Chapter 02 Test Bank - Static KEY

1. A stem-and-leaf display is a graphical portrayal of a data set that shows the data set's overall pattern of variation.

TRUE

AACSB: Reflective Thinking Blooms: Remember Difficulty: 2 Medium
 Learning Objective: 02-05 Construct and interpret stem-and-leaf displays.

Topic: Stem-and-Leaf Displays
2. The relative frequency is the frequency of a class divided by the total number of measurements.

TRUE

AACSB: Reflective Thinking
Blooms: Remember Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Qualitative Data
3. A bar chart is a graphic that can be used to depict qualitative data.

TRUE

4. Stem-and-leaf displays and dot plots are useful for detecting outliers.

TRUE

5. A scatter plot can be used to identify outliers.

FALSE

A scatter plot is used to identify the relationship between two variables.
6. When looking at the shape of the distribution using a stem-and-leaf, a distribution is skewed to the right when the left tail is shorter than the right tail.
7. When we wish to summarize the proportion (or fraction) of items in a class, we use the frequency distribution for each class.

FALSE

This is the definition for relative frequency. Frequency distribution shows actual counts of items in a class.

AACSB: Reflective Thinking
Blooms: Remember
Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Qualitative Data
8. When establishing the classes for a frequency table, it is generally agreed that the more classes you use the better your frequency table will be.

FALSE

Classes should be determined by the number of data measurements.

AACSB: Reflective Thinking
Blooms: Remember Difficulty: 1 Easy Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Qualitative Data
9. The sample cumulative distribution function is nondecreasing.

TRUE

AACSB: Reflective Thinking
Blooms: Remember
Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives.
10. A frequency table includes row and column percentages.

FALSE

Frequency tables include frequencies, relative frequency, and percent frequency. Crosstabulation tables include row and column percentages.
11. When constructing any graphical display that utilizes categorical data, classes that have frequencies of 5 percent or less are usually combined together into a single category.

TRUE

12. In a Pareto chart, the bar for the "Other" category should be placed to the far left of the chart.

FALSE

The bar to the far left of the Pareto chart will be the category with the highest frequency.
13. In the first step of setting up a Pareto chart, a frequency table should be constructed of the defects (or categories) in decreasing order of frequency.

TRUE

14. It is possible to create different interpretations of the same graphical display by simply using different captions.

TRUE

AACSB: Reflective Thinking Blooms: Remember Difficulty: 2 Medium Learning Objective: 02-08 Recognize misleading graphs and charts. Topic: Misleading Graphs and charts
15. Beginning the vertical scale of a graph at a value different from zero can cause increases to look more dramatic.

TRUE

16. A runs plot is a form of scatter plot.

TRUE

17. The stem-and-leaf display is advantageous because it allows us to actually see the measurements in the data set.

TRUE

AACSB: Reflective Thinking Blooms: Remember Difficulty: 1 Easy
Learning Objective: 02-05 Construct and interpret stem-and-leaf displays. Topic: Stem-and-Leaf Displays
18. Splitting the stems refers to assigning the same stem to two or more rows of the stem-and-leaf display.

TRUE

AACSB: Reflective Thinking
Blooms: Remember Difficulty: 2 Medium
Learning Objective: 02-05 Construct and interpret stem-and-leaf displays.
Topic: Stem-and-Leaf Displays
19. When data are qualitative, the bars should never be separated by gaps.

FALSE

Bar graphs for qualitative data are displayed with a gap between each category.

AACSB: Reflective Thinking Blooms: Remember Difficulty: 2 Medium
Learning Objective: 02-01 Summarize qualitative data by using frequency distributions, bar charts, and pie charts. Topic: Graphically Summarizing Quantitative Data
20. Each stem of a stem-and-leaf display should be a single digit.

FALSE

Leaves on the stem-and-leaf are a single digit.
21. Leaves on a stem-and-leaf display should be rearranged so that they are in increasing order from left to right.

TRUE

22. Gauges feature a single measure showing variation over time.

FALSE

Sparklines feature a single measure showing variation over time.

AACSB: Reflective Thinking
Blooms: Remember Difficulty: 2 Medium
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines. Topic: Descriptive Analytics
23. Data drill down is a form of data discovery.

TRUE

AACSB: Reflective Thinking
Blooms: Remember
Difficulty: 1 Easy
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Descriptive Analytics
24. Treemaps are used to display qualitative measures of performance.

FALSE

Treemaps help visualize two variables on quantitative measures.

AACSB: Reflective Thinking
Blooms: Remember
Difficulty: 2 Medium
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Descriptive Analytics
25. Sparklines always need to be displayed with either their axes or coordinates.

FALSE

Sparklines seldom show their axes or coordinates.
26. A bullet graph features a single measure as either a horizontal or vertical bar.

TRUE

AACSB: Reflective Thinking Blooms: Remember Difficulty: 1 Easy
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Descriptive Analytics

27. Key performance indicators are best represented by a data discovery method.

FALSE

KPIs are best represented by an analytic dashboard.
AACSB: Reflective Thinking Blooms: Remember Difficulty: 3 Hard
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Descriptive Analytics
28. A treemap graphic is a series of clustered rectangles.

TRUE

AACSB: Reflective Thinking
Blooms: Remember Difficulty: 1 Easy
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Descriptive Analytics
29. Sparklines are line charts often embedded with the text where they are being discussed.

TRUE

AACSB: Reflective Thinking
Blooms: Remember
Difficulty: 2 Medium
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Descriptive Analytics
30. An analytic dashboard presents both current and historical trends of a business's key performance indicators.

