Name:	_Class:	Date:
Chapter 2—Water: The Solvent for Biochemical l	Reactions	
 The tendency for an atom to attract electrons to itself in a. polarity. b. electronegativity. c. hydrophilicity d. electrophilicity. ANSWER: b 	a chemical bond is called	
 2. If atoms with greatly differing electronegativities form a a. polar. b. nonpolar. c. amphipathic. d. acidic. ANSWER: a	bond, that bond will be	
 3. Many of the properties of water can be accounted for by a. it is polar b. it forms hydrogen bonds c. it is a bent molecule d. all of these are true ANSWER: d	the fact that	
 4. Which of the following is true about ionic compounds? a. They are more likely to dissolve in non-polar solver b. They always dissolve completely in water. c. They never dissolve in polar solvents. d. Some of them dissolve completely in water or other ANSWER: d	•	
5. Which of the following is a correct listing of electronega a. C, H, O, N b. N, H, O, C c. H, C, N, O d. H, C, O, N ANSWER: c	ativity values, from low to high?	
6. Which of the following elements has the highest electron a. C b. H c. N d. O e. P ANSWER: d	negativity?	
7. The water molecule is polar because:		

Copyright Cengage Learning. Powered by Cognero.

Name:	Class:	Date:
Chapter 2—Water: The Solvent for Bio	ochemical Reactions	
 a. Electrons are not distributed symmetric b. The hydrogen atoms are found on one c. Hydrogen is less electronegative than of d. The hydrogen atoms are found on one oxygen. e. All of these are correct. ANSWER: e	"side" of the molecule.	is less electronegative than
THIS WER. C		
8. Which of the following molecules is polar?a. CCl₄b. CH₄		
c. CO ₂ d. NH ₃ e. None of these molecules is polar. ANSWER: d		
9. Which of the following molecules is amphia. sodium chloride b. acetic acid c. benzene d. palmitic acid ANSWER: d	pathic?	
 10. Which of the following classes of compouta. Sugars b. Fatty acids c. Amino acids d. Sugars and amino acids. e. All of these 	unds is hydrophilic?	
ANSWER: d		
 11. Which of the following classes of compout a. Table Salt b. Cholesterol c. Phosphate esters d. Cholesterol and phosphate esters. e. All of these are hydrophobic. 	ands is hydrophobic?	
ANSWER: b		
12. Which of the following molecules has polar. NH₃b. CO₂	ar bonds but is itself not polar?	

Chapter 2—Water: The Solvent for Biochemical Reactions
c. CH ₄
d. _{H2O}
ANSWER: b
13. When a carboxylate side-chain of one amino acid in a protein is in close proximity to a charged amino group of another amino acid, we call the resulting interaction a(n) a. ion - dipole bond
b. ionic bond
c. van der Waal's bond
d. salt bridge
ANSWER: d
14. A London dispersion force is another name for a(n) a. induced dipole - induced dipole bond
b. ionic bond
c. covalent bond
d. non-polar bond
ANSWER: a
15. Ionic compounds and polar covalent compounds tend to dissolve in water because of a. ion-dipole and dipole-dipole interactions
b. dipole-induced dipole interactions
c. van der Waals bonds
d. hydrophobic interactions
ANSWER: a
16. Which of the following is not considered a van der Waal's force?a. dipole - dipole bond
b. dipole - induced dipole bond
c. induced dipole - induced dipole bond
d. ion - dipole bond
ANSWER: d
17. A micelle is a structure which
a. aggregates with other micelles in water.
b. has its polar groups on the outside and non-polar groups on the inside when in water.
c. explains how soaps and detergents work.
d. has its polar groups on the outside and non-polar groups on the inside when in water and explains how soaps and detergents work.
e. All of these are true.
ANSWER: d
18. Which of the following compounds is most likely to form a micelle?

a. Acetic acid.

Copyright Cengage Learning. Powered by Cognero.

Name: Class:

Date:

