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Chapter 1

Functions

1.1 Review of Functions

1.1.1 A function is a rule which assigns each domain element to a unique range element. The independent
variable is associated with the domain, while the dependent variable is associated with the range.

1.1.2 The independent variable belongs to the domain, while the dependent variable belongs to the range.

1.1.8 The vertical line test is used to determine whether a given graph represents a function. (Specifically,
it tests whether the variable associated with the vertical axis is a function of the variable associated with
the horizontal axis.) If every vertical line which intersects the graph does so in exactly one point, then the
given graph represents a function. If any vertical line x = a intersects the curve in more than one point,
then there is more than one range value for the domain value x = a, so the given curve does not represent a
function.

1.14 f(2) = g = 5- f(¥°) = o1 = i1

1.1.5 Ttem (i) is true, since it is stipulated in the definition of function. However, item (ii) need not be true
— for example, the function f(x) = 2% has two different domain values associated with the one range value
4, since f(2) = f(-2) = 4.

1.1.6

(fog)(x) = f(g(x)) = f(z° = 2) = V' -2
(9o @) =g(f(x) = g(Va) = 2** 2

(fo )= f(f(x) =f(Vz)=/Vo =1z
(gog)(z)=g(g(x)) =g(a® —2) = (® - 2)° =2 =2 — 625 + 122° — 10

1.1.7 f(9(2) = f(=2) = 2 and g(f(=2)) = 9(2) = —2.

1.1.8 The domain of f o g is the subset of the domain of g whose range is in the domain of f. Thus, we
need to look for elements 2 in the domain of g so that g(x) is in the domain of f.

3



CHAPTER 1. FUNCTIONS

1.1.9

The defining property for an even function is that
f(=z) = f(x), which ensures that the graph of
the function is symmetric about the y-axis.

1.1.10

The defining property for an odd function is that
f(=z) = — f(z), which ensures that the graph of
the function is symmetric about the origin.

-2 z i~ 2

1.1.11 Graph A does not represent a function, while graph B does. Note that graph A fails the vertical line

test, while graph B passes it.

1.1.12 Graph A does not represent a function, while graph B does. Note that graph A fails the vertical line

test, while graph B passes it.

1.1.13

The natural domain of this function is the set of a
real numbers. The range is [—10, 00).

151

10
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1.1. REVIEW OF FUNCTIONS

1.1.14
g
3 -
2 -
The natural domain of this function is (—oo, —2)U ]
(—2,3) U (3,00). The range is the set of all real I = s "
numbers. _1f
-2
_3t
1.1.15
£
4 -~
The natural domain of this function is [—2,2]. The
range is [0, 2]. " - )
-2}
_al
1.1.16
F
2.0[
\1'5-
The natural domain of this function is (—o0,2]. 1.0
The range is [0, c0).
0.5}
-3 -2 —.1 0 1

Copyright (© 2011 Pearson Education, Inc. Publishing as Addison-Wesley.



6 CHAPTER 1. FUNCTIONS

1.1.17

The natural domain and the range for this function . . u
are both the set of all real numbers. -5 / 5

1.1.18
g
50¢
a0}
30f
The natural domain of this function is [—5, 00). 20l

The range is approximately [—9.03, 00).

y z\m_/z .

1.1.19 The independent variable ¢ is time and the dependent variable d is distance above the ground. The
domain in context is [0, 8]

1.1.20 The independent variable n is the number of bicycles made and the dependent variable c is average
cost. The domain in context is {n: n > 0}.

1.1.21 f(10) =96 1.1.22 f(p*) = (p?*)? —4=p*—4
1.1.23 g(1/2) = (1/2)3 = & 1.1.24 F(y') = ;3
1.1.25 F(g(y)) = F(y*) = 555 1.1.26 f(g(w)) = f(w’) = (w®)* —4=w® —4

1.1.27 g(f(u)) = glu? —4) = (u? — 4)°

f@Q+h)—f(2) _ (2+h)?-4-0 A+4dh+h*—4 4dh+ 1

1.1.2 = =4+h
8 h h h h *
1 1 1 1 r—3
1430 P =P (55) = s = e e

1 1
= 2 _ = =
1130 g(F (/@) = a(F6 ~ ) = (=15 ) = (57
1.1.31 g(z) = 2® — 5 and f(x) = z'°. The domain of h is the set of all real numbers.
1.1.32 g(z) = 2%+ 22 + 1 and f(z) = 5. The domain of h is the set of all real numbers.

