2
 Review and Applications of Algebra

Exercise 2.1

1. $(-p)+(-3 p)+4 p=-p-3 p+4 p=\underline{\underline{0}}$
2. $(5 s-2 t)-(2 s-4 t)=5 s-2 t-2 s+4 t=\underline{3 s+2 t}$
3. $4 x^{2} y+\left(-3 x^{2} y\right)-\left(-5 x^{2} y\right)=4 x^{2} y-3 x^{2} y+5 x^{2} y=\underline{\underline{6} x^{2} y}$
4. $1-\left(7 e^{2}-5+3 e-e^{3}\right)=1-7 e^{2}+5-3 e+e^{3}=e^{e^{3}-7 e^{2}-3 e+6}$
5. $\left(6 x^{2}-3 x y+4 y^{2}\right)-\left(8 y^{2}-10 x y-x^{2}\right)=6 x^{2}-3 x y+4 y^{2}-8 y^{2}+10 x y+x^{2}$

$$
=7 x^{2}+7 x y-4 y^{2}
$$

6. $\left(7 m^{3}-m-6 m^{2}+10\right)-\left(5 m^{3}-9+3 m-2 m^{2}\right)$

$$
\begin{aligned}
& =7 m^{3}-m-6 m^{2}+10-5 m^{3}+9-3 m+2 m^{2} \\
& =2 m^{3}-4 m^{2}-4 m+19
\end{aligned}
$$

7. $2(7 x-3 y)-3(2 x-3 y)=14 x-6 y-6 x+9 y=\underline{\underline{8 x+3 y}}$
8. $4\left(a^{2}-3 a-4\right)-2\left(5 a^{2}-a-6\right)=4 a^{2}-12 a-16-10 a^{2}+2 a+12$

$$
=-6 a^{2}-10 a-4
$$

9. $15 x-[4-2(5 x-6)]=15 x-4+10 x-12=\underline{\underline{25 x}-16}$
10. $6 a-[3 a-2(2 b-a)]=6 a-3 a+4 b-2 a=\underline{\underline{a}+4 b}$
11. $\frac{2 x+9}{4}-1.2(x-1)=0.5 x+2.25-1.2 x+1.2=-\underline{\underline{0.7 x+3.45}}$
12. $\frac{x}{2}-x^{2}+\frac{4}{5}-0.2 x^{2}-\frac{4}{5} x+\frac{1}{2}=0.5 x-x^{2}+0.8-0.2 x^{2}-0.8 x+0.5$

$$
=-1.2 x^{2}-0.3 x+1.3
$$

13. $\frac{8 x}{0.5}+\frac{5.5 x}{11}+0.5(4.6 x-17)=16 x+0.5 x+2.3 x-8.5=\underline{\underline{18.8 x-8.5}}$
14. $\frac{2 x}{1.045}-\frac{2.016 x}{3}+\frac{x}{2}=1.9139 x-0.6720 x+0.5 x=\underline{\underline{1.7419 x}}$
15. $\frac{\mathrm{P}}{1+0.095 \times \frac{5}{12}}+2 \mathrm{P}\left(1+0.095 \times \frac{171}{365}\right)=0.96192 \mathrm{P}+2.08901 \mathrm{P}=\underline{\underline{3.0509 P}}$
16. $y\left(1-0.125 \times \frac{213}{365}\right)+\frac{2 y}{1+0.125 \times \frac{88}{365}}=0.92706 y+1.94149 y=\underline{\underline{2.8685} y}$
17. $\mathrm{k}(1+0.04)^{2}+\frac{2 \mathrm{k}}{(1+0.04)^{2}}=1.08160 \mathrm{k}+1.84911 \mathrm{k}=\underline{\underline{2.9307 k}}$
18. $\frac{h}{(1+0.055)^{2}}-3 h(1+0.055)^{3}=0.89845 h-3.52272 h=-\underline{\underline{-2.6243 h}}$
19. $4 a(3 a b-5 a+6 b)=12 a^{2} b-20 a^{2}+24 a b$

Exercise 2.1 (continued)

20. $9 k\left(4-8 k+7 k^{2}\right)=36 k-72 k^{2}+63 k^{3}$
21. $-5 x y\left(2 x^{2}-x y-3 y^{2}\right)=-10 x^{3} y+5 x^{2} y^{2}+15 x y^{3}$
22. $-\left(p^{2}-4 p q-5 p\right)\left(\frac{2 q}{p}\right)=-2 p q+8 q^{2}+10 q$
23. $(4 r-3 t)(2 t+5 r)=8 r t+20 r^{2}-6 t^{2}-15 r t=\underline{\underline{20} r^{2}-7 r t-6 t^{2}}$
24. $\left(3 p^{2}-5 p\right)(-4 p+2)=-12 p^{3}+6 p^{2}+20 p^{2}-10 p=-12 p^{3}+26 p^{2}-10 p$
$253(a-2)(4 a+1)-5(2 a+3)(a-7)=3\left(4 a^{2}+a-8 a-2\right)-5\left(2 a^{2}-14 a+3 a-21\right)$

$$
\begin{aligned}
& =12 a^{2}-21 a-6-10 a^{2}+55 a+105 \\
& =\underline{\underline{2} a^{2}+34 a+99}
\end{aligned}
$$

26. $5(2 x-y)(y+3 x)-6 x(x-5 y)=5\left(2 x y+6 x^{2}-y^{2}-3 x y\right)-6 x^{2}+30 x y$

$$
\begin{aligned}
& =-5 x y+30 x^{2}-5 y^{2}-6 x^{2}+30 x y \\
& =\underline{24 x^{2}+25 x y-5 y^{2}}
\end{aligned}
$$

27. $\frac{18 x^{2}}{3 x}=\underline{\underline{6 x}}$
28. $\frac{6 a^{2} b}{-2 a b^{2}}=-3 \frac{a}{b}$
29. $\frac{x^{2} y-x y^{2}}{x y}=\underline{\underline{x-y}}$
30. $\frac{-4 x+10 x^{2}-6 x^{3}}{-0.5 x}=\underline{\underline{8-20 x+12 x^{2}}}$
31. $\frac{12 x^{3}-24 x^{2}+36 x}{48 x}=\underline{\underline{\frac{x^{2}-2 x+3}{4}}}$
32. $\frac{32 a^{2} b-8 a b+14 a b^{2}}{2 a b}=16 a-4+7 b$
33. $\frac{4 a^{2} b^{3}-6 a^{3} b^{2}}{2 a b^{2}}=\underline{\underline{2 a b}-3 a^{2}}$
34. $\frac{120(1+i)^{2}+180(1+i)^{3}}{360(1+i)}=\underline{\underline{\frac{2(1+i)+3(1+i)^{2}}{6}}}$
35. $3 d^{2}-4 d+15=3(2.5)^{2}-4(2.5)+15$

$$
\begin{aligned}
& =18.75-10+15 \\
& =\underline{\underline{23.75}}
\end{aligned}
$$

36. $15 \mathrm{~g}-9 \mathrm{~h}+3=15(14)-9(15)+3=\underline{\underline{78}}$
37. $7 x(4 y-8)=7(3.2)(4 \times 1.5-8)=22.4(6-8)=\underline{\underline{-44.8}}$
38. $I \div \operatorname{Pr}=\frac{\$ 13.75}{\$ 500 \times 0.11}=\underline{\underline{0.250}}$
39. $\frac{I}{r t}=\frac{\$ 23.21}{0.095 \times \frac{283}{365}}=\frac{\$ 23.21}{0.073658}=\underline{\$ 315.11}$

Exercise 2.1 (continued)

40. $\frac{N}{1-d}=\frac{\$ 89.10}{1-0.10}=\underline{\underline{\$ 99.00}}$
41. $L\left(1-d_{1}\right)\left(1-d_{2}\right)\left(1-d_{3}\right)=\$ 490(1-0.125)(1-0.15)(1-0.05)=\$ 346.22$
42. $P(1+r t)=\$ 770\left(1+0.013 \times \frac{223}{365}\right)=\$ 770(1.0079425)=\underline{\underline{\$ 776.12}}$
43. $\frac{S}{1+r t}=\frac{\$ 2500}{1+0.085 \times \frac{123}{365}}=\frac{\$ 2500}{1.028644}=\underline{\$ 2430.38}$
44. $(1+i)^{m}-1=(1+0.0225)^{4}-1=\underline{\underline{0.093083}}$
45. $P(1+i)^{n}=\$ 1280(1+0.025)^{3}=\$ 1378.42$
46. $\frac{S}{(1+i)^{n}}=\frac{\$ 850}{(1+0.0075)^{6}}=\frac{\$ 850}{1.045852}=\$ 812.73$
47. $R\left[\frac{(1+i)^{n}-1}{i}\right]=\$ 550\left(\frac{1.085^{3}-1}{0.085}\right)=\$ 550\left(\frac{0.2772891}{0.085}\right)=\underline{\underline{\$ 1794.22}}$
48. $R\left[\frac{(1+i)^{n}-1}{i}\right](1+i)=\$ 910\left(\frac{1.1038129^{4}-1}{0.1038129}\right)(1.1038129)$

$$
=\$ 910\left(\frac{0.4845057}{0.1038129}\right)(1.1038129)
$$

$$
=\$ 4687.97
$$

49. $\frac{R}{i}\left[1-\frac{1}{(1+i)^{n}}\right]=\frac{\$ 630}{0.115}\left(1-\frac{1}{1.115^{2}}\right)=\underline{\$ 1071.77}$
50. $P\left(1+r t_{1}\right)+\frac{S}{1+r t_{2}}=\$ 470\left(1+0.075 \times \frac{104}{365}\right)+\frac{\$ 390}{1+0.075 \times \frac{73}{365}}$

$$
=\$ 470(1.021370)+\frac{\$ 390}{1.01500}
$$

$=\$ 480.044+\$ 384.236$
$=\$ 864.28$

Exercise 2.2

1. $\quad I=P r t$
$\$ 6.25=P(0.05) 0.25$
$\$ 6.25=0.0125 P$

$$
P=\frac{\$ 6.25}{0.0125}=\underline{\$ 500.00}
$$

Exercise 2.2 (continued)

2. $P V=\frac{P M T}{i}$
$\$ 150,000=\frac{\$ 900}{i}$
$\$ 150,000 i=\$ 900$

$$
i=\frac{\$ 900}{\$ 150,000}=\underline{\underline{0.00600}}
$$

3. $S=P(1+r t)$
$\$ 3626=P(1+0.004 \times 9)$
$\$ 3626=1.036 P$

$$
P=\frac{\$ 3626}{1.036}=\underline{\$ 3500.00}
$$

4. $N=L(1-d)$
$\$ 891=L(1-0.10)$
$\$ 891=0.90 L$

$$
L=\frac{\$ 891}{0.90}=\$ 9900.00
$$

5.

$$
\begin{aligned}
N & =L(1-d) \\
\$ 410.85 & =\$ 498(1-\mathrm{d}) \\
\frac{\$ 410.85}{\$ 498} & =1-d \\
0.825 & =1-d \\
d & =1-0.825=\underline{\underline{0.175}}
\end{aligned}
$$

6.

$$
\begin{aligned}
S & =P(1+r t) \\
\$ 5100 & =\$ 5000(1+0.0025 t) \\
\$ 5100 & =\$ 5000+\$ 12.5 t \\
\$ 5100-\$ 5000 & =\$ 12.5 t \\
t & =\frac{\$ 100}{\$ 12.5}=\underline{\underline{8.00}}
\end{aligned}
$$

7.

$$
\begin{aligned}
N I & =(C M) X-F C \\
\$ 15,000 & =C M(5000)-\$ 60,000 \\
\$ 15,000+\$ 60,000 & =5000 C M \\
C M & =\frac{\$ 75,000}{5000}=\underline{\$ 15.00}
\end{aligned}
$$

8.

$$
\begin{aligned}
N I & =(C M) X-F C \\
-\$ 542.50 & =(\$ 13.50) X-\$ 18,970 \\
\$ 18,970-\$ 542.50 & =(\$ 13.50) X \\
X & =\frac{\$ 18,427.50}{\$ 13.50}=\underline{\underline{1365}}
\end{aligned}
$$

9. $\quad N=L\left(1-d_{1}\right)\left(1-d_{2}\right)\left(1-d_{3}\right)$
$\$ 1468.80=L(1-0.20)(1-0.15)(1-0.10)$
$\$ 1468.80=L(0.80)(0.85)(0.90)$

$$
L=\frac{\$ 1468.80}{0.6120}=\$ 2400.00
$$

Exercise 2.2 (continued)

10.

$$
\begin{aligned}
N & =L\left(1-d_{1}\right)\left(1-d_{2}\right)\left(1-d_{3}\right) \\
\$ 70.29 & =\$ 99.99(1-0.20)\left(1-d_{2}\right)(1-0.05) \\
\$ 70.29 & =\$ 75.9924\left(1-d_{2}\right) \\
\frac{\$ 70.29}{\$ 75.9924} & =\left(1-d_{2}\right) \\
d_{2} & =1-0.92496=\underline{\underline{0.0750}}
\end{aligned}
$$

11. $\quad F V=P V\left(1+i_{1}\right)\left(1+i_{2}\right)\left(1+i_{3}\right) \cdots\left(1+i_{n}\right)$

$$
\begin{aligned}
\$ 1094.83 & =\$ 1000\left(1+i_{1}\right)(1+0.03)(1+0.035) \\
\$ 1094.83 & =\$ 1066.05\left(1+i_{1}\right) \\
\frac{\$ 1094.83}{\$ 1066.05} & =1+i_{1} \\
i_{1} & =1.02700-1=\underline{\underline{0.0270}}
\end{aligned}
$$

