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2  Review and Applications of Algebra 
 
Exercise 2.1 
 1. (– p) + (– 3p) + 4p = – p – 3p + 4p = 0 

 2. (5s – 2t) – (2s – 4t) = 5s – 2t – 2s + 4t = 3s + 2t 

 3. 4x2y+ (– 3x2y) – ( – 5x2y) = 4x2y – 3x2y + 5x2y = 6x2y 

 4. 1 – (7e2 – 5 + 3e – e3) = 1 – 7e2 + 5 – 3e + e3 = e3 – 7e2 – 3e + 6  

 5. (6x2 – 3xy + 4y2) – (8y2 – 10xy – x2) = 6x2 – 3xy + 4y2 – 8y2 + 10xy + x2 

              = 7x2 + 7xy – 4y2 

6. (7m3 – m – 6m2 + 10) – (5m3 – 9 + 3m – 2m2)  

= 7m3 – m – 6m2 + 10 – 5m3 + 9 – 3m + 2m2  

     = 2m3 – 4m2 – 4m + 19 

 7. 2(7x – 3y) – 3(2x – 3y) = 14x – 6y – 6x + 9y = 8x + 3y 

 8. 4(a2 – 3a – 4) – 2(5a2 – a – 6) = 4a2 – 12a – 16 – 10a2 + 2a + 12 

                = – 6a2 – 10a – 4 

 9. 15x –  = 15x – 4 + 10x – 12 = 25x – 16 6x524    

 10. 6a – = 6a – 3a + 4b – 2a = a + 4b ab22a3    

 11.  1x21
4

9+x2
 . = 0.5x + 2.25 – 1.2x + 1.2 = – 0.7x + 3.45 

 12. 
2

1
+x

5

4
x20

5

4
x

2

x 22  .   =  0.5x – x2 + 0.8 – 0.2x2 – 0.8x + 0.5 

                = – 1.2x2 – 0.3x + 1.3  

 13.  17x6450
11

x55

0.5

x8
 ..

.    =  16x + 0.5x + 2.3x – 8.5  =  18.8x – 8.5  

 14. 
2 2 016x

1.045

x

3

x

2


.
   =  1.9139x – 0.6720x + 0.5x  =  1.7419x 

 15. 





 

 365

171
0.095+1P 2    

0.095+1

P

12
5

  =  0.96192P + 2.08901P  =  3.0509P 

 16. y
365
8812501

y2

365

213
12501









 

.
.   =  0.92706y + 1.94149y  =  2.8685y 

 17. k(1 + 0.04)2 + 
 

2
2

k

1+ 0.04
  =  1.08160k + 1.84911k  =  2.9307k 

 18. 
 

h

1+ 0.055 2
 3h(1+ 0.055)3  =  0.89845h – 3.52272h  =  – 2.6243h 

 19. 4a(3ab – 5a + 6b) = 12a2b – 20a2 + 24ab 
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Exercise 2.1  (continued) 

 20. 9k(4 – 8k + 7k2)  =  36k – 72k2 + 63k3 

21. – 5xy(2x2 – xy – 3y2)  =  – 10x3y + 5x2y2 + 15xy3 

 22. – (p2 – 4pq – 5p)
2q

p







   =  – 2pq + 8q2 + 10q 

 23. (4r – 3t)(2t + 5r)  =  8rt + 20r2 – 6t2 – 15rt  =  20r2 – 7rt – 6t2 

 24. (3p2 – 5p)(– 4p + 2)  =  – 12p3 + 6p2 + 20p2 – 10p  =  – 12p3 + 26p2 – 10p 

 25 3(a – 2)(4a + 1) – 5(2a + 3)(a – 7) = 3(4a 2 + a – 8a – 2) – 5(2a2 – 14a + 3a – 21) 
            = 12a2 – 21a – 6 – 10a2 + 55a + 105 
            = 2a2 + 34a + 99 

 26. 5(2x – y)(y + 3x) – 6x(x – 5y)  =  5(2xy + 6x2 – y2 – 3xy) – 6x2 + 30xy 
                =  – 5xy + 30x2 – 5y2 – 6x2 + 30xy 
                =  24x2 + 25xy – 5y2 

 27. 
18

3

2x

x
 = 6x 

 28. 
2

2

2ab

ba6


 = 3

a

b
 

29. 

xy

xyyx 22

 x – y  

 30. 
  


4x 10x 6x

0.5x

2 3

 = 8 – 20x + 12x2  

 31. 
12x 24x 36x

48x

x 2x 3

4

3 2 2 


 
 

 32. 
32a b 8ab 14ab

2ab

2 2 
 = 16a – 4 + 7b  

 33. 
4a b 6a b

2ab

2 3 3 2

2


 = 2ab – 3a2  

 34. 
   

 
   

6

1312

1360

11801120 232 ii

i

ii 





 

 35. 3d2 – 4d + 15 = 3(2.5)2 – 4(2.5) + 15 

           = 18.75 – 10 + 15 

           = 23.75  

 36. 15g – 9h + 3 = 15(14) – 9(15) + 3 = 78  

 37. 7x(4y – 8) = 7(3.2)(4  1.5 – 8) = 22.4(6 – 8) = – 44.8 

 38. I ÷ Pr = 
0.11$500

$13.75


 = 0.250 

 39. 
0.073658

$23.21

0.095

$23.21

365
283





rt

I
 = $315.11 
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Exercise 2.1  (continued) 

 40. 
0.101

$89.10

1 


 d

N
 = $99.00 

 41. L(1 – d1)(1 – d2)(1 – d3) = $490(1 – 0.125)(1 – 0.15)(1 – 0.05) = $346.22 

 42. P(1 + rt) = $770 





 

365

223
01301 . = $770(1.0079425) = $776.12 

 43. 
1.028644

$2500

0.0851

$2500

1
365
123





 rt

S
= $2430.38 

 44. (1 + i)m – 1  =  (1 + 0.0225)4 – 1  =  0.093083 

 45. P(1 + i)n  =  $1280(1 + 0.025)3  =  $1378.42 

 46. 
    1.045852

$850

0.00751

$850

1 6





 ni

S
= $812.73 

 47. 
 

















 












 
0.085

0.2772891
$550

0.085

11.085
$550

11 3

i

i
R

n
= $1794.22 

 48. 
     10381291

10381290

110381291
$9101

11 4
.

.

.









 












 
i

i

i
R

n
  

           10381291
10381290

48450570
$910 .

.

.






  

           = $4687.97 

 49. 
  

























21151

1
1

0.115

$630

1

1
1

.nii

R
= $1071.77 

 50. P(1 + rt1) + 
365
73

2 0.0751

$390

365

104
0.0751$470

1 







 

 rt

S
 

        = $470(1.021370)+
1.01500

$390
 

        = $480.044 + $384.236 

        = $864.28 

 

Exercise 2.2 
 1.        I = Prt  

$6.25 = P(0.05)0.25 
$6.25 = 0.0125P 

 P = 
0125.0

25.6$
 = $500.00 
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Exercise 2.2  (continued) 

 2.          PV
PMT

i
 =   

 
i

900$
000,150$   

$150,000i = $900 

i = 
000,150$

900$
 = 0.00600 

 3.       S = P(1 + rt)  
$3626 = P(1 + 0.0049) 
$3626 = 1.036P 

P = 
036.1

3626$
 = $3500.00 

 4.    N = L(1 – d) 
  $891 = L(1 – 0.10) 
  $891 = 0.90L 

      L = 
90.0

891$
 = $9900.00 

 5.            N = L(1 – d) 
    $410.85 = $498(1 – d) 

  
498$

85.410$
 = 1 – d 

       0.825 = 1 – d 
 d = 1 – 0.825 = 0.175 

 6.          S = P(1 + rt)  
  $5100 = $5000(1 + 0.0025t) 
  $5100 = $5000 + $12.5t 

  $5100 – $5000 = $12.5t 

 t = 
5.12$

100$
 = 8.00 

 7.               NI = (CM )X – FC 
      $15,000 = CM(5000) – $60,000 
  $15,000 + $60,000 = 5000CM 

CM = 
5000

000,75$
= $15.00 

 8.              NI = (CM )X – FC 
  – $542.50 = ($13.50)X – $18,970 

  $18,970 – $542.50 = ($13.50)X  

X = 
50.13$

50.427,18$
= 1365 

 9.              321 111    dddLN 
  $1468.80 = L(1 – 0.20)(1 – 0.15)(1 – 0.10) 
  $1468.80 = L(0.80)(0.85)(0.90) 

L = 
6120.0

80.1468$
 = $2400.00 
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Exercise 2.2  (continued) 

 10.               321 111    dddLN   
      $70.29 = $99.99(1 – 0.20)(1 – d2)(1 – 0.05) 
      $70.29 = $75.9924(1 – d2) 

  
9924.75$

29.70$
 = (1 – d2) 

 d2 = 1 – 0.92496 = 0.0750 

 11.               FV PV i i i in    1 1 1 11 2 3   

    $1094.83 = $1000(1 + i1)(1 + 0.03)(1 + 0.035) 
    $1094.83 = $1066.05(1 + i1) 

  
05.1066$

83.1094$
 = 1 + i1 

i1 = 1.02700 – 1 = 0.0270 

 12.       
 

FV PMT
i

i

n


 











1 1
  

  $1508.54 = PMT 
 











 
05.0

105.01 4

 

  $1508.54 = PMT 





 

05.0

121550625.1
 

PMT = $1508.54
21550625.0

05.0
  = $350.00 

 13. 
 