TRUE

AACSB: Reflective Thinking
Blooms: Remember
Difficulty: 2 Medium
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Descriptive Analytics
31. If space is an issue when presenting analytic dashboard graphics, gauges should be used most frequently.

FALSE

Gauges take up considerable space and are cluttered.

AACSB: Reflective Thinking Blooms: Remember
Difficulty: 3 Hard
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Descriptive Analytics
32. Which of the following is not a graphical tool for descriptive analytics (dashboards)?
A. bullet graph
B. sparkline
C. scatter plot
D. treemap
E. gauge

AACSB: Reflective Thinking Blooms: Remember Difficulty: 1 Easy
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Descriptive Analytics
33. $A(n)$ \qquad is a graphical presentation of the current status and historical trends of a business's key performance indicators.
A. frequence distribution
B. histogram
C. Pareto chart
D. dashboard
34. As a business owner, I have requested my staff to develop a set of dashboards that can be used by the public to show wait time at each of my four local coffee shops at peak times during the day and whether the time is short, medium, or long. Which of the following graphical displays would be the best choice?
A. bullet graph
B. sparkline
C. treemap
D. gauges

AACSB: Reflective Thinking Blooms: Remember Difficulty: 3 Hard
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Descriptive Analytics
35. Which of the following is the best analytic dashboard graphical method for visualizing hierarchical information?
A. bullet graph
B. sparkline
C. treemap
D. gauge

AACSB: Reflective Thinking
Blooms: Remember Difficulty: 2 Medium
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Descriptive Analytics
36. Which of the following dashboard graphical methods will show variation over time?
A. bullet graph
B. sparkline
C. treemap
D. gauge

AACSB: Reflective Thinking Blooms: Remember Difficulty: 2 Medium
Learning Objective: 02-09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines. Topic: Descriptive Analytics
37. $A(n)$ \qquad is a graph of a cumulative distribution.
A. histogram
B. scatter plot
C. ogive plot
D. pie chart

Blooms: Remember
Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives.
38. \qquad can be used to study the relationship between two variables.
A. Cross-tabulation tables
\bar{B}. Frequency tables
C. Cumulative frequency distributions
D. Dot plots

AACSB: Reflective Thinking Blooms: Remember Difficulty: 1 Easy
Learning Objective: 02-06 Examine the relationships between variables by using contingency tables.
Topic: Contingency Tables
39. Row or column percentages can be found in
A. frequency tables.
B. relative frequency tables
C. cross-tabulation tables.
D. cumulative frequency tables.

AACSB: Reflective Thinking Blooms: Remember Difficulty: 2 Medium
Learning Objective: 02-06 Examine the relationships between variables by using contingency tables.
Topic: Contingency Tables
40. All of the following are used to describe quantitative data except the \qquad -
A. histogram
B. stem-and-leaf chart
C. dot plot
D. pie chart

AACSB: Reflective Thinking Blooms: Remember Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Quantitative Data
41. An observation separated from the rest of the data is $a(n)$ \qquad .
A. absolute extreme
B. outlier
C. mode
D. quartile
42. Which of the following graphs is for qualitative data?
A. histogram
B. bar chart
C. ogive plot
D. stem-and-leaf
43. A plot of the values of two variables is a \qquad plot.
A. runs
B. scatter
C. dot
D. ogive
44. A Stem-and-leaf display is best used to \qquad .
A. provide a point estimate of the variability of the data set
B. provide a point estimate of the central tendency of the data set
C. display the shape of the distribution
D. None of the other choices is correct.

AACSB: Reflective Thinking
Blooms: Remember Difficulty: 2 Medium
45. When grouping a large sample of measurements into classes, the \qquad is a better tool than the \qquad .
A. histogram, stem-and-leaf display
B. box plot, histogram
C. stem-and-leaf display, scatter plot
D. scatter plot, box plot
46. A \qquad displays the frequency of each group with qualitative data and a
\qquad displays the frequency of each group with quantitative data.
A. histogram, stem-and-leaf display
B. bar chart, histogram
C. scatter plot, bar chart
D. stem-and-leaf, pie chart

Learning Objective: 02-01 Summarize qualitative data by using frequency distributions, bar charts, and pie charts. Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives.

Topic: Graphically Summarizing Qualitative Data
Topic: Graphically Summarizing Quantitative Data
47. A \qquad shows the relationship between two variables.
A. stem-and-leaf
B. bar chart
C. histogram
D. scatter plot
E. pie chart
48. A \qquad can be used to differentiate the "vital few" causes of quality problems from the "trivial many" causes of quality problems.
A. histogram
B. scatter plot
C. Pareto chart
D. ogive plot
E. stem-and-leaf display
49. \qquad and \qquad are used to describe qualitative (categorical) data.
A. Stem-and-leaf displays, scatter plots
B. Scatter plots, histograms
C. Box plots, bar charts
D. Bar charts, pie charts
E. Pie charts, histograms
50. Which one of the following graphical tools is used with quantitative data?
A. bar chart
B. histogram
C. pie chart
D. Pareto chart
51. When developing a frequency distribution, the class (group) intervals should be \qquad .
A. large
B. small
C. integer
D. mutually exclusive
E. equal
52. Which of the following graphical tools is not used to study the shapes of distributions?
A. stem-and-leaf display
B. scatter plot
C. histogram
D. dot plot
53. All of the following are used to describe qualitative data except the \qquad .
A. bar chart
B. pie chart
C. histogram
D. pareto chart