12. $F V=P M T\left[\frac{(1+i)^{n}-1}{i}\right]$
$\$ 1508.54=$ PMT $\left[\frac{(1+0.05)^{4}-1}{0.05}\right]$
$\$ 1508.54=P M T\left(\frac{1.21550625-1}{0.05}\right)$

$$
P M T=\$ 1508.54 \times \frac{0.05}{0.21550625}=\$ 350.00
$$

13. $P V=P M T\left[\frac{1-(1+i)^{-n}}{i}\right]$

$$
\$ 6595.20=P M T\left[\frac{1-(1+0.06)^{-20}}{0.06}\right]
$$

$$
\$ 6595.20=P M T\left[\frac{1-0.31180473}{0.06}\right]
$$

$$
P M T=\$ 6595.20 \times \frac{0.06}{0.68819527}=\underline{\$ 575.00}
$$

14.

$$
\begin{aligned}
F V & =P V(1+i)^{n} \\
\$ 9321.91 & =\$ 2000(1+i)^{20} \\
\left(\frac{\$ 9321.91}{\$ 2000}\right)^{1 / 20} & =1+i \\
1.0800 & =1+i \\
i & =1.08000-1=\underline{\underline{0.0800}}
\end{aligned}
$$

Exercise 2.2 (continued)

15.

$$
\begin{aligned}
P V & =F V(1+i)^{-n} \\
\$ 5167.20 & =\$ 10,000 \\
\frac{\$ 5167.20}{\$ 10,000} & =\frac{1}{(1+i)^{15}} \\
(1+i)^{15} & =\frac{\$ 10,000}{\$ 5167.20} \\
1+i & =(1.935284)^{1 / 15}=1.0450 \\
i & =\underline{\underline{0.0450}}
\end{aligned}
$$

16. $I=P r t$

$$
\begin{aligned}
\frac{I}{P r} & =\frac{P r t}{P r} \\
t & =\frac{I}{P r}
\end{aligned}
$$

18. $N=L(1-d)$

$$
\begin{aligned}
& \frac{N}{L}=1-d \\
& d=1-\frac{N}{L}
\end{aligned}
$$

20. $N I=(C M) X-F C$
$N I+F C=(C M) X$
$X=\frac{N I+F C}{C M}$
21. $S=P(1+r t)$

$$
\begin{gathered}
S=P+P r t \\
S-P=P r t \\
t=(S-P) / P r
\end{gathered}
$$

24. $\quad N=L\left(1-d_{1}\right)\left(1-d_{2}\right)\left(1-d_{3}\right)$

$$
\begin{aligned}
& \frac{N}{L\left(1-d_{1}\right)\left(1-d_{2}\right)}=\left(1-d_{3}\right) \\
& d_{3}=1-\frac{N}{L\left(1-d_{1}\right)\left(1-d_{2}\right)}
\end{aligned}
$$

25. $\quad F V=P V(1+i)^{n}$

$$
\begin{aligned}
& \frac{F V}{(1+i)^{n}}=P V \\
& P V=F V(1+i)^{-n}
\end{aligned}
$$

17. $\quad P V=\frac{P M T}{i}$
$i(P V)=P M T$

$$
i=\frac{P M T}{P V}
$$

19. $N I=(C M) X-F C$

$$
\begin{aligned}
N I+F C & =(C M) X \\
C M & =\frac{N I+F C}{X}
\end{aligned}
$$

21. $S=P(1+r t)$

$$
S=P+P r t
$$

$S-P=P r t$

$$
r=(S-P) / P t
$$

23. $N=L\left(1-d_{1}\right)\left(1-d_{2}\right)\left(1-d_{3}\right)$
$\frac{N}{L\left(1-d_{2}\right)\left(1-d_{3}\right)}=\left(1-d_{1}\right)$
$d_{1}=1-\frac{N}{L\left(1-d_{2}\right)\left(1-d_{3}\right)}$
24. $F V=P V(1+i)^{n}$
$\left(\frac{F V}{P V}\right)^{1 / n}=(1+i)$
$i=\left(\frac{F V}{P V}\right)^{1 / n}-1$

Exercise 2.2 (continued)

27. $\mathrm{a}^{2} \times \mathrm{a}^{3}=\underline{\underline{a^{5}}}$
28. $\left(x^{6}\right)\left(x^{-4}\right)=\underline{\underline{x^{2}}}$
29. $b^{10} \div b^{6}=b^{10-6}=\underline{b^{4}}$
30. $h^{7} \div h^{-4}=h^{7-(-4)}=\underline{\underline{h^{11}}}$
31. $(1+i)^{4} \times(1+i)^{9}=\underline{(1+i)^{13}}$
32. $(1+i) \times(1+i)^{n}=\underline{(1+i)^{n+1}}$
33. $\left(x^{4}\right)^{7}=x^{4 \times 7}=\underline{\underline{x^{28}}}$
34. $\left(y^{3}\right)^{3}=y^{9}$
35. $\left(\mathrm{t}^{6}\right)^{\frac{1}{3}}=\underline{\underline{t^{2}}}$
36. $\left(n^{0.5}\right)^{8}=\underline{n}^{4}$
37. $\frac{\left(x^{5}\right)\left(x^{6}\right)}{x^{9}}=x^{5+6-9}=\underline{\underline{x^{2}}}$
38. $\frac{\left(x^{5}\right)^{6}}{x^{9}}=x^{5 \times 6-9}=\underline{\underline{x^{21}}}$
39. $[2(1+i)]^{2}=\underline{4(1+i)^{2}}$
40. $\left(\frac{1+i}{3 i}\right)^{3}=\underline{\underline{(1+i)^{3}}}$
41. $\frac{4 r^{5} t^{6}}{\left(2 r^{2} t\right)^{3}}=\frac{4 r^{5} t^{6}}{8 r^{6} t^{3}}=\frac{r^{5-6} t^{6-3}}{2}=\frac{t^{3}}{\underline{\underline{2 r}}}$
42. $\frac{\left(-r^{3}\right)(2 r)^{4}}{\left(2 r^{-2}\right)^{2}}=\frac{-r^{3}\left(16 r^{4}\right)}{4 r^{-4}}=-4 r^{3+4-(-4)}=\underline{\underline{-4 r^{11}}}$
43. $8^{4 / 3}=\left(8^{1 / 3}\right)^{4}=2^{4}=\underline{\underline{16.0000}}$
44. $-27^{2 / 3}=-\left(27^{1 / 3}\right)^{2}=\underline{\underline{-9.00000}}$
45. $7^{3 / 2}=7^{1.5}=\underline{\underline{18.5203}}$
46. $5^{3 / 4}=5^{-0.75}=\underline{\underline{0.299070}}$
47. $(0.001)^{-2}=\underline{\underline{1,000,000}}$
48. $0.893^{-1 / 2}=0.893^{-0.5}=\underline{\underline{1.05822}}$

Exercise 2.2 (continued)

49. $(1.0085)^{5}(1.0085)^{3}=1.0085^{8}=\underline{\underline{1.07006}}$
50. $(1.005)^{3}(1.005)^{-6}=1.005^{-3}=\underline{\underline{0.985149}}$
51. $\sqrt[3]{103}=103^{0 . \overline{3}}=\underline{\underline{100990}}$
52. $\sqrt[6]{105}=\underline{\underline{100816}}$
53. $\left(4^{4}\right)\left(3^{-3}\right)\left(-\frac{3}{4}\right)^{3}=\frac{4^{4}}{3^{3}}\left(-\frac{3^{3}}{4^{3}}\right)=\underline{4.00000}$
54. $\left[\left(-\frac{3}{4}\right)^{2}\right]^{-2}=\left(-\frac{3}{4}\right)^{-4}=\left(-\frac{4}{3}\right)^{4}=\frac{256}{81}=\underline{\underline{3.16049}}$
55. $\left(\frac{2}{3}\right)^{3}\left(-\frac{3}{2}\right)^{2}\left(-\frac{3}{2}\right)^{-3}=\left(\frac{2}{3}\right)^{3}\left(\frac{3}{2}\right)^{2}\left(-\frac{2}{3}\right)^{3}=\frac{2}{3}\left(-\frac{2}{3}\right)^{3}=-\frac{16}{81}=\underline{\underline{-0.197531}}$
56. $\left(-\frac{2}{3}\right)^{3}+\left(\frac{3}{2}\right)^{-2}=\frac{\left(-\frac{2}{3}\right)^{3}}{\left(\frac{2}{3}\right)^{2}}=-\frac{2}{3}=\underline{\underline{-0.666667}}$
57. $\frac{103^{16}-1}{0.03}=\underline{\underline{20.1569}}$
58. $\frac{(1008 \overline{3})^{30}-1}{0.008 \overline{3}}=\frac{0.2826960}{0.008333333}=\underline{\underline{33.9235}}$
59. $\frac{1-10225^{-20}}{0.0225}=\frac{0.3591835}{0.0225}=\underline{\underline{15.9637}}$
60. $\frac{1-(100 \overline{6})^{-32}}{0.00 \overline{6}}=\frac{0.1915410}{0.00 \overline{6}}=\underline{\underline{28.7312}}$
61. $(1+0.0275)^{1 / 3}=\underline{\underline{1.00908}}$
62. $(1+0.055)^{1 / 6}-1=\underline{\underline{0.00896339}}$

Exercise 2.3

1. $10 a+10=12+9 a$

$$
10 a-9 a=12-10
$$

$$
a=\underline{\underline{2}}
$$

2. $29-4 y=2 y-7$

$$
\begin{aligned}
36 & =6 y \\
y & =\underline{\underline{6}}
\end{aligned}
$$

3. $0.5(x-3)=20$

$$
\begin{aligned}
x-3 & =40 \\
x & =\underline{43}
\end{aligned}
$$

Exercise 2.3 (continued)

4. $\frac{1}{3}(x-2)=4$

$$
\begin{aligned}
x-2 & =12 \\
x & =\underline{\underline{14}}
\end{aligned}
$$

5. $\quad y=192+0.04 y$
$y-0.04 y=192$

$$
y=\frac{192}{0.96}=\underline{\underline{200}}
$$

6. $x-0.025 x=341.25$

$$
0.975 x=341.25
$$

$$
x=\frac{341.25}{0.975}=\underline{\underline{350}}
$$

7. $12 x-4(2 x-1)=6(x+1)-3$

$$
\begin{aligned}
12 x-8 x+4 & =6 x+6-3 \\
-2 x & =-1 \\
x & =\underline{0.5}
\end{aligned}
$$

8. $3 y-4=3(y+6)-2(y+3)$

$$
\begin{aligned}
& =3 y+18-2 y-6 \\
2 y & =16 \\
y & =\underline{\underline{8}}
\end{aligned}
$$

9. $8-0.5(x+3)=0.25(x-1)$
$8-0.5 x-1.5=0.25 x-0.25$

$$
\begin{aligned}
-0.75 x & =-6.75 \\
x & =\underline{\underline{9}}
\end{aligned}
$$

10. $5(2-c)=10(2 c-4)-6(3 c+1)$

$$
\begin{aligned}
10-5 c & =20 c-40-18 c-6 \\
-7 c & =-56 \\
c & =\underline{\underline{8}}
\end{aligned}
$$

11. $3.1 \mathrm{t}+145=10+7.6 \mathrm{t}$

$$
\begin{aligned}
-4.5 t & =-135 \\
t & =\underline{\underline{30}}
\end{aligned}
$$

12. $1.25 y-20.5=0.5 y-11.5$

$$
\begin{aligned}
0.75 y & =9 \\
y & =\underline{\underline{12}}
\end{aligned}
$$

13. $\frac{x}{1.1^{2}}+2 x(1.1)^{3}=\$ 1000$
$0.8264463 x+2.622 x=\$ 1000$
$3.488446 x=\$ 1000$
$x=\$ 286.66$
14. $\frac{3 x}{1.025^{6}}+x(1.025)^{8}=\$ 2641.35$
$2.586891 x+1.218403 x=\$ 2641.35$

$$
x=\$ 694.13
$$

Exercise 2.3 (continued)

15.

$$
\begin{aligned}
\frac{2 x}{1.03^{7}}+x+x\left(1.03^{10}\right) & =\$ 1000+\frac{\$ 2000}{1.03^{4}} \\
1.626183 x+x+1.343916 x & =\$ 1000+\$ 1776.974 \\
3.970099 x & =\$ 2776.974 \\
x & =\$ 699.47
\end{aligned}
$$

16. $x(1.05)^{3}+\$ 1000+\frac{x}{1.05^{7}}=\frac{\$ 5000}{1.05^{2}}$

$$
\begin{aligned}
1.157625 x+0.7106813 x & =\$ 4535.147-\$ 1000 \\
x & =\underline{\$ 1892.17}
\end{aligned}
$$

17. $x\left(1+0.095 \times \frac{84}{365}\right)+\frac{2 x}{1+0.095 \times \frac{108}{365}}=\$ 1160.20$

$$
\begin{aligned}
1.021863 x+1.945318 x & =\$ 1160.20 \\
2.967181 x & =\$ 1160.20 \\
x & =\underline{\$ 31.01}
\end{aligned}
$$

18. $\frac{x}{1+0.115 \times \frac{78}{365}}+3 x\left(1+0.115 \times \frac{121}{365}\right)=\$ 1000\left(1+0.115 \times \frac{43}{365}\right)$

$$
\begin{aligned}
0.9760141 x+3.114370 x & =\$ 1013.548 \\
x & =\underline{\$ 247.79}
\end{aligned}
$$

19.

$$
\begin{aligned}
& x-y=2 \\
& 3 x+4 y=20 \\
& 3 x-3 y=6 \\
& \hline 7 y=14 \\
& y=2
\end{aligned}
$$

(1) $\times 3: \quad 3 x-3 y=6$

Subtract: $\quad \frac{7 y}{}=14$
Substitute into equation (1):

$$
\begin{aligned}
x-2 & =2 \\
x & =4 \\
(x, y) & =(4,2)
\end{aligned}
$$

Check: \quad LHS of (2) $=3(4)+4(2)=20=$ RHS of (2)
20.

