CHAPTER 2
 Displaying Descriptive Statistics

2.1
a) $2^{7}=128>100$ therefore use 7 classes.
b) $2^{9}=512>300$ therefore use 9 classes.
c) $2^{10}=1,024>1,000$ therefore use 10 classes.
d) $2^{11}=2,048>2,000$ therefore use 11 classes.
$2.22^{6}=64>50$ therefore use 6 classes.
Estimated Class Width $=\frac{74-16}{6}=9.7 \approx 10$
a) $16-25,26-35,36-45,46-55,56-65,66-75$
b) 16 to under 26,26 to under 36,36 to under 46, 46 to under 56,56 to under 66,66 to under 76
2.3

	Frequency	Relative Number	Frequency Relative
1	6	0.250	Frequency
2	6	0.250	0.250
3	5	0.208	0.500
4	4	0.167	0.708
5	3	0.125	0.875
Total	$\mathbf{2 4}$	$\mathbf{1 . 0 0}$	1.00

$2.42^{5}=32>30$ therefore use 5 classes.
Estimated Class Width $=\frac{42.8-13.9}{5}=5.8 \approx 6$

	Frequency	Relative Frequency	Cumulative Relative Frequency
Class		0.200	0.200
13 to less than 19	6	0.367	0.567
19 to less than 25	11	0.133	0.700
25 to less than 31	4	0.233	0.933
31 to less than 37	7	0.067	1.0
37 to less than 43	2	$\mathbf{1 . 0 0}$	
Total	$\mathbf{3 0}$		

$2.52^{6}=64>36$ therefore use 6 classes.
Estimated Class Width $=\frac{\$ 5,927-\$ 162}{6}=\$ 960 \approx \$ 1,000$
a, b, c)

Class	Frequency	Relative Frequency
Less than $\$ 1,000$	12	0.333
$\$ 1,000$ to less than $\$ 2,000$	8	0.222
$\$ 2,000$ to less than $\$ 3,000$	3	0.083
$\$ 3,000$ to less than $\$ 4,000$	2	0.056
$\$ 4,000$ to less than $\$ 5,000$	6	0.167
$\$ 5,000$ to less than $\$ 6,000$	5	0.139
Total	$\mathbf{3 6}$	$\mathbf{1 . 0 0 0}$

Cumulative
Relative
Frequency
0.333
0.555
0.638
0.694

0.056
$\$ 4,000$ to less than $\$ 5,000 \quad 6$
$0.167 \quad 0.861$
1.000
d) The following histogram was constructed using bins $\$ 999, \$ 1,999, \$ 2,999, \$ 3,999, \$ 4,999$, and $\$ 5,999$.

$2.62^{5}=32>25$ therefore use 5 classes.
Estimated Class Width $=\frac{46-18}{5}=5.6 \approx 6$
$a, b, c)$

	Frequency	Relative Frequency Class	Relative Frequency
$18-23$	2	0.08	0.08
$24-29$	6	0.24	0.32
$30-35$	5	0.20	0.52
$36-41$	5	0.20	0.72
$42-47$	7	0.28	1.00
Total	$\mathbf{2 5}$	$\mathbf{1 . 0 0}$	

d) The following histogram was constructed using bins 22.9, 28.9, 34.9, 40.9, and 46.9.

a, b, c)

Number	Frequency	Relative Frequency	Relative Frequency
0	3	0.043	0.043
1	21	0.300	0.343
2	23	0.329	0.672
3	15	0.214	0.886
4	8	0.114	1.000
Total	$\mathbf{7 0}$	$\mathbf{1 . 0 0 0}$	

d) The following histogram was constructed using bins $0,1,2,3$, and 4 .

2.8 $2^{6}=64>40$ therefore use 6 classes.

Estimated Class Width $($ Current $)=\frac{76-19}{6}=9.5 \approx 10$
Results would be similar using the laid-off ages.

Class	Bins	Midpoint
19 to less than 29	28.9	24
29 to less than 39	38.9	34
39 to less than 49	48.9	44
49 to less than 59	58.9	54
59 to less than 69	68.9	64
69 to less than 79	78.9	74

An extra bin (18.9) was added to Excel to provide the open-ended class required by PHStat2.
a)

b)

c) According to these polygons, it appears that the current workforce is younger than the laid-off employees. It appears that the laid-off employees may have a case for age discrimination.
$2.92^{9}=512>350$ therefore use 9 classes.
Estimated Class Width $=\frac{\$ 349.99-\$ 2.19}{9}=\$ 38.64 \approx \$ 40$
$a, b, c)$

Class

Less than $\$ 40$
$\$ 40$ to less than $\$ 80$
$\$ 80$ to less than $\$ 120$
$\$ 120$ to less than $\$ 160$
$\$ 160$ to less than \$200
\$200 to less than \$240
\$240 to less than \$280
$\$ 280$ to less than \$320
\$320 to less than \$360
Total

Frequency Relative Frequency
0.149
0.294
0.260
0.186
0.043
0.031
0.014
0.014
0.009
1.000

Cumulative

Relative

Frequency
0.149
0.443
0.703
0.889
0.932
0.963
0.977
0.991
1.000
d) The following histogram was constructed using bins 39.999, 79.999, 119.999, 159.999, 199.999, 239.999, 279.999, 319.999, and 359.999.

