lim+ h(z) = 2, we have lirrg h(z) = 2.
r—27 r—2 T—

() h(2) isnot defined, so it doesn’t exist.

. (8) P(t) approaches 260 as = approaches 2 from theleft, so lim P(¢) = 260.

t—2—

(b) P(t) approaches 254 as x approaches 2 from the right, so lim+ P(t) = 254.
t—2

() tlirr% P(t) doesnot exist because lim P(t) # lim P(t).

t—2— t—2+

(d) P(t) approaches 254 as = approaches 4 fromtheleft, so lim P(t) = 254.
t—4—
(e) P(t) approaches 258 as x approaches 4 from the right, so lim+ P(t) = 258.
t—4
(f) lim P(t) doesnot exist because lim P(t) # lim P(¢).
t—4 t—4— t—4t

(9) /lin% P(t) = 258 because lim P(t) =258 = lim P(¢)

r—5" z—51

(h) OnJune 3 (t = 2), the population decreased by 6. This could have been aresult of deaths, emigration, or a combination of
thetwo. On June 5 (¢ = 4), the population increased by 4. This could have been aresult of births, immigration, or a

combination of the two.
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. @ lim R(z) = —o0 (b) lim R(z) = o0 (© lim R(z)=—oco (@ lim R(x)=oo
(e) The equations of the vertical asymptotesarer = —3,z = 2, and z = 5.
- (@ lim g(z) = —o0 (b) lim g(z) = —oco (©) lim g(z) = oo
(d) lim g(z) =2 (© lm g(z)=-1 (f) Vertical: x =0,z = 2;
o0 oo horizonta: y = —1,y = 2
lim f(¢) = 150 mgand lim+ f(t) = 300 mg. These limits show that there is an abrupt change in the amount of drug in

t—12— t—12
the patient’s bloodstream at ¢t = 12 h. The left-hand limit represents the amount of the drug just before the fourth injection.

The right-hand limit represents the amount of the drug just after the fourth injection.

lim f@) =4, lim f(@) =2, lim f(z) =2, 12 lim f(z) =2, lim f(z) =0, lim [() =3,
F@=8 1-2)=1 lim 7(2) = 0,7(0) =2, f(4) = 1
3,,
/2’
1T .
0 4 X
hi% flz) = —o0, 14. ILI% f(x) = o0, lir_n2+ f(x) = o0, 15. ILIIIZ flz) = —o0, lim f(x) = o0,
Jim  f(z) =5, lim _f(z) =—co, lim f(z)=0, Jim f(z) =0, lim f(z) = oo,
lim f(z) = =5 Tim f(@) =0, f(0)=0 lim f(r) = oo
- y o y r—
ysﬁ ’ N oix=2
0 x 5 - 0
y=-5
x=2
llm f(z) =3, 17. f(0) =3, lirgf f(z) =4, 18. Ier}?) f(z) = —o0, llm flx)=2,
lim f(z) = oo, lim f(z)=2, f(0)=0, fiseven
r—27" r—0t
141)1;1Jr f(ac) = —oo, fisodd EIP f(l') = —00, 11r£17 f(:p) = —00, x=-3 y x=3
r— 'y= 2
GO y=3 lm @) =ce, lim f()=3 < 7
0 X
| k

/ A 2\

x==2 x=2 x=4
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% — 2z
19. For ==
9. For f(z) P S
T f(z) T f(z)
2.5 0.714286 1.9 0.655172
2.1 0.677419 1.95 0.661017
2.05 0.672131 1.99 0.665552
2.01 0.667774 1.995 | 0.666110
2.005 | 0.667221 1.999 | 0.666556
2.001 [ 0.666778
It appears that lim ——— 2% _ 0§ = 2
app Iim ——— =06=3.
5t
21. Forf():e ; !
t f(@) t f(@)
0.5 22.364988 —-0.5 1.835830
0.1 6.487213 —0.1 3.934693
0.01 5.127110 —0.01 4.877058
0.001 5.012521 —0.001 4.987521
0.0001 5.001250 —0.0001 | 4.998750
&5t _
It appears that }iHé = 5.
23. For f(z) = Vetd-2
X
x f(z) x f(z)
1 0.236068 -1 0.267949
0.5 0.242641 —0.5 0.258343
0.1 0.248457 —0.1 0.251582
0.05 | 0.249224 —0.05 | 0.250786
0.01 | 0.249844 —0.01 | 0.250156
It appears that lim —”H:EH =0.25= 1.

% — 2z
20. For f(z) = m:

T f(z) x f(z)
0 0 —2 2
—-0.5 -1 —1.5 3
—0.9 -9 —1.1 11
—0.95 —19 —1.01 101
—0.99 —99 —1.001 | 1001

—0.999 | —999

It appearsthat lim ;EQ ~ 2% oes not exist since
z——-12%2 —x —2

f(x) > ccasx — —17 and f(x) — —ccasz — —17.

5 J—
22. For f(h) = W:
h f(h) h f(h)
0.5 131.312500 —-0.5 48.812500
0.1 88.410100 —0.1 72.390100
0.01 80.804010 —0.01 79.203990
0.001 80.080040 —0.001 79.920040
0.0001 80.008000 —0.0001 | 79.992000
. (2+h)°—-32
It appears that %13% B 80.
tan 3z
24. Fo = :
rf(@) tan 5x
T f(x)
+0.2 0.439279
+0.1 0.566236
+0.05 0.591893
+0.01 0.599680
+0.001 | 0.599997
It appearsthat lim 22237 — 0.6 — 2
ap >0 tanbz 2
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z -1 9% — 5%
25. For f(z) = TR 26. For f(z) = —
z f(x) x f(x) x f(x) x /()
0.5 0.985337 1.5 0.183369 0.5 1.527864 —0.5 0.227761
0.9 0.719397 1.1 0.484119 0.1 0.711120 —0.1 0.485984
0.95 | 0.660186 1.05 | 0.540783 0.05 | 0.646496 —0.05 | 0.534447
0.99 | 0.612018 1.01 | 0.588022 0.01 | 0.599082 —0.01 | 0.576706
0.999 | 0.601200 1.001 | 0.598800 0.001 | 0.588906 —0.001 | 0.586669
oaf -1 L9 -5t i
It appears that ilﬂ T 0.6 =2. It appears that ;13}) = 0.59. Later we will be able
to show that the exact valueis1n(9/5).
27. (a) From the graphs, it seems that lim w =—15. (b)
o ¢ x f(x)
1 1 +0.1 —1.493759
N | £0.01 | —1.499938
0 ‘ 605 03 £0.001 | —1.499999
+0.0001 | —1.500000
-2 )
. . sinx
28. (@) From the graphs, it seemsthat lim — ~ 0.32. (b)
z—0 SIN TX
T f(z)
2 0.5 +0.1 0.323068
+0.01 0.318357
+0.001 | 0.318310
40.0001 | 0.318310
Later we will be able to show that
-1 5 1-0.2 5 0.2 1
the exact valueis —.
T
29. N z i ; = —oo since the numerator is negative and the denominator approaches 0 from the positivesideasz — —3*.
r——3T T
30. lim i i § = oo since the numerator is negative and the denominator approaches 0 from the negativesideasx — —3™.
T——3"
2 — . . . . .
3L lim1 ﬁ = oo since the numerator is positive and the denominator approaches 0 through positive valuesas z — 1.
32. lim @6—5)3 = —oo since the numerator is positive and the denominator approaches 0 from the negative sideasz — 5.
r—5~" -
33. Lett =2% — 9. Thenasz — 37,¢t — 0T, and lim+ In(2*> —9) = lirn+ Int = —oo by (8).
r—3 t—0
34, lim cotz = lim C.Oﬁ = —oo since the numerator is negative and the denominator approaches 0 through positive values
r—mTT rz—m— SINXT

asr —m .
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90 [ CHAPTER2 LIMITS

35. lim zcscx = lim ,x = —oo since the numerator is positive and the denominator approaches 0 through negative
T—2T r—27— SINT

vauesasx — 27 .

2 J— —
36. lim v =l M — lim —Y— = oo since the numerator is positive and the denominator
zo2- 2?2 —dr+4 o2 (—2)2  so2-x—2

approaches 0 through negative valuesasz — 2.

22— 2z -8 (x —4)(z+2) . . . .
37. lim ————— = lim ——————~% = oo since the numerator is negative and the denominator approaches 0 through
o2t T2 — BT+ 6 amat (z —3)(z —2) o = P 9

negativevaluesasz — 2.