$$
\begin{array}{rr}
y-3 x= & 11 \tag{1}\\
-4 y+5 x= & -30
\end{array}
$$

$$
\begin{array}{rlrl}
\text { (1) } \times 4: & & 4 y-12 x & =44 \\
\text { Add: } & & -7 x & =14 \\
x & =-2
\end{array}
$$

Substitute into equation (1):

$$
\begin{aligned}
y-3(-2) & =11 \\
y & =11-6=5 \\
(x, y) & =(-2,5)
\end{aligned}
$$

Check: \quad LHS of (2) $=-4(5)+5(-2)=-30=$ RHS of (2)

Exercise 2.3 (continued)

21.

$$
\begin{aligned}
& 4 a-3 b=-3 \\
& 5 a-b=10
\end{aligned}
$$

(1) $\times 1: \quad 4 a-3 b=-3$
(2) $\times 3$: $\quad 15 \mathrm{a}-3 \mathrm{~b}=\underline{30}$

Subtract: $\begin{aligned}-11 \mathrm{a} & =-33 \\ \mathrm{a} & =3\end{aligned}$
Substitute into equation (2):

$$
\begin{aligned}
5(3)-b & =10 \\
b & =5 \\
(a, b) & =(3,5)
\end{aligned}
$$

Check: \quad LHS of $(1)=4(3)-3(5)=-3=$ RHS of (1)
22.

$$
\begin{aligned}
7 p-3 q & =23 \\
-2 p-3 q & =\frac{5}{(1)} \\
= & =18 \\
p & =2
\end{aligned}
$$

$$
\text { Subtract: } \quad 9 p=18
$$

Substitute into equation (1):

$$
\begin{aligned}
7(2)-3 q & =23 \\
3 q & =-23+14 \\
q & =-3 \\
(p, q) & =(2,-3)
\end{aligned}
$$

Check: LHS of (2) $=-2(2)-3(-3)=5=$ RHS of (2)
23.

$$
\begin{align*}
y & =2 x \tag{1}\\
7 x-y & =\frac{35}{7 x} \\
= & 2 x+35 \\
5 x & =35 \\
x & =7
\end{align*}
$$

Add:

Substitute into (1):

$$
\begin{aligned}
y & =2(7)=14 \\
(x, y) & =(7,14)
\end{aligned}
$$

Check: LHS of (2) $=7(7)-14=49-14=35=$ RHS of (2)
24.

$$
\begin{aligned}
g-h & =17 \\
\frac{4}{3} g+\frac{3}{2} h & =0 \\
1 . \overline{3} g+1.5 h & =0
\end{aligned}
$$

(1) $\times 1.5: \quad 1.5 g-1.5 h=25.5$

Add: $2.8 \overline{3} \mathrm{~g} \quad=25.5$

$$
g=9
$$

Substitute into (2):

$$
\begin{aligned}
9-\mathrm{h} & =17 \\
\mathrm{~h} & =-8 \\
(\mathrm{~h}, \mathrm{~g}) & =(-8,9)
\end{aligned}
$$

Check: \quad LHS of (2) $=\frac{4}{3}(9)+\frac{3}{2}(-8)=12-12=0=$ RHS of (2)

Exercise 2.3 (continued)

25.

$$
\begin{align*}
d & =3 c-500 \\
0.7 c+0.2 d & =550
\end{align*}
$$

To eliminate d,

$$
\text { (1) } \begin{array}{rlrl}
\times 0.2: & -0.6 c+0.2 d & =-100 \\
\text { (2): } & & =0.7 c+0.2 d & =\frac{550}{-1.3 c+0} \\
= & =650 \\
c & =500
\end{array}
$$

Subtract:

Substitute into (1):

$$
d=3(500)-500=1000
$$

$$
(c, d)=(500,1000)
$$

Check: \quad LHS of (2) $=0.7(500)+0.2(1000)=550=$ RHS of (2)
26.

$$
\begin{aligned}
0.03 x+0.05 y & =51(1) \\
0.8 x-0.7 y & =140 \text { (2) }
\end{aligned}
$$

To eliminate y,

$$
\text { (1) } \times 0.7: \quad 0.021 x+0.035 y=35.7
$$

Substitute into (2):

$$
\begin{aligned}
0.8(700)-0.7 y & =140 \\
-0.7 y & =-420 \\
y & =600 \\
(x, y) & =(700,600)
\end{aligned}
$$

Check: \quad LHS of $(1)=0.03(700)+0.05(600)=51=$ RHS of (1)
27.

$$
\begin{array}{cl}
2 v+6 w & =1 \\
10 v-9 w & =18
\end{array}
$$

To eliminate v ,
(1) $\times 10: \quad 20 v+60 w=10$
(2) $\times \underline{2: \quad 20 v-18 w}=\frac{36}{26}$

Subtract: $\quad 0+78 w=-26$

$$
w=-\frac{1}{3}
$$

Substitute into (1):

$$
\begin{aligned}
2 v+6\left(-\frac{1}{3}\right) & =1 \\
2 v & =1+2 \\
v & =\frac{3}{2} \\
(v, w) & \left.=\underline{\left(\frac{3}{2},-\frac{1}{3}\right)}\right)
\end{aligned}
$$

Check: \quad LHS of (2) $=10\left(\frac{3}{2}\right)-9\left(-\frac{1}{3}\right)=18=$ RHS of (2)

Exercise 2.3 (continued)

28.

$$
\begin{aligned}
& 2.5 a+2 b=11 \\
& 8 a+3.5 b=13
\end{aligned}
$$

To eliminate b,

$$
\text { (1) } \times 3.5: \quad 8.75 a+7 b=38.5
$$

(2) $\times 2: \quad 16 \mathrm{a}+7 \mathrm{~b}=26$

Subtract: $\quad-\overline{7.25 a+0}=\overline{12.5}$

$$
a=-1.724
$$

Substitute into (1):

$$
\begin{aligned}
2.5(-1.724)+2 b & =11 \\
2 b & =11+4.31 \\
b & =7.655 \\
(a, b) & =(-1.72,7.66)
\end{aligned}
$$

Check:

$$
\text { LHS of (2) }=8(-1.724)+3.5(7.655)=13.00=\text { RHS of (2) }
$$

29.

$$
\begin{aligned}
& 37 x-63 y=235 \\
& 18 x+26 y=468
\end{aligned}
$$

To eliminate x ,

$$
\text { (1) } \times 18: \quad 666 x-1134 y=4230
$$

$$
\text { (2) } \times 37: \quad 666 x+962 y=17,316
$$

Subtract: $\quad 0-2096 y=-13,086$

$$
y=6.243
$$

Substitute into (1):

$$
\begin{aligned}
37 x-63(6.243) & =235 \\
37 x & =628.3 \\
x & =16.98 \\
(x, y) & =(17.0,6.24)
\end{aligned}
$$

Check: \quad LHS of ${ }^{(2)}=18(16.98)+26(6.243)=468.0=$ RHS of (2)
30.

$$
\begin{aligned}
& 68.9 n-38.5 m=57 \text { (1) } \\
& 45.1 n-79.4 m=-658 \text { (2) }
\end{aligned}
$$

To eliminate n ,

$$
\text { (1) } \times 45.1: 3107 n-1736.4 m=2571
$$

(2) $\times 68.9$: $\quad 3107 \mathrm{n}-5470.7 \mathrm{~m}=-45,336$

Subtract: $0+3734.3 \mathrm{~m}=47,907$

$$
m=12.83
$$

Substitute into (1):

$$
\begin{aligned}
68.9 n-38.5(12.83) & =57 \\
68.9 n & =551.0 \\
n & =7.996 \\
(m, n) & =(12.8,8.00) \\
\text { Check: } \quad \text { LHS of }(2) & =45.1(7.996)-79.4(12.83)=-658.1=\text { RHS of (2) }
\end{aligned}
$$

Exercise 2.3 (continued)

31.

$$
\begin{aligned}
0.33 e+1.67 f & =292 \\
1.2 e+0.61 f & =377
\end{aligned}
$$

To eliminate e,

$$
\begin{aligned}
\text { (1) } \div 0.33: & e+5.061 f & =884.8 \\
\text { (2) } \div 1.2: & \frac{e+0.508 f}{}= & =314.2 \\
\text { Subtract: } & 0+4.552 f & =570.6 \\
& f & =125.4
\end{aligned}
$$

Substitute into (1):

$$
\begin{aligned}
0.33 e+1.67(125.4) & =292 \\
0.33 e & =82.58 \\
e & =250.2 \\
(e, f) & =(250,125)
\end{aligned}
$$

Check: \quad LHS of (2) $=1.2(250.2)+0.61(125.4)=376.7=$ RHS of (2)
32.

$$
\begin{array}{rr}
318 j-451 k & =7.22 \\
-249 j+193 k & =-18.79
\end{array}
$$

To eliminate k,

$$
\begin{array}{rlrl}
(1) \div 451: & & 0.7051 j-k & =0.01601 \\
(2) \div 193: & & -1.2902 j+k & =\frac{-0.09736}{-0.5851 j+0} \\
& & =-0.08135 \\
j & =0.1390
\end{array}
$$

Substitute into (2):

$$
\begin{aligned}
-249(0.1390)+193 k & =-18.79 \\
193 k & =15.82 \\
k & =0.08197 \\
(j, k) & =(0.139,0.0820)
\end{aligned}
$$

Check: LHS of $\mathbb{C}=318(0.1390)-451(0.08197)=7.23=$ RHS of (1) (within rounding errors.)

Point of Interest (Section 2.4)

A "Trick" Question

The element of mathematical misdirection in the question is that it presumes (and attempts to get you thinking) that there really is a missing dollar, and that the $\$ 3$ difference between the $\$ 90$ originally paid and the net $\$ 87$ paid consists of the $\$ 2$ kept by the bellhop and the missing dollar.

But the $\$ 3$ refund sitting in the workers' pockets explains the difference between the $\$ 90$ and the $\$ 87$. The $\$ 2$ pilfered by the bellhop explains the $\$ 2$ difference between the net amount (\$87) paid by the workers and the amount (\$85) in the hotel's till. There is no missing $\$ 1$!

Exercise 2.4

1. Step 2: Hits last month $=2655$ after the $\frac{2}{7}$ increase.

Let the number of hits 1 year ago be n.
Step 3: Hits last month $=$ Hits 1 year ago $+\frac{2}{7}$ (Hits 1 year ago)
Step 4: $2655=n+\frac{2}{7} n$
Step 5: $2655=\frac{9}{7} n$
Multiply both sides by $\frac{7}{9}$.
$\mathrm{n}=2655 \times \frac{7}{9}=2065$
The Web site had 2065 hits in the same month 1 year ago.
2. Step 2: Retail price $=\$ 712$; Markup $=60 \%$ of wholesale of cost.

Let the wholesale cost be C.
Step 3: Retail price $=$ Cost +0.60 (Cost)
Step 4: $\$ 712=\mathrm{C}+0.6 \mathrm{C}$
Step 5: $\$ 712=1.6 \mathrm{C}$
$C=\frac{\$ 712}{1.6}=\underline{\underline{\$ 445.00}}$. The wholesale cost is $\$ 445.00$.
3. Step 2: Tag price $=\$ 39.55$ (including $13 \% \mathrm{HST}$). Let the plant's pretax price be P .

Step 3: Tag price $=$ Pre-tax price + HST
Step 4: $\$ 39.55=P+0.13 P$
Step 5: $\$ 39.55=1.13 \mathrm{P}$
$P=\frac{\$ 39.55}{1.13}=\$ 35.00$
The amount of HST is $\$ 39.55-\$ 35.00=\underline{\$ 4.55}$
4. Step 2: Commission rate $=2.5 \%$ on the first $\$ 5000$ and 1.5% on the remainder Commission amount $=\$ 227$. Let the transaction amount be x.
Step 3: Commission amount $=0.025(\$ 5000)+0.015($ Remainder $)$
Step 4: $\$ 227=\$ 125.00+0.015(x-\$ 5000)$
Step 5: $\$ 102=0.015 x-\$ 75.00$
$\$ 102+\$ 75=0.015 x$
$x=\frac{\$ 177}{0.015}=\underline{\$ 11,800.00}$
The amount of the transaction was $\$ 11,800.00$.
5. Step 2: Let the basic price be P. First 20 meals at P.

Next 20 meals at $\mathrm{P}-\$ 2$. Additional meals at $\mathrm{P}-\$ 3$.
Step 3: Total price for 73 meals $=\$ 1686$
Step 4: 20P + 20 (P - \$2) $+(73-40)(P-\$ 3)=\$ 1686$
Step 5: 20P + 20P $-\$ 40+33 P-\$ 99=\$ 1686$

$$
\begin{aligned}
73 P & =\$ 1686+\$ 99+\$ 40 \\
P & =\frac{\$ 1825}{73}=\underline{\$ 25.00}
\end{aligned}
$$

The basic price per meal is $\$ 25.00$.