AACSB: Reflective Thinking
Blooms: Remember Difficulty: 2 Medium
Learning Objective: 02-01 Summarize qualitative data by using frequency distributions, bar charts, and pie charts.
Topic: Graphically Summarizing Qualitative Data
54. If there are 130 values in a data set, how many classes should be created for a frequency histogram?
A. 4
B. 5
C. 6
D. 7
E. 8

AACSB: Analytical Thinking
Blooms: Apply
Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Quantitative Data
55. If there are 120 values in a data set, how many classes should be created for a frequency histogram?
A. 4
B. 5
C. 6
D. 7
E. 8
56. If there are 62 values in a data set, how many classes should be created for a frequency histogram?
A. 4
B. 5
C. 6
D. 7
E. 8

AACSB: Analytical Thinking
Blooms: Apply
Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives.
Topic: Graphically Summarizing Quantitative Data
57. If there are 30 values in a data set, how many classes should be created for a frequency histogram?
A. 4
B. 5
C. 6
D. 7
E. 8

AACSB: Analytical Thinking
Blooms: Apply
Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives.
Topic: Graphically Summarizing Quantitative Data
58. A CFO is looking at what percentage of a company's resources are spent on computing. He samples companies in the pharmaceutical industry and develops the following stem-and-leaf graph.

5	269
6	255568999
7	11224557789
8	001222458
9	02455679
10	1556
11	137
12	
13	255

What is the approximate shape of the distribution of the data?
A. normal
B. skewed to the right
C. skewed to the left
D. bimodal
E. uniform
59. A CFO is looking at what percentage of a company's resources are spent on computing. He samples companies in the pharmaceutical industry and develops the following stem-and-leaf graph.

5	269
6	255568999
7	11224557789
8	001222458
9	02455679
10	1556
11	137
12	
13	255

What is the smallest percentage spent on R\&D?
A. 5.9
B. 5.6
C. 5.2
D. 5.02
E. 50.2
60. A CFO is looking at what percentage of a company's resources are spent on computing. He samples companies in the pharmaceutical industry and develops the following stem-and-leaf graph.

5	269
6	255568999
7	11224557789
8	001222458
9	02455679
10	1556
11	137
12	
13	255

If you were creating a frequency histogram using these data, how many classes would you create?
A. 4
B. 5
C. 6
D. 7
E. 8
61. A CFO is looking at what percentage of a company's resources are spent on computing. He samples companies in the pharmaceutical industry and develops the following stem-and-leaf graph.

5	269
6	255568999
7	11224557789
8	001222458
9	02455679
10	1556
11	137
12	
13	255

What would be the class length used in creating a frequency histogram?
A. 1.4
B. 8.3
C. 1.2
D. 1.7
E. 0.9

AACSB: Analytical Thinking

Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives.
Topic: Graphically Summarizing Quantitative Data
62. A CFO is looking at what percentage of a company's resources are spent on computing. He samples companies in the pharmaceutical industry and develops the following stem-and-leaf graph.

5	269
6	255568999
7	11224557789
8	001222458
9	02455679
10	1556
11	137
12	
13	255

What would be the first class interval for the frequency histogram?
A. 5.2-6.5
B. 5.2-6.0
C. $5.0-6.0$
D. 5.2-6.6
E. 5.2-6.4
63. A local airport keeps track of the percentage of flights arriving within 15 minutes of their scheduled arrivals. The stem-and-leaf plot of the data for one year is below.

76	9
77	114
78	
79	07
80	88
81	2
82	1
83	88

How many flights were used in this plot?
A. 7
B. 9
C. 10
D. 11
E. 12
64. A local airport keeps track of the percentage of flights arriving within 15 minutes of their scheduled arrivals. The stem-and-leaf plot of the data for one year is below.

76	9
77	114
78	
79	07
80	88
81	2
82	1
83	88

In developing a histogram of these data, how many classes would be used?
A. 4
B. 5
C. 6
D. 7
E. 8
65. A local airport keeps track of the percentage of flights arriving within 15 minutes of their scheduled arrivals. The stem-and-leaf plot of the data for one year is below.

76	9
77	114
78	
79	07
80	88
81	2
82	1
83	88

What would be the class length for creating the frequency histogram?
A. 1.4
B. 0.8
C. 2.7
D. 1.7
E. 2.3

AACSB: Analytical Thinking
Blooms: Apply
Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Quantitative Data
66. A company collected the ages from a random sample of its middle managers, with the resulting frequency distribution shown below.

Class Interval	Frequency
20 to <25	8
25 to <30	6
30 to <35	5
35 to <40	12
40 to <45	15
45 to <50	7

What would be the approximate shape of the relative frequency histogram?
A. symmetrical
B. uniform
C. multiple peaks
D. skewed to the left
E. skewed to the right
67. A company collected the ages from a random sample of its middle managers, with the resulting frequency distribution shown below.

```
Class Interval
20 to<25
Frequency8
25 to < < 0 6
30 to<35 5
35 to <40 12
40 to <45 15
45 to < 50 7
```

What is the relative frequency for the largest interval?
A. . 132
B. . 226
C. . 231
D. 283
E. . 288

Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Quantitative Data
68. A company collected the ages from a random sample of its middle managers, with the resulting frequency distribution shown below.