2 2
38. (a) The denominator of y = 3;3 7+2i2 = xé j— 2117) isequal to zero when (b) 3

r=0andz = % (and the numerator isnot), soz = 0and z = 1.5 are

. . -2 4
vertical asymptotes of the function. ™ ﬂ

9. @ f(r) = .
0.5 —1.14 1.5 0.42
From these calculations, it seems that 0.9 —3.69 1.1 3.02
xlil{lﬁ f(z) = —oc0 and xlir?Jr f(z) = oco. 0.99 —33.7 1.01 33.0
0.999 —333.7 1.001 333.0
0.9999 —3333.7 1.0001 3333.0
0.99999 | —33,333.7 1.00001 | 33,333.3

(b) If 2 isdlightly smaller than 1, then 2® — 1 will be a negative number close to 0, and the reciprocal of z* — 1, that is, f(z),
will be a negative number with large absolutevalue. So lim f(z) = —oc.
r—1"

If z isdlightly larger than 1, then 2® — 1 will be asmall positive number, and itsreciprocal, f(z), will be alarge positive
number. So lirn+ f(z) = oo.
rz—1

(c) It appears from the graph of f that ’
lim f(z) =—ocoand lim f(z) = oo. L l
z—1- z—1+t 0 2

I

-10

0 L L L L 5 0 L L L L 5
No, because the calculator-produced graph of f(x) = e¢” + In |2 — 4| looks like an exponential function, but the graph of f
has an infinite discontinuity at © = 4. A second graph, obtained by increasing the nunpoi nt s option in Maple, beginsto
reveal the discontinuity at « = 4.
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SECTION 2.3 LIMITS OF FUNCTIONS AT FINITENUMBERS 1 91

(b) Thereisn't asingle graph that shows all the features of f. Several graphs are needed since f lookslikeIn |= — 4| for large

negative values of = and like e” for x > 5, but yet has the infinite discontiuity at « = 4.

6 60
100 0 0

A hand-drawn graph, though distorted, might be better at revealing the main Y

features of this function.

\
° i
x=4
41. (a) Let h(z) = (1 +z)"/°. (b) 6
x h(z)

—0.001 2.71964
—0.0001 | 2.71842 74L J4
—0.00001 | 2.71830

—0.000001 | 2.71828
0.000001 | 2.71828
0.00001 2.71827
0.0001 2.71815
0.001 2.71692

1/x

It appears that lir% (14 )" ~ 2.71828 which is approximately e.

In Section 3.7 we will see that the value of the limit is exactly e.

42. For f(z) = 2° — (2°/1000):

@ (b)

x f(x) z f(x)
1 0.998000 0.04 0.000572
0.8 | 0.638259 0.02 | —0.000614
0.6 | 0.358484 0.01 | —0.000907
0.4 | 0.158680 0.005 | —0.000978
0.2 | 0.038851 0.003 | —0.000993
0.1 | 0.008928 0.001 | —0.001000
0.05 | 0.001465

It appears that lim f () = 0. It appearsthat lim f(x) = —0.001.
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92 [ CHAPTER2 LIMITS

43. No matter how many times we zoom in toward the origin, the graphs of f(x) = sin(7/x) appear to consist of almost-vertical

lines. This indicates more and more frequent oscillationsas z — 0.

Ay T T
.

il

1.2 1.2

—0.01 —0.0001 0.0001

44. lim m = lim L.Asvﬂc_,w/lfﬁ/&HO*’,andeoo.

v—c™ v—ec~ /1 — 1}2/02

2.4 Limits: Algebraic Methods

1 (@ lim [7(x) +59(@)] = lim f(z) + lim [g(x)]  [LimitLaw 1] (&) lim [g(e))* = [lim g(x)]"  [LimitLaw 6]

r—2
= lim2 fx)+5 lim2 g(x)  [Limit Law 3] =(-2)°®=-8
=4+5(-2)=-6
lim [3f(z)]
(©) lim V@)= \/ignlzf(x) [Limit Law 11] (d) lim o) = Ty 97 [Limit Law 5]
=Vi=2 3 lim f(z)
=222 [LimitLaw 3]
hm2 g(x)
_34) _
== = 6
o _ _ g(z) h(z) 1ml9(2)h(2)] o
€) Because the limit of the denominator is 0, we can im = - imit Law
(e B the limit of the d at 0 't (f) l z [Limit Law 5]
o w2 f(@) Timy 7 ()
L . .o gle
use Limit Law 5. The given limit, }Ln% —h(a:) , does iLleg(x) i% h(z) Lt Lo g
= imit Law
not exist because the denominator approaches 0 };Lr% f(x)
while the numerator approaches a nonzero number. —92.0

2. (@ lim [f(2) + g(2)] = lim f(2) + lim g(x) = 2+0 =2
(b) lirn1 g(x) does not exist since itsleft- and right-hand limits are not equal, so the given limit does not exist.

(©) lim [f(x)g(x)] = lim f(x) - lim g(x) =013 =0

z—0 z—0
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(d) Since linjlg(m) = 0 and g isin the denominator, but 1imi11 f(z) = =1 # 0, the given limit does not exist.

() lim 2 f(z) = [nm @ ] [hm f(z )] 2%.2=16

z—2 z—2

() iLn{\/3+f(x):\/3+iLn11f(x)=\/3+1:2

3. lin32(3$4+2$2—$+1) = 11113 3zt + 11r£122r — 11I£12$+ 111“£1 1 [Limit Laws 1 and 2]
—311rnx +2 hrn 22— lim x+ hml [3]
2 2 z——2 —2
=3(-2)*+2(-2)* - (-2)+ (1) [9,8,and 7]

=48+8+2+1=59

4, tlirgl(tz +1)%(t+3)° = tlirgl(tQ +1)%- Jim (¢ + 3)® [Limit Law 4]
3 5
_ . 2 . .
- [pme ] [am o)
3 5
Lhnil t2 +thr£1 1] Lhr{l t+ hm 3} [1]

= [(-1)?+1]® [-1+3]° =8-32 =256 [9, 7, and 8]

5. lim \/2“’2 +1_ \/lim 22" +1 [Limit Law 11]
"eo2\ 32-2 Vao2 3z —2

lim (222 + 1)
=, | (5]
l}rrg(?;m -2)

2 lirr12x2 + 111%1
“ A\ Blmz_ lim 2 [1,2, and 3]

r—2 z—2

_ 2)2“ \[ 9,8, and 7]

: 4
6l cost B :112% cos” T 5
—0 5+ 223 lir%(5 + 2z3)

lim cosx

4
- M [6, 1, and 3]
lim 5 + 2 lim 3 '
z—0 x—0
14 1

T 51200 5 [7, 9, and Equation 5]

lim 9)( lim sint9> [4]
0—m/2 0—m/2

- sin g [8 and Direct Substitution Property]

7. lim #sinf =

0—m/2

SIERSTE
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94 0O CHAPTER2 LIMITS

8. (a) Theleft-hand side of the equation is not defined for = = 2, but the right-hand side is.

(b) Sincethe equation holdsfor all = # 2, it follows that both sides of the equation approach the same limit asx — 2, just as
in Example 3. Remember that in finding lim f(xz), we never consider z = a.

2_ — p—
o lim & =02 F5 B0y o514
z—5 r—5 z—5 r—5 z—5
x? — 4 z(z —4) x 4 4
Po1 g2 — 3z — 4 zﬂ(m_4)(x+1) iz 41 4+1 5

22 —52+6

11. 11%75 does not exist sincez — 5 — 0, but 22 — 52 + 6 — 6 asz — b.
r— xr —
. 22 43z +1 . Cr+D(z+1) .o 2z41 2(-1)+1 -1 1
1 2 22 -3 eo1 (z-3)(z+1) eo1z-3  —1-3 -4 4
3 lim t?—9 oy E+3E=3) . t-3  —3-3 _—6_6
Ct—-3202 4Tt +3 -3 (2 +1)(t+3) +—-32t+1 2(-3)+1 -5 5
. % — 4z _ 9 9
14, lim —————— doesnot existsincex® —3x —4 — Obutz* — 4z — 5asz — —1.
z——-1732 —3x —4
2 2\ 2
15, fim GFP" 16 (6F8hFR) 216 BhAER o RBER) 4R =8t0=8
h—0 h h—0 h h—0 h h—0 h h—0
. (2+h)?*—-8 . (8+12h+6R*+h*)—8  12h+6h>+h®
16. lim = lim = lim —m8™—
h—0 h h—0 h h—0 h

= lim (124 6h 4+ h?) =12+ 0+0 = 12
h—0

17. By the formulafor the sum of cubes, we have

lim zt2 lim v t2 = lim L = L - L
e——223+8 a--2(z+2)(22—22+4) o--222-2x+4 4+4+4 12
. VI+h—-1 . Ji+h—-1 Vith+1 . (1+h)—1 . h
18. hrn —_— = hm . = 111’1’1 — = hm —
h—0 h h—0 h Vi+h+1 hﬂoh(\/1+h+1) hHOh(\/1+h+1)
. 1 1 1
= lim = ==
=0 T+h+1 i+l 2
1.1 z+4
.4y . x+4 . 1 1 1
19. 1 =1 = lm — % fm = — = ——
At eotadtr  eotadz(dta) eotads  4(—4) 16
x4 2r+1 . (x+1)° . (x4 1)°
0 tm e T e o) T A @i D )@ =)
— lim rtl 0
Tasm1 (@24 D) (z—-1)  2(-2)
2 fim AV gy VA VE) 16—
=16 162 — 22 2—16 (16z — 22)(4+ vz ) 2—16 2(16 —z)(4 + /2)
1 1 1 1