Exercise 2.4 (continued)

6. Step 2: Rental Plan 1: $\$ 295$ per week $+\$ 0.15 \times$ (Distance in excess of 1000 km)

Rental Plan 2: $\$ 389$ per week
Let d represent the distance at which the costs of both plans are equal.
Step 3: Cost of Plan 1 = Cost of Plan 2
Step 4: $\$ 295+\$ 0.15(d-1000)=\$ 389$
Step 5: $\$ 295+\$ 0.15 d-\$ 150=\$ 389$

$$
\begin{aligned}
\$ 0.15 d & =\$ 244 \\
d & =1627 \mathrm{~km}
\end{aligned}
$$

The unlimited driving plan will be cheaper if you drive more than 1626.7 km in the oneweek interval.
7. Step 2: Tax rate $=38 \%$; Overtime hourly rate $=1.5(\$ 23.50)=\$ 35.25$

Cost of canoe = \$2750
Let h represent the hours of overtime Alicia must work.
Step 3: Gross overtime earnings - Income tax = Cost of the canoe
Step 4: $\$ 35.25 h-0.38(\$ 35.25 h)=\$ 2750$
Step 5: $\quad \$ 21.855 h=\$ 2750$
$h=125.83$ hours
Alicia must work $1253 / 4$ hours of overtime to earn enough money to buy the canoe.
8. Step 2: Number of two-bedroom homes $=0.4($ Number of three-bedroom homes)

Number of two-bedroom homes $=2$ (Number of four-bedroom homes)
Total number of homes $=96$
Let h represent the number of two-bedroom homes
Step 3: \# 2-bedroom homes + \# 3-bedroom homes + \# 4-bedroom homes = 96
Step 4: $\quad h+\frac{h}{0.4}+\frac{h}{2}=96$
Step 5: $h+2.5 h+0.5 h=96$

$$
\begin{aligned}
4 h & =96 \\
h & =24
\end{aligned}
$$

There should be 24 two-bedroom homes, $2.5(24)=60$ three-bedroom homes, and $0.5(24)=12$ four-bedroom homes.
9. Step 2: Cost of radio advertising $=0.5$ (Cost of newspaper advertising)

Cost of TV advertising $=0.6$ (Cost of radio advertising)
Total advertising budget = \$160,000
Let r represent the amount allocated to radio advertising
Step 3: Radio advertising + TV advertising + Newspaper advertising $=\$ 160,000$
Step 4: $r+0.6 r+\frac{r}{0.5}=\$ 160,000$
Step 5: $\quad 3.6 r=\$ 160,000$

$$
r=\$ 44,444.44
$$

The advertising budget allocations should be:
$\$ 44,444$ to radio advertising,
$0.6(\$ 44,444.44)=\$ 26,667$ to TV advertising, and
$2(\$ 44,444.44)=\$ 88,889$ to newspaper advertising.

Exercise 2.4 (continued)

10. Step 2: By-laws require: 5 parking spaces per 100 square meters, 4% of spaces for physically handicapped
In remaining 96\%, \# regular spaces = 1.4(\# small car spaces)
Total area $=27,500$ square meters
Let s represent the number of small car spaces.
Step 3: Total \# spaces = \# spaces for handicapped + \# regular spaces + \# small spaces
Step 4: $\frac{27,500}{100} \times 5=0.04 \times \frac{27,500}{100} \times 5+s+1.4 s$
Step 5: $\quad 1375=55+2.4 s$

$$
s=550
$$

The shopping centre must have 55 parking spaces for the physically handicapped,
550 small-car spaces, and 770 regular parking spaces.
11. Step 2: Overall portfolio's rate return $=1.1 \%$, equity fund's rate of return $=-3.3 \%$, bond fund's rate of return $=7.7 \%$.
Let e represent the fraction of the portfolio initially invested in the equity fund.
Step 3: Overall rate of return = Weighted average rate of return
$=$ (Equity fraction)(Equity return) + (Bond fraction)(Bond return)
Step 4:

$$
1.1 \%=e(-3.3 \%)+(1-e)(7.7 \%)
$$

Step 5:

$$
\begin{aligned}
1.1 & =-3.3 e+7.7-7.7 e \\
-6.6 & =-11.0 e \\
e & =0.600
\end{aligned}
$$

Therefore, $\underline{\underline{60.0 \%}}$ of Erin's original portfolio was invested in the equity fund.
12. Step 2: Pile A steel is 5.25% nickel; pile B steel is 2.84% nickel.

We want a 32.5 -tonne mixture from A and B averaging 4.15% nickel.
Let A represent the tonnes of steel required from pile A.
Step 3: Wt. of nickel in 32.5 tonnes of mixture
$=W t$. of nickel in steel from pile $A+W t$. of nickel in steel from pile B
$=(\%$ nickel in pile A)(Amount from A) $+(\%$ nickel in pile B)(Amount from B)
Step 4: $0.0415(32.5)=0.0525 A+0.0284(32.5-A)$
Step 5: $\quad 1.34875=0.0525 A+0.9230-0.0284 A$
$0.42575=0.0241 A$
$A=17.67$ tonnes
The recycling company should mix 17.67 tonnes from pile A with 14.83 tonnes from pile B.
13. Step 2: Total options $=100,000$
\# of options to an executive $=2000+$ \# of options to a scientist or engineer
\# of options to a scientist or engineer $=1.5$ (\# of options to a technician)
There are 3 executives, 8 scientists and engineers, and 14 technicians.
Let t represent the number of options to each technician.
Step 3: Total options $=$ Total options to scientists and engineers

+ Total options to technicians + Total options to executives
Step 4: $100,000=8(1.5 t)+14 t+3(2000+1.5 t)$
Step 5: $\quad=12 t+14 t+6000+4.5 t$

$$
94,000=30.5 t
$$

$t=3082$ options
Each technician will receive 3082 options, each scientist and engineer will receive 1.5(3082) = 4623 options, and each executive will receive $2000+4623=\underline{\underline{6623} \text { options. }}$

Exercise 2.4 (continued)

14. Step 2: Plan X : 6.5 cents/minute (in business hours) and 4.5 cents/minute (at other times) Plan $\mathrm{Y}: 5.3$ cents/minute any time
Let b represent the fraction of business-hour usage at which costs are equal.
Step 3: Cost of Plan $X=$ Cost of plan Y
Step 4: Pick any amount of usage in a month—say 1000 minutes.

$$
b(1000) \$ 0.065+(1-b)(1000) \$ 0.045=1000(\$ 0.053)
$$

Step 5:

$$
\begin{aligned}
\$ 65 b+\$ 45-\$ 45 b & =\$ 53 \\
\$ 20 b & =\$ 8 \\
b & =0.40
\end{aligned}
$$

If business-hour usage exceeds $\underline{\underline{40 \%}}$ of overall usage, plan Y will be cheaper.
15. Step 2: Raisins cost $\$ 3.75$ per kg; peanuts cost $\$ 2.89$ per kg.

Cost per kg of ingredients in 50 kg of "trail mix" is to be $\$ 3.20$.
Let p represent the weight of peanuts in the mixture.
Step 3: Cost of 50 kg of trail mix = Cost of $p \mathrm{~kg}$ peanuts + Cost of $(50-p) \mathrm{kg}$ of raisins
Step 4: $50(\$ 3.20)=p(\$ 2.89)+(50-p)(\$ 3.75)$
Step 5: $\quad \$ 160.00=\$ 2.89 p+\$ 187.50-\$ 3.75 p$
$-\$ 27.50=-\$ 0.86 p$

$$
p=31.98 \mathrm{~kg}
$$

32.0 kg of peanuts should be mixed with 18.0 kg of raisins.
16. Step 2: Total bill $=\$ 3310$. Total hours $=41$.

Hourly rate = \$120 for CGA
= \$50 for technician.

Let x represent the CGA's hours.
Step 3: Total bill $=($ CGA hours \times CGA rate $)+($ Technician hours \times Technician rate $)$
Step 4: \$3310 = x $(\$ 120)+(41-x) \$ 50$
Step 5: \$3310 = \$120x + \$2050 - \$50x
$1260=70 x$

$$
x=18
$$

The CGA worked 18 hours and the technician worked $41-18=\underline{\underline{23} \text { hours. }}$
17. Step 2: Total investment $=\$ 32,760$

Sue's investment = 1.2(Joan's investment)
Joan's investment = 1.2(Stella's investment)
Let L represent Stella's investment.
Step 3: Sue's investment + Joan's investment + Stella's investment = Total investment
Step 4: Joan's investment $=1.2 \mathrm{~L}$
Sue's investment $=1.2 \mathrm{~L}(1.2 \mathrm{~L})=1.44 \mathrm{~L}$
$1.44 \mathrm{~L}+1.2 \mathrm{~L}+\mathrm{L}=\$ 32,760$
Step 5:

$$
\begin{aligned}
3.64 \mathrm{~L} & =\$ 32,760 \\
\mathrm{~L} & =\frac{\$ 32,760}{3.64}=\$ 9000
\end{aligned}
$$

Stella will invest $\$ 9000$, Joan will invest $1.2(\$ 9000)=\$ 10,800$, and Sue will invest 1.2(\$10,800) = \$12,960

Exercise 2.4 (continued)

18. Step 2: Sven receives 30% less than George (or 70% of George's share).

Robert receives 25% more than George (or 1.25 times George's share).
Net income = \$88,880
Let G represent George's share.
Step 3: George's share + Robert's share + Sven's share $=$ Net income
Step 4: $G+1.25 G+0.7 G=\$ 88,880$
Step 5: $2.95 \mathrm{G}=\$ 88,880$

$$
\mathrm{G}=\$ 30,128.81
$$

George's share is $\$ 30,128.81$, Robert's share is $1.25(\$ 30,128.81)=\$ 37,661.02$, and Sven's share is $0.7(\$ 30,128.81)=\$ 21,090.17$.
19. Step 2: Time to make X is 20 minutes.

Time to make Y is 30 minutes.
Total time is 47 hours. Total units $=120$. Let Y represent the number of units of Y.
Step 3: Total time $=($ Number of $X) \times($ Time for $X)+($ Number of $Y) \times($ Time for $Y)$
Step 4: $47 \times 60=(120-Y) 20+Y(30)$
Step 5: $2820=2400-20 Y+30 Y$

$$
\begin{aligned}
420 & =10 Y \\
Y & =\underline{42} .
\end{aligned}
$$

Forty-two units of product Y were manufactured.
20. Step 2: Price of blue ticket $=\$ 19.00$. Price of red ticket $=\$ 25.50$.

Total tickets $=4460$. Total revenue $=\$ 93,450$.
Let the number of tickets in the red section be R .
Step 3: Total revenue $=($ Number of red \times Price of red) $+($ Number of blue \times Price of blue $)$
Step 4: $\$ 93,450=R(\$ 25.50)+(4460-R) \$ 19.00$
Step 5: $93,450=25.5 R+84,740-19 R$

$$
6.5 \mathrm{R}=8710
$$

$$
R=1340
$$

$\underline{\underline{1340} \text { seats }}$ were sold $\underline{\underline{i n} \text { the red section }}$ and $4460-1340=\underline{\underline{3120} \text { seats }}$ were sold $\underline{\underline{i n}}$ the blue section.
21. Step 2: $3 / 5$ of a $3 / 7$ interest was sold for $\$ 27,000$.

Let the V represent the implied value of the entire partnership.
Step 3: $3 / 5$ of a $3 / 7$ interest is worth $\$ 27,000$.
Step 4: $\frac{3}{5} \times \frac{3}{7} V=\$ 27,000$
Step 5: $V=\frac{5 \times 7}{3 \times 3} \times \$ 27,000=\$ 105,000$
b. The implied value of the entire partnership is $\$ 105,000$.
a. The implied value of Shirley's remaining interest is

$$
\frac{2}{5} \times \frac{3}{7} V=\frac{6}{35} \times \$ 105,000=\underline{\$ 18,000}
$$

Exercise 2.4 (continued)

22. Step 2: Regal owns a 58\% interest in a mineral claim. Yukon owns the remainder (42\%).

Regal sells one fifth of its interest for $\$ 1.2$ million.
Let the V represent the implied value of the entire mineral claim.
Step 3: $1 / 5$ (or 20%) of a 58% interest is worth $\$ 1.2$ million
Step 4: 0.20(0.58)V = \$1,200,000
Step 5: $V=\frac{\$ 1,200,000}{0.20 \times 0.58}=\$ 10,344,828$
The implied value of Yukon's interest is

$$
0.42 \mathrm{~V}=0.42 \times \$ 10,344,828=\$ 4,344,828
$$

23. Step 2: $5 / 7$ of entrants complete Level $1.2 / 9$ of Level 1 completers fail Level 2.

587 students completed Level 2 last year.
Let the N represent the original number who began Level 1.
Step 3: $7 / 9$ of $5 / 7$ of entrants will complete Level 2.
Step 4: $\frac{7}{9} \times \frac{5}{7} \mathrm{~N}=587$
Step 5: $\mathrm{N}=\frac{9 \times 7}{7 \times 5} \times 587=1056.6$
1057 students began Level 1 .
24. Step 2: $4 / 7$ of inventory was sold at cost.
$3 / 7$ inventory was sold to liquidators at 45% of cost, yielding $\$ 6700$.
Let C represent the original cost of the entire inventory.
Step 3: $3 / 7$ of inventory was sold to liquidators at 45% of cost, yielding $\$ 6700$.
Step 4: $3 / 7(0.45 \mathrm{C})=\$ 6700$
Step 5: $\mathrm{C}=\frac{7 \times \$ 6700}{3 \times 0.45}=\$ 34,740.74$
a. The cost of inventory sold to liquidators was

$$
3 / 7(\$ 34,740.74)=\$ 14,888.89
$$

b. The cost of the remaining inventory sold in the bankruptcy sale was

$$
\$ 34,740.74-\$ 14,888.89=\$ 19.851 .85
$$

25. Let r represent the number of regular members and s the number of student members.

Then

$$
r+\quad s=583
$$

Total revenue:

$$
\begin{aligned}
\$ 2140 r+\$ 856 s & =\$ 942,028 \\
\$ 856 r+\$ 856 s & =\$ 499,048 \\
\$ 1284 r+0 & =\$ 442,980 \\
r & =345 \\
345+s & =583 \\
s & =238
\end{aligned}
$$

The club had 238 student members and $\underline{\underline{345} \text { regular members. }}$

Exercise 2.4 (continued)

26. Let c represent the number of children and a represent the number of adults.

Then

$$
\begin{aligned}
c+\quad a & =266 \\
(1) \times \$ 25.90: & \begin{aligned}
&(1) \\
& \$ 17.90 c+\$ 25.90 a=\$ 6609.40 \\
& \$ 25.90 c+\$ 25.90 a=\$ 6889.40 \\
&-\$ 8 c+0= \\
&
\end{aligned} \quad=\$ 280 \\
c & =35
\end{aligned}
$$

$$
\text { Subtract: } \quad-\$ 8 c+0=-\$ 280
$$

That is, $\underline{\underline{35}}$ of the 266 customers were children.
27. Let s represent the distance travelled at the lower speed ($50 \mathrm{~km} / \mathrm{h}$).