PV PMT
i n

i


 











1 1
 

  $6595.20 = PMT 
 











  

06.0

06.011 20

 

  $6595.20 = PMT 



 

06.0

31180473.01
 

PMT = $6595.20
68819527.0

06.0
  = $575.00 

 14.      FV PV i n 1  

$9321.91 = $2000(1 + i)20 

  
20

1

2000$

91.9321$








= 1 + i 

 1.0800 = 1 + i 
  i = 1.08000 – 1 = 0.0800 
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Exercise 2.2  (continued) 

 15.          PV FV i n  1  

   $5167.20 = $10,000 

  
 151

1

000,10$

20.5167$

i
  

        = 151 i
20.5167$

000,10$
 

         1 + i =   15
1

935284.1  = 1.0450 
i = 0.0450 

 16.  I = Prt         17.  PV
PMT

i
 =   

  
Pr

Prt

Pr

I
      i(PV) = PMT  

   
Pr

I
t              

PV

PMT
i   

 18.  N = L(1 – d)        19.          NI = (CM )X – FC 

  d
L

N
 1      NI + FC = (CM )X  

   
L

N
d  1            

X

FCNI
CM


  

 20.        NI = (CM )X – FC       21.       S = P(1 + rt) 
  NI + FC = (CM )X          S = P +Prt 

         
CM

FCNI
X


     S – P = Prt 

  PtPSr /  

 22.     S = P(1 + rt)        23.    321 111    dddLN   

      S = P +Prt         1
32

1
11

d
ddL

N



 

  S – P = Prt       32
1 11

1
ddL

N
d


  

      PrPSt /

 24.     321 111    dddLN 

      3
21

1
11

d
ddL

N



 

    21
3 11

1
ddL

N
d


  

 25.         26.  FV PV i n 1  FV PV i n 1  

  
 

PV
i

FV
n


1
      i

PV

FV









1
n

1

 

       PV FV i n  1 1

1









n

PV

FV
i  
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Exercise 2.2  (continued) 

 27. a2  a3 = a5 

 28. (x6)(x-4) = x2  

 29. b10 ÷ b6 = b10 – 6 = b4  

 30. h7 ÷ h– 4 = h7 – (– 4) = h11  

 31. (1 + i)4  (1 + i)9 = (1 + i)13  

 32. (1 + i)  (1 + i)n = (1 + i)n+1  

 33. (x4)7 = x4x7 = x28  

 34. (y3)3 = y9  

 35.  t6
1

3 = t2  

 36. (n0.5)8 = n4  

 37. 
   2965

9

65

xx
x

xx
    

 38. 
  21965

9

65

xx
x

x
    

 39. = 4(1+i)2 2 1
2

 i    

 40. 
 1

3

1

27

3 3

3








i

i

i

i
  

 41. 
  r

ttr

tr

tr

tr

tr

228

4

2

4 33665

36

65

32

65




  

 42. 
  
 

    11443
4

43

22

43

44
4

16

2

2
rr

r

rr

r

rr





 


  

 43. 4
4

3
1

3
4

288 




 = 16.0000 

 44. 
2

3
1

3
2

2727 




  = –9.00000 

 45. 18.520377 1.52
3

   

 46. 0.29907055 0.754
3

    

 47. (0.001)– 2 = 1,000,000  

 48. 1.058220.8930.893 0.52
1

 
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Exercise 2.2  (continued) 

 49. (1.0085)5(1.0085)3 = 1.00858 = 1.07006  

 50. (1.005)3(1.005)– 6 = 1.005–3 = 0.985149  

 51. 103 103 1009903 0 3. . ..    

 52. 105 1008166 . .   

 53.    
















3

3

3

43
34

4

3

3

4

4

3
34  = 4.00000 

 54. 160493
81

256

3

4

4

3

4

3
4422

.



































  

 55. 0.197531
81

16

3

2

3

2

3

2

2

3

3

2

2

3

2

3

3

2
3323323






















































 

 56. 
 
 

6666670
3

2

2

3

3

2
2

3
2

3

3
223

.



















  

 57. 
103 1

0 03
201569

16.

.
.


  

 58. 
 10083 1

0 0083

0 2826960

0 008333333
33 9235

30
.

.

.

.
.


    

 59. 
1 10225

0 0225

0 3591835

0 0225
15 9637

20
 

.

.

.

.
.   

 60. 
 1 1006

0 006

01915410

0 006
28 7312

32


 


.

.

.

.
.   

 61.   31027501 .  = 1.00908  

 62.   6105501 .  – 1 = 0.00896339  

 
Exercise 2.3 

 1. 10a + 10 = 12 + 9a 
  10a – 9a = 12 – 10 
            a = 2 

 2. 29 – 4y = 2y – 7 
        36 = 6y  
          y = 6 

 3. 0.5 (x – 3) = 20 
        x – 3 = 40  
              x = 43  



Exercise 2.3  (continued) 

 4.   42x3
1   

     x – 2 = 12 
           x = 14 

 5.            y = 192 + 0.04y 
  y – 0.04y = 192 

              y = 200
960

192


.
 

 6. x – 0.025x = 341.25 
      0.975x = 341.25 

    x = 350
9750

25341


.

.
 

 7. 12x – 4(2x – 1) =6(x + 1) – 3 
    12x – 8x + 4 = 6x + 6 – 3 
      – 2x = – 1  
           x = 0.5 

 8. 3y – 4 = 3(y + 6) – 2(y + 3) 
           = 3y + 18 – 2y – 6 
      2y = 16 
        y = 8 

 9. 8 – 0.5(x + 3) = 0.25(x – 1) 
  8 – 0.5x – 1.5 = 0.25x – 0.25 
          – 0.75x = – 6.75  
         x = 9 

 10. 5(2 – c) = 10(2c – 4) – 6(3c + 1) 
  10 – 5c = 20c – 40 – 18c – 6 
     – 7c = – 56 
          c = 8 

 11. 3.1t + 145 = 10 + 7.6t 
       – 4.5t = – 135  
               t = 30 

 12. 1.25y – 20.5 = 0.5y – 11.5 
           0.75y = 9 
        y = 12 

 13.           $10001.12x
1.1

x 3
2

  

   0.8264463x + 2.622x = $1000 
       3.488446x = $1000 
           x = $286.66 

 14.         $2641.351.025x
1.025

3x 8
6

  

  2.586891x + 1.218403x = $2641.35 
               x = $694.13 
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Exercise 2.3  (continued) 

 15.            
4

10
7 1.03

$2000
$10001.03xx

1.03

2x
  

   1.626183x + x + 1.343916x = $1000 + $1776.974 
      3.970099x = $2776.974  
          x = $699.47 

 16.  
27

3

1.05

$5000

1.05

x
$10001.05x   

   1.157625x + 0.7106813x = $4535.147 – $1000 
                  x = $1892.17 

 17. x $1160.20
0.0951

2x

365

84
0.0951

365
108










   

        1.021863x + 1.945318x = $1160.20 
                  2.967181x = $1160.20 
            x = $391.01 

 18. 





 






 

 365

43
0.1151$1000

365

121
0.11513x

0.1151

x

365
78

 

0.9760141x + 3.114370x = $1013.548 
              x = $247.79 

 19.  x – y =   2  
   3x + 4y = 20  
        3:  3x – 3y =   6 
  Subtract: 7y = 14 
   y =   2 

  Substitute into equation : 
   x – 2 = 2 
   x = 4 
   (x, y) = (4, 2) 

  Check: LHS of  = 3(4) + 4(2) = 20 = RHS of  

 20.  y – 3x =   11  
   – 4y + 5x = –30  
        4:  4y – 12x =   44 
          Add: –7x =   14 
   x =   –2 

  Substitute into equation : 
   y – 3(– 2) = 11 
   y = 11 – 6 = 5 
   (x, y) = (–2, 5) 

  Check: LHS of  =  – 4(5) + 5(–2) = –30= RHS of  
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Exercise 2.3  (continued) 

 21.  4a – 3b =   –3  
   5a –   b =   10  
        1: 4a – 3b =   –3 
        3: 15a – 3b =   30 
  Subtract: –11a         = –33 
   a =     3 

  Substitute into equation : 
   5(3) – b = 10 
   b =   5 
   (a, b) = (3, 5) 

  Check: LHS of  = 4(3) – 3(5) = –3 = RHS of  

 22.  7p – 3q = 23  
   –2p – 3q =   5  
  Subtract: 9p         = 18 
   p =   2 

  Substitute into equation : 
   7(2) – 3q =    23 
   3q =  –23 + 14 
   q =    –3 
   (p, q) = (2, –3) 

  Check: LHS of  = –2(2) –3(–3) = 5 = RHS of  

 23.  y = 2x   
   7x – y =         35  
  Add: 7x       = 2x + 35 
   5x = 35 
   x = 7 

  Substitute into : 
   y = 2(7) = 14 
   (x, y) = (7, 14) 

  Check: LHS of  = 7(7) – 14 = 49 – 14 = 35 = RHS of  

 24.  g – h = 17  

   hg 2
3

3
4   =   0  

   h51g31 ..   =   0  

   1.5: 1.5g – 1.5h = 25.5 

        Add: g38.2          =25.5 
   g =  9 
  Substitute into : 
   9 – h = 17 
   h =  –8 
   (h, g) = (–8, 9) 

  Check: LHS of  =    89 2
3

3
4   = 12 – 12 = 0 = RHS of  



Exercise 2.3  (continued) 

 25.  d = 3c – 500  
   0.7c + 0.2d = 550   
  To eliminate d, 
      0.2: –0.6c + 0.2d = –100 
             :    0.7c + 0.2d =   550 
  Subtract:  –1.3c  +  0    = –650 
     c =   500 

  Substitute into : d = 3(500) – 500 = 1000 
   (c, d) = (500, 1000) 