M@t V) 16(4+vi6)  16(8) 128
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. 1 1 . 1 1 Lt +1— . 1 1
2. lm [ = — —— =lm|-— —— =lim—=lm—=—-—-=1
t—=0\t 1241 t—o\t t(t+1) t—0 t(t+1) t—ot+1 041

23 1im( ! —1)*1im1_7 M*lim( VIFE)(1+ VIt = lim —t
Cm0\t/ITH+t t) 150 ty/T+t -0 t\/t—i- (1+v1+t) N (1+v1+t)
tim -1 B ~1 1
=0T+t (1+vVI+t) VI+0(1++1+0) 2
, 22+9-5 . (VaZ+9-5)(VaZ+9+5) , (2% +9) — 25
24, lim —————— = lim = lim
e——4  wt+4 e—-4  (z+4)(V22+9+5) e——4 (z+4) (V22 +9+5)
~ fim z? — 16 - lim (z+4)(xz —4)
e=-4 (z+4)(Va2+9+5) -4 (z+4)(Va2+9+5)
T —4-4 -8 4
Te=4z2 1945 1619+5 545 5
2. (a) L (b)
x f(z)
—0.001 0.6661663
1 —0.0001 0.6666167 0
-1 1 —0.00001 0.6666617 The limit appears to be 3
L J —0.000001 | 0.6666662
~0.5 0.000001 | 0.6666672
o x 2 0.00001 | 0.6666717
2=0/T+3r—1 3 0.0001 0.6667167
0.001 0.6671663

© lim ( x \/1+3x+1)_h z(vVI+3z+1) i e(VI+3z+1)

oo\ T+32—1 Vitse+1) o=0 (1+3z)—1 a0 3z
= % lim (v1+3z+1) [Limit Law 3]
1
25{ hrn 1+ 3z) —l—hrnl] [1and 11]
:%( 11m1+3hn%m+1) [1,3,and 7]
:%(\/1+3~0+1) [7and 8]
1 2
=-(1+1)==
s1+1)
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26. (3) 0.3 (b)
x f(x)
—0.001 0.2886992
—0.0001 0.2886775
—0.00001 0.2886754
| —0.000001 | 0.2886752
0 ! 0.000001 | 0.2886751
0.00001 0.2886749
i V3FE V3 o 0.0001 | 0.2886727
=0 T 0.001 0.2886511
The limit appears to be approximately 0.2887.
© hm(\/?w_x—\/g.\/ﬂ_:rJr\/g)_hm B+2)-3 . 1
z—0 T V3+z++3 Iﬂox(‘/3+x+'\/§) 220 /3% z +/3
lir%l
= s Limit Laws5 and 1
lvirr%)\/3+:v+/lir%\/§ [ ]
1
- [7 and 11]
[lim (3 +2) +V3
I [1,7, and §]
V3T0++3 Y
1
23
27. Let f(z) = —22, g(z) = 2? cos 207z and h(z) = =>. Then )
—1<cos20mz <1 = —a?<z?cos20mz<a? = f(z) <g(x) < hix). h g
So since lin% fz) = lin% h(z) = 0, by the Squeeze Theorem we have -1 1
,lin%) g(z) = 0. !

28. Let f(z) = —va3 + 22, g(z) = Va3 + 22 sin(w/z), and h(z) = Va3 + 22. Then

h
—1<sin(r/z) <1 = —Va3+22 < Va3 +a2sin(n/z) < Va3 +22 = 9
-1 1
f(z) < g(z) < h(z). Sosince 111{1%J f(z) = 1in%J h(z) = 0, by the Squeeze Theorem
T— T— f

we have lin%)g(;r) =0.
xr— 71

29. We have lim (4z — 9) = 4(4) —9 = 7 and lim (2° =4z +7) =4> —4(4) +7="7.Sncedr — 9 < f(z) <a® — 4w 47
forx > 0, lvin}1 f(x) = 7 by the Squeeze Theorem.

30. We have lim (2) = 2(1) = 2 and lirnl(ac4 —2?24+2)=1* - 1> +2=2.Since2r < g(x) < 2* — 2® + 2 foral z,
/hm1 g(z) = 2 by the Squeeze Theorem.

3. =1 <cos(2/z) <1 = —a2* <az*cos(2/z) < z*. Since lim, (-2*) = 0and lim. z* = 0, we have

,lin%) [#* cos(2/z)] = 0 by the Squeeze Theorem.
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1

32. (a) }%m(t) = lim [3e “(sint —cost) + 3] =3(1)(0—1)+3 =0
Thisindicates that the concentration of MRNA &t ¢ = 0 is zero.

(b) tlim m(t) = tlim le7'(sint —cost) + 3 =1 (tlim e 'sint — tlim e ' cos t) + 1 The Product Law for limits
cannot be used since lim; . sin ¢t and lim;_, », cos ¢ does not exist. We can use the Squeeze theorem instead.
—1<sint<1l = —e!<efsint<e Sincetlim (£e ") =0,we ha/etlim e~ tsint = 0 by the Squeeze
Theorem. Replacing sin ¢t with cos ¢ in the above argument, we similarly find that tlim et cost = 0. Therefore,

lim m(t) = 3 (0 —0) + 3 = 1. Thisindicates that the concentration of mMRNA in the long-term is 0.5.

t—oo
r—3 ifz—3>0 r—3 ifx>3
B |z—-3]= ) = .
—(x—-3) ifz—3<0 3—z ifz<3
Thus, lim 2z +|z—3|) = lim 2z +2—3) = lim (3z—3) =3(3) -3 =6and
r—3+ r—3+ r—3+
lim (2z+|r—3|) = lim (2243 —z) = lim (z+ 3) =3 + 3 = 6. Since theleft and right limits are equd,
r—3~ r—3— r—3—
lir%(QJ: + |z —3|) =6.
z+6 ifz+6>0 z+6 if > -6
M. |z +6] = ) = .
—(xz+6) fz+6<0 —(z+6) if x<—6
We'll look at the one-sided limits.
im et 12 im A2 +6) =2 and lim 2ot 12 lim (z+6) =-2
e——6+ |T+ 6] z——6+ T+6 e——6- |z +6] 2--6- —(r+6)
2z 412

does not exist.

The left and right limits are different, so lim
z——6 ‘:C + 6‘

35. Since |z| = —z for z < 0, wehave lim (l — i) = lim (l — i) = lim z,which does not exist since the
s—0— \Z || r - z—0— T

denominator approaches 0 and the numerator does not.

! 2 — 2—(—
36. Since |z| = —z for x < 0, wehave lim 2] = lim 2-(2) = lim 2+z _ lim 1=1.
z——-2 24+ z—-2 24 z—>—-224+x r——2
. 2 +x—6 (x+3)(x—2)
@ syt 9() e 28 |z — 2| et |z — 2|
= lim +3)(z-2) [sincex —2 > 0if z — 21]
z—2+ r—2
= lim (x+3)=5
r—2

(i) The solution is similar to the solution in part (i), but now |z — 2| =2 —z sincez — 2 < 0if z — 27.

Thus, lim g(z) = lim —(z + 3) = —5.
r—2" r—2"

(b) Sincetheright-hand and left-hand limitsof g at « = 2 (© J /

arenot equal, lim g(x) does not exist. \ 2.5
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98 O CHAPTER2 LIMITS
% @ f(z) 2?2 +1 if r<1
. @ f(x) =
(x—2)% ifz>1
lim f(z)= lim (z*+1)=1’+1=2, lim f(z)= lim (z —2)>=(-1)%?=1
r—1— r—1— rz—1+ r—1+
(b) Since theright-hand and left-hand limitsof f at z = 1 (© Y
are not equal, 1im1 f(z) does not exist. ’
0‘ }1 x
. sin3z . 3sin3z . .
39. /hn}) = hn% . [multiply numerator and denominator by 3]
=31 sin 3z [asz — 0,3z — 0]
3z—0 3z
. sinf
73(;12% 7 [let 6 = 3x]
=3(1) [Equation 6]
=3
sin 4z sin 4x x 4 sin4x 6x sindx 1 6x
40. li =1l . =1 -1i =41 -2l =
0 o sin 6z 250 ( T sin 6$> oy 4x 20 6 sin 6 bt 4z 6 o) sin 6z
11 lim tan6f lim sin6t. 1 ) t — Jim 6 sin 6t Nim 1 im 2t
"0 sin 2t t—0 t cos6t sin2t) t-0 6t  t—0cos6t t—0 2sin2t
. sin6t . 1 1. 2t 1 1
=6 lim == Jim 5 g im oy =6() 751 =3
.2 . . . .
. lim 50 3t _ lim (sm 3t sin Bt) T 3t iy S0 3t
t—0 12 t—0 t t t—0 t t—0 ¢
. 2 . 2
_ <lim sm3t> _ <3 lim sm3t> —(3-1)2=9
t—0 ¢ t—0 3t
43. Divide numerator and denominator by 6.  (sin 6 also works.)
sin 6 I sin 6
sin 0 , 9 i o 1 1
im ——— = lim - = - = ==
0—0 0 +tanf 6—0 sin 6 1 . sin@ .. 1 1+1-1 2
1+ . 1+ lim lim —
0  cosf 6—0 6O 650 cosf
I CoST cos T lim cos z
44, limxcotx:limx-cf)sm:hmx(.:oszzlim L iy — L — 220 :1:1
70 z—0 sinxz x—0 Sinx z—0 Ssinx z—0 Sinx li B2 1
T T -0 T
45. (@) Since p(z) isapolynomia, p(z) = ao + a1z + azx® + - - - + a,x™. Thus, by the Limit Laws,

A1) 2 (1) =

T—a

lim p(z) = lim (ao + a1z +asz? + -+ anx”) =ap+ a1 lim x + a2 lim 22 + - - - + a, lim 2"

=ao +ara+a2a® + -+ + ana” = pla)

Thus, for any polynomial p, lim p(z) = p(a).