Let h represent the distance travelled at the higher speed ($100 \mathrm{~km} / \mathrm{h}$).
Since the total distance $=1000 \mathrm{~km}$,
then $s+h=1000$
Since travelling time $=\frac{\text { Distance }}{\text { Speed }}$,
then \quad Time at slower speed $=\frac{s}{50} \quad$ and \quad Time at higher speed $=\frac{h}{100}$
Since the total time $=12.3$ hours,
then

$$
\begin{equation*}
\frac{s}{50}+\frac{h}{100}=12.3 \tag{2}
\end{equation*}
$$

(2) $\times 100: \quad 2 s+h=1230$

Repeat $(1):$	$s+h$
Subtract:	$\quad s+0=1000$

Subtract:

$$
\begin{equation*}
\overline{s+0}=\overline{230} \tag{1}
\end{equation*}
$$

28. Let a represent the adult airfare and c represent the child airfare.

The airfare is $\$ 270$ per adult and $\$ 170$ per child.
29. Let h represent the rate per hour and k represent the rate per km .

Vratislav's cost: $\quad 2 h+47 k=\$ 54.45$ (1)
Bryn's cost: $\quad 5 h+93 k=\$ 127.55$
To eliminate x ,
(1) $\times 5: \quad 10 h+235 k=\$ 272.25 \quad$ (1)
(2) $\times 2: \quad \underline{10 h+186 k}=\$ 255.10$

Subtract:
$0+49 k=\$ 17.15$ $k=\$ 0.35$ per km
Substitute into (1):

$$
\begin{aligned}
2 h+47(\$ 0.35) & =\$ 54.45 \\
2 h & =\$ 54.45-\$ 16.45 \\
& =\$ 38.00 \text { per hour } \\
h & =\$ 19.00 \text { per hour }
\end{aligned}
$$

Budget Truck Rentals charged $\$ 19.00$ per hour plus $\$ 0.35$ per km.

Exercise 2.4 (continued)

30. Let s represent the weight of 6% nitrogen fertilizer.

Let t represent the weight of 22% nitrogen fertilizer.
Total weight: $\quad s+\quad t=300 \quad$ (1)
Total nitrogen: $\quad 0.06 s+0.22 t=0.16(300)$
Multiply by 100 :
$6 s+22 t=4800$
(1) $\times 6$:

Subtract:

$$
\begin{equation*}
\underline{6 s+6 t}=\underline{1800} \tag{2}
\end{equation*}
$$

$$
0+16 t=3000
$$

$$
t=187.5 \mathrm{~kg}
$$

$$
s=300-187.5=112.5 \mathrm{~kg}
$$

Buckerfield's should mix 112.5 kg of 6% fertilizer with 187.5 kg of 22% fertilizer.
31. Let C represent the interest rate on Canada Savings Bonds.

Let O represent the interest rate on Ontario Savings Bonds.
Year 1 interest: $\quad 4(\$ 1000) C+6(\$ 1000) O=\$ 438$
Year 2 interest: $\quad 3(\$ 1000) C+4(\$ 1000) O=\$ 306$
(1) $\times 3$:
$\$ 12,000 C+\$ 18,0000=\$ 1314$
$\begin{array}{ll}\text { (2) } \times 4: & \$ 12,000 C+\$ 16,0000 \\ \text { Subtract: } & 0+\$ 20000\end{array}=\frac{\$ 1224}{\$ 90}$

$$
O=\frac{\$ 90}{\$ 2000}=0.045=4.5 \%
$$

Substitute into (2): $\$ 3000 C+\$ 4000(0.045)=\$ 306$

$$
C=\frac{\$ 306-\$ 180}{\$ 3000}=0.042=4.2 \%
$$

The Canada Savings Bonds earn 4.2\% per annum and the Ontario Savings Bonds earn 4.5% per annum.
32. Let r represent the tax rate on residences and let f represent the tax rate on land with farm buildings.
LeClair tax: $\quad \$ 400,000 r+\$ 300,000 f=\$ 3870$
Bartoli tax: $\quad \$ 350,000 r+\$ 380,000 f=\$ 3774$
(1) $\times 7: \quad \$ 2,800,000 r+\$ 2,100,000 f=\$ 27,090$
(2) $\times 8: \quad \$ 2,800,000 r+\$ 3,040,000 f=\$ 30,192$

$$
0 \quad-\$ 940,000 f=-\$ 3102
$$

$$
f=\frac{\$ 3102}{\$ 940,000}=0.0033=0.33 \%
$$

Substitute into © $\mathbf{~} \$ 400,000 r+\$ 300,000(0.0033)=\$ 3870$

$$
r=\frac{\$ 3870-\$ 990}{\$ 400,000}=0.0072=0.72 \%
$$

The tax rates are $\underline{\underline{0.72 \%} \text { on residences }}$ and $\underline{\underline{0.33 \%} \text { on land with farm buildings. }}$
33. Let x represent the number of units of product X and
y represent the number of units of product Y . Then

$$
\begin{aligned}
x+y & =93 \\
0.5 x+0.75 y & =60.5 \\
0.5 x+0.5 y & =46.5 \\
\hline 0+0.25 y & =14 \\
y & =56
\end{aligned}
$$

(1) $\times 0.5$:

Subtract:
Substitute into (1): $\quad x+56=93$

$$
x=37
$$

Therefore, $\underline{\underline{37} \text { units of } X}$ and $\underline{\underline{56} \text { units of } Y}$ were produced last week.

Exercise 2.4 (continued)

34. Let the price per litre of milk be m and the price per dozen eggs be e. Then

$$
\begin{aligned}
& 5 m+4 e=\$ 19.51 \\
& 9 m+3 e=\$ 22.98
\end{aligned}
$$

To eliminate e,
(1) $\times 3: \quad 15 m+12 e=\$ 58.53$
(2) $\times 4$:
$36 m+12 e=\$ 91.92$
Subtract:

$$
-\overline{-21 m+\quad 0}=-\$ 33.39
$$

$$
m=\$ 1.59
$$

Substitute into (1): $5(\$ 1.59)+4 e=\$ 19.51$
$\mathrm{e}=\$ 2.89$
Milk costs $\$ 1.59$ per litre and eggs cost $\$ 2.89$ per dozen.
35. Let M be the number of litres of milk and J be the number of cans of orange juice per week.

$$
\begin{aligned}
& \$ 1.50 \mathrm{M}+\$ 1.30 \mathrm{~J}=\$ 57.00 \\
& \$ 1.60 \mathrm{M}+\$ 1.37 \mathrm{~J}=\$ 60.55
\end{aligned}
$$

To eliminate M,

$$
\begin{array}{rlrl}
(1) \times 1.6: & \$ 2.40 \mathrm{M}+\$ 2.080 \mathrm{~J} & =\$ 91.200 \\
\text { (2) } \times 1.5: & & \$ 2.40 \mathrm{M}+\$ 2.055 \mathrm{~J} & =\$ 90.825 \\
\text { ract: } & 0 & &
\end{array}
$$

Substitution of $\mathrm{J}=15$ into either equation will give $\mathrm{M}=25$. Hence, $\underline{\underline{25} \text { litres of milk }}$ and 15 cans of orange juice are purchased each week.
36. Let S represent the selling price of a case of beer and R represent the refund per case of empties. Then

$$
\begin{aligned}
& 871 \mathrm{~S}-637 \mathrm{R}=\$ 12,632.10 \\
& 932 \mathrm{~S}-\mathrm{B05R}=\$ 13,331.70
\end{aligned}
$$

To eliminate S ,

$$
\text { (1) } \times 932: \quad 811,772 \mathrm{~S}-593,684 \mathrm{R}=\$ 11,773,117.20
$$

(2) $\times 871: \quad \frac{811,772 S-701,155 R}{0}=\frac{\$ 11,611,910.70}{\$ 107,41 R}$

Subtract: $\quad 0+107,471 \mathrm{R}=\$ 161,206.50$
$R=\$ 1.50$
The store paid a refund of $\$ 1.50$ per case.
37. Let S represent the number of people who bought single tickets and T represent the number of people who bought at three-for- $\$ 5$. Then

$$
\begin{aligned}
S+3 T & =3884 \\
\$ 2 S+\$ 5 T & =\$ 6925
\end{aligned}
$$

To eliminate S ,

$$
\text { (1) } \times \$ 2: \quad \$ 2 S+\$ 6 T=\$ 7768
$$

(2): $\quad \$ 2 S+\$ 5 T=\$ 6925$

Subtract: $\quad 0+\$ 1 \mathrm{~T}=\$ 843$

$$
\text { T = } 843
$$

Hence, $\underline{\underline{843}}$ people bought tickets at the three-for- $\$ 5$ discount.

Exercise 2.4 (continued)

38. Let P represent the number of six-packs and C represent the number of single cans sold.

Then
To eliminate C ,
(1): $\quad \$ 4.35 \mathrm{P}+\$ 0.90 \mathrm{C}=\$ 178.35$
(2) $\times \$ 0.90: \quad \$ 5.40 \mathrm{P}+\$ 0.90 \mathrm{C}=\$ 202.50$

Subtract:

Substitute into (2):

$$
\begin{aligned}
\$ 4.35 \mathrm{P}+\$ 0.90 \mathrm{C} & =\$ 178.35 \\
6 \mathrm{P}+\quad \mathrm{C} & =225
\end{aligned}
$$

$$
\begin{aligned}
-\$ 1.05 P+0 & =-\$ 24.15 \\
P & =23
\end{aligned}
$$

$$
6(23)+C=225
$$

$$
C=87
$$

The store sold $\underline{\underline{23} \text { six-packs }}$ and 87 single cans.
39. Let P represent the annual salary of a partner and T represent the annual salary of a technician. Then
(1) $\times 1.05$:

Subtract:

Substitute into (1):

$$
\begin{aligned}
7 P+12(\$ 67,500) & =\$ 1,629,000 \\
P & =\$ 117,000
\end{aligned}
$$

The current annual salary of a partner is $\$ 117,000$ and of a technician is $\$ 67,500$.
40. Let P represent the current number of production workers and A the current number of assembly workers. Then

$$
\begin{align*}
\$ 5100 P+\$ 4200 A & =\$ 380,700 \tag{1}\\
\$ 5100(0.8 P)+\$ 4200(0.75 A) & =\$ 297,000 \tag{2}
\end{align*}
$$

To eliminate P ,
(1) $\times 0.8$:

$$
\$ 5100(0.8 P)+\$ 4200(0.8 A)=\$ 304,560
$$

(2): $\quad \$ 5100(0.8 \mathrm{P})+\$ 4200(0.75 \mathrm{~A})=\$ 297,000$

Subtract: $\$ 4200(0.05 \mathrm{~A})=\$ 7560$
$A=36$
Substitute into (1):

$$
\begin{aligned}
\$ 5100 P+\$ 4200(36) & =\$ 380,700 \\
P & =45
\end{aligned}
$$

41. Step 2: Each of 4 children receive 0.5 (Wife's share).

Each of 13 grandchildren receive $0 . \overline{3}$ (Child's share).
Total distribution $=\$ 759,000$. Let w represent the wife's share.
Step 3: Total amount $=$ Wife's share $+4($ Child's share $)+13($ Grandchild's share $)$
Step 4: $\$ 759,000=w+4(0.5 w)+13(0 . \overline{3})(0.5 w)$
Step 5: $\$ 759,000=w+2 w+2.1 \overline{6} w$

$$
=5.1 \overline{6} w
$$

$\mathrm{w}=\$ 146,903.23$
Each child will receive 0.5(\$146,903.23) = \$73,451.62
and each grandchild will receive $0 . \overline{3}(\$ 73,451.62)=\$ 24,483.87$.

Exercise 2.4 (continued)

42. Step 2: Stage B workers $=1.6$ (Stage A workers)

Stage C workers $=0.75$ (Stage B workers)
Total workers $=114$. Let A represent the number of Stage A workers.
Step 3: Total workers $=$ A workers + B workers $+C$ workers
Step 4: $114=A+1.6 A+0.75(1.6 A)$
Step 5: $114=3.8 \mathrm{~A}$
$A=30$
$\underline{\underline{30}}$ workers should be allocated to Stage A, 1.6(30) $=\underline{\underline{48}}$ workers to Stage B, and $114-30-48=\underline{\underline{36}}$ workers to Stage C .
43. Step 2: Hillside charge $=2$ (Barnett charge) $-\$ 1000$

Westside charge $=$ Hillside charge $+\$ 2000$
Total charges $=\$ 27,600$. Let B represent the Barnett charge.
Step 3: Total charges $=$ Barnett charge + Hillside charge + Westside charge
Step 4: $\$ 27,600=B+2 B-\$ 1000+2 B-\$ 1000+\$ 2000$
Step 5: $\$ 27,600=5 B$

$$
B=\$ 5520
$$

Hence, the Westside charge is $2(\$ 5520)-\$ 1000+\$ 2000=\$ 12,040$
44. Step 2: There are 3 managers and 26 production workers. Total distribution $=\$ 100,000$. Manager's share = 1.2 (Production worker's share).
Let p represent a production worker's share.
Step 3: 3(Manager's share) + 26(Production worker's share) $=\$ 100,000$
Step 4: 3(1.2p) $+26 p=\$ 100,000$
Step 5: $\quad 29.6 p=\$ 100,000$
$p=\$ 3378.38$
Each production worker will receive $\$ 3378.38$ and each manager will receive 1.2(\$3378.38) = \$4054.05.
45. Step 2: Assembly time $=0.5$ (Cutting time) +2 minutes

Painting time $=0.5$ (Assembly time) +0.5 minutes
Total units $=72$. Total time $=42$ hours. Let C represent the cutting time.
Step 3: Time to produce one toy $=$ Cutting time + Assembly time + Painting time
Step 4: $\frac{42 \times 60}{72}=C+0.5 C+2+0.5(0.5 C+2)+0.5$
Step 5: $35=1.75 \mathrm{C}+3.5$
$\mathrm{C}=18$ minutes
Cutting requires 18 minutes (per unit), assembly requires $0.5(18)+2=\underline{\underline{11} \text { minutes, }}$ and painting requires $0.5(11)+0.5=6$ minutes.