  Check: LHS of  = 0.7(500) + 0.2(1000) = 550 = RHS of  

 26.  0.03x + 0.05y =   51  
   0.8x  –  0.7y = 140  
  To eliminate y, 
       0.7: 0.021x + 0.035y = 35.7 
      0.05:   0.04x – 0.035y =   7   
  Add: 0.061x +      0    = 42.7 
                  x = 700 

  Substitute into : 
   0.8(700) – 0.7y = 140 
   –0.7y =  – 420 
   y = 600 
   (x, y) = (700, 600) 

  Check: LHS of  = 0.03(700) + 0.05(600) = 51 = RHS of  

 27.  2v + 6w = 1  
   10v – 9w = 18  
  To eliminate v, 
       10: 20v + 60w =   10 
         2: 20v – 18w =   36 
  Subtract:   0  + 78w  = –26 
       w = 3

1  

  Substitute into : 
   2v + 6  

3
1 = 1 

   2v = 1 + 2 
   v = 

2
3  

   (v, w) =  
3
1

2
3 ,  

  Check: LHS of  =    
3
1

2
3 910   = 18 = RHS of  
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Exercise 2.3  (continued) 

 28.  2.5a + 2b = 11  
   8a + 3.5b = 13  
  To eliminate b, 
    3.5: 8.75a + 7b = 38.5 
       2:   16a + 7b = 26 
  Subtract: –7.25a + 0   = 12.5 
   a = –1.724 
  Substitute into : 
   2.5(–1.724) + 2b = 11 
   2b = 11 + 4.31 
   b = 7.655 
   (a, b) = (–1.72, 7.66) 
  Check: LHS of  = 8(–1.724) + 3.5(7.655) = 13.00 = RHS of  

 29.  37x – 63y = 235  
   18x + 26y = 468  
  To eliminate x, 
     18: 666x –1134y =    4230 
     37: 666x +  962y =   17,316 
  Subtract: 0 – 2096y = –13,086 
   y = 6.243 
  Substitute into : 
   37x – 63(6.243) = 235 
   37x = 628.3 
   x = 16.98 
   (x, y) = (17.0, 6.24) 

  Check: LHS of  = 18(16.98) + 26(6.243) = 468.0 = RHS of  

 30.  68.9n – 38.5m =     57  
   45.1n – 79.4m = –658  
  To eliminate n, 
    45.1: 3107n – 1736.4m =     2571 
    68.9: 3107n – 5470.7m = – 45,336 
  Subtract: 0    + 3734.3m =    47,907 
   m = 12.83 
  Substitute into : 
   68.9n – 38.5(12.83) = 57 
   68.9n = 551.0 
   n = 7.996 
   (m, n) = (12.8, 8.00) 
  Check: LHS of  = 45.1(7.996) – 79.4(12.83) = –658.1 = RHS of  
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Exercise 2.3  (continued) 

 31.  0.33e + 1.67f = 292  
   1.2 e + 0.61f = 377  
  To eliminate e, 
    0.33: e + 5.061f = 884.8 
     1.2:  e + 0.508f = 314.2 
  Subtract: 0 + 4.552f = 570.6 
   f = 125.4 
  Substitute into : 
   0.33e + 1.67(125.4) = 292 
   0.33e = 82.58 
   e = 250.2 
   (e, f) = (250, 125) 

  Check: LHS of  = 1.2(250.2) + 0.61(125.4) = 376.7 = RHS of  

 32.  318j – 451k =     7.22  
   –249j + 193k = –18.79  
  To eliminate k, 
    451: 0.7051j – k =   0.01601 
    193:  –1.2902j + k = –0.09736 
  Add: –0.5851j + 0 = –0.08135 
   j =  0.1390 
  Substitute into : 
   –249(0.1390) + 193k = –18.79 
   193k =   15.82 
   k =   0.08197 
   (j, k) = (0.139, 0.0820) 
  Check: LHS of  =318(0.1390) – 451(0.08197) = 7.23 = RHS of  (within rounding 

errors.) 

 

Point of Interest  (Section 2.4) 
A “Trick” Question 

The element of mathematical misdirection in the question is that it presumes (and attempts to 
get you thinking) that there really is a missing dollar, and that the $3 difference between the $90 
originally paid and the net $87 paid consists of the $2 kept by the bellhop and the missing dollar.  

But the $3 refund sitting in the workers’ pockets explains the difference between the $90 
and the $87. The $2 pilfered by the bellhop explains the $2 difference between the net amount 
($87) paid by the workers and the amount ($85) in the hotel’s till. There is no missing $1! 
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Exercise 2.4 

 1. Step 2: Hits last month = 2655 after the 7
2  increase. 

 Let the number of hits 1 year ago be n. 
  Step 3: Hits last month = Hits 1 year ago  +  7

2 (Hits 1 year ago) 

  Step 4: 2655 = n + 7
2 n 

  Step 5: 2655 = 
7
9 n 

Multiply both sides by 9
7 . 

n = 2655  9
7  = 2065 

The Web site had 2065 hits in the same month 1 year ago. 

 2. Step 2: Retail price = $712;    Markup = 60% of wholesale of cost. 
  Let the wholesale cost be C.  
  Step 3: Retail price = Cost + 0.60(Cost) 
  Step 4: $712 = C + 0.6C 
  Step 5: $712 = 1.6C 

            C = .00.445$
6.1

712$
    The wholesale cost is $445.00. 

 3. Step 2: Tag price = $39.55 (including 13% HST). Let the plant's pretax price be P.  
  Step 3: Tag price = Pre-tax price + HST 

  Step 4: $39.55 = P + 0.13P 

  Step 5: $39.55 = 1.13P 

P = 
1.13

$39.55
 = $35.00 

The amount of HST is $39.55 – $35.00 = $4.55 

 4. Step 2: Commission rate = 2.5% on the first $5000 and 1.5% on the remainder 
            Commission amount = $227. Let the transaction amount be x. 

  Step 3: Commission amount = 0.025($5000) + 0.015(Remainder) 

  Step 4: $227 = $125.00 + 0.015(x – $5000) 

  Step 5: $102 = 0.015x – $75.00 
  $102 + $75 = 0.015x 

x = 
0150

177

.

$
 = $11,800.00 

The amount of the transaction was $11,800.00. 

 5. Step 2: Let the basic price be P. First 20 meals at P.  
             Next 20 meals at P – $2. Additional meals at P – $3. 

  Step 3: Total price for 73 meals = $1686  

  Step 4: 20P + 20(P – $2) + (73 – 40)(P – $3) = $1686 

  Step 5: 20P + 20P – $40 + 33P – $99 = $1686 
  73P = $1686 + $99 + $40 

P = 
73

1825$
 = $25.00 

The basic price per meal is $25.00.  
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Exercise 2.4  (continued) 

 6. Step 2: Rental Plan 1: $295 per week + $0.15  (Distance in excess of 1000 km) 
  Rental Plan 2: $389 per week 
 Let d represent the distance at which the costs of both plans are equal. 

  Step 3: Cost of Plan 1 = Cost of Plan 2 

  Step 4: $295 + $0.15(d  1000) = $389 

  Step 5:    $295 + $0.15d  $150 = $389 
 $0.15d = $244 

 d = 1627 km 
  The unlimited driving plan will be cheaper if you drive more than 1626.7 km in the one-

week interval. 

 7. Step 2: Tax rate = 38%; Overtime hourly rate = 1.5($23.50) = $35.25 
 Cost of canoe = $2750 
 Let h represent the hours of overtime Alicia must work. 

  Step 3: Gross overtime earnings  Income tax = Cost of the canoe 

  Step 4: $35.25h  0.38($35.25h) = $2750 

  Step 5:             $21.855h = $2750 
 h = 125.83 hours 

  Alicia must work 125¾ hours of overtime to earn enough money to buy the canoe. 

 8. Step 2: Number of two-bedroom homes = 0.4(Number of three-bedroom homes) 
  Number of two-bedroom homes = 2(Number of four-bedroom homes) 
  Total number of homes = 96 
  Let h represent the number of two-bedroom homes 

  Step 3: # 2-bedroom homes + # 3-bedroom homes + # 4-bedroom homes = 96 

  Step 4:       96=
2

+
40

+
hh

h
.

 

  Step 5: h + 2.5h + 0.5h = 96 
4h = 96 

 h = 24 
  There should be 24 two-bedroom homes, 2.5(24) = 60 three-bedroom homes, 
  and 0.5(24) = 12 four-bedroom homes. 

 9. Step 2: Cost of radio advertising = 0.5(Cost of newspaper advertising) 
 Cost of TV advertising = 0.6(Cost of radio advertising) 
 Total advertising budget = $160,000 
 Let r represent the amount allocated to radio advertising 

  Step 3: Radio advertising + TV advertising + Newspaper advertising = $160,000 

  Step 4: 000160=
50

+60+ ,$
.

.
r

rr  

  Step 5:    3.6r = $160,000 
r = $44,444.44 

  The advertising budget allocations should be: 
$44,444 to radio advertising,  
0.6($44,444.44) = $26,667 to TV advertising, and 
2($44,444.44) = $88,889 to newspaper advertising. 
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Exercise 2.4  (continued) 

 10. Step 2: By-laws require: 5 parking spaces per 100 square meters,  
4% of spaces for physically handicapped 
In remaining 96%, # regular spaces = 1.4(# small car spaces)  
Total area = 27,500 square meters 

Let s represent the number of small car spaces. 

  Step 3: Total # spaces = # spaces for handicapped + # regular spaces + # small spaces 

  Step 4: 5×
100

50027,
= 0.04  5×

100

50027,
 + s + 1.4s 

  Step 5:        1375 = 55 + 2.4s 
s = 550 

  The shopping centre must have 55 parking spaces for the physically handicapped,  
  550 small-car spaces, and 770 regular parking spaces. 