Copyright (© 2011 Pearson Education, Inc. Publishing as Addison-Wesley.



1.1. REVIEW OF FUNCTIONS 7

1.1.33 g(z) = 2* + 2 and f(z) = /x. The domain of h is the set of all real numbers.

f
which corresponds to the set (1, 00).

)=

1.1.34 g(z) = 2® — 1 and f(z) = —=. The domain of h is the set of all real numbers for which 23 — 1 > 0,
1

1.1.35 (fog)(x) = f(g(x)) = f(x®>—4) = |2®> —4|. The domain of this function is the set of all real numbers.

1.1.36 (go f)(z) = g(f(x)) = g(|z|) = |#|* — 4 = 2% — 4. The domain of this function is the set of all real
numbers.

1.1.37 (foG)(z) = f(G(z)) = f (%2) -

except for the number 2.

ﬁ ’ The domain of this function is the set of all real numbers

1138 (7090 G)e) = FG) = 1 (s () = 1 () =) = |((2) 1) - The domain of

this function is the set of all real numbers except for the number 2.

1.1.39 (Gogo f)(x) = G(g(f(x))) = G(g(|z])) = G(2* —4) = pe R Sl s The domain of this

function is the set of all real numbers except for the numbers ++/6.

1.1.40 (Fogog)(z) = F(g(g(x))) = F(g(a? —4)) = F((2®> —4)? —4) = /(22 — 4)2 — 4 = V¥ — 822 + 12.
The domain of this function consists of the numbers z so that z* — 822 + 12 > 0. Since z* — 822 + 12 =
(z? —6) - (22 — 2), we see that this expression is zero for 2 = +v/6 and 2 = ++/2, By looking between these
points, we see that the expression is greater than or equal to zero for the set (—o0o, —v/6]U[—v/2, v2]U[V/2, 00).

1.1.41 Since (22 + 3)? = 2% + 622 + 9, it must be the case that f(z) = 2.

1.1.42 Since (2% + 3)? = 2% + 622 + 9, and the given expression is 11 more than this, it must be the case
that f(z) = 2% + 11.

1.1.43 Since (22)? + 3 = 2% + 3, this expression results from squaring #? and adding 3 to it. Thus we must
have f(z) = z2.

1.1.44 Since 2%/% + 3 = (¢/x)? + 3, we must have f(z) = /.

1.1.45

a. f(g(2)) = f(2) =14 b. g(f(2)) =g(4) =1 c. f(g(4))=f(1)=3

d. g(f(5)) = g(6) =3 e. f(g(7)=f(4)=7 f. f(f(8))=f(8) =8
1.1.46

a. h(g(0)) = h(0) = —1 b. g(f(4)) =g(-1) = -1

c. h(h(0)) =h(-1)=0 d. g(h(f(4))) = g(h(~1)) = g(0) =0

e. f(f(f(1)))=f(f(0))=f(1)=0 f. h(h(h(0))) = h(h(-1)) = h(0) = -1

g f(h(g9(2)) = f(h(3)) = f(0) =1 h. g(f(h(4))) = g(f(4)) = g(~1) = -1

i. g(g(g(1))) = g(9(2)) = g(3) =4 - f(f(R(3))) = f(f(0)) = f(1) =0

1.1.47 This function is symmetric about the y-axis, since f(—z) = (—2)* +5(—2)? =12 = 2% + 522 — 12 =
f ().

1.1.48 This function is symmetric about the origin, since f(—z) = 3(—z)® +2(—x)3 — (—2) = —32° — 223 +
—(32° + 223 — x) = f(x).