Page 3

Name:	Class:	Date:
Chapter 2—Water: The Solvent for B	iochemical Reactions	
b. Glucose.		
c. Glycerol.		
d. Sodium palmitate.		
e. Sodium phosphate.		
ANSWER: d		
19. The substance most likely to form a mice	elle is	
a. acetic acid		
b. sodium palmitate		
c. methyl alcohol		
d. acetone		
ANSWER: b		
20. Molecules which contain both hydrophil	ic and hydrophobic regions are:	
a. Amphipathic		
b. Amphiphilic		
c. Able to form micelles		
d. Both amphipathic and amphiphilic		
e. All of these		
ANSWER: e		
21. How do hydrogen bonds tend to affect th	ne melting and boiling points of substances?	
a. They tend to increase both melting an	nd boiling points.	
b. They tend to decrease both melting an	nd boiling points.	
c. They tend to increase melting points a	and decrease boiling points.	
d. They tend to decrease melting points	and increase boiling points.	
e. They do not have any affect on either	melting or boiling points.	
ANSWER: a		
22. Hydrogen bonds		
a. play an important role in the solvent p	properties of water	
b. are not involved in protein structure		
c. play a role in the properties of DNA,		
d. give water a lower boiling point than	expected	
ANSWER: a		
23. Which of the following molecules will no	ot form hydrogen bonds?	
a. CH ₄		
b. _{NH3}		
c. _{H2} O		
d. HF		
ANSWER: a		

Name:	Class:	Date:
Chapter 2—Water: The Solvent for Biochemical Reactions		
24. How does the strength of hyd	rogen bonds compare with covalent bonds?	
a. Hydrogen bonds are much	stronger than covalent bonds.	
b. Hydrogen bonds are much	weaker than covalent bonds.	
c. Hydrogen bonds and cova	ent bonds have similar strengths.	
d. The question cannot be an	swered without knowing which covalent bonds ar	re being referred to

ANSWER: b

- 25. A hydrogen bond is a special type of
 - a. dioole dipole bond
 - b. induced dipole induced dipole bond
 - c. covalent bond
 - d. ionic bond

ANSWER: a

- 26. Which of the following is true regarding hydrogen bonds.
 - a. They can only form between two different molecules
 - b. They are important in protein folding but not DNA structure
 - c. They are important in DNA structure but not protein folding
 - d. They can be found within a single molecule

ANSWER: d

- 27. In a hydrogen bond
 - a. three atoms lie in a straight line
 - b. there is stronger bonding than in a covalent bond
 - c. unpaired electrons play no role
 - d. none of the above

ANSWER: a

- 28. The non-covalent interaction below associated with the strongest force in aqueous solution is
 - a. dipole-induced dipole
 - b. hydrophobic interactions
 - c. hydrogen bonding
 - d. van der Waals forces

ANSWER: c

- 29. Which of the following statements about hydrogen bonds is false?
 - a. The donor is a hydrogen atom bonded to a less electronegative atom then hydrogen.
 - b. The more linear the bond, the stronger the attraction.
 - c. The acceptor must contain a non-bonded pair of electrons.
 - d. It is a type of non-covalent bond.

ANSWER: a

- 30. True hydrogen bonds can NOT form between hydrogen and this element:
 - a. N

Name:	Class:	Dat
Chapter 2—Water: The Solvent for	Biochemical Reactions	
b. F		
c. C		
d. O		
e. All of these elements can form hyd	rogen bonds.	
ANSWER: c	6	
31. What is the maximum number of hydro	rogen bonds a single water molecule can forn	n?
a. 1		
b. 2		
c. 3		
d. 4		
e. 5		
ANSWER: d		
32. Which of the following characteristics	makes for a good hydrogen bond acceptor?	
a. a high electronegativity		
b. a nonbonding pair of electrons		
c. both of these		
d. neither of these		
ANSWER: c		
33. Which of the following characteristics	makes for a good hydrogen bond donor?	
a. a high electronegativity		
b. a nonbonding pair of electrons		
c. both of the above		
d. neither of the above		
ANSWER: a		
34. Which of the following properties of waa. boiling point	water are related to its ability to form hydroge	en bonds?
b. melting point		
c. density		
d. solvent potency		
e. all of the choices		
ANSWER: e		
35. Hydrogen bonds explain which of the	~ ~ ~	
a. Water is a great solvent for all ionic	-	
b. Water has high melting and boiling	g points for its small size.	

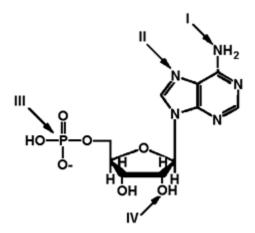
d. Both the abnormal melting and freezing points and that ice expands when frozen.

ANSWER: e

e. Hydrogen bonds explain all of these properties.

c. Ice expands when frozen.

- 36. Hydrogen bonds can only form when the hydrogen atom is involved in a polar bond.
 - a. True
 - b. False


ANSWER: a

- 37. Which of the following is a true statement?
 - a. most substances contract when they freeze.
 - b. water expands when it freezes.
 - c. hydrogen bonding is related to water's tendency to expand as it freezes.
 - d. all of these are true

ANSWER: d

Exhibit 2A

The structure of ATP with various groups labeled. Group III is the entire phosphate group.