 11. Step 2: Overall portfolio’s rate return = 1.1%, equity fund’s rate of return = 3.3%, 
bond fund’s rate of return = 7.7%. 
Let e represent the fraction of the portfolio initially invested in the equity fund. 

  Step 3: Overall rate of return = Weighted average rate of return 
  = (Equity fraction)(Equity return) + (Bond fraction)(Bond return) 

  Step 4:              1.1% = e(3.3%) + (1  e)(7.7%) 

  Step 5:     1.1 = 3.3e + 7.7  7.7e 
      6.6 = 11.0e 
          e = 0.600 
  Therefore, 60.0% of Erin’s original portfolio was invested in the equity fund. 

 12. Step 2: Pile A steel is 5.25% nickel; pile B steel is 2.84% nickel. 
 We want a 32.5-tonne mixture from A and B averaging 4.15% nickel. 
 Let A represent the tonnes of steel required from pile A. 

  Step 3: Wt. of nickel in 32.5 tonnes of mixture 
= Wt. of nickel in steel from pile A + Wt. of nickel in steel from pile B 
= (% nickel in pile A)(Amount from A) + (% nickel in pile B)(Amount from B) 

  Step 4: 0.0415(32.5) = 0.0525A + 0.0284(32.5  A) 
  Step 5:         1.34875 = 0.0525A + 0.9230  0.0284A 

 0.42575 = 0.0241A 
A = 17.67 tonnes 

  The recycling company should mix 17.67 tonnes from pile A with 14.83 tonnes from pile B. 

 13. Step 2: Total options = 100,000 
 # of options to an executive = 2000 + # of options to a scientist or engineer 
 # of options to a scientist or engineer = 1.5(# of options to a technician) 
 There are 3 executives, 8 scientists and engineers, and 14 technicians. 
 Let t represent the number of options to each technician. 

  Step 3: Total options = Total options to scientists and engineers  
+ Total options to technicians + Total options to executives 

  Step 4: 100,000 = 8(1.5t) + 14t + 3(2000 + 1.5t) 
  Step 5:   = 12t + 14t + 6000 + 4.5t 

94,000 = 30.5t 
 t = 3082 options 

  Each technician will receive 3082 options, 
  each scientist and engineer will receive 1.5(3082) = 4623 options,  
  and each executive will receive 2000 + 4623 = 6623 options. 
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Exercise 2.4  (continued) 

 14. Step 2: Plan X: 6.5 cents/minute (in business hours) and 4.5 cents/minute (at other times) 
 Plan Y: 5.3 cents/minute any time 
Let b represent the fraction of business-hour usage at which costs are equal. 

  Step 3: Cost of Plan X = Cost of plan Y  

  Step 4: Pick any amount of usage in a month—say 1000 minutes. 
b(1000)$0.065 + (1  b)(1000)$0.045 = 1000($0.053) 

  Step 5:        $65b + $45  $45b = $53 
    $20b = $8 

       b = 0.40 
  If business-hour usage exceeds 40% of overall usage, plan Y will be cheaper. 

 15. Step 2: Raisins cost $3.75 per kg; peanuts cost $2.89 per kg. 
Cost per kg of ingredients in 50 kg of “trail mix” is to be $3.20. 
Let p represent the weight of peanuts in the mixture.  

  Step 3: Cost of 50 kg of trail mix = Cost of p kg peanuts + Cost of (50  p) kg of raisins 

  Step 4: 50($3.20) = p($2.89) + (50  p)($3.75) 

  Step 5:    $160.00 = $2.89p + $187.50  $3.75p 
  $27.50 = $0.86p 

 p = 31.98 kg 
  32.0 kg of peanuts should be mixed with 18.0 kg of raisins. 

 16. Step 2: Total bill = $3310. Total hours = 41.  
             Hourly rate = $120 for CGA 
          = $50 for technician.  
   Let x represent the CGA’s hours. 
  Step 3: Total bill = (CGA hours x CGA rate) + (Technician hours x Technician rate) 

  Step 4: $3310 = x($120) + (41 – x)$50 

  Step 5: $3310 = $120x + $2050 – $50x 
    1260 = 70x 
        x = 18 
             The CGA worked 18 hours and the technician worked 41 – 18 = 23 hours. 

 17. Step 2: Total investment = $32,760 
             Sue's investment = 1.2(Joan's investment)  
             Joan’s investment = 1.2(Stella’s investment)  
             Let L represent Stella’s investment. 

  Step 3: Sue's investment + Joan's investment + Stella’s investment  =  Total investment 

  Step 4: Joan’s investment = 1.2L 
             Sue’s investment = 1.2L(1.2L) = 1.44L 
             1.44L + 1.2L + L = $32,760 

  Step 5:      3.64L = $32,760 

                L = 9000
643

76032
$

.

,$
  

    Stella will invest $9000, Joan will invest 1.2($9000) = $10,800, and  
    Sue will invest 1.2($10,800) = $12,960 



Exercise 2.4  (continued) 

 18. Step 2: Sven receives 30% less than George (or 70% of George’s share). 
             Robert receives 25% more than George (or 1.25 times George’s share). 
             Net income = $88,880 
             Let G represent George’s share. 

  Step 3: George’s share + Robert's share + Sven's share = Net income 

  Step 4: G + 1.25G + 0.7G = $88,880 

  Step 5: 2.95G = $88,880 
         G = $30,128.81 
             George’s share is $30,128.81, Robert’s share is 1.25($30,128.81) = $37,661.02, 
             and Sven’s share is 0.7($30,128.81) = $21,090.17.  

 19. Step 2: Time to make X is 20 minutes. 
            Time to make Y is 30 minutes. 
            Total time is 47 hours. Total units = 120. Let Y represent the number of units of Y. 

  Step 3: Total time = (Number of X)  (Time for X) + (Number of Y)  (Time for Y) 

  Step 4: 47  60 = (120 – Y)20 + Y(30) 

  Step 5: 2820 = 2400 – 20Y + 30Y 
               420 = 10Y 
        Y = 42 
           Forty-two units of product Y were manufactured.  

 20. Step 2: Price of blue ticket = $19.00. Price of red ticket = $25.50. 
            Total tickets = 4460. Total revenue = $93,450. 
            Let the number of tickets in the red section be R. 
  Step 3: Total revenue = (Number of red  Price of red) + (Number of blue  Price of blue) 

  Step 4: $93,450 = R($25.50) + (4460 – R)$19.00 

  Step 5: 93,450 = 25.5R + 84,740 – 19R 
                6.5R = 8710  
          R = 1340 

   1340 seats were sold in the red section and 4460 – 1340 = 3120 seats were sold in 
the blue section. 

 21. Step 2: 5
3  of a 7

3 interest was sold for $27,000. 

    Let the V represent the implied value of the entire partnership. 

  Step 3: 5
3  of a 7

3 interest is worth $27,000. 

  Step 4: 
7

3

5

3
 V = $27,000 

  Step 5: V = 
33

75




  $27,000 = $105,000 

  b. The implied value of the entire partnership is $105,000. 
  a. The implied value of Shirley’s remaining interest is 

7

3

5

2
 V = 

35

6
  $105,000 = $18,000 
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Exercise 2.4  (continued) 

 22. Step 2: Regal owns a 58% interest in a mineral claim. Yukon owns the remainder (42%). 
Regal sells one fifth of its interest for $1.2 million. 
Let the V represent the implied value of the entire mineral claim. 

  Step 3: 5
1 (or 20%) of a 58% interest is worth $1.2 million 

  Step 4: 0.20(0.58)V = $1,200,000 

  Step 5: V = 
0.580.20

$1,200,000


 = $10,344,828 

  The implied value of Yukon’s interest is 
0.42V = 0.42  $10,344,828 = $4,344,828 

23. Step 2: 7
5  of entrants complete Level 1. 9

2  of Level 1 completers fail Level 2. 

587 students completed Level 2 last year. 
Let the N represent the original number who began Level 1. 

  Step 3: 9
7  of 7

5  of entrants will complete Level 2. 

  Step 4: 
7

5

9

7
 N = 587 

  Step 5: N = 
57

79




 x 587 = 1056.6 

  1057 students began Level 1. 

 24. Step 2: 7
4

 
of inventory was sold at cost.  

7
3  inventory was sold to liquidators at 45% of cost, yielding $6700.  

Let C represent the original cost of the entire inventory. 

  Step 3: 7
3  of inventory was sold to liquidators at 45% of cost, yielding $6700. 

  Step 4: 7
3 (0.45C) = $6700 

  Step 5: C = 
0.453

$67007




 = $34,740.74 

  a. The cost of inventory sold to liquidators was 

7
3 ($34,740.74) = $14,888.89 

  b. The cost of the remaining inventory sold in the bankruptcy sale was 
$34,740.74  $14,888.89 = $19.851.85 

 25. Let r represent the number of regular members and s the number of student members. 
  Then r +         s = 583   
  Total revenue: $2140r + $856s = $942,028  
   $856: $856r + $856s = $499,048 
  Subtract: $1284r +     0     = $442,980 
   r = 345 
  Substitute into : 345 + s = 583 
   s = 238 
  The club had 238 student members and 345 regular members. 
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Exercise 2.4  (continued) 

 26. Let c represent the number of children and a represent the number of adults.  
  Then c  +            a = 266   
   $17.90c + $25.90a = $6609.40  
   $25.90: $25.90c + $25.90a = $6889.40 
  Subtract: $8c    +     0     = $280 
   c = 35 
  That is, 35 of the 266 customers were children. 