(b) Letr(z) = p@) where p(z) and g(x) are any polynomials, and suppose that ¢(a) # 0. Then

q()
lim p(x)
iiirtllr(l’) = }E% = W [Limit Law 5] = % [by pat (@] = r(a).

© 2016 Cengage'LLearning:“All"Rights Reserved. May not, be'scanned; copied, or duplicated; or posted to a publicly accessiblewebsite, in whole'orin part:

2

3



46.

47.

48.

49.

50.

51.

52.

SECTION 2.4  LIMITS: ALGEBRAIC METHODS [ 99

v—cT

2
lim <L01 [1— v—2> = Lov/1 — 1 = 0. Asthe velocity approaches the speed of light, the length approaches 0.
C

A left-hand limit is necessary since L is not defined for v > c.

}Lirr}) sin(a + h) = }lbirno (sinacosh + cosasinh) = lim (sinacosh) + ,llin% (cosasinh)

—

= (lim sin a) (lim cos h) + (lim cos a) (lim sin h) = (sina)(1) + (cosa)(0) = sina
h—0 h—0 h—0 h—0

Asin the previous exercise, we must show that ’llin%) cos(a + h) = cos a to prove that the cosine function has the Direct
Substitution Property.

}lir% cos(a+ h) = }lin}) (cosacosh —sinasinh) = }llirr%) (cosacosh) — lim (sinasinh)
h— h— —

h—

= (lirn cos a) (lim cos h) - (lirn sin a) (rlblino sin h) = (cosa)(1) — (sina)(0) = cosa

—0 h—0 h—0

lim [f(z) — 8] = lim {M%xfl)} —im I =8 w1 =10.0=0.

z—1 z—1 rx—1 z—1 x—1 z—1
Thus, lim f(z) = lim {[f(z) — 8] + 8} = lim[f(z) — 8] + im 8 =0+ 8 = 8.
Note: The value of lim1 &_18 does not affect the answer sinceit’'s multiplied by 0. What'simportant is that
lim f@) -8 exigts.
x—1 €T — 1
: o [f@) e @) e
@ i 1) =ty | £ 2*] =ty £t =500

o f@) [ f()
(b) ili%—_hm[

€T x—0

x] zlimLf)Jimx:&O:O

x—0 X z—0

Since the denominator approaches 0 as z — —2, the limit will exist only if the numerator also approaches
0asz — —2. Inorder for this to happen, we need lim (32°+az+a+3)=0 &

3(-2)’+a(-2)+a+3=0 & 12—-2a+a+3=0 < a=15. Witha = 15, thelimit becomes

322+ 152+18 . 3@x+2)(x+3) . 3x+3) 3(-2+3) 3
lim —————— = lim —>"——>"—2 = lim = = =
s—-2 24z —2 a—-2 (z—1)(z+2) 2--2 z—1 —2-1 -3

—1.

Solution 1: First, we find the coordinates of P and @ as functions of . Then we can find the equation of the line determined
by these two points, and thus find the z-intercept (the point R), and take the limit as» — 0. The coordinates of P are (0, r).
The point Q isthe point of intersection of the two circlesz® + y* = 72 and (z — 1) 4 y* = 1. Eliminating y from these
equations, wegetr’ —z2°> =1—(z—1)> & r’=1+42zx—1 < z = ir? Substituting back into the equation of the

shrinking circle to find the y-coordinate, we get (%ﬁ)z +yP=r & P =r(1-4?% o y=r/1-1>

(the positive y-value). So the coordinates of (Q are (%rz, ry/1— 372 ) . The equation of thelinejoining P and Q isthus
(z —0). Wesety = 0in order to find the xz-intercept, and get

1

1,2 ~3r? (1-4r2+1)
2" 2 : =2(y/1-32+1)

Tr = —r = T
r( 1_%,&_1) 1—3m2 -1

(©) 2016 Cengage L earning. All Rights Reserved: May not:be scanned; copied, or duplicated, or posted to,a publicly accessiblewebsite, inwhole or in/part.
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. - +. . _ . _ l 2 _ . _
Now we tekethe limitasr — 0": lim z = lim 2(, [1—3r2+ 1) lim, 2 (V1+1) =4.
So the limiting position of R isthe point (4, 0).

Solution 2: We add a few linesto the diagram, as shown. Note that
ZPQS = 90° (subtended by diameter PS). So ZSQR = 90° = Z0QT

(subtended by diameter OT). It followsthat Z0QS = ZTQR. Also

/ZPSQ =90° — ZSPQ = ZORP. Since AQOS isisosceles, sois T R
AQTR, implyingthat QT = T R. Asthecircle C> shrinks, the point

plainly approaches the origin, so the point R must approach a point twice

asfar fromthe origin as 7', that is, the point (4, 0), as above.

2.5 Continuity

1. From Definition 1, hn}; f(z) = f(4).

2. Thegraph of f hasno hole, jump, or vertical asymptote.

3. (8) fisdiscontinuousat —4 since f(—4) isnot defined and at —2, 2, and 4 since the limit does not exist (the left and right

limits are not the same).

(b) fiscontinuousfromtheleftat —2 since lim f(z) = f(—2). f iscontinuous from the right at 2 and 4 since

T——2"

hm+ f(z) = f(2) and hm+ (z) = f(4). Itiscontinuous from neither side a —4 since f(—4) is undefined.
r—2 r—4

4. giscontinuouson [—4, —2), (—2,2), (2,4), (4,6), and (6, 8).

5. Thegraph of y = f(x) must have adiscontinuity at 6. The graph of y = f(x) must have discontinuities
x = 2 and must show that hm+ f(z) = f(2). a o= —1andz = 4. It must show that
r—2

lim () = f(=1)and lim f(z) = f(4).

yd y

y

\Q -1 0 4 x
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7. Thegraph of y = f(x) must have aremovable

discontinuity (ahole) at z = 3 and ajump discontinuity

SECTION2.5 CONTINUITY O

8. The graph of y = f(x) must have a discontinuity
arx=-2with lim f(z)# f(—2)and
r——2"

101

az=>.
lim+ f(z) # f(—2). It must aso show that
r——2

P Tim f(2) = f(2)and lim f(2) # £(2)

y

9. (a) C hasdiscontinuitiesat 12, 24, and 36 hours since the limit does not exist at these points.
(b) C hasjump discontinuities at the values of ¢ listed in part (a) because the function jumps from one value to another at these

points.

10. There are jump discontinuitiesat 1, 1.7, 3, and 3.5. They occur because the |eft and right side limits are different at each of
these points, so the limit does not exist. For example, lim,_,,— P(t) = 26 and lim,_,,+ P(t) = 24, so lim,_,; P(¢) does not

existand P(t) isdiscontinuousat ¢ = 1.

1. (d) Cost (b) There are discontinuitiesat timest = 1, 2, 3, and 4. A person
(in dollars) T
P oe parking in the lot would want to keep in mind that the charge will
I jump at the beginning of each hour.
it
ol1 Time
(in hours)

12. (a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps
from one temperature to another.
(b) Discontinuous; the population size increases or decreases in whole number increments.
(c) Continuous; the temperature at a specific time changes smoothly as the distance due west from New York City increases,
without any instantaneous jumps.

(d) Discontinuous; as the distance due west from New York City increases, the altitude above sealevel may jump from one

height to another without going through all of the intermediate values— at a cliff, for example.

(e) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.
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13. Since f and g are continuous functions,
lirré 2f(z) —g(z)] =2 lirré flx)— lir% g(z) [by Limit Laws 2 and 3]

=2f(3)—¢g(3) [by continuity of f and g a x = 3]

=2.5-g(3) =10 - g(3)

Sinceit isgiven that lin% [2f(z) — g(z)] = 4, wehave 10 — g(3) = 4,50 ¢(3) = 6.