Class Interval	Frequency
20 to <25	8
25 to <30	6
30 to <35	5
35 to <40	12
40 to <45	15
45 to <50	7

What is the midpoint of the third class interval?
A. 22.5
B. 27.5
C. 32.5
D. 37.5
E. 42.5
69. The general term for a graphical display of categorical data made up of vertical or horizontal bars is called $a(n)$ \qquad _.
A. pie chart
B. Pareto chart
C. bar chart
D. ogive plot
70. A flaw possessed by a population or sample unit is \qquad .
A. always random
B. a defect
C. displayed by a dot plot
D. the cause for extreme skewness to the right

AACSB: Reflective Thinking
Blooms: Remember Difficulty: 2 Medium

Topic: Graphically Summarizing Qualitative Data
71. A graphical portrayal of a quantitative data set that divides the data into classes and gives the frequency of each class is $a(n)$ \qquad -.
A. ogive plot
B. dot plot
C. histogram
D. Pareto chart
E. bar chart
72. The number of measurements falling within a class interval is called the \qquad .
A. frequency
B. relative frequency
C. leaf
D. cumulative sum

AACSB: Reflective Thinking Blooms: Remember Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Quantitative Data
73. A relative frequency curve having a long tail to the right is said to be \qquad .
A. skewed to the left
B. normal
C. a scatter plot
D. skewed to the right

AACSB: Reflective Thinking Blooms: Remember Difficulty: 2 Medium Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Quantitative Data
74. The percentage of measurements in a class is called the \qquad of that class.
A. frequency
B. relative frequency
C. leaf
D. cumulative percentage

AACSB: Reflective Thinking
Blooms: Remember Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Quantitative Data
75. A histogram that tails out toward larger values is \qquad .
A. skewed to the left
B. normal
C. a scatter plot
D. skewed to the right
76. A histogram that tails out toward smaller values is \qquad .
A. skewed to the left
B. normal
C. a scatter plot
D. skewed to the right
77. A very simple graph that can be used to summarize a quantitative data set is called $a(n)$
\qquad
.
A. runs plot
B. ogive plot
C. dot plot
D. pie chart

AACSB: Reflective Thinking
Blooms: Remember
Difficulty: 2 Medium
Learning Objective: 02-04 Construct and interpret dot plots.
Topic: Dot Plots
78. An example of manipulating a graphical display to distort reality is \qquad .
A. starting the axes at zero
B. making the bars in a histogram equal widths
C. stretching the axes
D. starting the axes at zero and stretching the axes
\qquad stem values.
A. between 3 and 10
B. between 1 and 100
C. no fewer than 20
D. between 5 and 20
80. At the end of their final exam, 550 students answered an additional question in which they rated their instructor's teaching effectiveness, with the following results.

	Student's Rating of Instructor	
Student's Final Grade	Very or Somewhat Effective	Very or Somewhat Ineff
A	190	85
B	75	120
C	20	17
D	9	18
F	1	15

What proportion of the students who rated their instructor as very or somewhat effective received a B or better in the class?
A. 0.345
B. 0.254
C. 0.482
D. 0.898
E. 0.644

Learning Objective: 02-06 Examine the relationships between variables by using contingency tables.
81. At the end of their final exam, 550 students answered an additional question in which they rated their instructor's teaching effectiveness, with the following results.

	Student's Rating of Instructor	
Student's Final Grade	Very or Somewhat Effective	Very or Somewhat Ineffective
A	190	85
B	75	120
C	20	17
D	9	18
F	1	15

What proportion of the students who rated their instructor as very or somewhat effective received a B or better in the class?
A. 0.03
B. 0.06
C. 0.08
D. 0.13
E. 0.15
82. 822 customers were randomly selected from those who had recently bought a book over the Internet. The chart below shows the breakdown of the classification of the book type.

What percentage of the books purchased were either mystery or science fiction/fantasy?
A. 18.61
B. 36.50
C. 17.88
D. 24.33
E. 22.99
83. 822 customers were randomly selected from those who had recently bought a book over the Internet. The chart below shows the breakdown of the classification of the book type.

What percentage of the books purchased were self-help books?
A. 11.44
B. . 1144
C. 1.82
D. 0.0182
E. 0.940
84. 822 customers were randomly selected from those who had recently bought a book over the Internet. The chart below shows the breakdown of the classification of the book type.

What percentage of the books were in the top two categories?
A. 22.99
B. 20.44
C. 4.50
D. 43.43
E. 0.4343
85. Using the following data, describe the shape of the data distribution.

1.	11.5	6.	13.7	11.	11.0	16.	14.5
2.	13.5	7.	14.0	12.	13.0	17.	15.5
3.	12.5	8.	12.0	13.	16.7	18.	13.0
4.	15.2	9.	12.7	14.	12.5	19.	18.2
5.	14.7	10.	12.5	15.	11.5	20.	11.7

A. skewed to the left
B. bimodal
C. normal
D. skewed to the right
86. Using the following data, what would be the range of the values of the stem in a stem-and-leaf display?

1.	11.5	6.	13.7	11.	11.0	16.	14.5
2.	13.5	7.	14.0	12.	13.0	17.	15.5
3.	12.5	8.	12.0	13.	16.7	18.	13.0
4.	15.2	9.	12.7	14.	12.5	19.	18.2
5.	14.7	10.	12.5	15.	11.5	20.	11.7

A. 11-17
B. $11-18$
C. $10-18$
D. 12-17
E. $12-18$
87. Using the following data, what would be the leaf unit in a stem-and-leaf display?

1. 11.5
2. 13.5
3.

13.7
11.
11
16.
3. 12.5
$\begin{array}{ll}\text { 4. } & 15.2 \\ \text { 5. } & 14.7\end{array}$
$\begin{array}{ll}\text { 4. } & 15.2 \\ \text { 5. } & 14.7\end{array}$
8. 12
12. 13
17.
9.
12.7
13. $\quad 16.7$
18.
14. 12.5
19.
10. 12.5
15. 11.5
20.
A. 1.0
B. 10
C. . 10
D. . 01
E. . 20
88. Consider the following data on distances traveled by people to visit the local amusement park and calculate the relative frequency for the shortest distance.