 27. Let s represent the distance travelled at the lower speed (50 km/h).  
  Let h represent the distance travelled at the higher speed (100 km/h). 
  Since the total distance = 1000 km, 
  then  s    +   h   = 1000   

  Since travelling time = 
Speed

Distance
, 

  then     Time at slower speed = 
50

s
      and      Time at higher speed = 

100

h
 

  Since the total time = 12.3 hours, 

  then  
50

s
 +  

100

h
= 12.3   

     100:          2s   +    h = 1230 
     Repeat :            s   +    h = 1000   
  Subtract:          s   +    0 =   230 
  Hence, Tina drive 230 km at 50 km/h and 1000  230 = 770 km at 100 km/h. 

 28. Let a represent the adult airfare and c represent the child airfare.  
  Mrs. Ramsey’s cost: a +      2c =   $610  
  Chudnowskis’ cost: 2a +      3c =   $1050  
   2: 2a +      4c =   $1220 
  Subtract: 0  +      c = $170 
  Substitute c = $170 into : a +2($170) =   $610 
   a =   $610  $340 = $270 
  The airfare is $270 per adult and $170 per child. 

 29. Let h represent the rate per hour and k represent the rate per km.  
  Vratislav’s cost: 2h + 47k = $54.45   
  Bryn’s cost: 5h + 93k = $127.55  

  To eliminate x, 
     5: 10h + 235k = $272.25  
     2: 10h + 186k = $255.10  
  Subtract: 0  +   49k = $  17.15 
   k = $0.35 per km 
  Substitute into : 
   2h + 47($0.35) = $54.45 
   2h = $54.45  $16.45 
   = $38.00 per hour 
   h = $19.00 per hour 
  Budget Truck Rentals charged $19.00 per hour plus $0.35 per km. 
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Exercise 2.4  (continued) 

 30. Let s represent the weight of 6% nitrogen fertilizer.  
  Let t represent the weight of 22% nitrogen fertilizer.  
  Total weight: s +         t = 300   
  Total nitrogen: 0.06s +  0.22t = 0.16(300) 
  Multiply by 100: 6s +     22t = 4800   
     6: 6s +       6t = 1800   
  Subtract: 0  +    16t = 3000  
   t = 187.5 kg 
   s = 300  187.5 = 112.5 kg 
  Buckerfield’s should mix 112.5 kg of 6% fertilizer with 187.5 kg of 22% fertilizer. 

 31. Let C represent the interest rate on Canada Savings Bonds. 
  Let O represent the interest rate on Ontario Savings Bonds. 
  Year 1 interest: 4($1000)C +  6($1000)O = $438   
  Year 2 interest: 3($1000)C +  4($1000)O = $306   
   3: $12,000C +   $18,000O = $1314   
   4: $12,000C +   $16,000O = $1224   
  Subtract: 0      +      $2000O = $    90 

   O =
2000

90

$

$
= 0.045 = 4.5% 

  Substitute into :  $3000C + $4000(0.045) =  $306 

   C =
3000

180306

$

$$ 
= 0.042 = 4.2% 

  The Canada Savings Bonds earn 4.2% per annum and  
    the Ontario Savings Bonds earn 4.5% per annum. 

 32. Let r represent the tax rate on residences and 
  let f represent the tax rate on land with farm buildings. 
  LeClair tax: $400,000r +    $300,000f = $3870   
  Bartoli tax: $350,000r +    $380,000f = $3774   
   7: $2,800,000r + $2,100,000f = $27,090  
   8: $2,800,000r + $3,040,000f = $30,192  
  Subtract: 0            $940,000f = $3102 

   f = 
$940,000

$3102
= 0.0033 = 0.33% 

  Substitute into : $400,000r + $300,000(0.0033) = $3870 

   r = 
$400,000

$990 - $3870
= 0.0072 = 0.72% 

  The tax rates are 0.72% on residences and 0.33% on land with farm buildings. 

 33. Let x represent the number of units of product X and  
y represent the number of units of product Y. Then 

   x +        y = 93  
   0.5x + 0.75y = 60.5  
   0.5: 0.5x +   0.5y = 46.5 
  Subtract: 0 + 0.25y = 14 
   y = 56 
  Substitute into : x + 56 = 93 
   x = 37 
  Therefore, 37 units of X and 56 units of Y were produced last week. 
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Exercise 2.4  (continued) 

 34. Let the price per litre of milk be m and the price per dozen eggs be e. Then 

   5m + 4e = $19.51  
   9m + 3e = $22.98  
  To eliminate e, 
   3: 15m + 12e = $58.53 
   4: 36m + 12e = $91.92 
  Subtract: –21m +    0  = –$33.39 
   m =   $1.59 

  Substitute into : 5($1.59) + 4e = $19.51 
   e = $2.89 

  Milk costs $1.59 per litre and eggs cost $2.89 per dozen. 

 35. Let M be the number of litres of milk and J be the number of cans of orange juice per 
week. 

   $1.50M + $1.30J = $57.00  
   $1.60M + $1.37J = $60.55  
  To eliminate M, 
   1.6: $2.40M + $2.080J = $91.200 
   1.5: $2.40M + $2.055J = $90.825 
  Subtract: 0     + $0.025J =   $0.375 
   J = 15 

  Substitution of J = 15 into either equation will give M = 25. Hence, 25 litres of milk 
and 15 cans of orange juice are purchased each week. 

 36. Let S represent the selling price of a case of beer and R represent the refund 
per case of empties. Then 

   871S – 637R= $12,632.10  
   932S – 805R= $13,331.70  
  To eliminate S, 
   932: 811,772S – 593,684R = $11,773,117.20 
   871: 811,772S – 701,155R = $11,611,910.70 
  Subtract: 0      + 107,471R = $161,206.50 
   R = $1.50 
  The store paid a refund of $1.50 per case. 

 37. Let S represent the number of people who bought single tickets and T represent 
the number of people who bought at three-for-$5. Then 

   S +   3T = 3884  
   $2S + $5T = $6925  
  To eliminate S, 
   $2: $2S + $6T = $7768 
          : $2S + $5T = $6925 
  Subtract: 0 +  $1T =   $843 
   T = 843 

  Hence, 843 people bought tickets at the three-for-$5 discount. 
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Exercise 2.4  (continued) 

 38. Let P represent the number of six-packs and C represent the number of single cans sold. 

  Then $4.35P + $0.90C =  $178.35  
   6P +          C = 225  
  To eliminate C, 
               : $4.35P + $0.90C =  $178.35 
   $0.90: $5.40P + $0.90C =  $202.50 
  Subtract: –$1.05P +      0      = –$ 24.15 
   P = 23 

  Substitute into : 6(23) + C = 225 
   C = 87 
  The store sold 23 six-packs and 87 single cans. 

 39. Let P represent the annual salary of a partner and T represent the annual salary 
of a technician. Then 

   7P  +         12T  = $1,629,000  
   1.05(7P) + 1.08(12T) = $1,734,750  
   1.05: 1.05(7P) + 1.05(12T) = $1,710,450 
  Subtract: 0     + 0.03(12T) = $24,300 
   T = $67,500 

  Substitute into : 7P + 12($67,500) = $1,629,000 
   P = $117,000 

  The current annual salary of a partner is $117,000 and of a technician is $67,500. 

 40. Let P represent the current number of production workers and A the current number 
of assembly workers. Then 

   $5100P  +         $4200A  = $380,700   
   $5100(0.8P) + $4200(0.75A) = $297,000   
  To eliminate P, 
   0.8: $5100(0.8P) +   $4200(0.8A) = $304,560 
           : $5100(0.8P) + $4200(0.75A) = $297,000 
  Subtract: $4200(0.05A) = $7560 
   A = 36 

  Substitute into : $5100P + $4200(36) = $380,700 
   P = 45 
Therefore, 0.2P = 9 production workers and 0.25A = 9 assembly workers will be laid off. 

 41. Step 2: Each of 4 children receive 0.5(Wife's share). 

             Each of 13 grandchildren receive 30. (Child's share). 
            Total distribution = $759,000. Let w represent the wife's share.  

  Step 3: Total amount = Wife's share + 4(Child's share) + 13(Grandchild's share) 

  Step 4: $759,000 = w + 4(0.5w) + 13  30. (0.5w) 

  Step 5: $759,000 = w + 2w + w612.  

       = w615.  
              w = $146,903.23 
            Each child will receive 0.5($146,903.23) = $73,451.62 

            and each grandchild will receive 30. ($73,451.62) = $24,483.87. 
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Exercise 2.4  (continued) 

 42. Step 2: Stage B workers = 1.6(Stage A workers) 
            Stage C workers = 0.75(Stage B workers) 
              Total workers = 114. Let A represent the number of Stage A workers.  

  Step 3: Total workers = A workers + B workers + C workers 

  Step 4: 114 = A + 1.6A + 0.75(1.6A) 

  Step 5: 114 = 3.8A 
     A = 30 
             30 workers should be allocated to Stage A, 1.6(30) = 48 workers to Stage B,  
             and 114 – 30 – 48 = 36 workers to Stage C.  

 43. Step 2: Hillside charge     = 2(Barnett charge) – $1000 
             Westside charge = Hillside charge + $2000 
             Total charges       = $27,600. Let B represent the Barnett charge. 

  Step 3: Total charges = Barnett charge + Hillside charge + Westside charge 

  Step 4: $27,600 = B + 2B – $1000 + 2B – $1000 + $2000 

  Step 5: $27,600 = 5B 
            B = $5520 
            Hence, the Westside charge is 2($5520) – $1000 + $2000 = $12,040 

 44. Step 2: There are 3 managers and 26 production workers. Total distribution = $100,000. 
             Manager’s share = 1.2 (Production worker’s share). 
             Let p represent a production worker’s share. 