Copyright (© 2011 Pearson Education, Inc. Publishing as Addison-Wesley.



8 CHAPTER 1. FUNCTIONS

1.1.49 This function has none of the indicated symmetries. For example, note that f(—2) = —26, while
f(2) = 22, so f is not symmetric about either the origin or about the y-axis, and is not symmetric about
the z-axis because it is a function.

1.1.50 This function is symmetric about the y-axis. Note that f(—z) = 2| — z| = 2|z| = f(z).

1.1.51 This curve (which is not a function) is symmetric about the x-axis, the y-axis, and the origin. Note
that replacing either # by —z or y by —y (or both) yields the same equation. This is due to the fact that
(—2)2/3 = ((—2)*)'/3 = (2%)1/3 = 22/3, and a similar fact holds for the term involving y.

1.1.52 This function is symmetric about the origin. Writing the function as y = f(z) = x3/°

f=2) = (~a)/* = ~(@))° =~ f (@)

, we see that

1.1.53 Function A is symmetric about the y-axis, so is even. Function B is symmetric about the origin, so
is odd. Function C' is also symmetric about the y-axis, so is even.

1.1.54 Function A is symmetric about the y-axis, so is even. Function B is symmetric about the origin, so
is odd. Function C' is also symmetric about the origin, so is odd.

1.1.55

a. True. A real number z corresponds to the domain element z/2+19, since f(z/24+19) = 2(z/2+19)—38 =
z+38—38==z.

b. False. The definition of function does not require that each range element comes from a unique domain
element, rather that each domain element is paired with a unique range element.

c. True. f(1/x) = 1/% =z, and ﬁ - ﬁ —

d. False. For example, suppose that f is the straight line through the origin with slope 1, so that f(z) = «.
Then f(f(z)) = f(z) = z, while (f(z))? = 22.

e. False. For example, let f(z) = x+2 and g(z) = 2x—1. Then f(g(z)) = f(2x—1) =22 —1+42 = 22+1,
while g(f(z)) =gz +2) =2(x+2) —1=2z+3.

f. True. In fact, this is the definition of f o g.

g. True. If f is even, then f(—z) = f(z) for all z, so this is true in particular for z = ax. So if
g(x) = cf(ax), then g(—z) = cf(—ax) = cf(ax) = g(x), so g is even.

h. False. For example, f(z) = = is an odd function, but h(x) = = + 1 isn’t, since h(2) = 3, while
h(—2) = —1 which isn’t —h(2).

i. True. If f(—x) = —f(x) = f(z), then in particular —f(z) = f(z), so 0 = 2f(x), so f(z) =0 for all x.

Copyright (© 2011 Pearson Education, Inc. Publishing as Addison-Wesley.



1.1. REVIEW OF FUNCTIONS 9

1.1.56

100}
50f
If n is odd, then n = 2k 4+ 1 for some integer k,
2 4

and (z)" = (x)?**! = z(z)?*, which is less than 0
when x < 0 and greater than 0 when = > 0. For
any number P (positive or negative) the number
{/P is a real number when 7 is odd, and f(/P) =
P. So the range of f in this case is the set of all
real numbers.

If n is even, then n = 2k for some integer k, and
2" = (22)*. Thus g(—z) = g(x) = (%)% > 0 for 20f
all x. Also, for any nonnegative number M, we
have g({/M) = M, so the range of g in this case 15}
is the set of all nonnegative numbers.

1.1.57

We will make heavy use of the fact that |z| is x if
x>0, and is —z if x < 0. In the first quadrant
where x and y are both positive, this equation
becomes x — y = 1 which is a straight line with
slope 1 and y-intercept —1. In the second quad-
rant where x is negative and y is positive, this

equation becomes —x — y = 1, which is a straight " " < x

line with slope —1 and y-intercept —1. In the third
quadrant where both x and y are negative, we ob-
tain the equation —x — (—y) = 1, or y = = + 1,
and in the fourth quadrant, we obtain z +y = 1.
Graphing these lines and restricting them to the
appropriate quadrants yields the following curve:

1.1.58
a. No. For example f(z) = 2% + 3 is an even function, but f(0) is not 0.

b. Yes. Since f(—x) = —f(z), and since —0 = 0, we must have f(—0) = f(0) = —f(0), so f(0) = —f(0),
and the only number which is its own additive inverse is 0, so f(0) = 0.