Distance	Frequency
$1-8$ miles	15
$9-16$ miles	12
$17-24$ miles	7
$25-32$ miles	5
$33-40$ miles	1

A. .375
B. . 150
C. . 500
D. . 300
E. . 333
89. Consider the following data on distances traveled by people to visit the local amusement park and calculate the relative frequency for the distances over 24 miles.

Distance	Frequency
$1-8$ miles	15
$9-16$ miles	12
$17-24$ miles	7
$25-32$ miles	5
$33-40$ miles	1

A. . 375
B. .150
C. . 125
D. . 025
E. . 325
90. The following is a partial relative frequency distribution of grades in an introductory statistics course.

Grade	Relative Frequency
A	.22
B	$?$
C	.18
D	.17
F	.06

Find the relative frequency for the B grade.
A. . 78
B. . 27
C. .65
D. .37
E. . 47
91. The following is a relative frequency distribution of grades in an introductory statistics course.

Grade	Relative Frequency
A	.22
B	$?$
C	.18
D	.17
F	.06

If this was the distribution of 200 students, find the frequency for the highest two grades.
A. 44
B. 118
C. 59
D. 74
E. 35

AACSB: Analytical Thinking
Blooms: Apply
Difficulty: 2 Medium
Learning Objective: 02-01 Summarize qualitative data by using frequency distributions, bar charts, and pie charts. Topic: Graphically Summarizing Qualitative Data
92. The following is a relative frequency distribution of grades in an introductory statistics course.

Grade	Relative Frequency
A	.22
B	$?$
C	.18
D	.17
F	.06

If this was the distribution of 200 students, find the frequency of failures.
A. 12
B. 6
C. 23
D. 46
E. 3
93. The following is a relative frequency distribution of grades in an introductory statistics course.

Grade	Relative Frequency
A	.22
B	$?$
C	.18
D	.17
F	.06

If we wish to depict these data using a pie chart, find how many degrees should be assigned to the highest grade of A .
A. 61.1
B. 22.0
C. 79.2
D. 90.0
E. 212.40
94. Recently an advertising company called 200 people and asked them to identify the company that was in an ad running nationwide. The following results were obtained.

	Female	Male	Total
Correctly recalled the company	66	50	116
Incorrectly recalled the company	44	40	84
Total	110	90	200

What percentage of those surveyed were female and could not recall the company?
A. 40.0
B. 22.0
C. 52.4
D. 66.7
E. 37.9
95. Recently an advertising company called 200 people and asked them to identify the company that was in an ad running nationwide. The following results were obtained.

	Female	Male	Total
Correctly recalled the company	66	50	116
Incorrectly recalled the company	44	40	84
Total	110	90	200

What percentage of those surveyed could not correctly recall the company?
A. 58.00
B. 56.89
C. 55.00
D. 43.10
E. 42.00
96. A local electronics retailer recently conducted a study on purchasers of large screen televisions. The study recorded the type of television and the credit account balance of the customer at the time of purchase. They obtained the following results.

Credit Balance	LED	LCD	Plasma	Projection
Under $\$ 200$	10	16	40	5
\$200-\$800	8	12	24	15
Over $\$ 800$	16	12	16	30
Total	34	40	80	50

What percentage of purchases were plasma televisions by customers with the smallest credit balances?
A. 50.00
B. 39.20
C. 56.30
D. 34.80
E. 19.60
97. A local electronics retailer recently conducted a study on purchasers of large screen televisions. The study recorded the type of television and the credit account balance of the customer at the time of purchase. They obtained the following results.

Credit Balance	LED	LCD	Plasma	Projection
Under $\$ 200$	10	16	40	5
\$200-\$800	8	12	24	15
Over $\$ 800$	16	12	16	30
Total	34	40	80	50

What percentage of the customers had the highest credit balances and purchased an LCD television?
A. 36.30
B. 5.90
C. 19.60
D. 56.30
E. 16.20
98. The number of weekly sales calls by a sample of 25 pharmaceutical salespersons is below.

$$
24,56,43,35,37,27,29,44,34,28,33,28,46,31,38,41,48,38,27,29,37,33,31,40,50
$$

How many classes should be used in the construction of a histogram?
A. 4
B. 6
C. 10
D. 5
E. 2
99. The number of weekly sales calls by a sample of 25 pharmaceutical salespersons is below.
$24,56,43,35,37,27,29,44,34,28,33,28,46,31,38,41,48,38,27,29,37,33,31,40,50$
What is the shape of the distribution of the data?
A. skewed with tail to the right
B. skewed with tail to the left
C. normal
D. bimodal
100. The number of items rejected daily by a manufacturer because of defects for the last 30 days are:
$20,21,8,17,22,19,18,19,14,17,11,6,21,25,4,19,9,12,16,16,10,28,24,6,21,20,25$, 5, 17, 8

How many classes should be used in constructing a histogram?
A. 6
B. 5
C. 7
D. 4
E. 8

AACSB: Analytical Thinking
Blooms: Apply
Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Quantitative Data
101. The number of weekly sales calls by a sample of 25 pharmaceutical salespersons is below. $24,56,43,35,37,27,29,44,34,28,33,28,46,31,38,41,48,38,27,29,37,33,31,40,50$ Construct an ogive plot.

Feedback: Create a frequency table with cumulative relative frequency and then construct the graph using the cumulative frequency points.