- 38. Refer to Exhibit 2A. Which of the functional groups cannot function as a hydrogen donor to water?
 - a. I
 - b. II
 - c. III
 - d. IV
 - e. All can donate a hydrogen to water.

ANSWER: b

- 39. **Refer to Exhibit 2A.** Which of the functional groups is the most electrophilic?
 - a. I
 - b. II
 - c. III
 - d. IV
 - e. The answer cannot be determined without further information.

ANSWER: c

40. **Refer to Exhibit 2A.** Which of the groups could **not** act as a proton acceptor in a hydrogen bond?

	<u>.</u> .	_
Name:	Class:	Date:

- a. I
- b. II
- c. III
- d. IV
- e. All can accept a hydrogen in a hydrogen bond.

ANSWER: e

- 41. Is water an acid or a base?
 - a. Water is an acid.
 - b. Water is a base.
 - c. Water is both an acid and a base.
 - d. Water is neither an acid nor a base.

ANSWER: c

42. For an acid that undergoes this reaction:

$$HA \leftrightarrow H^+ + A^-$$

$$K_a =$$

- a. [H⁺][A-]/[HA]
- b. [H⁺][HA]/[A–]
- c. [HA][A-]/[H⁺]
- d. $[A-]/[HA][H^+]$
- e. [H⁺]/[HA][A-]

ANSWER: a

- 43. Which will dissociate most in water, a weak acid or a strong acid?
 - a. A weak acid.
 - b. A strong acid
 - c. They should dissociate about the same.
 - d. It's impossible to predict.

ANSWER: b

- 44. Bases are
 - a. proton donors.
 - b. proton acceptors.
 - c. hydrogen bond donors.
 - d. hydrogen bond acceptors.

ANSWER: b

- 45. Which has the greater K_a , a weak acid or a strong acid?
 - a. A weak acid.

Name:	Class:	Date:

- b. A strong acid
- c. They should dissociate about the same.
- d. It's impossible to predict.

ANSWER: b

- 46. Which has the greater pKa, a weak acid or a strong acid?
 - a. A weak acid.
 - b. A strong acid
 - c. They should dissociate about the same.
 - d. It's impossible to predict.

ANSWER: a

- 47. The dissociation constant for an acid with a pK_a value of 6.0 is
 - a. 1×10^{-6}
 - b. -1×10^6
 - c. 1×10^{6}
 - $d. -1 \times 10^{-6}$

ANSWER: a

- 48. A buffer solution at pH 10 has a ratio of [HA]/[A-] of 10. What is the p K_a of the acid?
 - a. 8
 - b. 9
 - c. 10
 - d. 11
 - e. 12

ANSWER: d

- 49. The dissociation constant for an acid is 1×10^{-6} . What is its pK_a?
 - a. -6
 - b. 6
 - c. 0.6
 - d. -0.6

ANSWER: b

- 50. The pH of a solution of 0.04 M HCl is:
 - a. 4
 - b. 1.4
 - c. 0.4
 - d. 0.04
 - e. The pH cannot be determined

ANSWER: b

Name:	Class:	Date:
Tallio.	Class.	Date.

- 51. The pOH a solution of 0.04 M HCl is:
 - a. 1.4
 - b. 10
 - c. 12.6
 - d. 13.6
 - e. The pOH cannot be determined

ANSWER: c

- 52. An HCl solution has a pH = 3. If you dilute 10 mL of the solution to 1000mL, the final pH will be:
 - a. 1.0
 - b. 2.0
 - c. The pH does not change.
 - d. 4.0
 - e. 5.0

ANSWER: e

- 53. If a solution has a pH = 9.6, the $[H^+]$ is
 - a. 2.5×10^{10}
 - b. 9.6 M
 - c. 2.5 M
 - d. 2.5×10^{-10} M
 - e. $9.6 \times 10^{-10} \text{ M}$

ANSWER: d

- 54. What is the pH of a solution with $[H^+] = 10 \text{ mM}$?
 - a 10
 - b. 1
 - c. 2
 - d. -2

ANSWER: c

- 55. Calculate the final pH of a solution made by the addition of 10 mL of a 0.5 M NaOH solution to 500 mL of a 0.4 M HA originally at pH = 5.0 (pKa = 5.0) Neglect the volume change.
 - a. 6.10
 - b. 5.09
 - c. 7.00
 - d. 5.55

ANSWER: d

- 56. If a solution has a pH = 6, the $[H^+]$ is
 - a. 6 M
 - b. $10^6 \, \text{M}$