Exercise 2.5

1. $c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 100-\$ 95}{\$ 95} \times 100 \%=\underline{\underline{5.26 \%}}$
2. $c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 95-\$ 100}{\$ 100} \times 100 \%=\underline{\underline{-5.00 \%}}$
3. $c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{135 \mathrm{~kg}-35 \mathrm{~kg}}{35 \mathrm{~kg}} \times 100 \%=\underline{\underline{285.71 \%}}$
$4 c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{35 \mathrm{~kg}-135 \mathrm{~kg}}{135 \mathrm{~kg}} \times 100 \%=-\underline{\underline{-74.07 \%}}$
4. $c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{0.13-0.11}{0.11} \times 100 \%=\underline{\underline{18.18 \%}}$
5. $c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{0.085-0.095}{0.095} \times 100 \%=\underline{\underline{-10.53 \%}}$
6. $V_{f}=V_{i}(1+c)=\$ 134.39[1+(-0.12)]=\$ 134.39(0.88)=\$ 118.26$
7. $V_{f}=V_{i}(1+c)=112 \mathrm{~g}(1+1.12)=237.44 \mathrm{~g}$
8. $V_{f}=V_{i}(1+c)=(26.3 \mathrm{~cm})(1+3.00)=\underline{\underline{105.2} \mathrm{~cm}}$
9. $V_{f}=V_{i}(1+c)=0.043[1+(-0.30)]=\underline{\underline{0.0301}}$
10. $V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 75}{1+2.00}=\underline{\underline{\$ 25.00}}$
11. $V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 75}{1+(-0.50)}=\$ 150.00$
12. Given: $V_{i}=\$ 90, V_{f}=\$ 100$

$$
c=\frac{\$ 100-\$ 90}{\$ 90} \times 100 \%=\underline{\underline{11.11 \%}}
$$

$\$ 100$ is 11.11% more than $\$ 90$.
14. Given: $V_{i}=\$ 110, V_{f}=\$ 100$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 100-\$ 110}{\$ 110} \times 100 \%=\underline{\underline{-9.09 \%}}
$$

$\$ 100$ is 9.09% less than $\$ 110$.
15. Given: $c=25 \%, V_{f}=\$ 100$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 100}{1+0.25}=\underline{\underline{\$ 80.00}}
$$

$\$ 80.00$ increased by 25% equals $\$ 100.00$.
16. Given: $c=7 \%, V_{f}=\$ 52.43$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 52.43}{1+0.07}=\underline{\underline{\$ 49.00}}
$$

$\$ 49.00$ increased by 7% equals $\$ 52.43$.

Exercise 2.5 (continued)

17. Given: $V_{f}=\$ 75, c=75 \%$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 75}{1+0.75}=\$ 42.86
$$

$\$ 75$ is 75% more than $\$ 42.86$.
18. Given: $V_{i}=\$ 56, c=65 \%$

$$
V_{f}=V_{i}(1+c)=\$ 56(165)=\$ 92.40
$$

$\$ 56$ after an increase of 65% is $\$ 92.40$.
19. Given: $V_{i}=\$ 759.00, V_{f}=\$ 754.30$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 754.30-\$ 759.00}{\$ 759.00} \times 100 \%=-\underline{\underline{-0.62 \%}}
$$

$\$ 754.30$ is 0.62% less than $\$ 759.00$.
20. Given: $V_{i}=77,400, V_{f}=77,787$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{77,787-77,400}{77,400} \times 100 \%=\underline{\underline{0.50 \%}}
$$

77,787 is 0.50% more than 77,400 .
21 Given: $V_{i}=\$ 75, c=75 \%$

$$
V_{f}=V_{i}(1+c)=\$ 75(1+0.75)=\$ 131.25
$$

$\$ 75.00$ becomes $\$ 131.25$ after an increase of 75%.
22. Given: $V_{f}=\$ 100, c=-10 \%$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 100}{1+(-0.10)}=\$ 111.11
$$

$\$ 100.00$ is 10% less than $\$ 111.11$.
23. Given: $V_{f}=\$ 100, c=-20 \%$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 100}{1+(-0.20)}=\$ 125.00
$$

$\$ 125$ after a reduction of 20% equals $\$ 100$.
24. Given: $V_{f}=\$ 50, c=-25 \%$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 50}{1+(-0.25)}=\underline{\underline{\$ 66.67}}
$$

$\$ 66.67$ after a reduction of 25% equals $\$ 50$.
25. Given: $V_{f}=\$ 549, c=-16 . \overline{6} \%$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 549}{1+(-0.1 \overline{6})}=\$ 658.80
$$

$\$ 658.80$ after a reduction of $16 . \overline{6} \%$ equals $\$ 549$.
26. Given: $V_{i}=\$ 900, c=-90 \%$

$$
V_{f}=V_{i}(1+c)=\$ 900[1+(-0.9)]=\$ 90.00
$$

$\$ 900$ after a decrease of 90% is $\$ 90.00$.

Exercise 2.5 (continued)

27. Given: $V_{i}=\$ 102, c=-2 \%$

$$
V_{f}=V_{j}(1+c)=\$ 102(1-0.02)=\underline{\$ 99.96}
$$

$\$ 102$ after a decrease of 2% is $\$ 99.96$.
28. Given: $V_{i}=\$ 102, c=-100 \%$

$$
V_{f}=V_{i}(1+c)=\$ 102[1+(-1.00)]=\$ 102(0)=\$ 0.00
$$

Any positive amount after a decrease of 100% is zero.
29. Given: $V_{i}=\$ 250, V_{f}=\$ 750$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 750-\$ 250}{\$ 250} \times 100 \%=\underline{\underline{200.00 \%}}
$$

$\$ 750$ is 200.00% more than $\$ 250$.
30. Given: $V_{i}=\$ 750, V_{f}=\$ 250$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 250-\$ 750}{\$ 750} \times 100 \%=\underline{\underline{-66.67 \%}}
$$

$\$ 250$ is 66.67% less than $\$ 750$.
31. Given: $c=0.75 \%, V_{i}=\$ 10,000$

$$
V_{f}=V_{i}(1+c)=\$ 10,000(1+0.0075)=\$ 10,075.00
$$

$\$ 10,000$ after an increase of $\frac{3}{4} \%$ is $\$ 10,075.00$.
32. Given: $V_{i}=\$ 1045, c=-0.5 \%$

$$
V_{f}=V_{i}(1+c)=\$ 1045[1+(-0.005)]=\$ 1039.78
$$

$\$ 1045$ after an decrease of 0.5% is $\$ 1039.78$.
33. Given: $c=150 \%, V_{f}=\$ 575$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 575}{1+1.5}=\$ 230.00
$$

$\$ 230.00$ when increased by 150% equals $\$ 575$.
34. Given: $c=210 \%, V_{f}=\$ 465$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 465}{1+2.1}=\underline{\$ 150.00}
$$

$\$ 150.00$ after being increased by 210% equals $\$ 465$.
35. Given: $V_{i}=\$ 150, c=150 \%$

$$
V_{f}=V_{i}(1+c)=\$ 150(1+1.5)=\$ 375.00
$$

$\$ 150$ after an increase of 150% is $\$ 375.00$.
36. Let the retail price be p. Then

$$
\begin{aligned}
p+0.13 p & =\$ 281.37 \\
p & =\frac{\$ 281.37}{1.13}=\$ 249.00
\end{aligned}
$$

The coat's sticker price was $\$ 249.00$.

Exercise 2.5 (continued)

37. Let the TV's pre-tax price be p. Then

$$
\begin{aligned}
p+0.05 p+0.07 p & =\$ 2797.76 \\
p & =\frac{\$ 2797.76}{1.12}=\$ 2498.00
\end{aligned}
$$

Then, GST $=0.05 p=0.05(\$ 2498)=\$ 124.90$
and $\quad P S T=0.07 p=0.07(\$ 2498)=\$ 174.86$
38. Let the population figure for 1999 be p. Then

$$
\begin{aligned}
& p+0.1056 p=33,710,000 \\
& p=\frac{\$ 33,710,000}{1.1056}=30,490,232
\end{aligned}
$$

Rounded to the nearest 10,000, the population in 1999 was $\underline{\underline{30}, 490,000}$.
39. a. . Given: $V_{i}=32,400, V_{f}=27,450$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{27,450-32,400}{32,400} \times 100 \%=\underline{\underline{-15.28 \%}}
$$

The number of hammers sold declined by 15.28%.
b. Given: $V_{i}=\$ 15.10, V_{f}=\$ 15.50$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 15.50-\$ 15.10}{\$ 15.10} \times 100 \%=\underline{\underline{2.65 \%}}
$$

The average selling price increased by 2.65%.
c. Year 1 revenue $=32,400(\$ 15.10)=\$ 489,240$

Year 2 revenue $=27,450(\$ 15.50)=\$ 425,475$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 425,475-\$ 489,240}{\$ 489,240} \times 100 \%=\underline{\underline{-13.03 \%}}
$$

The revenue decreased by 13.03\%.
40. a. Given: $V_{i}=\$ 0.55, V_{f}=\$ 1.55$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 1.55-\$ 0.55}{\$ 0.55} \times 100 \%=\underline{\underline{181.82 \%}}
$$

The share price rose by 181.82% in the first year.
b. Given: $V_{i}=\$ 1.55, V_{f}=\$ 0.75$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 0.75-\$ 1.55}{\$ 1.55} \times 100 \%=\underline{\underline{-51.61 \%}}
$$

The share price declined by 51.61% in the second year.
c. Given: $V_{i}=\$ 0.55, V_{f}=\$ 0.75$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 0.75-\$ 0.55}{\$ 0.55} \times 100 \%=\underline{\underline{36.36 \%}}
$$

The share price rose by 36.36% over 2 years.

Exercise 2.5 (continued)

41. Pick an arbitrary price, say $\$ 1.00$, for a bar of the soap.

The former unit price was $V_{i}=\frac{\$ 1.00}{100 \mathrm{~g}}=\$ 0.01$ per gram.
The new unit price is $V_{f}=\frac{\$ 1.00}{90 \mathrm{~g}}=\$ 0.011111$ per gram.
The percent increase in unit price is

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 0.011111-\$ 0.01}{\$ 0.01} \times 100 \%=\underline{\underline{11.11 \%}}
$$

42. Initial unit price $=\frac{\$ 5.49}{1.65 l}=\$ 3.327$ per litre

Final unit price $=\frac{\$ 7.98}{2.2 l}=\$ 3.627$ per litre
The percent increase in the unit price is

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 3.627-\$ 3.327}{\$ 3.327} \times 100 \%=\underline{\underline{9.02 \%}}
$$

43. Initial unit price $=\frac{\$ 7.98}{3.6 \mathrm{~kg}}=\$ 2.2167$ per kg

Final unit price $=\frac{\$ 6.98}{3 \mathrm{~kg}}=\$ 2.3267$ per kg
The percent increase in unit price is

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 2.3267-\$ 2.2167}{\$ 2.2167} \times 100 \%=\underline{\underline{4.96 \%}}
$$

44. Initial unit price $=\frac{1098 \text { cents }}{700 \mathrm{~g}}=1.5686$ cents per g

Final unit price $=\frac{998 \text { cents }}{600 \mathrm{~g}}=1.6633$ cents per g
The percent increase in unit price is

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{1.6633-1.5686}{1.5686} \times 100 \%=\underline{\underline{6.04 \%}}
$$

45. Current unit price $=\frac{449 \text { cents }}{500 \mathrm{ml}}=0.8980$ cents per ml

New unit price $=1.10(0.8980$ cents per ml$)=0.9878$ cents per ml
Price of a $425-\mathrm{ml}$ container $=(425 \mathrm{ml}) \times(0.9878$ cents per ml$)=419.8$ cents $=\$ 4.20$
46. Current unit price $=\frac{115 \text { cents }}{100 \mathrm{~g}}=1.15$ cents per g

New unit price $=1.075(1.15$ cents per $g)=1.23625$ cents per g
Price of an 80-g bar $=(80 \mathrm{~g}) \times(1.23625$ cents per g$)=98.9$ cents $=\underline{\underline{\$ 0.99}}$

Exercise 2.5 (continued)

47. Given: $V_{f}=\$ 338,500, c=8.7 \%$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 338,500}{1.087}=\underline{\$ 311,400}
$$

The average price one year ago was $\$ 311,400$.
48. Given: $V_{f}=\$ 348.60, c=-0.30$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 348.60}{1+(-0.30)}=\frac{\$ 348.60}{0.70}=\underline{\$ 498.00}
$$

The regular price of the boots is $\$ 498.00$.
49. For Year 1, $V_{f}=\$ 6$ and $V_{f}-V_{i}=-\$ 4$

Therefore, $V_{i}=V_{f}+\$ 4=\$ 6+\$ 4=\$ 10$

$$
c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{-\$ 4}{\$ 10} \times 100 \%=\underline{\underline{-40.00 \%}}
$$

For Year 2, $V_{i}=\$ 6$ and $V_{f}-V_{i}=\$ 4$
Therefore, $c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 4}{\$ 6} \times 100 \%=\underline{\underline{66.67 \%}}$
The percent change was -40.00% in Year 1 and 66.67% in Year 2.
50. Given: For Q2 of 2009, $V_{f}=5.21$ million, $c=626 \%$