			Cum
Classes	Frequency	RelFreq	RelFreq
$24<31$	7	0.28	0.28
$31<38$	8	0.32	0.60
$38<45$	6	0.24	0.84
$45<52$	3	0.12	0.96
$52<57$	1	0.04	1.00

102. The number of items rejected daily by a manufacturer because of defects for the last 30 days are:
$20,21,8,17,22,19,18,19,14,17,11,6,21,25,4,19,9,12,16,16,10,28,24,6,21,20,25$, 5, 17, 8

Complete this frequency table for these data.

	Frequency	Rel Freq	Cum Freq
$4<9$			
$9<14$			
$14<19$			
$19<24$			
$24<29$			

	Frequency	Rel Freq	Cum Freq
$4<9$	6	.2	.2
$9<14$	4	.133	.333
$14<19$	7	.233	.5607
$19<24$	9	.30	.8607
$24<29$	4	.133	1.00

Feedback: Using the given classes, frequency $=$ number of rejected items in each class, relative frequency $=$ frequency $/ 30$, and cumulative frequency $=$ sum of successive class relative frequencies.
103. The number of items rejected daily by a manufacturer because of defects for the last 30 days are:
$20,21,8,17,22,19,18,19,14,17,11,6,21,25,4,19,9,12,16,16,10,28,24,6,21,20,25$, 5, 17, 8

Construct a stem-and-leaf plot.

```
Stem-and-leaf of Rejected Items
N = 30
Leaf Unit = 1.0
2045
    4 06
    7 0 889
    8 1 1
    9 1 2
10 1 4
14 1 6777
(4) 1 }899
12 2 000111
    6 2 2
    5 2 455
    2 6
    1 2 
```

Feedback: Stem should be the 10s unit. Construct by splitting stems, since the range of values is only 5-28 and there should be approximately 10 stems. When splitting the stem, consider the number of values in the split stems. Leaf unit should be the ones unit.
104. The number of items rejected daily by a manufacturer because of defects for the last 30 days are:
$20,21,8,17,22,19,18,19,14,17,11,6,21,25,4,19,9,12,16,16,10,28,24,6,21,20,25$, 5, 17, 8

Construct an ogive plot.

Construct a frequency table (5 classes) with cumulative relative frequency.

Classes	Frequency	RelFreq	Cum RelFreq
$4<9$	6	0.20	0.20
$9<14$	4	0.13	0.33
$14<19$	7	0.23	0.57
$19<24$	9	0.30	0.87
$24<29$	4	0.13	1.00

105. Consider the following data.

1.	11.5	6.	13.7	11.	11.0	16.	14.5
2.	13.5	7.	14.0	12.	13.0	17.	15.5
3.	12.5	8.	12.0	13.	16.7	18.	13.0
4.	15.2	9.	12.7	14.	12.5	19.	18.2
5.	14.7	10.	12.5	15.	11.5	20.	11.7

Create a stem-and-leaf display for the sample.

Stem-and-leaf of $\mathrm{C} 1, \mathrm{~N}=20$, Leaf Unit $=0.10$

4	11	0557
9	12	05557
(4)	13	0057
7	14	057
4	15	25
2	16	7
1	17	
1	18	2

Feedback: Stems should be from 11 to 18 ; leaves are the tenth unit.
106. Consider the following data on distances traveled by people to visit the local amusement park.

Distance	Frequency
$1-8$ miles	15
$9-16$ miles	12
$17-24$ miles	7
$25-32$ miles	5
$33-40$ miles	1

Construct an ogive plot that corresponds to the frequency table.

Feedback: Calculate the relative frequency for each class (15/40, 12/40, 7/40, 5/40, 1/40; or $.375, .30, .175, .125$, and .025) and then the cumulative frequency ($.375, .675, .850, .975$, 1.00).
107. The following is a relative frequency distribution of grades in an introductory statistics course.

Grade	Relative Frequency
A	.22
B	.37
C	.18
D	.17
F	.06

If this was the distribution of 200 students, give the frequency distribution for this data.

Grade	Frequency
A	44
B	74
C	36
D	34
F	12

Feedback: Convert from proportion (relative frequency) to frequency by multiplying each relative frequency by 200 (e.g., $.22 \times 400=44$ for grade A).

AACSB: Analytical Thinking
Blooms: Apply
Difficulty: 2 Medium
Learning Objective: 02-01 Summarize qualitative data by using frequency distributions, bar charts, and pie charts.
Topic: Graphically Summarizing Quantitative Data
108. The following is a relative frequency distribution of grades in an introductory statistics course.

Grade	Relative Frequency
A	.22
B	.37
C	.18
D	.17
F	.06

Construct a percent frequency bar chart for this data.

Feedback: Each grade category is displayed as a bar on a proportion bar chart.

AACSB: Analytical Thinking
Blooms: Apply
Difficulty: 1 Easy
Learning Objective: 02-01 Summarize qualitative data by using frequency distributions, bar charts, and pie charts. Topic: Graphically Summarizing Quantitative Data
109. The following is a relative frequency distribution of grades in an introductory statistics course.

Grade	Relative Frequency
A	.22
B	.37
C	.18
D	.17
F	.06

If we wish to depict these data using a pie chart, find how many degrees (out of 360 degrees) should be assigned to each grade.

Grade	Circle Degrees
A	$.22 \times 360=79.2$
B	$.37 \times 360=133.2$
C	$.18 \times 360=64.8$
D	$.17 \times 360=61.2$
F	$.06 \times 360=21.6$

Feedback: Each proportion (relative frequency) is considered that portion of a circle's 360 degrees. Multiply the relative frequency (proportion) by 360 to convert to actual circle degrees (e.g., grade A: $.22 \times 360=79.2$ degrees).
110. Fill in the missing components of the following frequency distribution constructed for a sample size of 50 .