  Step 3: 3(Manager’s share) + 26(Production worker’s share) = $100,000 

  Step 4: 3(1.2p) + 26p = $100,000 
  Step 5:             29.6p = $100,000 
          p = $3378.38 
            Each production worker will receive $3378.38 and each manager will receive 
            1.2($3378.38) = $4054.05. 

 45. Step 2: Assembly time = 0.5(Cutting time) + 2 minutes 
    Painting time    = 0.5(Assembly time) + 0.5 minutes 
    Total units  = 72. Total time = 42 hours. Let C represent the cutting time. 

  Step 3: Time to produce one toy = Cutting time + Assembly time + Painting time 

  Step 4: 
72

6042
= C + 0.5C + 2 + 0.5(0.5C + 2) + 0.5 

  Step 5: 35 = 1.75C + 3.5 
             C = 18 minutes 
             Cutting requires 18 minutes (per unit), assembly requires 0.5(18)+2 = 11 minutes, 
             and painting requires 0.5(11) + 0.5 = 6 minutes. 
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Exercise 2.5 
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 7. = $134.39[1 + (–0.12)] = $134.39(0.88) = $118.26 cVV if  1   

 8.  = 112g(1 + 1.12) = 237.44g cVV if  1   

 9.  = (26.3 cm)(1 + 3.00) = 105.2 cm cVV if  1   

 10.  = 0.043[1 + (–0.30)] = 0.0301 cVV if  1   
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 13. Given: Vi = $90, Vf = $100 

    %.% 1111100
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


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   $100 is 11.11% more than $90. 

 14. Given: Vi = $110, Vf = $100 

    9.09%100%
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$110$100
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   $100 is 9.09% less than $110.  

 15. Given:  c = 25%, Vf = $100 

    $80.00
0.251

$100

1








c

V
V

f
i  

  $80.00 increased by 25% equals $100.00.  

 16. Given:  c = 7%, Vf = $52.43 

    $49.00
0.071

$52.43

1








c

V
V

f
i  

   $49.00 increased by 7% equals $52.43.  



Exercise 2.5  (continued) 

 17. Given: Vf = $75, c = 75% 

    $42.86
0.751

$75

1








c

V
V

f
i  

   $75 is 75% more than $42.86.  

 18. Given: Vi = $56, c = 65% 
    ( ) ( ) 409265156=+1= .$=.cVV if $  

  $56 after an increase of 65% is $92.40. 

 19. Given: Vi = $759.00, Vf = $754.30 

    %.%% 620100
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$759.00$754.30
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  $754.30 is 0.62% less than $759.00.  

 20. Given: Vi = 77,400, Vf = 77,787 

    %.%
,
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  77,787 is 0.50% more than 77,400.  

 21  Given: Vi = $75, c = 75% 
    Vf = Vi (1 + c) = $75(1 + 0.75) = $131.25 

  $75.00 becomes $131.25 after an increase of 75%. 

 22. Given: Vf = $100, c = – 10% 

      $111.11
0.101

$100

1






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c

V
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f
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  $100.00 is 10% less than $111.11. 

 23. Given: Vf = $100, c = – 20% 

      $125.00
0.201

$100

1








c

V
V

f
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  $125 after a reduction of 20% equals $100. 

 24. Given: Vf = $50, c = – 25% 

      $66.67
0.251

$50

1








c

V
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f
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  $66.67 after a reduction of 25% equals $50. 

 25. Given: Vf = $549, c = %.616  

      $658.80
60.11

$549

1








c

V
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f
i  

  $658.80 after a reduction of %.616 equals $549. 

 26. Given: Vi = $900, c = –90% 
    Vf = Vi (1 + c) = $900[1 + (–0.9)] = $90.00 
  $900 after a decrease of 90% is $90.00.  
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Exercise 2.5  (continued) 

 27. Given: Vi = $102, c = –2% 
   Vf = Vj(1 + c) = $102(1 – 0.02) = $99.96 

  $102 after a decrease of 2% is $99.96.  

 28. Given: Vi = $102, c = –100% 
   Vf = Vi(1 + c) = $102[1 + (–1.00)] = $102(0) = $0.00 

  Any positive amount after a decrease of 100% is zero.  

 29. Given: Vi = $250, Vf = $750 

   200.00%100%
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  $750 is 200.00% more than $250.  

 30. Given: Vi = $750, Vf = $250 

   66.67%100%
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  $250 is 66.67% less than $750. 

 31. Given: c = 0.75%, Vi = $10,000  

   Vf = Vi (1 + c) = $10,000(1 + 0.0075) = $10,075.00 
  $10,000 after an increase of 

4
3 % is $10,075.00. 

 32. Given: Vi = $1045, c = – 0.5% 
   Vf = Vi (1 + c) = $1045  = $1039.78 00501 .    

  $1045 after an decrease of 0.5% is $1039.78.  

 33. Given: c = 150%, Vf = $575 

   
1.51

$575

1 





c

V
V

f
i  = $230.00 

  $230.00 when increased by 150% equals $575.  

 34. Given: c = 210%, Vf = $465 

   
2.11

$465

1 





c

V
V

f
i  = $150.00 

  $150.00 after being increased by 210% equals $465.  

 35. Given: Vi = $150, c = 150% 

   Vf = Vi (1 + c) = $150(1 + 1.5) = $375.00 

  $150 after an increase of 150% is $375.00.  

 36. Let the retail price be p. Then 
   p + 0.13 p = $281.37 

p = 
1.13

$281.37
 = $249.00 

  The coat's sticker price was $249.00. 



Exercise 2.5  (continued) 

 37. Let the TV’s pre-tax price be p. Then 
   p + 0.05p + 0.07p = $2797.76 

 p = 
1.12

$2797.76
 = $2498.00 

  Then, GST = 0.05p = 0.05($2498) = $124.90 
  and PST = 0.07p = 0.07($2498) = $174.86 

 38. Let the population figure for 1999 be p. Then 
p + 0.1056p = 33,710,000 

  p = 
1.1056

0$33,710,00
 = 30,490,232 

  Rounded to the nearest 10,000, the population in 1999 was 30,490,000. 

 39. a. . Given: Vi = 32,400, Vf = 27,450 
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      The number of hammers sold declined by 15.28%. 

  b. Given: Vi = $15.10, Vf = $15.50 
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c  = 2.65%  

      The average selling price increased by 2.65%. 

  c. Year 1 revenue = 32,400($15.10) = $489,240 
   Year 2 revenue = 27,450($15.50) = $425,475 
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   The revenue decreased by 13.03%. 

 40. a. Given: Vi = $0.55, Vf = $1.55 
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   The share price rose by 181.82% in the first year.  

  b. Given: Vi = $1.55, Vf = $0.75 

    100%
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   The share price declined by 51.61% in the second year. 

  c. Given: Vi = $0.55, Vf = $0.75 

    100%
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c  = 36.36%  

   The share price rose by 36.36% over 2 years.  
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Exercise 2.5  (continued) 

 41. Pick an arbitrary price, say $1.00, for a bar of the soap.  

  The former unit price was $0.01
g 100

$1.00
iV  per gram. 

  The new unit price is $0.011111
g 90

$1.00
fV  per gram. 

  The percent increase in unit price is  

100%
$0.01

$0.01$0.011111
100% 
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if

V

VV
c  = 11.11% 

 42. Initial unit price = 
l .651

49.5$
= $3.327 per litre 

  Final unit price = 
l 2.2

98.7$
= $3.627 per litre 

  The percent increase in the unit price is  

%100
327.3$

327.3$627.3$
%100 


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c  = 9.02% 

 43. Initial unit price = 
kg .63

987.$
= $2.2167 per kg 

  Final unit price = 
kg 3

986.$
= $2.3267 per kg 

  The percent increase in unit price is  

%
..

% 100
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21672$32672$
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 44. Initial unit price = 
g 007

cents 1098
= 1.5686 cents per g 

  Final unit price = 
g 006

cents 998
= 1.6633 cents per g 

  The percent increase in unit price is  

%100×
1.5686

1.5686 - 1.6633
=%100×

  - 
=

i

if

V

VV
c  = 6.04% 

 45. Current unit price = 
ml 005

cents 449
= 0.8980 cents per ml 

  New unit price = 1.10(0.8980 cents per ml) = 0.9878 cents per ml 
  Price of a 425-ml container = (425 ml)  (0.9878 cents per ml) = 419.8 cents = $4.20 

 46. Current unit price = 
g 001

cents 115
= 1.15 cents per g 

  New unit price = 1.075(1.15 cents per g) = 1.23625 cents per g 
  Price of an 80-g bar = (80 g)  (1.23625 cents per g) = 98.9 cents = $0.99 

50  Business Mathematics in Canada, 7/e 



Exercise 2.5  (continued) 

 47.  Given: Vf = $338,500, c = 8.7% 
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500,338$
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c1

V
V f

i  = $311,400 

   The average price one year ago was $311,400. 

 48. Given: Vf = $348.60, c = –0.30 

      70.0

60.348$

30.01

60.348$

1








c

V
V f

i  = $498.00 

  The regular price of the boots is $498.00.  

 49. For Year 1, Vf  = $6 and Vf  – Vi = – $4 
  Therefore, Vi = Vf  + $4 = $6 + $4 = $10 

    40.00%100%
$10

$4
100% 







i

if

V

VV
c  

  For Year 2, Vi = $6 and Vf  – Vi = $4 

  Therefore, 66.67%100%
$6

$4
100% 




i

if

V

VV
c  

  The percent change was -40.00% in Year 1 and 66.67% in Year 2.  

 50. Given: For Q2 of 2009, Vf = 5.21 million, c = 626% 

    
6.26 + 1

million  5.21
=

+1
=

c

V
V

f
i  = 0.7176 million = 717,600 

  Rounded to the nearest 10,000, Apple sold 720,000 iPhones in Q2 of 2008. 