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{5.21 \text { million }}{1+6.26}=0.7176 \text { million }=717,600
$$

Rounded to the nearest 10,000, Apple sold $\underline{\underline{720,000}}$ iPhones in Q2 of 2008.
51. Given: In February of 2008, $V_{i}=475,000$ visitors and $c=1382 \%$

In February of 2009, the number of visitors was

$$
V_{f}=V_{i}(1+c)=475,000(1+13.82)=7,039,500
$$

Rounded to the nearest 1000, Twitter.com had 7,040,000 visitors in February of 2009.
52. The fees to Fund A will be
$\frac{(\text { Fees to Fund A })-(\text { Fees to Fund B })}{(\text { Fees to Fund B) }} \times 100 \%=\frac{2.38 \%-1.65 \%}{1.65 \%} \times 100 \%=\underline{\underline{44.24 \%}}$
more than the fees to Fund B.
53. Percent change in the GST rate

$$
=\frac{(\text { Final GST rate })-(\text { Initial GST rate })}{(\text { Initial GST rate })} \times 100 \%=\frac{5 \%-6 \%}{6 \%} \times 100 \%=-16.67 \%
$$

The GST paid by consumers was reduced by 16.67%.
54. Given: For February of 2009, $V_{f}=65,704,000$ visitors, $c=228.2 \%$

Then, $\quad V_{i}=\frac{V_{f}}{1+c}=\frac{65,704,000}{1+2.282}=20,019,500$
That is, Facebook had 20,019,500 unique visitors in February of 2008
Therefore, the absolute increase from February of 2008 to February of 2009 was
$65,704,000-20,019,500=\underline{45,680,000}$ (rounded to the nearest 10,000)

Exercise 2.5 (continued)

55. Given: $V_{f}=\$ 0.45, c=76 \%$
$V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 0.45}{1+(-0.76)}=\$ 1.88$
Price decline $=V_{i}-V_{f}=\$ 1.88-\$ 0.45=\$ 1.43$
The share price dropped by $\$ 1.43$.
56. Given: $V_{f}=\$ 24,300, c=-55 \%$
$V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 24,300}{1+(-0.55)}=\$ 54,000$
The amount of depreciation is $\$ 54,000-\$ 24,300=\$ 29,700$.
57. Given: For the appreciation, $V_{i}=$ Purchase price, $c=140 \%, V_{f}=$ List price

For the price reduction, $V_{i}=$ List price, $c=-10 \%, V_{f}=\$ 172,800$
List price $=\frac{V_{f}}{1+c}=\frac{\$ 172,800}{1+(-0.1)}=\$ 192,000$
Original purchase price $=\frac{V_{f}}{1+c}=\frac{\$ 192,000}{1+1.4}=\$ 80,000$
The owner originally paid $\$ 80,000$ for the property.
58. Given: For the markup, $V_{i}=$ Cost, $c=22 \%, V_{f}=$ List price

For the markdown, $V_{i}=$ List price, $c=-10 \%, V_{f}=\$ 17,568$
List price $=\frac{V_{f}}{1+c}=\frac{\$ 17,568}{1+(-0.10)}=\$ 19,520$
Cost (to dealer) $=\frac{V_{f}}{1+c}=\frac{\$ 19,520}{1+0.22}=\underline{\underline{\$ 16,000}}$
The dealer paid \$16,000 for the car.
59. If General Paint's prices are marked down by 30%, then

General Paint's prices $=0.70$ (Cloverdale Paint's prices)
Hence, Cloverdale's prices $=\frac{\text { General Paint's prices }}{0.70}=1.4286$ (General Paint's prices)
Therefore, you will pay 42.86% more at Cloverdale Paint.
60. If the Canadian dollar is worth 6.5% less than the US dollar,

Canadian dollar $=(1-0.065)($ US dollar $)=0.935$ (US dollar)
Hence, US dollar $=\frac{\text { Canadian dollar }}{0.935}=1.0695$ (Canadian dollar)
Therefore, the US dollar is worth 6.95% more than the Canadian dollar.
61. Canada's exports to US exceeded imports from the US by 23%.

That is, Exports $=1.23$ (Imports)
Therefore, \quad Imports $=\frac{\text { Exports }}{1.23}=0.8130$ (Exports)
That is, Canada's imports from US (= US exports to Canada) were

$$
1-0.8130=0.1870=18.70 \%
$$

less than Canada's exports to US (= US imports from Canada.)

Exercise 2.5 (continued)

62. Given: January sales were 17.4% less than December sales

Hence, January sales $=(1-0.174)($ December sales $)=0.826$ (December sales)
Therefore, December sales $=\frac{\text { January sales }}{0.826}=1.2107$ (January sales)
That is, December sales were $\underline{\underline{121.07 \%}}$ of January sales.
63. Suppose the initial ratio is $\frac{x}{y}$.

If the denominator is reduced by 20%, then

$$
\text { Final ratio }=\frac{x}{y-0.20 y}=\frac{x}{0.8 y}=1.25 \frac{x}{y}
$$

That is, the value of the ratio increases by 25%.
64. Next year there must be 15% fewer students per teacher.

With the same number of students,
$\frac{\text { Students }}{\text { Teachers next year }}=0.85\left(\frac{\text { Students }}{\text { Teachers now }}\right)$
Therefore, Teachers next year $=\frac{\text { Teachers now }}{0.85}=1.1765$ (Teachers now)
That is, if the number of students does not change, the number of teachers must be increased by 17.65\%.
65. Given: Operating expenses $=0.40$ (Revenue)

Then Revenue $=\frac{\text { Operating expenses }}{0.40}=2.5$ (Operating expenses)
That is, Revenue is 250% of Operating expenses, or
Revenue exceeds Operating expenses by $250 \%-100 \%=\underline{\underline{150 \%}}$.
66. Given: Equity $=(100 \%-50 \%)$ of Debt $=50 \%$ of Debt $=0.50$ (Debt)

Therefore, $\frac{\text { Debt }}{\text { Equity }}=\frac{\text { Debt }}{0.5(\text { Debt })}=\frac{1}{0.5}=2$
Since Debt is twice (or 200\% of) Equity, then debt financing is 100% more than equity financing.
67. Use ppm as the abbreviation for "pages per minute".

Given: Lightning printer prints 30% more ppm than the Reliable printer.
That is, the Lightning's printing speed is 1.30 times the Reliable's printing speed.
Therefore, the Reliable's printing speed is

$$
\frac{1}{1.3}=0.7692=76.92 \% \text { of the Lightning's printing speed }
$$

Therefore, the Reliable's printing speed is

$$
100 \%-76.92 \%=23.08 \% \text { less than the Lighting's speed. }
$$

The Lightning printer will require 23.08% less time than the Reliable for a long printing job.
68. Given: Euro is worth 39% more than the Canadian dollar.

That is, \quad Euro $=1.39$ (Canadian dollar)
Therefore, \quad Canadian dollar $=\frac{\text { Euro }}{1.39}=0.7914$ (Euro) $=79.14 \%$ of a Euro.
That is, the Canadian dollar is worth $100 \%-79.14 \%=\underline{\underline{28.06 \%}}$ less than the Euro.

Exercise 2.5 (continued)

69. Let us use OT as an abbreviation for "overtime".

The number of OT hours permitted by this year's budget is
OT hours (this year) $=\frac{\text { OT budget (this year) }}{\text { OT hourly rate (this year) }}$
The number of overtime hours permitted by next year's budget is
OT hours (next year) $=\frac{\text { OT budget } \text { (next year) }}{\text { OT hourly rate }(\text { next year) }}=\frac{1.03[\text { OT budget } \text { (this year)] }}{1.05[\text { OT hourly rate (this year)] }}$ $=0.980952 \frac{\text { OT budget (this year) }}{\text { OT hourly rate (this year) }}$

$$
=98.0952 \% \text { of this year's OT hours }
$$

The number of OT hours must be reduced by $100 \%-98.0952 \%=\underline{\underline{1.90 \%}}$.

Review Problems

1. $4(3 a+2 b)(2 b-a)-5 a(2 a-b)=4\left(6 a b-3 a^{2}+4 b^{2}-2 a b\right)-10 a^{2}+5 a b$

$$
=-22 a^{2}+21 a b+16 b^{2}
$$

2. a. Given: $c=17.5 \%, V_{i}=\$ 29.43$
$V_{f}=V_{i}(1+c)=\$ 29.43(1.175)=\$ 34.58$
$\$ 34.58$ is 17.5% more than $\$ 29.43$.
b. Given: $V_{f}=\$ 100, c=-80 \%$
$V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 100}{1-0.80}=\$ 500.00$
80\% off \$500 leaves \$100.
c. Given: $V_{f}=\$ 100, c=-15 \%$
$V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 100}{1-0.15}=\$ 117.65$
$\$ 117.65$ reduced by 15% equals $\$ 100$.
d. Given: $V_{i}=\$ 47.50, c=320 \%$
$V_{f}=V_{i}(1+c)=\$ 47.50(1+3.2)=\$ 199.50$
$\$ 47.50$ after an increase of 320% is $\$ 199.50$.
e. Given: $c=-62 \%, V_{f}=\$ 213.56$
$V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 213.56}{1-0.62}=\$ 562.00$
$\$ 562$ decreased by 62\% equals $\$ 213.56$.
f. Given: $c=125 \%, V_{f}=\$ 787.50$
$V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 787.50}{1+1.25}=\underline{\underline{\$ 350.00}}$
$\$ 350$ increased by 125% equals $\$ 787.50$.
g. Given: $c=-30 \%, V_{i}=\$ 300$
$V_{f}=V_{i}(1+c)=\$ 300(1-0.30)=\underline{\underline{\$ 210.00}}$
$\$ 210$ is 30% less than $\$ 300$.

Review Problems (continued)

3. a. $\frac{9 y-7}{3}-2.3(y-2)=3 y-2 . \overline{3}-2.3 y+4.6=\underline{\underline{0.7 y+2.2 \overline{6}}}$
b. $P\left(1+0.095 \times \frac{135}{365}\right)+\frac{2 P}{1+0.095 \times \frac{75}{365}}=1.035137 P+1.961706 P=\underline{\underline{2.996843 P}}$
4. a. $6(4 y-3)(2-3 y)-3(5-y)(1+4 y)=6\left(8 y-12 y^{2}-6+9 y\right)-3\left(5+20 y-y-4 y^{2}\right)$

$$
=-60 y^{2}+45 y-51
$$

b. $\frac{5 b-4}{4}-\frac{25-b}{1.25}+\frac{7}{8} b=1.25 b-1-20+0.8 b+0.875 b=\underline{\underline{2.925 b}-21}$
c. $\frac{x}{1+0.085 \times \frac{63}{365}}+2 x\left(1+0.085 \times \frac{151}{365}\right)=0.985541 x+2.070329 x=\underline{\underline{3.05587 x}}$
d. $\frac{96 \mathrm{~nm}^{2}-72 \mathrm{n}^{2} \mathrm{~m}^{2}}{48 \mathrm{n}^{2} \mathrm{~m}}=\frac{4 \mathrm{~m}-3 \mathrm{~nm}}{2 \mathrm{n}}=\frac{4 \mathrm{~m}}{2 \mathrm{n}}-\frac{3 n \mathrm{~m}}{2 \mathrm{n}}=\underline{\underline{\frac{\mathrm{m}}{\mathrm{n}}-1.5 \mathrm{~m}}}$
5. $P(1+i)^{n}+\frac{S}{1+r t}=\$ 2500(1.1025)^{2}+\frac{\$ 1500}{1+0.09 \times \frac{93}{365}}=\$ 3038.766+\$ 1466.374=\$ 4505.14$
6. a. $L\left(1-d_{1}\right)\left(1-d_{2}\right)\left(1-d_{3}\right)=\$ 340(1-0.15)(1-0.08)(1-0.05)=\underline{\$ 252.59}$
b. $\frac{R}{i}\left[1-\frac{1}{(1+i)^{n}}\right]=\frac{\$ 575}{0.085}\left[1-\frac{1}{(1+0.085)^{3}}\right]=\$ 6764.706(1-0.7829081)=\underline{\underline{\$ 1468.56}}$
7. a. $\frac{\left(-3 x^{2}\right)^{3}\left(2 x^{-2}\right)}{6 x^{5}}=\frac{\left(-27 x^{6}\right)\left(2 x^{-2}\right)}{6 x^{5}}=\xlongequal{-\frac{9}{x}}$
b. $\frac{\left(-2 a^{3}\right)^{-2}\left(4 b^{4}\right)^{3 / 2}}{\left(-2 b^{3}\right)(0.5 a)^{3}}=\frac{\left(\frac{1}{4 a^{6}}\right)\left(8 b^{6}\right)}{\left(-2 b^{3}\right)\left(0.125 a^{3}\right)}=-\frac{8 b^{3}}{a^{9}}$
8. $\left(-\frac{2 x^{2}}{3}\right)^{-2}\left(\frac{5^{2}}{6 x^{3}}\right)\left(-\frac{15}{x^{5}}\right)^{-1}=\left(\frac{3}{2 x^{2}}\right)^{2}\left(\frac{25}{6 x^{3}}\right)\left(-\frac{x^{5}}{15}\right)=-\frac{5}{\underline{\underline{8 x^{2}}}}$
9. a. $1.0075^{24}=\underline{\underline{1.19641}}$
b. $(1.05)^{1 / 6}-1=\underline{\underline{0.00816485}}$
c. $\frac{(1+0.0075)^{36}-1}{0.0075}=\underline{\underline{41.1527}}$
d. $\frac{1-(1+0.045)^{-12}}{0.045}=\underline{\underline{9.11858}}$
10. a. $\frac{(1.00 \overline{6})^{240}-1}{0.00 \overline{6}}=\frac{4.926802-1}{0.00 \overline{6}}=\underline{\underline{589.020}}$
b. $(1+0.025)^{1 / 3}-1=\underline{\underline{0.00826484}}$