Class	Frequency	Rel Frequency	Cum RelFreq
<7.95			0.12
$\overline{<8.05}$			0.48
$8.05<$		0.24	
$\overline{<8.25}$		0.10	
$8.25<$			

Class	Frequency	Rel Frequency	Cum RelFreq
$7.85<7.95$	6	0.12	0.12
$7.95<8.05$	18	0.36	0.48
$8.05<8.15$	12	0.24	0.72
$8.15<8.25$	5	0.10	0.82
$8.25<8.35$	9	0.18	1.00

Feedback: Work each row to generate the missing frequency and/or relative frequency given a sample size of 50 . For example, first class: cum rel freq $=$ rel freq $=x / 50=0.12$, so $x=6$. Complete the class interval by recognizing that the second class beginning boundary is the end of the first interval's boundary and using the class length calculated in the second class (0.10) to apply to all other classes.
111. Recently an advertising company called 200 people and asked them to identify the company that was in an ad running nationwide. They obtained the following results.

	Female	Male	Total
Correctly recalled the company	66	50	116
Incorrectly recalled the company	44	40	84
Total	110	90	200

Construct a table of row percentages.

	Female	Male
Correctly recalled	$66 / 116=0.569$	$50 / 116=0.431$
Incorrectly recalled	$44 / 84=0.524$	$40 / 84=0.476$

Feedback: Row percentages are calculated by dividing each part of the row by the total of the row. For example, Female and correctly recalled $=66$, which yields a row percentage of $66 / 116=0.569$.
112. Recently an advertising company called 200 people and asked them to identify the company that was in an ad running nationwide. They obtained the following results.

	Female	Male	Total
Correctly recalled the company	66	50	116
Incorrectly recalled the company	44	40	84
Total	110	90	200

Construct a table of column percentages.

	Female	Male
Correctly recalled	$66 / 110=0.6$	$50 / 90=0.556$
Incorrectly recalled	$44 / 110=0.4$	$40 / 90=0.444$

Feedback: Column percentages are calculated by dividing each part of the column by the total of the column. For example, Female and correctly recalled $=66$, which yields a column percentage of $66 / 110=0.60$.
113. A local electronics retailer recently conducted a study on purchasers of large screen televisions. The study recorded the type of television and the credit account balance of the customer at the time of purchase. They obtained the following results.

| Credit
 Balance | LED | | LCD | Plasma |
| :--- | :---: | :---: | :---: | :---: | Projection \(~\left(\begin{array}{lr|c|c|}\hline Under \$ 200 \& 10 \& 16 \& 40

\hline \$ 200-\$ 800 \& 8 \& 12 \& 24

\hline Over \$ 800 \& 16 \& 12 \& 16

\hline Total \& 34 \& 40 \& 80

\hline\end{array}\right.\)

Construct a table of row percentages.

Credit Balance	LED	LCD	Plasma	Projection
Under $\$ 200$	$10 / 71=0.141$	$16 / 71=0.225$	$40 / 71=0.563$	$5 / 71=0.070$
$\$ 200-\$ 800$	$8 / 59=0.136$	$12 / 59=0.203$	$24 / 59=0.407$	$15 / 59=0.254$
Over $\$ 800$	$16 / 74=0.216$	$12 / 74=0.162$	$16 / 74=0.216$	$30 / 74=0.405$

Feedback: Row percentages are calculated by dividing each part of the row by the total of the row. Need to calculate the totals for each row (under $\$ 200=71 ; \$ 200-\$ 800=59$; over $\$ 800$ $=74$). For example, credit balance under $\$ 200$ and LCD TV $=16$, which yields row percentage $16 / 71=0.225$.

AACSB: Analytical Thinking Blooms: Apply
Difficulty: 2 Medium
Learning Objective: 02-06 Examine the relationships between variables by using contingency tables. Topic: Contingency Tables
114. A local electronics retailer recently conducted a study on purchasers of large screen televisions. The study recorded the type of television and the credit account balance of the customer at the time of purchase. They obtained the following results.

Credit Balance	LED	LCD	Plasma	Projection
Under $\$ 200$	$10 / 71=0.141$	$16 / 71=0.225$	$40 / 71=0.563$	$5 / 71=0.070$
$\$ 200-\$ 800$	$8 / 59=0.136$	$12 / 59=0.203$	$24 / 59=0.407$	$15 / 59=0.254$
Over $\$ 800$	$16 / 74=0.216$	$12 / 74=0.162$	$16 / 74=0.216$	$30 / 74=0.405$

Construct a table of column percentages.

Credit Balance	LED	LCD	Plasma	Projection
Under $\$ 200$	$10 / 34=0.294$	$16 / 40=0.4$	$40 / 80=0.5$	$5.50=0.1$
$\$ 200-\$ 800$	$8 / 34=0.235$	$12 / 40=0.3$	$24 / 80=0.3$	$15 / 50=0.3$
Over $\$ 800$	$16 / 34=0.471$	$12 / 40=0.3$	$16 / 80=0.2$	$30 / 50=0.6$

Feedback: Column percentages calculated by dividing each part of the column by the total of the column. For example, credit balance under $\$ 200$ and LCD TV $=16$ yields row percentage $16 / 40=0.40$.

AACSB: Analytical Thinking
Blooms: Apply
Difficulty: 2 Medium
Learning Objective: 02-06 Examine the relationships between variables by using contingency tables.
Topic: Contingency Tables
115. Math test anxiety can be found throughout the general population. A study of 116 seniors at a local high school was conducted. The following table was produced from the data. Complete the missing parts.