1. lim f(z) = lim (32" —Bx+ Va2 +4) =3 lim z* —5 lim & + g/lim (22 + 4)

=3(2) —5(2) + V2T T4 =48 -~ 10 +2 =40 = f(2)

By the definition of continuity, f iscontinuousat a = 2.

z——1 z——1 rz——1 T——

4
15. lim f(z) = lim (z+22%)" = ( lim z+2 lim x3) = [-1+2(-1)%]" = (-3)* =81 = f(-1).
By the definition of continuity, f iscontinuousat a = —1.

16. For a > 2, we have

lim (22 + 3)
fim o) = i S =y mittau
2 lim z + lim 3
= Tmao - lm2 t2.end3)
_2ats [7andg]
a—2
= f(a)

Thus, f iscontinuousat = = a for every a in (2, co); that is, f iscontinuouson (2, o).

e’ ifrx<0
1 J@) = 22 ifx>0

Theleft-hand limitof fata =0is lim f(z) = lim e” =1.The

z—0~ z—0—

right-hand limit of f &t a = 0is lim f(z) = lim_ 2 = 0. Since these
x—0 z—0

limits are not equal, liH(l) f(z) doesnot exist and f is discontinuous at 0.

2

r —T .
if 1
8 f@)={@-1 "7
1 if =1
-z z(r—1) 1 0 x
1. :1 :1. = = =,
lim flo) =l Sy = I o e — ~ M1 T 2
but (1) = 1, so f isdiscontinous at 1. x=-1
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20.

21.

22.

23.

24.

25.

26.

27.

SECTION2.5 CONTINUITY O 103

CcoS T if <0

flx)y=40 if =0 Y
1—2% ifz>0

lir% f(z) =1,but f(0) =0 # 1, so f isdiscontinuous at 0.

222 — 5z —3 .

SO i 2 £3
J@)={ =-3 "

6 if r=3 6+
. 22 —b5r—-3 . (2z+1)(z—-3) _
lim f(@) = lim ———2— = lim ———5— = lim @z +1) =7,
but f(3) = 6, so f isdiscontinuous at 3. / 5 ;

3 X

By Theorem 5, the polynomials 2 and 2z — 1 are continuous on (—oo, co). By Theorem 7, the root function /z is
continuous on [0, co). By Theorem 9, the composite function y/2z — 1 is continuous on its domain, [%, oo).

By part 1 of Theorem 4, the sum R(z) = #* + /2z — 1 iscontinuouson |1, c0).

By Theorem 7, the root function /z and the polynomial function 1 4 z> are continuous on R. By part 4 of Theorem 4, the

product G(z) = ¢/z (1 4 «*) is continuous on its domain, R.

By Theorem 7, the exponential function e~>* and the trigonometric function cos 27t are continuous on (—oo, co).
By part 4 of Theorem 4, L(t) = e~>" cos 2t is continuous on (—oo, 00).

By Theorem 7, the trigonometric function sin 2 and the polynomial function = + 1 are continuous on R.

By part 5 of Theorem 4, h(z) = jliml

iscontinuous on itsdomain, {z |  # —1}.

By Theorem 5, the polynomial ¢* — 1 is continuous on (—oo, o). By Theorem 7, In 2 is continuous on its domain, (0, 0o).

By Theorem 9, In(¢* — 1) is continuous on its domain, which is
{t|tt—1>0} ={t|t*>1} ={t|[t| > 1} = (—o0,—1) U (1,00)

The sine and cosine functions are continuous everywhere by Theorem 7, so F' (x) = sin(cos(sin z)), which is the composite

of sine, cosine, and (once again) sine, is continuous everywhere by Theorem 9.

N S _ 3
Thefunctiony = Trere isdiscontinuous a = = 0 because the - N
|eft- and right-hand limits at z = 0 are different.
————/-
-4 4
- J
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28.

29.

30.

31.

32.

33.

34.

Ll CHAPTER2 LIMITS

Thefunctiony = tan® z isdiscontinuous at = = Z + wk, where k is

any integer. Thefunction y = In(tan’ z) isalso discontinuous

where tan® z is0, that is, at = k. Soy = ln(tan2 x) is 27 27

discontinuous at = = $n, n any integer.

-6

Because we are dealing with root functions, 5 + 1/ is continuous on [0, 00), /= + 5 is continuous on [—5, co), so the

5+

quotient f(z) = is continuous on [0, co). Since f iscontinuous at = = 4, hn}l flz)=f4)=4<.

Vh+x

Because x is continuous on R, sin z is continuous on R, and = + sin « is continuous on R, the composite function

f(z) = sin(z + sinz) iscontinuouson R, so lim f(z) = f(7) = sin(w + sin7) =sinw = 0.

Because 22 — z is continuous on R, the composite function f(z) = ¢*° % s continuous on R, so
limlf(;v) =f(l)=e'"t=e"=1
=2

Because p® — 2p and p? — 2 are polynomials, they are both continuous on R. Hence, the quotient f(p) = o) is

continuous on R except when p®> —2 =0 = p = ++/2. Since f iscontinuousat p = 1/2,

. - _(3)-20) _3

pgﬂghﬂ—fﬂﬂ)— -2 7
- z? if <1

fud_{vﬁ if >1

By Theorem 5, since f(z) equals the polynomial 22 on (—oo, 1), f is continuous on (—co, 1). By Theorem 7, since f(x)

equals the root function 1/z on (1, 00), f iscontinuouson (1,00). Atz =1, lim f(z) = lim z? = 1and

r—1— z—1—

lim f(z) = lim+ vz = 1. Thus, lim1 f(z) existsand equals 1. Also, f(1) = +/1 = 1. Thus, f iscontinuousat = = 1.
rz—1 r—

z—1t

We conclude that f is continuous on (—oo, 0o).

sinz if x<7/4
f<a:)={ o<

cosz if z>mw/4

By Theorem 7, the trigonometric functions are continuous. Since f(z) = sinz on (—oo, w/4) and f(x) = cosz on

(m/4,00), f iscontinuouson (—oo, 7/4) U (1/4,00). lim f(z)= lim sinz =sinZ =1/v/2sincethesine
z—(m/4)~ z—(7/4)~
function is continuous a 7 /4. Similarly,  lim . flz)y=lim L cosz = 1/+/2 by continuity of the cosine function
z—(m/4) z—(7/4)

at /4. Thus, li<m/4) f(z) existsand equals 1/+/2, which agreeswith the value f(/4). Therefore, f is continuous at 7 /4,

S0 f iscontinuous on (—oo, o).
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38.

39.

40.
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z+2 ifz<0

(Le)
flx)y=(¢€" ifo<z<1 (0,2)/
_ i (1,1)
2—z ifzx>1 0.1) \
f iscontinuous on (—co, 0) and (1, co) since on each of theseintervals 0 x

itisapolynomial; it is continuous on (0, 1) sinceit is an exponential.

Now lim f(z)= lim (z+2)=2and lim+ f(z) = lim e” =1, s0 fisdiscontinuousat 0. Since f(0) =1, f is

x—0— z—0— z—0 z—0

continuous from theright a 0. Also lim f(z) = lim e® =eand lim f(z) = lim (2 —z) =1, so f isdiscontinuous
rz—1— r—1—

z—1t z—1

at 1. Since f(1) = e, f iscontinuous from theleft at 1.

By Theorem 5, each piece of F' is continuous on its domain. We need to check for continuity at » = R.

i F0) =t St = G e i Flr) = iy, S5 = G0 i PU) = T Soe () = -

Fiscontinuous at R. Therefore, F' is a continuous function of r.

3

cx?+2c ifx<?2
fx) = .
0 —cx if x>2

[ iscontinuous on (—oo, 2) and (2,00). Now lim f(z) = lim (ca® + 2z) = 4c+4and

r—27" r—2"

lim f(z) = lim (2® —cx) =8—2c.So fiscontinuous < 4c+4=8-2c & 6c=4 & c=2. Thusforf

z—2+ z—2

to be continuous on (—oo, ), ¢ =

wiv

y y

31 3t /
Y 5 N=2

N=2
11 14

o o2 1 * o o2 1%
f does not satisfy the conclusion of the f does satisfy the conclusion of the
Intermediate Value Theorem. Intermediate Value Theorem.

f(z) = 2* 4+ 10sin z is continuous on the interval [31, 32], £(31) =~ 957, and f(32) ~ 1030. Since 957 < 1000 < 1030,
thereisanumber c in (31, 32) such that f(c) = 1000 by the Intermediate Value Theorem. Note: Thereisalso anumber ¢ in

(=32, —31) such that f(c) = 1000.