Review Problems (continued)

11.

$$
\text { a. } \begin{aligned}
\frac{2 x}{1+0.13 \times \frac{92}{365}}+x\left(1+0.13 \times \frac{59}{365}\right) & =\$ 831 \\
1.936545 x+1.021014 x & =\$ 831 \\
2.957559 x & =\$ 831 \\
x & =\$ 280.97
\end{aligned}
$$

b. $\quad 3 x\left(1.03^{5}\right)+\frac{x}{1.03^{3}}+x=\frac{\$ 2500}{1.03^{2}}$

$$
\begin{aligned}
3.47782 x+0.91514 x+x & =\$ 2356.49 \\
x & =\$ 436.96
\end{aligned}
$$

12. a. $\frac{x}{1.08^{3}}+\frac{x}{2}(1.08)^{4}=\$ 850$

$$
0.793832 x+0.680245 x=\$ 850
$$

$$
x=\$ 576.63
$$

Check: $\frac{\$ 576.63}{1.08^{3}}+\frac{\$ 576.63}{2}(1.08)^{4}=\$ 457.749+\$ 392.250=\$ 850.00$
b. $2 x\left(1+0.085 \times \frac{77}{365}\right)+\frac{x}{1+0.085 \times \frac{132}{365}}=\$ 1565.70$

$$
2.03586 x+0.97018 x=\$ 1565.70
$$

$$
x=\$ 520.85
$$

Check:

$$
2(\$ 520.85)\left(1+0.085 \times \frac{77}{365}\right)+\frac{\$ 520.85}{1+0.085 \times \frac{132}{365}}=\$ 1060.38+\$ 505.32=\$ 1565.70
$$

13.

$$
\begin{aligned}
N & =L\left(1-d_{1}\right)\left(1-d_{2}\right)\left(1-d_{3}\right) \\
\$ 324.30 & =\$ 498(1-0.20)\left(1-d_{2}\right)(1-0.075) \\
\$ 324.30 & =\$ 368.52\left(1-d_{2}\right) \\
\frac{\$ 324.30}{\$ 368.52} & =\left(1-d_{2}\right) \\
d_{2} & =1-0.8800=\underline{\underline{0.120}}=\underline{\underline{12.0 \%}}
\end{aligned}
$$

14. $V_{f}=V_{i}\left(1+c_{1}\right)\left(1+c_{2}\right)\left(1+c_{3}\right)$
$\$ 586.64=\$ 500(1+0.17)\left(1+c_{2}\right)(1+0.09)$
$\$ 586.64=\$ 637.65\left(1+c_{2}\right)$
$1+c_{2}=\frac{\$ 586.64}{\$ 637.65}$
$c_{2}=0.9200-1=-0.0800=-8.00 \%$
15.

$$
\begin{aligned}
& 3 x+5 y=11 \\
& 2 x-y=16
\end{aligned}
$$

To eliminate y,
(1): $\quad 3 x+5 y=11$
(2) $\times 5: \frac{10 x-5 y}{13 x+0}=\underline{80}$

Add:

$$
\begin{aligned}
13 x+0 & =\overline{91} \\
x & =7
\end{aligned}
$$

Substitute into equation (2): 2(7) $-\mathrm{y}=16$

$$
y=-2
$$

Hence,

$$
(x, y)=(7,-2)
$$

Review Problems (continued)

16.

a.
$4 a-5 b=30$
$2 a-6 b=22$
(2)

To eliminate a ,
(1) $\times 1: a-5 b=30$
(2) $\times 2: \underline{a}-12 b=44$

Subtract: $\quad 7 \mathrm{~b}=-14$
$b=-2$
Substitute into (1):4a-5(-2)=30

$$
\begin{aligned}
4 \mathrm{a} & =30-10 \\
\mathrm{a} & =5
\end{aligned}
$$

Hence, (a,b) $=(5,-2)$
b.

$$
\begin{array}{r}
76 x-29 y=1050 \\
-13 x-63 y=250
\end{array}
$$

To eliminate (1),
(1) \times 13: $\quad 988 x-377 y=13,650$
(2) $\times 76$: $-988 x-4788 y=19,000$

$$
-5165 y=32,650
$$

$$
y=-6.321
$$

Substitute into (1): $76 x-29(-6.321)=1050$

$$
\begin{aligned}
76 x & =1050-183.31 \\
x & =11.40
\end{aligned}
$$

Hence, $\quad(x, y)=(11.40,-6.32)$
17.

$$
\begin{aligned}
F V & =P V\left(1+i_{1}\right)\left(1+i_{2}\right) \\
\frac{F V}{P V\left(1+i_{2}\right)} & =\left(1+i_{1}\right) \\
i_{1} & =\frac{F V}{P V\left(1+i_{2}\right)}-1
\end{aligned}
$$

18. Given:

Year 1 value $\left(V_{i}\right) \quad$ Year 2 value $\left(V_{f}\right)$
Gold produced: $\quad 34,300 \mathrm{oz} . \quad 23,750 \mathrm{oz}$.
Average price: \$1160 \$1280
a. Percent change in gold production $=\frac{23,750-34,300}{34,300} \times 100 \%=\underline{\underline{-30.76 \%}}$
b. Percent change in price $=\frac{\$ 1280-\$ 1160}{\$ 1160} \times 100 \%=\underline{\underline{10.34 \%}}$
c. Year 1 revenue, $V_{i}=34,300(\$ 1160)=\$ 39.788$ million

Year 2 revenue, $V_{f},=23,750(\$ 1280)=\$ 30.400$ million
Percent change in revenue $=\frac{\$ 30.400-\$ 39.788}{\$ 39.788} \times 100 \%=\underline{\underline{-23.60 \%}}$
19. Given: For the first year, $V_{i}=\$ 3.40, V_{f}=\$ 11.50$.

For the second year, $V_{i}=\$ 11.50, c=-35 \%$.
a. $c=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \%=\frac{\$ 11.50-\$ 3.40}{\$ 3.40} \times 100 \%=\underline{\underline{238.24 \%}}$

The share price increased by 238.24% in the first year.
b. Current share price, $V_{f}=V_{i}(1+c)=\$ 11.50(1-0.35)=\$ 7.48$.

Review Problems (continued)

20. Given: For the first year, $c=150 \%$

For the second year, $c=-40 \%, V_{f}=\$ 24$
The price at the beginning of the second year was

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 24}{1-0.40}=\$ 40.00=V_{f} \text { for the first year. }
$$

The price at the beginning of the first year was

$$
V_{i}=\frac{V_{f}}{1+c}=\frac{\$ 40.00}{1+1.50}=\$ 16.00
$$

Barry bought the stock for $\$ 16.00$ per share.
21. Given: Last year's revenue $=\$ 2,347,000$

Last year's expenses $=\$ 2,189,000$
a. Given: Percent change in revenue $=10 \%$; Percent change in expenses $=5 \%$

Anticipated revenues, $V_{f}=V_{i}(1+c)=\$ 2,347,000(1.1)=\$ 2,581,700$
Anticipated expenses $=\quad \$ 2,189,000(1.05)=\$ 2,298,450$
Anticipated profit $=\quad \$ 283,250$
Last year's profit $=\$ 2,347,000-\$ 2,189,000=\$ 158,000$
Percent increase in profit $=\frac{\$ 283,250-\$ 158,000}{\$ 158,000} \times 100 \%=\underline{\underline{79.27 \%}}$
b. Given: $c($ revenue $)=-10 \% ; c$ (expenses $)=-5 \%$

Anticipated revenues $=\$ 2,347,000(1-0.10)=\$ 2,112,300$
Anticipated expenses $=\$ 2,189,000(1-0.05)=\$ 2,079,550$
Anticipated profit
\$32,750
Percent change in profit $=\frac{\$ 32,750-\$ 158,000}{\$ 158,000} \times 100 \%=\underline{\underline{-79.27 \%}}$
The operating profit will decline by 79.27%.
22. Given: Ken's share $=0.80$ (Hugh's share) $+\$ 15,000 ;$ Total distribution $=\$ 98,430$ Let H represent Hugh's share. Then

Hugh's share + Ken's share $=$ Total distribution

$$
\begin{aligned}
\mathrm{H}+0.8 \mathrm{H}+\$ 15,000 & =\$ 98,430 \\
1.8 \mathrm{H} & =\$ 83,430 \\
\mathrm{H} & =\$ 46,350
\end{aligned}
$$

Hugh should receive \$46,350 and Ken should receive $\$ 98,430-\$ 46,350=\underline{\underline{~ \$ 52,080}}$.
23. Given: Grace's share $=1.2$ (Kajsa's share); Mary Anne's share $=\frac{5}{8}$ (Grace's share)

Total allocated $=\$ 36,000$
Let K represent Kajsa's share.
(Kajsa's share) + (Grace's share) + (Mary Anne's share) $=\$ 36,000$

$$
\begin{aligned}
\mathrm{K}+1.2 \mathrm{~K}+\frac{5}{8}(1.2 \mathrm{~K}) & =\$ 36,000 \\
2.95 \mathrm{~K} & =\$ 36,000 \\
\mathrm{~K} & =\$ 12,203.39
\end{aligned}
$$

Kajsa's should receive $\$ 12,203.39$. Grace should receive 1.2K $=\$ 14,644.07$.
Mary Anne should receive $\frac{5}{8}(\$ 14,644.07)=\$ 9152.54$.

Review Problems (continued)

24. Let R represent the price per kg for red snapper and let L represent the price per kg for ling cod. Then

$$
\begin{aligned}
& 370 \mathrm{R}+264 \mathrm{~L}=\$ 2454.20 \\
& 255 \mathrm{R}+304 \mathrm{~L}=\$ 2124.70
\end{aligned}
$$

To eliminate R,
(1) $\div 370: \quad R+0.71351 \mathrm{~L}=\$ 6.6330$
(2) $\div 255: \quad \underline{R}+1.19216 \mathrm{~L}=\$ 8.3322$

Subtract: $\quad-0.47865 \mathrm{~L}=-\$ 1.6992$
L = \$3.55

Substitute into (1): 370R + 264(\$3.55) = \$2454.20

$$
\begin{aligned}
370 \mathrm{R} & =\$ 1517.00 \\
\mathrm{R} & =\$ 4.10
\end{aligned}
$$

Nguyen was paid $\$ 3.55$ per kg for ling cod and $\$ 4.10$ per kg for red snapper.
25. Let b represent the base salary and r represent the commission rate. Then

$$
\begin{aligned}
& r(\$ 27,000)+b=\$ 2815.00 \text { (1) } \\
& r(\$ 35,500)+b=\$ 3197.50 \\
& \text { Subtract: } \quad-\$ 8500 r=\$ 382.50 \\
& r=0.045
\end{aligned}
$$

Substitute into (1): $0.045(\$ 27,000)+b=\$ 2815$
b = \$1600

Deanna's base salary is \$1600 per month and her commission rate is 4.5%.
26. Given: Total initial investment $=\$ 7800$; Value 1 year later $=\$ 9310$

Percent change in ABC portion $=15 \%$
Percent change in XYZ portion = 25\%
Let X represent the amount invested in XYZ Inc.
The solution "idea" is:
(Amount invested in ABC)1.15 + (Amount invested in XYZ)1.25 = \$9310
Hence,

$$
\begin{aligned}
(\$ 7800-X) 1.15+(X) 1.25 & =\$ 9310 \\
\$ 8970-1.15 X+1.25 X & =\$ 9310 \\
0.10 X & =\$ 9310-\$ 8970 \\
X & =\$ 3400
\end{aligned}
$$

Rory invested $\$ 3400$ in XYZ Inc. and $\$ 7800-\$ 3400=\$ 4400$ in ABC Ltd.
27. Let the regular season ticket prices be R for the red section and B for the blue section. Then

$$
\begin{aligned}
2500 \mathrm{R}+4500 \mathrm{~B} & =\$ 50,250 \text { (1) } \\
2500(1.3 R)+4500(1.2 B) & =\$ 62,400
\end{aligned}
$$

(1) $\times 1.2: \quad \underline{2500(1.2 R)+4500(1.2 B)}=\$ 60,300$

Subtract: $\quad 2500(0.1 R)+0=\$ 2100$
$R=\$ 8.40$
Substitute into (1): $\quad 2500(\$ 8.40)+4500 B=\$ 50,250$

$$
B=\$ 6.50
$$

The ticket prices for the playoffs cost
$1.3 \times \$ 8.40=\$ 10.92$ in the "reds"
and $1.2 \times \$ 6.50=\$ 7.80$ in the "blues".

Review Problems (continued)

28. 60% of a $3 / 8$ interest was purchased for $\$ 25,000$.

Let the V represent the implied value of the entire partnership.
Then $0.60 \times \frac{3}{8} \mathrm{~V}=\$ 25,000$

$$
V=\frac{8 \times \$ 25,000}{0.60 \times 3}=\underline{\$ 111,111}
$$

The implied value of the chalet was $\$ 111,111$.
29. Let S represent the number of cucumbers sold individually and
let F represent the number of four-cucumber packages sold in the promotion. Then

$$
\begin{equation*}
S+\quad 4 F=541 \tag{1}
\end{equation*}
$$

$\$ 0.98 \mathrm{~S}+\$ 2.94 \mathrm{~F}=\$ 418.46$
To eliminate S ,
(1) $\times \$ 0.98: \$ 0.98 \mathrm{~S}+\$ 3.92 \mathrm{~F}=\$ 530.18$
(2): $\$ 0.98 \mathrm{~S}+\$ 2.94 \mathrm{~F}=\$ 418.46$

Subtract: $\quad 0+\$ 0.98 \mathrm{~F}=\$ 111.72$
$F=114$
Hence, a total of $4 \times 114=456$ cucumbers were sold on the four-for-the-price-of-three promotion.