Score Range	Frequency	Rel Frequency	Cum Freq I
Very anxious 37-50		0.19	
Anxious/tense 33-36	8		0.26
Some mild anxiety $27-32$			
Generally relaxed $20-26$	24		0.67
Very relaxed $10-19$		0.33	

Score Range	Frequency	Rel Frequency	Cum Freq Dist
Very anxious 37-50	22	0.19	0.19
Anxious/tense 33-36	8	0.07	0.26
Some mild anxiety $27-32$	24	0.207	0.467
Generally relaxed 20-26	24	0.207	0.674
Very relaxed 10-19	38	0.33	1.00

Feedback: Work each row to generate the missing frequency and/or relative frequency given a sample size of 116 . For example, first class cum freq $=$ rel freq $=x / 116=0.19$, so $x=22$. Use the definition of cumulative frequency, which is the sum of the class relative frequency and the previous class cumulative frequency (for example, "generally relaxed" relative frequency $=24 / 116=.207$, which with a cumulative frequency of .67 gives the previous class of "some mild anxiety" a cumulative frequency of .47).
116. The number of weekly sales calls by a sample of 25 pharmaceutical salespersons is below. $24,56,43,35,37,27,29,44,34,28,33,28,46,31,38,41,48,38,27,29,37,33,31,40,50$ Construct a histogram.

Feedback: Construct a frequency table. You can use five to seven classes, depending on your choice and calculation of length as a whole integer.

Classes - Midpoint	Frequency
25	3
30	6
35	6
40	4
45	3
50	2
55	1

AACSB: Analytical Thinking
Blooms: Apply Difficulty: 2 Medium
Learning Objective: 02-03 Summarize quantitative data using frequency distributions, histograms, frequency polygons, and ogives. Topic: Graphically Summarizing Quantitative Data
117. The number of weekly sales calls by a sample of 25 pharmaceutical salespersons is below.
$24,56,43,35,37,27,29,44,34,28,33,28,46,31,38,41,48,38,27,29,37,33,31,40,50$

Construct a stem-and-leaf plot.

```
Stem-and-Leaf of Sales Calls
N = 25
Leaf Unit = 1.0
124
7 2 778899
12 3 11334
(5) 3 57788
8 4 0134
4 4 68
2 5 0
1 5 6
```

Feedback: The stem should be split and consist of 20, 30, 40, and 50. Leaves are the single units for the number of sales calls (e.g., 20 stem: leaves $=4,7,7,8,8,9,9$).
118. The number of weekly sales calls by a sample of 25 pharmaceutical salespersons is below. $24,56,43,35,37,27,29,44,34,28,33,28,46,31,38,41,48,38,27,29,37,33,31,40,50$ Construct a frequency polygon.

Feedback: The frequency polygon is the line connecting the height (frequency) of the midpoint of each class. Construct a frequency table.
Classes - Midpoint Frequency
25 3
30 6
35 6
40 4
45 3
50 2
55 1
119. The following table lists the types of customer complaint calls on satellite TV service during the first two months after installation.
No signal detected 20\%
Can't receive local channels 14\%
Missing channels 21\%
Intermittent reception 8\%
Remote control problems 25\%
Other issues 12\%
Construct a Pareto chart.

Feedback: A Pareto chart is a specialization of the bar chart used for categorical variables. The largest percentage value is charted at the far left, and each problem percentage is graphed in decreasing order. When showing "other" issues, always place that bar to the right because it includes an accumlation of various reasons.
120. The following data consist of the number of sick days taken by the 100 employees at a small manufacturing company for the past 18 months. Construct a dot plot of these data and describe the distribution.

$$
5,1,4,8,0,6,3,5,3,4,7,15,5,8,2,1,5,4
$$

					$*$	$*$				
	$*$		$*$	$*$	$*$					
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$		
0								8		

Data are skewed to the right with one outlier. Over half of the data lie in the 4-5 day range.
Feedback: A dot plot is constructed as a number line with minimum to maximum values (0 to 15). Individual values are shown along the line as points (dots). With an outlier at the maximum value, the shape has a tail to the right.

Chapter 02 Test Bank - Static Summary

Category

\# of Questi ons
AACSB: Analytical Thinking 54
AACSB: Reflective Thinking 66
Blooms: Analyze 1
Blooms: Apply 54
Blooms: Remember 62
Blooms: Understand 3
Difficulty: 1 Easy 14
Difficulty: 2 Medium 93
Difficulty: 3 Hard 13
Learning Objective: 02-
01 Summarize qualitative data by using frequency distributions, bar charts, and pie c 19
harts.
Learning Objective: 02-02 Construct and interpret Pareto charts. 6
Learning Objective: 02-
03 Summarize quantitative data using frequency distributions, histograms, frequenc 43
y polygons, and ogives.
Learning Objective: 02-04 Construct and interpret dot plots. 3
Learning Objective: 02-05 Construct and interpret stem-and-leaf displays. 18
Learning Objective: 02- 12
06 Examine the relationships between variables by using contingency tables.
Learning Objective: 02-
4
07 Examine the relationships between variables by using scatter plots.
Learning Objective: 02-08 Recognize misleading graphs and charts. 3
Learning Objective: 02- 15
09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
09 Construct and interpret gauges, bullet graphs, treemaps, and sparklines.
Topic: Contingency Tables 11
Topic: Cross-tabulation 1
Topic: Descriptive Analytics 15
Topic: Dot Plots 3
Topic: Graphically Summarizing Qualitative Data 26
Topic: Graphically Summarizing Quantitative Data 40
Topic: Misleading Graphs and charts 3
Topic: Scatter Plots 4
Topic: Stem-and-Leaf Displays 18