Supposethat f(3) < 6. By the Intermediate Value Theorem applied to the continuous function f on the closed interval [2, 3],
thefact that f(2) = 8 > 6 and f(3) < 6 impliesthat thereisanumber cin (2, 3) such that f(c) = 6. This contradicts the fact
that the only solutions of the equation f(z) = 6 arex = 1 and x = 4. Hence, our supposition that f(3) < 6 wasincorrect. It

followsthat f(3) > 6. But f(3) # 6 becausethe only solutionsof f(x) = 6 arex = 1 and = = 4. Therefore, f(3) > 6.
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41.

42.

43.

44,

45,

46.

47,

48.
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f(z) = 2* + z — 3iscontinuous on theinterval [1,2], f(1) = —1, and f(2) = 15. Since —1 < 0 < 15, thereis anumber c
in (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is aroot of the equation z* 4+ = — 3 = 0 inthe
interval (1,2).

f(x) = ¥z + x — 1 iscontinuous on theinterval [0, 1], £(0) = —1,and f(1) = 1. Since —1 < 0 < 1, thereisanumber cin
(0,1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, thereis aroot of the equation vz + 2 — 1 = 0, or

V& =1—z, intheinterval (0,1).

The equation e” = 3 — 2z isequivalent to the equation e + 2z — 3 = 0. f(z) = €® 4 2z — 3 iscontinuous on the interval
[0,1], f(0) = —2,and f(1) =e — 1~ 1.72. Since —2 < 0 < e — 1, thereisanumber cin (0, 1) such that f(c) = 0 by the
Intermediate Value Theorem. Thus, thereis aroot of the equation e” + 2z — 3 = 0, or e = 3 — 2z, intheinterval (0,1).

The equation sin z = 2> — 2 isequivalent to the equation sinz — 2? 4+« = 0. f(x) = sinz — 2 4 x is continuous on the
interval [1,2], f(1) =sin1 ~ 0.84,and f(2) =sin2 — 2 &~ —1.09. Sincesin1 > 0 > sin 2 — 2, thereisanumber cin
(1,2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is aroot of the equation sin z — 2% 4+ = = 0, or
sinz = 2% — z, intheinterval (1,2).
(@ f(x) = coszx — x* iscontinuous on theinterval [0, 1], f(0) =1 > 0,and f(1) = cos1 — 1 ~ —0.46 < 0. Since
1> 0 > —0.46, thereisanumber cin (0, 1) such that f(c) = 0 by the Intermediate Vaue Theorem. Thus, thereis aroot
of the equation cos z — 2® = 0, or cos z = z?, intheinterval (0, 1).
(b) f(0.86) ~ 0.016 > 0 and f(0.87) ~ —0.014 < 0, so thereisaroot between 0.86 and 0.87, that is, in the interval
(0.86,0.87).

@ f(x) =Ilnz — 3+ 2z iscontinuous on theinterval [1,2], f(1) = —1 < 0,and f(2) =In2+ 1~ 1.7 > 0. Since
—1 <0< 1.7, thereisanumber cin (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, thereisaroot of
theequationlnx — 3 + 2z = 0, or Inz = 3 — 2z, intheinterval (1, 2).

(b) f(1.34) = —0.03 < 0 and f(1.35) =~ 0.0001 > 0, so there isaroot between 1.34 and 1.35, that is, in the
interval (1.34,1.35).

(a) Let f(z) = 100e~*/%° — 0.01z>. Then f(0) = 100 > 0 and

£(100) = 100e™* — 100 ~ —63.2 < 0. So by the Intermediate 2
Value Theorem, thereis anumber ¢ in (0, 100) such that f(c) = 0. \
Thisimpliesthat 100e /1% = 0.01c2.

(b) Using the intersect feature of the graphing device, we find that the 100 . ' 00

root of the equationisx = 70.347, correct to three decimal places.
(@ Let f(z) =z —5— %—s—i& Then f(5) = —3 <0and f(6) = § > 0, and f iscontinuous on [5, o). So by the

Intermediate Value Theorem, thereis anumber c in (5, 6) such that f(c) = 0. Thisimpliesthat CL =+/c—5.

+3
(b) Using the intersect feature of the graphing device, we find 0.2
that the root of the equation is z = 5.016, correct to three y=\xr=35
decimal places. y= viﬁ
5 5.1

0

© 2016 Cengage'LLearning:“All"Rights Reserved. May not, be'scanned; copied, or duplicated; or posted to a publicly accessiblewebsite, in whole'orin part:



49.

50.

51.

CHAPTER2 REVIEW O 107

If thereis such anumber, it satisfiestheequation 22 +1 =2 < 2° —z+1 = 0. Let theleft-hand side of this equation be
caled f(z). Now f(—2) = =5 < 0,and f(—1) =1 > 0. Notealso that f(«) isapolynomial, and thus continuous. So by the

Intermediate Value Theorem, there is a number ¢ between —2 and —1 such that f(c) = 0, sothat ¢ = ¢® + 1.

f(z) = 2*sin(1/2) is continuous on (—oo, 0) U (0, co) sinceit is the product of a polynomia and a composite of a
trigonometric function and arational function. Now since —1 < sin(1/z) < 1, wehave —z* < 2 sin(1/z) < z*. Because

lim (—z*) = 0 and lim, z* = 0, the Squeeze Theorem gives us lir%(x4 sin(1/x)) = 0, which equals f(0). Thus, f is

z—0

continuous at 0 and, hence, on (—oo, co).

Define u(t) to be the monk's distance from the monastery, as a function of time¢ (in hours), on the first day, and define d(t)
to be his distance from the monastery, as a function of time, on the second day. Let D be the distance from the monastery to
the top of the mountain. From the given information we know that «(0) = 0, ©(12) = D, d(0) = D and d(12) = 0. Now
consider the function w — d, which is clearly continuous. We calculate that (v — d)(0) = —D and (u — d)(12) = D.

So by the Intermediate Value Theorem, there must be some time ¢, between 0 and 12 such that (v — d)(to) =0 <

u(to) = d(to). So at timeto after 7:00 Am, the monk will be at the same place on both days.

2 Review
TRUE-FALSE QuIZ
1. True. If lim a, = L,thenasn — oo, 2n + 1 — 00, O azp4+1 — L.
2. True. ogwwu.:09+Qmunl+0wun2+uwan3+u-:}jmgxomwizluzlzlqummua
n=1 - Y.

10.

for the sum of ageometric series [S = a/(1 — )] withratio r satisfying |r| < 1.
Fase.  Limit Law 2 appliesonly if theindividual limits exist (these don't).

False.  Limit Law 5 cannot be gpplied if the limit of the denominator isO (it is).

. True. Limit Law 5 applies.

. True. The limit doesn’t exist since f(z)/g(x) doesn’'t approach any real number as - approaches 5.

(The denominator approaches 0 and the numerator doesn’t.)

Fase.  Consider lim 2% =5 o jy S0 —5)

x—5 xr — xr—5 €Tr —

. Thefirst limit exists and is equal to 5. By Equation 6 in Section 2.4,

we know that the latter limit exists (and it isequal to 1).

False.  Consider lir% [f(z)g(z)] = lin% {(x —6) ;6} . It exists (itsvalueis 1) but f(6) = 0 and g(6) does not exist,
xT— T— €r —
0 f(6)g(6) # 1.
. True. A polynomiad is continuous everywhere, so lin% p(z) existsand isequal to p(b).
Fase.  Consider lir% [f(z) —g(z)] = lin% (% - %) Thislimit is —oo (not 0), but each of the individual functions

approaches oco.
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£/ 2
11. True. For example, the function f (z) = %—gl has two different horizontal asymptotessince lim f (z) = 2 and
lim f(z) = —2. The horizontal asymptotesarey = 2 and y = —2.
12. Fdse.  Consider f(z) =sinz forz > 0. lim f(x) # £oo and f hasno horizontal asymptote.
1/(x—1) ifz#1
13. Fdse.  Consider f(z) = / ) . #
2 ifr=1
14. Fase. The function f must be continuous in order to use the Intermediate Value Theorem. For example, let
1 if0<z<3 . .
f(z) = i Thereisno number ¢ € [0, 3] with f(c) = 0.
-1 ifz=3
15. True. Use Theorem 2.5.7 witha = 2, b = 5, and g() = 42* — 11. Notethat f(4) = 3 isnot needed.
16. True. Use the Intermediate Value Theoremwitha = —1,b=1,and N = 7, since3 < 7 < 4.
EXERCISES
1 2+m° convergessince lim —2+n3 = lim —2/n3+1—1
11208 g T2 b1/ 12 2
9n+1 n n
2 an = g5 =9 (%)", 50 lim a, =9 lim (F)" =9-0=0by(11.19).
3 .
3 nl;n;o an = nlLrJgO T = nlinio m = 00, S0 the sequence diverges.
4. an = (=2)" = (=1)" - 2". Asnincreases 2" increases and (—1)™ aternates between positive and negative values. Hence
lim (—2)" does not exist, so the sequence is divergent.
5. Gnt1 = 3an +3,a1 = 1, a2 ~ 3.3333, a3 &~ 4.1111, a4 =~ 4.3704, a5 ~ 4.4568, ag ~ 4.4856, a7 ~ 4.4952, as ~ 4.4984
The segquence appears to converge to 4.5. Assume the limit exists so that
n Qan n an
1| 10000 || 5[ 44568 | Mm anis = lim an =a thenanis = ga. +3 =
233333 || 6| 44856 lim an4+1 = lim (%an +3) = a= %a—i—S = a= % = 4.5. Thisagrees
3| 41111 || 7 | 44952 e e
4| 43704 || 8 | 4.4984 with the value estimated from the data table.
6. (8) The concentration of the drug in the body after the first injection is 0.25 mg/mL. After the second injection, thereis 0.25