2.10 $2^{7}=128>125$ therefore use 7 classes.

Estimated Class Width $=\frac{83.2-71.0}{7}=1.7 \approx 2$
$a, b, c)$

Class

71 to less than 73
73 to less than 75
75 to less than 77
77 to less than 79
79 to less than 81
81 to less than 83
83 to less than 85
Total

Frequency	Relative Frequency
5	0.040
37	0.296
44	0.352
31	0.248
6	0.048
1	0.008
1	0.008
$\mathbf{1 2 5}$	$\mathbf{1 . 0 0 0}$

Cumulative

Relative
Frequency
0.040
0.336
0.688
0.936
0.984
0.992
1.000
d) The following histogram was constructed using bins $72.99,74.99,76.99,78.99,80.99,82.99$, and 84.99.

e) For 68.8% of the days, ocean temps were lower than 70 degrees.
2.11
a, b, c)

	Frequency	Relative Frequency	Cumulative Relative Frequency
Category		0.667	0.667
Google	20	0.167	0.833
Yahoo	5	0.067	0.900
Bing	2	0.067	0.967
Baidu	2	0.033	1.000
Other	1	$\mathbf{1 . 0 0 0}$	
Total	$\mathbf{3 0}$		

d)

2.12
$\mathrm{a}, \mathrm{b}, \mathrm{c})$

	Frequency	Relative Frequency	Cumulative Relative Frequency
Category		0.267	0.267
Excellent	16	0.517	0.783
Good	31	0.133	0.917
Fair	8	0.083	1.000
Poor	5	$\mathbf{1 . 0 0 0}$	
Total	$\mathbf{6 0}$		

d)

e) 78.3% rated their dining experience as either Excellent or Good.
2.13

2.14

2.15

2.16

2.17

2.18

2.19 Because all the possible categories appear to be included in the data, a pie chart would be a good choice to display this data.

2.20 Because we are comparing data from a sample of countries over different time periods, a clustered bar chart would be a good choice to display this data. A stacked bar chart would not be the best choice because adding the GDPs for 2 time periods that are 10 years apart is not very meaningful.

2.21

Grade	Female	Male	Total
A	5	2	7
B	5	7	12
C	2	3	5
Total	$\mathbf{1 2}$	$\mathbf{1 2}$	$\mathbf{2 4}$

71% (5/7) of the As were earned by females even though they comprise of $50 \%(12 / 24)$ of the students in the class. The females appear to have done better grade-wise than the males.
2.22

Rating	Darby	Exton	Media	Total
1	0	2	3	5
2	2	3	8	13
3	6	7	7	20
4	7	3	2	12
Total	$\mathbf{1 5}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{5 0}$

Darby received 58% (7/12) of the 4-star ratings even though they were only 30% (15/50) of the surveyed customers. Darby appears to have higher customer satisfaction when compared to the other two locations.
2.23

$$
\begin{aligned}
& 7 \mid 12345889 \\
& 8 \mid 036677 \\
& 9 \mid 00479 \\
& 10 \mid 0177 \\
& 11 \mid 0112568 \\
& 12 \mid 00256 \\
& 13 \mid 04479
\end{aligned}
$$

2.24

$$
\begin{aligned}
& 10 \mid 025889 \\
& 11 \mid 01233445 \\
& 12 \mid 11123356779 \\
& 13 \mid 02267779 \\
& 14 \mid 00256 \\
& 15 \mid 0
\end{aligned}
$$

2.25 a)

$$
\begin{aligned}
& 1 \mid 36 \\
& 2 \mid 123479 \\
& 3 \mid 57778 \\
& 4 \mid 00123344557889 \\
& 5 \mid 0011224589 \\
& 6 \mid 47
\end{aligned}
$$

b)

$$
\begin{aligned}
& 1(0) \mid 3 \\
& 1(5) \mid 6 \\
& 2(0) \mid 1234 \\
& 2(5) \mid 79 \\
& 3(0) \mid \\
& 3(5) \mid 57778 \\
& 4(0) \mid 00123344 \\
& 4(5) \mid 557889 \\
& 5(0) \mid 0011224 \\
& 5(5) \mid 589 \\
& 6(0) \mid 4 \\
& 6(5) \mid 7
\end{aligned}
$$