Name:	Class:	Date:
Chapter 2—Water: The Solvent for	Biochemical Reactions	
c. 10 ⁻⁶ M		
d. 0.6 M		
ANSWER: c		
57. What is the pH of an acetic acid solution sodium acetate is 20 mM. The pKa of ace a. 5.76	ion where the concentration of acetic acid is tic acid is 4.76.	2 mM and the concentration of
b. 10.6		
c. 12.6		
d. 8.8		
ANSWER: a		
58. The ion product constant for water (K	w) is equal to:	
a. 10 ¹⁴		
b. 10 ⁷		
c. 10 ⁰		
d. 10 ⁻⁷		
e. 10 ⁻¹⁴		
ANSWER: e		
59. In a titration of a weak acid by a stron	g base s needed to neutralize all the acid present	
b. the equivalence point cannot be de	_	
c. there is a region in which the pH c	•	
d. the equivalence point depends on t	the nature of the added base	
ANSWER: c		
60. A solution at pH 7 contains a weak ac a. 1:3	eid, HA. The pK_a of the acid is 6.5. What is t	he ratio of [A–]:[HA]?
a. 1.5 b. 1:1		
c. 3:1		
d. 10:1		
ANSWER: c		
61. When does a weak acid buffer best?		
a. From one pH unit below its pKa to	its pK _a .	
b. From its pKa to one pH unit above	its pK _a .	
c. Within one pH unit of its pKa, both	n above and below.	
d. Weak acids do not make good buff	fers at all.	
ANSWER: c		

Name:	Class:	Date:
Chapter 2—Water: The Solvent for B	iochemical Reactions	
62. The inflection point of the titration curve a. True b. False <i>ANSWER:</i> a	for a weak monoprotic acid is equal t	o its pK _a
63. Which of the following is true?		
a. The pH of a solution where the A– to	HA ratio is 1 has a $pH = pK_a$.	
b. If the pH does not equal the pKa, the		
^{c.} The best buffer for any experiment w		
d. If a buffer has more weak acid than co		
ANSWER: a	onjugate base, the pri will be higher th	ian the pixa.
64. Using the Henderson-Hasselbalch equation moles: 0.6 moles. (pK = 9.75) a. 7.40 b. 9.07 c. 9.25 d. 9.43	on, calculate the pH of an ammonia bu	uffer when the NH ₃ :NH ₄ ⁺ ratio is 0.4
e. 11.05		
ANSWER: b		
65. An ammonia buffer contains NH ₃ :NH ₄ ⁺ 0.01 moles of HCl to this buffer? a. 8.98 b. 9.04 c. 9.25 d. 9.46 e. 9.52	in a ratio of 0.4 moles:0.6 moles (pK	= 9.75). What will be the pH if you add
ANSWER: a		
66. The ratio of a weak acid and its conjugat a. 1/1 b. 1/10 c. 10/1 d. no definite ratio is needed	e base at the point of maximum buffer	ring capacity is
ANSWER: a		
67. Which substance would be the best buffer a. one with a pK _a of 7 b. one with a pK _a of 8 c. one with a pK _a of 9	er at pH 8 if it had to be able to buffer	against either acid or base?

d. The p K_a of a substance doesn't tell you whether it would be a good buffer at this pH.

ANSWER: b

- 68. Buffering capacity refers to
 - a. the effectiveness of commercial antacids
 - b. the extent to which a buffer solution can counteract the effect of added acid or base
 - c. the pH of a buffer solution
 - d. the molecular weight of the substance used as a buffer

ANSWER: b

- 69. If the pH of 1 liter of a 1.0 M carbonate buffer is 7.0, what is the molar ratio of H_2CO_3 to $HCO_3-?$ (pK = 6.37)
 - a. 0.234
 - b. 4.27
 - c. 6.37
 - d. 7.00
 - e. 10.20

ANSWER: b

- 70. Consider a reaction that produces a significant amount of hydrogen ion and is to be carried out a pH 7. Only two acids are available for making the buffer solution. The pK_a values for acids A and B are 6.3 and 7.3, respectively. Which acid would serve as the optimum buffer for this reaction? Or would carrying out the reaction in water simply serve as well?
 - a. acid A
 - b. acid B
 - c. water
 - d. both acids would be equally effective

ANSWER: a

71. Which of the following acids would serve as a good buffer for a reaction at pH = 8.0?

		K a
I.	acetic acid	1.76×10^{-5}
II.	H ₂ PO ₄ -	6.31×10^{-8}
III.	bicarbonate	5.6×10^{-11}
IV.	TRIS	5.01×10^{-9}
;	a. I	
1	b. II	
(c. III	
	d. IV	