mg,/mL plus 20% of the concentration from thefirst injection, that is, [0.25 + 0.25(0.20)] = 0.3 mg/mL. After the third
injection, the concentration is [0.25 + 0.3(0.20)] = 0.31 mg/mL, and after the fourth injection it is
[0.25 + 0.31(0.20)] = 0.312 mg/mL.
(b) The drug concentration is 0.2C,, just before the n™ + 1 injection, after which the concentration increases by 0.25 mg,/mL.
Hence C,,+1 = 0.2C,, + 0.25.
(c) From Formula (6) in §2.1, the solution to Cy,41 = 0.2C, + 0.25, Co = 0 mg/mL is
1-0.2" 0.25 , 5
_— :—1—.27L:_1_~2n
1—0.2) o8 (1702 =15(1-029
(d) The limiting value of the concentration is

lim C, = lim & (1—-0.2") =2 ( lim 1— lim 0.2”) =2 (1-0) =2 = 0.3125 mg/mL.

n—oo n— 00

C, = (0.2) (0) +0.25 (
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12 | 345/10,000 12 345 4111

7. 1.2345345345 ... = 1.2 034p = — 4 L —— — 4 —
345345345 +0.0345 10 1-1/1000 10 9990 3330
8. (a) 038 Computer software was used to plot thefirst 10 points of the recursion equation
s ™
41 = 2.524(1 — x¢), zo = 0.5. The sequence appears to converge to a value of
0.6. Assume the limit exists so that tlim Tpg1 = tlim xy = x, then
) o e e e e Tt4+1 = 25$t(1 — Qﬁt) = thm Tt41 = thm 25$t(1 — It) =
1 r=25z(1—z) = x(l5—-25zx)=0 = z=00rz=15/25=0.6.
This agrees with the value estimated from the plot.
—1 1 1 1 1 10
0.4
(b
—~

10.

11.

12.

13.

14,

Computer software was used to plot the first 20 points of the recursion equation

Ze+1 = 3.3z (1 — x¢), zo = 0.4. The sequence does not appear to converge to a

e e e e e e e fixed value of z;. Instead, the terms oscill ate between values near 0.48 and 0.82.
-1 0 20
@ (@) lim f(z)=3 (i) lim f(z)=0
r—2+ r——371

(iii) 111313 f(z) does not exist since the left and right limits are not equal. (Theleft limitis —2.)

(iv) lim f(z) =2

(v) lim f(z) = oo (vi) xlil?— f(x) =—o0
(vii) Tim f(z) =4 (viil) lim f(z) =1

(b) The equations of the horizontal asymptotesarey = —1 andy = 4.
(c) The equations of the vertical asymptotesarexz = 0 and z = 2.
(d) fisdiscontinuousat x = —3, 0, 2, and 4. The discontinuities are jump, infinite, infinite, and removable, respectively.

Jimf@) =2 lim f(z)=0, lim f(x)=oo, .
S @)= oo, i fle) =2, PN
f iscontinuous from theright at 3 / 0 x
y=-2
x=-3 \x=3

z—1 . 0-1 1

— T
].. = = —_—
t00 2157 aeo2/z+5  wmw0+5 b

1 .
lim 372 = tlim E = 098nce2t — oo ast — oo.

t—o0o
. . . . . . 3_ _
Since the exponential function is continuous, hm1 e T =l =0 =1,
xTr—

Since rational functions are continuous, lim 7 -9 _ 3° —9 0 _ 0
e-3x2+2r—3  32423)-3 12
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

21.
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- B 53 3.3 _
-9 _ . @+3)@-3) . z-3_ -3-3 -6 _3

lim —— 2 = \w+o)lr —3) 3
372+ 223 aos(@+3)(@—1) sosz—1 -3-1 -4 2

) N N 2> —9
Ili}l{hm OOSncem +2l’—3—>0 asr—1 andm<0f0r1<$<3
—-1)3 h®—3h*+3h—1) +1 3 _3p2
g (DL ) = Jim 3 (2 3h 4 3) =3
h—0 h h—0 h h—0 h h—0

Another solution: Factor the numerator as a sum of two cubes and then simplify.

. (h=1%4+1 . (h—=1%+1>  [(h=1)+1][(h—1)=1(h—1)+1?]
lim = lim = lim

h—0 h h—0 h h—0 h

lim [(h—1)> —h+2]=1-04+2=3

h—0

limt2—47hm t+2(-2) _ . t+2 _ 2+2 4 1
t>213 —8 -2 (t—2)(t24+2t+4) =2t24+2t+4 4+4+4 12 3

limi:c>osjnce(r—9)4—>0+as?"—>9andi >0forr #9.

r—9 (r —9)4 (r—9)4
4—-v 4—w 1
lm —% — fim ——Y_ — lim — = —1
o =] T ot T(d—0) e 1
4 _ 2 2 _ 2 _ 2
lim ut—1 — lim (v +1)(u* —1) — Jim (v +D(u+1)(u—1) _ lim (v + 1D (u+1) _ 2(2) _4
u—1ud +5u? —6u  uw—1 u(uz+5u—6) w—1  u(u+6)(u—1) u—1  u(u+6) 1n 7

\/x—I—G—x_l, Ve+6—2 Jr+6+2 1 (W +6)%—2?

li = . =
io8 7 — 322 b 22(x—-3) Vr+6+z a3 z2(z —3)(Vr + 6+ )
. r+6—2° —(2® —x —6) —(z—3)(z+2)
= lim = lim = lim
@=322(x —3) (Ve +6+z) =+-322(x—3)(Ve+6+z) =-322(x—-3)(Vz+6+a)
—(z+2) _ 5 5

i 2z t6+a) 9(3 +3) 54

Lett =sinz. Thenasz — 7 ,sinz — 0%,s0¢t — 0". Thus, lim In(sinz) = lim Int = —oo.
T—T T t—0
1—22% —g* (1 -2z —2Y)/2? .1zt —2/2° -1 0-0-1 -1 1

A S e =32t e Bt e—3a)/at e/t 4 1/2® =8 040-3 -3 3

Since x is positive, V22 = |z| = z. Thus,
V2 V2 =9/ VI=9/22 JT-0 1

I lim - _ _1
T 2:)676 T ot (22 —6)/z (2x7 6z 26z 2-0 2

Lett =2 —2® = 2(1 —2). Thenasz — oo, t — —oo, and lim e = lim €' =0.

r— 00 t——o0

. . V 2 - V 2 . 2 - 2
lim (V2?2 +4z +1—2)= lim Prdryl-c yotdotliaz = lim (@ tdztl)—w
w—00 z—00 1 Va2 +dr+1+x oo Va2 4+ 4r+ 1+
— lim Uzt l)je [divideby = = Va7 for 2 > 0]
e—oo (Va2 +4x+1+x)/
141/a 1+0 4

\/1+4/x+1/m2—|—1 T VIF0+04+1 2
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lim 1 + 1 = lim 1 1 = lim r—2 + 1
el \z—1 22-32+2/) o1|z—-1 (z—-1D(x-2)] =—1|(z-D@Ex-2) (@-1(=-2)
1 1

=1 A . e
a:linl{(x—l)(r—Q)] ilz—2 1-2

o= 1 0.50[9] 0.50 0.50

im —————— = 1i = = 0.50. Asthe concentration grows larger the
[Sl—oo (S50 3.0 x 10— + [S] S5 3.0 X 10-4/[s]+1 0+1 9 g

enzymatic reaction rate will approach 0.50.

Let f(z) = —2°, g(z) = 2* cos(1/2”) and h(z) = 2*. Then since ’cos(l/x2)| < 1forz # 0, we have

f(z) < g(z) < h(x)forz #0,and soili% f(z) = ili% h(z)=0 = il{% g(x) = 0 by the Squeeze Theorem.

@ flz)=v—zifx <0, f(z) =3 —-zif0<z <3, fz) = (x—3)°ifz > 3.

() lim f(z)= lim 3—z)=3 (i) lim f(z)= lim /=2 =0
z—0t z—0+ z—0— z—0—
(iii) Because of (i) and (ii), ili% f(x) does not exist. (iv) lil’éli flz) = lirgli B3-—2)=0
v) vlirgl_*_ fz) = lir?r’l (x—3)°*=0 (vi) Because of (iv) and (v), lim f(x) = 0.
(b) f isdiscontinuous at 0 since ilir%) f(x) does not exist. (@] y

f isdiscontinuous at 3 since f(3) does not exist.