 51. Given: In February of 2008, Vi = 475,000 visitors and c = 1382% 
  In February of 2009, the number of visitors was 
    Vf = Vi (1 + c) = 475,000(1+13.82) = 7,039,500 
  Rounded to the nearest 1000, Twitter.com had 7,040,000 visitors in February of 2009. 

 52. The fees to Fund A will be 

  
   

  





100%
1.65%

1.65%2.38%
100%

BFundtoFees

BFundtoFeesAFundtoFees
 44.24% 

  more than the fees to Fund B. 

 53. Percent change in the GST rate  

    
   

  16.67%100%
6%

6%5%
=  100%×

rateGSTInitial

rateGSTInitialrateGSTFinal



  

  The GST paid by consumers was reduced by 16.67%.  

 54. Given: For February of 2009, Vf = 65,704,000 visitors, c = 228.2% 

  Then, 50001920=
2822+1

65,704,000
=

+1
= ,,

.c

V
V

f
i  

  That is, Facebook had 20,019,500 unique visitors in February of 2008 
  Therefore, the absolute increase from February of 2008 to February of 2009 was 
    65,704,000 – 20,019,500 = 45,680,000 (rounded to the nearest 10,000) 
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Exercise 2.5  (continued) 

 55. Given: Vf = $0.45, c = 76% 

    $1.88
0.761

$0.45

1








c

V
V

f
i  

   Price decline = Vi – Vf = $1.88 – $0.45 = $1.43  
   The share price dropped by $1.43. 

 56. Given: Vf = $24,300, c = – 55% 

    $54,000
0.551

$24,300

1








c

V
V

f
i  

  The amount of depreciation is $54,000 – $24,300 = $29,700.  

 57. Given: For the appreciation, Vi = Purchase price, c = 140%, Vf = List price 
           For the price reduction, Vi = List price, c = –10%, Vf = $172,800 

  List price =   $192,000
0.11

$172,800

1





 c

V f
 

  Original purchase price = 80,000$
1.41

$192,000

1





 c

V f
 

  The owner originally paid $80,000 for the property. 

 58. Given: For the markup, Vi = Cost, c = 22%, Vf = List price 

           For the markdown, Vi = List price, c = –10%, Vf = $17,568 

  List price =   $19,520
0.101

$17,568

1





 c

V f
 

  Cost (to dealer) = 16,000$
0.221

$19,520

1





 c

V f
 

  The dealer paid $16,000 for the car. 

 59. If General Paint’s prices are marked down by 30%, then 
General Paint’s prices = 0.70(Cloverdale Paint’s prices) 

  Hence, Cloverdale’s prices = 
0.70

prices  sPaint'  General
 = 1.4286(General Paint’s prices) 

  Therefore, you will pay 42.86% more at Cloverdale Paint. 

 60. If the Canadian dollar is worth 6.5% less than the US dollar, 
Canadian dollar = (1  0.065)(US dollar) = 0.935(US dollar) 

  Hence, US dollar = 
935.0

ollarCanadian d
= 1.0695(Canadian dollar) 

  Therefore, the US dollar is worth 6.95% more than the Canadian dollar. 

 61. Canada’s exports to US exceeded imports from the US by 23%. 
  That is,  Exports = 1.23(Imports) 

  Therefore,  Imports = 
1.23

Exports
 = 0.8130(Exports) 

  That is, Canada’s imports from US (= US exports to Canada) were  
1  0.8130 = 0.1870 = 18.70%  

  less than Canada’s exports to US (= US imports from Canada.) 
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Exercise 2.5  (continued) 

 62. Given: January sales were 17.4% less than December sales 
  Hence, January sales = (1  0.174)(December sales) = 0.826(December sales) 

  Therefore, December sales = 
0.826

salesJanuary 
 = 1.2107(January sales) 

  That is, December sales were 121.07% of January sales. 

 63. Suppose the initial ratio is 
y

x
. 

  If the denominator is reduced by 20%, then 

    Final ratio = 
y

x

y

x

yy

x
251

80200
.

..



 

  That is, the value of the ratio increases by 25%. 

 64. Next year there must be 15% fewer students per teacher. 
  With the same number of students, 

  







now Teachers

Students
0.85

 yearnext Teachers

Students
 

  Therefore,  Teachers next year = 
0.85

now Teachers
 = 1.1765(Teachers now) 

  That is, if the number of students does not change, the number of 
  teachers must be increased by 17.65%. 

 65. Given: Operating expenses = 0.40(Revenue) 

  Then Revenue = 
0.40

expenses  Operating
 = 2.5(Operating expenses) 

  That is, Revenue is 250% of Operating expenses, or 
  Revenue exceeds Operating expenses by 250%  100% = 150%. 

 66. Given: Equity = (100%  50%) of Debt = 50% of Debt = 0.50(Debt)  

  Therefore,   0.5

1

Debt0.5

Debt
 

Equity

Debt
 = 2 

  Since Debt is twice (or 200% of ) Equity, then debt financing is 100% more  
than equity financing. 

 67. Use ppm as the abbreviation for “pages per minute”. 
  Given: Lightning printer prints 30% more ppm than the Reliable printer. 
  That is, the Lightning’s printing speed is 1.30 times the Reliable’s printing speed. 
  Therefore, the Reliable’s printing speed is  

    
1.3

1
 = 0.7692 = 76.92% of the Lightning’s printing speed 

  Therefore, the Reliable’s printing speed is  
    100%  76.92% = 23.08% less than the Lighting’s speed.  
  The Lightning printer will require 23.08% less time than the Reliable for a long printing job. 

 68. Given: Euro is worth 39% more than the Canadian dollar. 
  That is,   Euro = 1.39(Canadian dollar) 

  Therefore,  Canadian dollar = 
1.39

Euro
 = 0.7914(Euro) = 79.14% of a Euro. 

  That is, the Canadian dollar is worth 100%  79.14% = 28.06% less than the Euro. 
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Exercise 2.5  (continued) 

 69. Let us use OT as an abbreviation for “overtime”. 
  The number of OT hours permitted by this year’s budget is 

  OT hours (this year) = 
 year)(this ratehourly  OT

 year)(this budget OT
 

  The number of overtime hours permitted by next year’s budget is 

  OT hours (next year) = 
[ ]

[ ]year) (this rate hourly OT 1.05

year) (this budget OT 1.03
=

year) (next rate hourly OT

year) (next budget OT
 

= 0.980952
 year)(this ratehourly  OT

 year)(this budget OT
 

= 98.0952% of this year’s OT hours 
  The number of OT hours must be reduced by 100%  98.0952% = 1.90%. 

Review Problems 
 1. 4(3a + 2b)(2b – a) – 5a(2a – b) = 4(6ab – 3a2 + 4b2 – 2ab) – 10a2 + 5ab  

       = – 22a2 + 21ab + 16b2  

 2. a. Given: c = 17.5%, Vi = $29.43 
   Vf  = Vi (1 + c) = $29.43(1.175) = $34.58  
   $34.58 is 17.5% more than $29.43. 

  b. Given: Vf = $100, c = – 80% 

   $500.00
0.801

$100

1








c

V
V

f
i   

   80% off $500 leaves $100. 

  c. Given: Vf = $100, c = – 15% 

   $117.65
0.151

$100

1








c

V
V

f
i   

   $117.65 reduced by 15% equals $100. 

  d. Given: Vi = $47.50, c = 320% 
   Vf = Vi (1 + c) = $47.50(1 + 3.2) = $199.50  
   $47.50 after an increase of 320% is $199.50.  

  e. Given: c = – 62%, Vf = $213.56 

   $562.00
0.621

$213.56

1








c

V
V

f
i  

   $562 decreased by 62% equals $213.56. 

  f. Given: c = 125%, Vf = $787.50 

   $350.00
1.251

$787.50

1








c

V
V

f
i   

   $350 increased by 125% equals $787.50.  

  g. Given: c = – 30%, Vi = $300 
       $210.000.301$3001  cVV if  

   $210 is 30% less than $300.  
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Review Problems  (continued) 

 3. a.   622y7064y3232y32y32
3

7y9
...... 


 

  b. PPP
P

P 996843296170610351371
09501

2

365

135
09501

365
75

...
.

. 








   

 4. a. 6(4y – 3)(2 – 3y) – 3(5 – y)(1 + 4y) = 6(8y – 12y2 – 6 + 9y) – 3(5 + 20y – y – 4y2) 
        = – 60y2 + 45y – 51  

  b. b
8

7

251

b25

4

4b5






.

 = 1.25b – 1 – 20 + 0.8b + 0.875b = 2.925b – 21 

  c. 





 

 365

151
085012

08501 365
63

.
.

x
x

 = 0.985541x + 2.070329x = 3.05587x  

  d. 1.5m
n

m
2

2n

3nm

2n

4m

2n

3nm4m

m48n

m72n96nm
2

222







 

 5. P(1 + i)n +  
365
93

2

0.091

$1500
10251$2500

1 



.

rt

S
 = $3038.766 + $1466.374 = $4505.14 

 6. a. L(1 – d1)(1 – d2)(1 – d3) = $340(1 – 0.15)(1 – 0.08)(1 – 0.05) = $252.59 

  b. 
   

  $1468.560.78290811$6764.706
0.0851

1
1

0.085

$575

1

1
1

3
































nii

R
 

 7. a. 
      

xx

xx

x

xx 9

6

227

6

23
5

26

5

232





 
 

  b. 
   
  

 
   9

3

33

6
6

33

23423 8

12502

8
4

1

502

42

a

b

ab

b
a

ab

ba



















..
 

 8. 
2

5

3

2

2

1

53

222

8

5

156

25

2

315

6

5

3

2

x

x

xxxx

x


























































 

 9. a. 1.007524 = 1.19641 

  b.   0081648501051 61 .. 