ANSWER: d

72. If the pH of 1 liter of a 1.0 M carbonate buffer is 7.0, what is actual number of moles of H_2CO_3 and $HCO_3-?$ (pK = 6.37)

	moles of H ₂ CO ₃	moles of HCO ₃ -
I.	0.86	0.14
II.	0.81	0.19
III.	0.76	0.24
IV.	0.19	0.81
V.	0.14	0.86
;	a. I	

b. II

c. III

d. IV

e. V

ANSWER: d

73. A buffer solution

- a. is used to control the pH of a solution
- b. contains at least 100 times more of a weak acid than its conjugate base
- c. contains at least 100 times less of a weak acid than its conjugate base
- d. always has a pH of 7

ANSWER: a

- 74. The main intracellular buffer system is
 - a. H₃PO₄/H₂PO₄-
 - b. H₂PO₄-/ HPO₄²-
 - c. $HPO_4^{2}-/PO_4^{3}-$
 - d. H_3PO_4/PO_4^{3-}

ANSWER: b

Exhibit 2B

Contains information on the pK's of some common buffers.

Buffer	pK1	pK2	pK3	
Acetate	4.75			
Ammonia	9.25			
Carbonic acid	6.37	10.20		
Citric acid	3.09	4.75	5.41	
Formic Acid	3.75			
Phosphoric acid	2.14	7.20	12.4	
Pyruvic acid	2.50			
Tris	8.3			

- 75. **Refer to Exhibit 2B.** The enzyme lysozyme has an optimum pH close to 5. A suitable buffer would be:
 - a. Acetate
 - b. Carbonate
 - c. Phosphate
 - d. Pyruvate

Name:	Class:	Date:
Chapter 2—Water: The Solvent fo	or Biochemical Reactions	
e. None of these is a suitable buffer	for this reaction.	
ANSWER: a		
76. Refer to Exhibit 2B. An ammonium	buffer would work well at this pH:	
a. 5.6		
b. 7.0		
c. 9.0		
d. 11.0		
e. None of these		
ANSWER: c		
77. Refer to Exhibit 2B. A carbonate bu	affer would work well at this pH:	
a. 4.0		
b. 6.0		
c. 8.0		
d. 10.0		
e. 6.0 and 10.0		
ANSWER: e		
78. Refer to Exhibit 2B. A phosphate bu	uffer would work well at this pH:	
a. 5.0		
b. 7.0		
c. 8.0		
d. 10.0		
e. 7.0 and 8.0		
ANSWER: e		
79. Refer to Exhibit 2B . Which of the fo	ollowing would make the best buffer at pH =	10.0?
a. Acetic acid and sodium acetate		
b. Tris and its acid form		
c. H ₂ CO ₃ and NaHCO ₃		
d. Na ₂ HPO ₄ and NaH ₂ PO ₄		
e. NaHCO ₃ and Na ₂ CO ₃		
ANSWER: e		
80. Which of the following is important t	to know when deciding if a given buffer will	be effective for an experiment?
a. the pK_a of the buffer compound		•
b. the buffer capacity		
c. the concentration of the buffer		
	o generate hydrogen ions or hydroxide ions	
e. all of these are important consider		

ANSWER: e

Name:	Class:	Date:

- 81. Nonphysiological buffers such as HEPES and PIPES have come into common use because
 - a. they are inexpensive
 - b. they can be prepared much more easily than other buffers
 - c. they have less tendency to interfere with reactions
 - d. they contain nitrogen

ANSWER: c

- 82. Buffers which lack biological activity and are unlikely to interfere with any biochemical reactions include:
 - a. Tris.
 - b. Hepes.
 - c. Phosphate.
 - d. Both Tris and HEPES.
 - e. All of these.

ANSWER: d

- 83. Which of the following is **not** true?
 - a. A buffer is a solution which maintains a solution at a neutral pH
 - b. Buffer solutions are made to resist change in pH
 - c. Zwitterion buffers are less likely to interfere with biological reactions than non-zwitterions
 - d. HEPES is a zwitterion buffer

ANSWER: a

- 84. The main blood buffer system is
 - a. H₂CO₃/HCO₃-
 - b. HCO₃-/CO₃²-
 - c. H₂CO₃/CO₃²
 - d. none of the above

ANSWER: a

- 85. Buffers work to maintain pH because
 - a. they obey LeChatlier's principle
 - b. weak acids cannot change the pH of a solution
 - c. weak bases added to strong bases neutralize each other
 - d. they destroy the hydrogen ion that is added

ANSWER: a