2.26 a)

$$
\begin{aligned}
& 1 \mid 6 \\
& 2 \mid 166778889 \\
& 3 \mid 11235556679 \\
& 4 \mid 005 \\
& 5 \mid 9
\end{aligned}
$$

b)

$$
\begin{aligned}
& 1(0) \mid \\
& 1(5) \mid 6 \\
& 2(0) \mid 1 \\
& 2(5) \mid 66778889 \\
& 3(0) \mid 1123 \\
& 3(5) \mid 5556679 \\
& 4(0) \mid 00 \\
& 4(5) \mid 5 \\
& 5(0) \mid \\
& 5(5) \mid 9
\end{aligned}
$$

2.27 It appears that the number of Netflix subscribers is increasing significantly during this time period.

2.28 It appears that the demand for TVs decreases as price increases.

2.29

$2.302^{6}=64>40$ therefore use 6 classes.
Estimated Class Width $=\frac{23-0}{6}=3.8 \approx 4$
$a, b, c)$

Class	Frequency	Relative Frequency Relative	
$0-3$	8	0.200	Frequency
$4-7$	5	0.125	0.200
$8-11$	15	0.375	0.325
$12-15$	3	0.075	0.700
$16-19$	6	0.150	0.775
$20-23$	3	0.075	0.925
Total	$\mathbf{4 0}$	$\mathbf{1 . 0 0 0}$	1.000

d) The following histogram was constructed using bins $2.9,6.9,10.9,14.9,18.9$, and 22.9.

2.31
a, b, c)

	Frequency	Relative Frequency	Cumulative Relative Frequency
Number		0.32	0.32
0	16	0.18	0.50
1	9	0.14	0.64
2	7	0.22	0.86
3	11	0.10	0.96
4	5	0.04	1.00
5	2	$\mathbf{1 . 0 0}$	
Total	$\mathbf{5 0}$		

d) The following histogram was constructed using bins $0,1,2,3,4$, and 5 .

e) 50%
$2.322^{6}=64>48$ therefore use 6 classes.
Estimated Class Width $=\frac{1,187-43}{6}=190.7 \approx 200$
a, b, c)

Class

0 to under 200
200 to under 400
400 to under 600
600 to under 800
800 to under 1,000
1,000 to under 1,200
Total

Frequency

15
13
11
4
4
1
48

Relative
Frequency
0.313
0.271
0.229
0.083
0.083
0.021
1.000

Cumulative

Relative
Frequency
0.313
0.584
0.813
0.896
0.979
1.000
d) The following histogram was constructed using bins 199.9, 399.9, 599.9, 799.9, 999.9, and 1,199.9.

$2.332^{7}=128>72$ therefore use 7 classes.
Estimated Class Width $=\frac{795-190}{7}=86.4 \approx 100$ $a, b, c)$

Class

101-200
201-300
301-400
401-500
501-600
601-700
701-800
Total

Frequency Relative
Frequency
0.028
0.028
0.125
0.208
0.431
0.125
0.056
1.001

Cumulative
Relative
Frequency
0.028
0.056
0.181
0.389
0.820
0.945
1.001
d) The following histogram was constructed using bins 200, 300, 400, 500, 600, 700, and 800 .

$2.342^{5}=32>30$ therefore use 5 classes.
Estimated Class Width $($ Day $)=\frac{100-66}{5}=6.8 \approx 7$
Results would be similar using the evening grades.

Class	Bins	Midpoint
$66-72$	72	69
$73-79$	79	76
$80-86$	86	83
$87-93$	93	90
$94-100$	100	97

An extra bin (65) was added to Excel to provide the open-ended class required by PHStat2.
a)

b)

c) The evening class grades appear to be noticeably higher than the day class grades.
$2.352^{9}=512>300$ therefore use 9 classes.
Estimated Class Width $=\frac{39-(-14)}{9}=5.9 \approx 6$
$a, b, c)$

Class
-14 to under -8.1 6
-8 to under -2.1
-2 to under 4
4 to under 10
10 to under 16
16 to under 22
22 to under 28
28 to under 34
34 to under 40
Total

Frequency Relative
Frequency
0.020
0.093
0.133
0.193
0.227
0.203
0.090
0.030
0.010
0.999

Relative
Cumulative
Frequency
0.020
0.113
0.246
0.439
0.666
0.869
0.959
0.989
0.999
d) The following histogram was constructed using bins $-8.1,-2.1,3.9,9.9,15.9,21.9,27.9,33.9$, and 39.9.

e) Approximately 74 out of 300 flights were not late (24.7%).
2.36 a)

b)

$2.372^{7}=128>100$ therefore use 7 classes.
Estimated Class Width $($ Wayne $)=\frac{259-12}{7}=35.3 \approx 40$
Results would be similar using the Dover data.