 
 

  c. 152741
00750

1007501 36
.

.

.



 

  d. 
 

118589
0450

045011 12

.
.

.


 
 

 10. a. 
 

020589
6000

19268024

6000

16001
240

.
.

.

.

.






 

  b.   008264840102501 31 ..   
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Review Problems  (continued) 

 11. a. 831
365

59
1301

1301

2

365
92

$.
.







 


x

x
 

          1.936545x + 1.021014x = $831 
         2.957559x = $831 
             x = $280.97 

  b.  3x(1.035) + 
23 031

2500

031 .

$

.
 x

x
 

       3.47782x + 0.91514x + x = $2356.49 
               x = $436.96 

 12. a.   850081
2081

4
3

$.
.


xx

 

   0.793832x + 0.680245x = $850  
         x = $576.63  

   Check:    $850.00$392.250$457.7491.08
2

$576.63

1.08

4
3


$576.63

 

  b. $1565.70
08501365

77
085012

365
132










 

.
.

x
x  

         2.03586x + 0.97018x = $1565.70 
        x = $520.85  
   Check: 

   2($520.85) $1565.70$505.32$1060.38
0.0851

$520.85

365

77
0.0851

365
132










   

 13.              321 111    dddLN 
    $324.30 = $498(1 – 0.20)(1 – d2)(1 – 0.075) 
    $324.30 = $368.52(1 – d2) 

   
52.368$

30.324$
 = (1 – d2) 

 d2 = 1 – 0.8800 = 0.120 = 12.0% 

 14. Vf  = Vi (1 + c1)(1 + c2)(1 + c3)  
  $586.64 = $500(1 + 0.17)(1 + c2)(1 + 0.09) 
  $586.64 = $637.65(1 + c2) 

   1 + c2 = 
65.637$

64.586$
 

  c2 = 0.9200 – 1 = –0.0800 = –8.00% 

 15.   3x + 5y = 11     
    2x –   y = 16     
  To eliminate y, 
    :   3x + 5y = 11 

      5: 10x – 5y = 80 
  Add:  13x +  0  = 91 
      x = 7 
  Substitute into equation : 2(7) – y = 16 
           y = –2 
  Hence,  (x, y) = (7, –2) 
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Review Problems  (continued) 

 16. a.  4a – 5b = 30   
    2a – 6b = 22   
   To eliminate a, 
      1:    a –   5b = 30 
      2:  4a – 12b = 44 
   Subtract:            7b = –14 
                  b = –2 
   Substitute into :4a – 5(–2) = 30 
            4a = 30 – 10 
              a = 5 
   Hence,    (a, b) = (5, –2) 

  b.    76x – 29y = 1050  
    –13x – 63y =   250  
   To eliminate , 
      13:    988x –   377y = 13,650 
      76:  988x – 4788y = 19,000 
   Add:      –5165y = 32,650 
        y = –6.321 
   Substitute into : 76x – 29(–6.321) = 1050 
             76x = 1050 – 183.31 
                 x = 11.40 
   Hence,    (x, y) = (11.40, –6.32) 

 17.           FV = PV(1 + i1)(1 + i2) 

   21 iPV

FV


 = (1 + i1)  

               i1 =  21 iPV

FV


 – 1 

 18. Given: 
 Year 1 value (Vi) Year 2 value (Vf) 

Gold produced: 34,300 oz. 23,750 oz. 
Average price: $1160 $1280 

  a. Percent change in gold production = %.%
,

,,
7630100

30034

3003475023



 

  b. Percent change in price = 10.34%=100%×
$1160

$1160-$1280
 

  c. Year 1 revenue, Vi = 34,300($1160) = $39.788 million 
   Year 2 revenue, Vf, = 23,750($1280) = $30.400 million 

   Percent change in revenue = 23.60%-=100%×
$39.788

$39.788-$30.400
 

 19. Given:  For the first year, Vi = $3.40, Vf = $11.50.  
    For the second year, Vi = $11.50, c = – 35%. 

  a. 238.24%100%
$3.40

$3.40$11.50
100 





 %

i

if

V

VV
c  

   The share price increased by 238.24% in the first year. 

  b. Current share price, Vf = Vi (1 + c) = $11.50(1 – 0.35) = $7.48. 
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Review Problems  (continued) 

 20. Given: For the first year, c = 150% 
    For the second year, c = – 40%, Vf = $24 
  The price at the beginning of the second year was 

    f
f

i V
c

V
V 





 $40.00

0.401

$24

1
 for the first year.  

  The price at the beginning of the first year was 

    $16.00
1.501

$40.00

1








c

V
V

f
i  

  Barry bought the stock for $16.00 per share. 

 21. Given:  Last year’s revenue = $2,347,000 
    Last year’s expenses = $2,189,000 
  a. Given: Percent change in revenue = 10%; Percent change in expenses = 5% 
   Anticipated revenues, Vf = Vi (1 + c) = $2,347,000(1.1) = $2,581,700 
   Anticipated expenses =      $2,189,000(1.05) = $2,298,450 
   Anticipated profit     =        $283,250 
   Last year's profit    =    $2,347,000 – $2,189,000 = $158,000 

   Percent increase in profit = 79.27%100%
$158,000

$158,000$283,250



 

  b. Given: c(revenue) = –10%; c(expenses) = – 5% 
   Anticipated revenues  = $2,347,000(1 – 0.10) = $2,112,300 
   Anticipated expenses = $2,189,000(1 – 0.05) = $2,079,550 
   Anticipated profit                 $32,750 

   Percent change in profit = 79.27%100%
$158,000

$158,000$32,750



 

   The operating profit will decline by 79.27%. 

 22. Given: Ken's share = 0.80(Hugh's share) + $15,000; Total distribution = $98,430 
  Let H represent Hugh's share. Then 
   Hugh's share + Ken's share = Total distribution 

H + 0.8H + $15,000 = $98,430 
1.8H = $83,430 

  H = $46,350 
   Hugh should receive $46,350 and Ken should receive $98,430 – $46,350 = $52,080. 

 23. Given: Grace's share = 1.2(Kajsa’s share); Mary Anne's share = 8
5 (Grace's share) 

           Total allocated = $36,000 
   Let K represent Kajsa’s share. 
   (Kajsa’s share) + (Grace's share) + (Mary Anne's share) = $36,000 
    K + 1.2K + 1.2K8

5   = $36,000 

               2.95 K = $36,000 
            K = $12,203.39  
   Kajsa’s should receive $12,203.39. Grace should receive 1.2K = $14,644.07. 
   Mary Anne should receive 8

5 ($14,644.07) = $9152.54. 



Review Problems  (continued) 

 24.  Let R represent the price per kg for red snapper and  
   let L represent the price per kg for ling cod. Then 
    370R + 264L = $2454.20  
    255R + 304L = $2124.70  
  To eliminate R, 
    370:   R + 0.71351L = $6.6330 
    255:    R + 1.19216L = $8.3322 
  Subtract:             –0.47865L = –$1.6992 
          L = $3.55 
  Substitute into : 370R + 264($3.55) = $2454.20 
       370R = $1517.00 
             R = $4.10 
  Nguyen was paid $3.55 per kg for ling cod and $4.10 per kg for red snapper. 

 25. Let b represent the base salary and r represent the commission rate. Then 
     r($27,000) + b = $2815.00  
     r($35,500) + b = $3197.50  
  Subtract:   –$8500r          =    $382.50 
                r = 0.045 
  Substitute into : 0.045($27,000) + b = $2815 
               b = $1600 
  Deanna’s base salary is $1600 per month and her commission rate is 4.5%. 

 26. Given: Total initial investment = $7800; Value 1 year later = $9310 
    Percent change in ABC portion = 15% 
    Percent change in XYZ portion = 25% 
  Let X represent the amount invested in XYZ Inc. 
  The solution "idea" is:  
    (Amount invested in ABC)1.15 + (Amount invested in XYZ)1.25 = $9310 
  Hence,  
    ($7800 – X)1.15 + (X)1.25 = $9310 
         $8970 – 1.15X + 1.25X = $9310 
               0.10X = $9310 – $8970 
           X = $3400  
  Rory invested $3400 in XYZ Inc. and $7800 – $3400 = $4400 in ABC Ltd.  

 27. Let the regular season ticket prices be R for the red section and B for the  
  blue section. Then 
           2500R  +        4500B  = $50,250  
     2500(1.3R) + 4500(1.2B) = $62,400  

      1.2: 2500(1.2R) + 4500(1.2B) = $60,300 
   Subtract: 2500(0.1R) +           0       = $2100 
          R = $8.40 
  Substitute into :     2500($8.40) + 4500B = $50,250 
           B = $6.50 
  The ticket prices for the playoffs cost 
          1.3  $8.40 = $10.92 in the “reds” 
   and 1.2  $6.50 = $7.80 in the “blues”. 
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Review Problems  (continued) 

 28. 60% of a 8
3 interest was purchased for $25,000. 

  Let the V represent the implied value of the entire partnership. 

  Then 
8

3
0.60  V = $25,000 

       V = 
30.60

$25,0008




 = $111,111 

  The implied value of the chalet was $111,111. 
 
 29. Let S represent the number of cucumbers sold individually and 
  let F represent the number of four-cucumber packages sold in the promotion. Then 
             S +        4F = 541  
    $0.98S + $2.94F = $418.46  
  To eliminate S, 
     $0.98: $0.98S + $3.92F = $530.18 
                : $0.98S + $2.94F = $418.46 
  Subtract:        0     + $0.98F = $111.72 
        F = 114 
  Hence, a total of 4 114 = 456 cucumbers were sold 
  on the four-for-the-price-of-three promotion. 
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