0] 3 X

(@) z* — 9 iscontinuous on R sinceit is apolynomia and /z is continuous on [0, co) by Theorem 6 in Section 2.5, so the
composition v/z2 — 9 iscontinuouson {x | 2> — 9 > 0} = (—o0, —3] U [3, c0) by Theorem 8. Note that 2* — 2 7 0 on

Vaz—9
2

this set and so the quotient function g(z) = p

is continuous on its domain, (—oo, —3] U [3, co) by Theorem 4.

(b) sinz and e” are continuous on R by Theorem 6 in Section 2.5. Since e® is continuous on R, %% is continuous on R by

Theorem 8 in Section 2.5. Lastly, = is continuous on R since it’s a polynomia and the product ze*™  is continuous on its

domain R by Theorem 4 in Section 2.5.
f(z) = 223 + 2 4 2 isapolynomial, so it is continuous on [—2, —1] and f(—2) = =10 < 0 < 1 = f(—1). So by the
Intermediate Value Theorem thereis anumber ¢ in (—2, —1) such that f(c) = 0, that is, the equation 22> + 2% 4+ 2 = 0 hasa
rootin (—2, —1).
flz)= e~ — z iscontinuous on R S0 it is continuous on [0,1]. f(0)=1>0>1/e—1= f(1). Soby the Intermediate

Value Theorem, thereisanumber cin (0, 1) such that f(c) = 0. Thus, e — = 0, or e~™" =z, hasaroot in (0,1).
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CASE STUDY 2a Hosts, Parasites, and Time-Travel

1.

. Consider the general form of equations 2aand 2b given by fave(7) = 2 + M cos (cT — ¢)

The functions ¢(t) and p(¢) describing the genotype frequencies of the host and parasite are both transformations of the
function cos(t). Thus, they are oscillatory functions that exhibit periodic or repeating behavior. Biologically, we expect the
parasite genotype will evolve to infect the host genotype that is most prevalent in the population. As this happens, the host
genotypes will evolve to avoid infection. In turn, the parasite genotype frequency will evolve (for survival) towards the new
prevalent host genotype frequency. This cat-and-mouse game causes a cycling of the host and parasite genotype frequencies
that is described by the periodic functions ¢(¢) and p(¢). E.g. if the frequency of type A ishigh, the parasite will evolve toward
ahigh frequency of type B. The host population will then evolve leading to alower frequency of genotype A (to avoid

infection), and in turn, the parasite population will evolve toward a lower frequency of genotype B (for survival).

. M, and M, represent vertical stretch factors to the parent function cos(t). They are the amplitudes of oscillation for the

frequencies of genotype A and B respectively. Therefore, anincreasein M resultsin a higher maximum frequency and alower

minimum frequency over time for the respective genotype.

. The constant ¢ represents a horizontal compression factor to the parent function cos(t). This gives a period of oscillation of

2% for both ¢(¢) and p(t). Therefore, increasing ¢ resultsin asmaller period of oscillation for both the host and parasite

frequencies.

Biological explanation: Suppose uninfected hosts have alarge reproductive advantage over infected hosts so that c islarge.
The uninfected host population will grow rapidly in size compared to the infected host population. Consequently, the parasite
with the genotype capable of infecting the growing uninfected host population will also increase rapidly, since more hosts will
be available to the parasite for infection. Asthis occurs, the uninfected hosts become infected and now the formerly infected
hosts will have the reproductive advantage. Thus, the frequencies of the host and parasite genotypes will cycle rapidly back

and forth. That is, the period of oscillation will be small.

. The constants ¢,, and ¢,, affect the horizontal translation of the parent function cos(t). They are the phase shifts that determine

the time at which the genotype frequencies reach a maximum.

. The constants ¢,, and ¢,, affect the horizontal position of the periodic functions p(t) and q(t), so the difference ¢* = ¢, — ¢,

measures the time lag between the cycles of ¢(¢) and p(t). Hence, this quantity is a measure of the length of time it takes for

the frequency of the parasite genotype to "respond” to the frequency of the host genotype.

2sin (3cW) ;
T. Eva Uatlng fave (T)

inthelimit W — 0 gives

sin (% CW) 1

2sin ($cW :
v%/iglo (%—I—MCOS(CT—qﬁ)M) =2+ Mcos(ct —¢) lim —2—~ =2 4 M cos (c1 — ) limsm_(x)

cW w—o  ScW z—0

wherez = 1cW. Thelast limit was investigated in Example 2.3.4 where it was shown that lim, . sin (z) /z = 1. Sowe

have Jim fave(T) = 3 + M cos (et — ¢,). Thisisthe same form as equations (1) and (1b). Thus, when extracting and

mixing avery small layer of sediment (W — 0), the average frequency of the host and parasite genotypes are the same as the

instantaneous frequencies ¢(7) and p(7).
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: 1
scW
To determine the limit of fave(7) asW — oo, first observethat lim M < lim N Osincesinz < 1. Also
—o00 cW W—oo cW
. 1 : 1
scW - e

lim m > lim —1 _ ysincesinz > —1. Thus, by the Squeeze Theorem we have lim M =0s0

W —oo cW W—oo cW W —oo c

that lim fave(7) = 3.

In terms of the biology, extracting and mixing an extremely small width of sediment will capture parasites and hosts from a
very short period of time (nearly an instant). In contrast, extracting and mixing a very large layer of sediment will homogenize
the host and parasite frequencies across alarge period of time. Hence, the frequencies at different pointsin time can no longer
be differentiated so we expect a constant average frequency of host and parasite genotypes.

4 sin® (% CW)

¢*
7. Thegraphof F(D) = 1 + M, M, cos {c (D - s

. is obtained by applying the following transformations
to the graph of cos(D):

e Horizontal compression by afactor of c. Thus, the period is 27 /c.
4sin® (%CW)
62 W2
e Horizontal trandation ¢* /c unitsto the right if positive, or left if negative

4 sin? (% cW)

o Vertical stretch by afactor M, M, 22

. Thus, the amplitudeis A = M, M,

e Vertical translation £ unitsup

These properties are illustrated in the sketches of F/(D) below for ¢* = 0, ¢* small positive, and ¢* small negative. We
have assumed that c is sufficiently large, so that if ¢™ iscloseto zero, then ¢* /c isaso close to zero.

F(D) A

¢* <0 (small) ¢* >0 (small)

0.5—-A
, Flp (2w ‘ ‘ ‘ ., @ 2mie o] ‘ .
(¢* —m)e (¢* + m)jc D —2mjc —mjc O wje  2mc D (¢* — m)e (¢* +m)jc D

8. The experimental datain Figure 3 shows an increase in the fraction of hosts infected as the sample points move from the past

to the future. The graphs from Problem 7 illustrate the variety of situations that can arise given different phase lags ¢*. In the

figure corresponding to ¢* > 0, observe that (D) isan increasing function in the interval {u, d)—} . That is, the
C C

fraction of hosts infected increases as the sample points move from the past to the future for relatively small values of ¢D. This
isthe same pattern observed in Figure 3. Thus, we require that the phase lag ¢* be small and positive in order to observe the
experimental trend in Figure 3.

Biological interpretation: When ¢* > 0 thereis a phase or time lag between the oscillations in frequency of the host and
parasite populations. In the experiment, parasites from the past had not yet evolved to infect the present hosts, so fewer hosts
were infected by parasites from the past. Parasites from the future had evolved to infect hosts from the present, so a greater

number of hosts were infected by parasites from the future.
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The experimental results depicted in Figure 4 show a decrease in the fraction of infected hosts when challenged with parasites
from both the past and future. Examining the figures from Problem 6, we observe that this experimental result is achievable

when ¢* = 0. Inthiscase, F(D) isincreasing on theinterval [—%, 0] and decreasing on the interval [O, %] Soif we start at

D = 0 and decrease D by asmall amount (move into the past), the fraction of infected hosts will decrease. Similarly, if we
start at D = 0 and increase D by a small amount (move into the future), the fraction of infected hosts will also decrease. This
is the same pattern observed in Figure 4. Thus, we require that the phase lag ¢* be zero in order to observe the experimental
trend in Figure 4.

Biological interpretation: When ¢* = 0 there is no phase lag between the frequency of the host and parasite genotypes. That
is, the frequency of the parasite genotype oscillates in a synchronous manner with the frequency of the host genotype. Ina
sense, the parasites’ genotype evolves with the host in real-time to maximize the number of infected hosts. Thus, parasites
from the past will infect fewer hosts than contemporary parasites since the contemporary parasites have already evolved to
infect contemporary hosts. Similarly, parasites from the future will infect fewer hosts than contemporary parasites since the

future parasites have evolved to infect future hosts.
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