Class	Bins	Midpoint
$1-40$	40	20.5
$41-80$	80	60.5
$81-120$	120	100.5
$121-160$	160	140.5
$161-200$	200	180.5
$201-240$	240	220.5
$241-280$	280	260.5

An extra bin (0) was added to Excel to provide the open-ended class required by PHStat2.

b)

c) It appears that the days on the market for homes sold in Wayne are longer than for homes sold in Dover.
2.38 a)

b)

2.39

Reason	Frequency	Relative Frequency	Cumulative Relative Frequency
Too long on hold	47	0.392	0.392
Not knowledgeable	22	0.183	0.575
Not courteous	18	0.150	0.725
Hard to understand	15	0.125	0.850
Too many transfers	10	0.083	0.933
Other	8	0.067	1.000
Total	120		

2.41

Reason	Frequency	Relative Frequency	Cumulative Relative Frequency
Transmission	721	0.385	0.385
Body	437	0.233	0.619
Wheels	164	0.088	0.706
Drivetrain	139	0.074	0.780
Windows	89	0.048	0.828
Engine	55	0.029	0.857
Interior	45	0.024	0.881
Electrical	44	0.024	0.905
Steering	42	0.022	0.927
Suspension	41	0.022	0.949
AC/heater	26	0.014	0.963
Brakes	22	0.012	0.975
Other	47	0.025	1.000
Total	1872		

2.42

2.43

2.44

2.45 A bar chart would be appropriate for categorical data. The time data needs to be converted to common units (minutes).

2.46 A clustered bar chart would be appropriate for this data. A stacked bar chart would also be an option.

2.47 A bar chart, either horizontal or vertical, is the best choice for this data. A pie chart would not be appropriate because all brands are not included. The total percentage does not equal 100%.

2.48 A pie chart is the best choice because all categories are included and the percentage sums to 100%.

2.49 A bar chart, either horizontal or vertical, is the best choice for this data.

2.50

Brand	Diet	Regular	Total
Coke	6	6	12
Mt. Dew	2	8	10
Pepsi	4	7	11
Total	$\mathbf{1 2}$	$\mathbf{2 1}$	$\mathbf{3 3}$

$50 \%(6 / 12)$ of the Coke customers preferred Diet even though only $36 \%(12 / 33)$ of all the customers prefer Diet soda. Coke customers appear to have a higher percentage of customers who prefer diet soda than other brands.

$\mathbf{2 . 5 1}$				
Age	Callaway	Nike	Taylor Made	Total
$20-29$	4	2	19	25
$30-39$	9	15	10	34
$40-49$	16	6	8	30
$50-59$	3	3	5	11
Total	$\mathbf{3 2}$	$\mathbf{2 6}$	$\mathbf{4 2}$	$\mathbf{1 0 0}$

Younger golfers seem to prefer Taylor Made clubs while older golfers seem to refer Callaway.
2.52 a)

$$
\begin{aligned}
& 1 \mid 899 \\
& 2 \mid 0002233555688889 \\
& 3 \mid 011112235556699 \\
& 4 \mid 13356 \\
& 5 \mid 1
\end{aligned}
$$

b)

$$
\begin{aligned}
& 1(5) \mid 899 \\
& 2(0) \mid 0002233 \\
& 2(5) \mid 555688889 \\
& 3(0) \mid 01111223 \\
& 3(5) \mid 5556699 \\
& 4(0) \mid 133 \\
& 4(5) \mid 56 \\
& 5(0) \mid 1
\end{aligned}
$$

2.53 a)

$$
\begin{aligned}
& 7 \mid 0022456777 \\
& 8 \mid 1258 \\
& 9 \mid 0122333457799 \\
& 10 \mid 01245 \\
& 11 \mid 289 \\
& 12 \mid 5 \\
& 13 \mid 0018
\end{aligned}
$$

b)
$7(0) \mid 00224$
$7(5) \mid 56777$
$8(0) \mid 12$
$8(5) \mid 58$
$9(0) \mid 01223334$
$9(5) \mid 57799$
$10(0) \mid 0124$
$10(5) \mid 5$
$11(0) \mid 2$
$11(5) \mid 89$
$12(0) \mid$
$12(5) \mid 5$
$13(0) \mid 001$
$13(5) \mid 8$
2.54

There does not appear to be a consistent relationship between payroll and wins during the 2010 season.

The trend in gasoline prices appear to rise consistently during this time period.