1.1.59 Since the composition of f with itself has first degree, we can assume that f has first degree as well,
so let f(z) = ax +b. Then (fo f)(z) = f(ax + b) = a(ax + b) + b = a’x + (ab + ). Equating coefficients,
we see that a> =9 and ab+ b = —8. If a = 3, we get that b = —2, while if a = —3 we have b = 4. So two
possible answers are f(x) =3z —2 and f(z) = —3z + 4.

Copyright (© 2011 Pearson Education, Inc. Publishing as Addison-Wesley.



10 CHAPTER 1. FUNCTIONS

1.1.60 Since the square of a linear function is a quadratic, we let f(z) = ax+b. Then f(x)? = a2?+2abz +
b2. Equating coefficients yields that @ = +3 and b = £2. However, a quick check shows that the middle
term is correct only when one of these is positive and one is negative. So the two possible such functions f
are f(x) =3z — 2 and f(z) = =3z + 2.

1.1.61 Let f(x) = ax® + bz +c. Then (fo f)(x) = f(ax?® +bx + ) = a(axr® + bx + ¢)? + b(azx? + bx +¢) + c.
Expanding this expression yields a®>z* + 2a2bx> + 2a°cx? + ab®x? + 2abcx + ac? + abx? + b?x + be + ¢, which
simplifies to a3z* + 2a2bx® + (2a%¢c + ab?® + ab)z? + (2abe + b?)x + (ac? + be + ¢). Equating coefficients yields
a® = 1,50 a = 1. Then 2a%?b = 0, so b = 0. It then follows that ¢ = —6, so the original function was
f(z) =22 —6.

1.1.62 Since the square of a quadratic is a quartic, we let f(x) = ax® + bxr + c¢. Then the square of f is
c? + 2bcx + b2x? + 2acx® + 2abx® + a*x*. By equating coefficients, we see that a? = 1 and so a = £1. Since
the coefficient on 23 must be 0, we have that b = 0. And the constant term reveals that ¢ = £6. A quick
check shows that the only possible solutions are thus f(z) = 22 — 6 and f(z) = —22 + 6.

1.1.63

a. The formula for the height of the rocket is
valid from t = 0 until the rocket hits the
ground, which is the positive solution to
—16t% 4+ 96t + 80 = 0, which the quadratic
formula reveals is t = 3 + /14. Thus, the
domain is [0, 3/14].

The maximum appears to occur at ¢ = 3.
The height at that time would be 224.

1.1.64
a. d(0) = (10 — (2.2) - 0)2 = 100.

b. An appropriate domain would be the interval from ¢ = 0 to t = ¢, where ¢, represents the time when
the tank is first empty.

c. The tank is first empty when d(¢) = 0, which is when 10 — (2.2)t = 0, or t = 50/11.

2

1.1.65 This would not necessarily have either kind of symmetry. For example, f(z) = x* is an even function

and g(z) = 2® is odd, but the sum of these two is neither even nor odd.

1.1.66 This would be an odd function, so it would be symmetric about the origin. Suppose f is even and

g is odd. Then (f - g)(—z) = f(=2)g(—=z) = f(x) - (—g(x)) = =(f - 9) ().

1.1.67 This would be an odd function, so it would be symmetric about the origin. Suppose f is even and
g is odd. Then % (—x) = % = % = —5 ().
1.1.68 This would be an even function, so it would be symmetric about the y-axis. Suppose f is even and

g is odd. Then f(g(—x)) = f(=g(x)) = f(g(x)).

1.1.69 This would be an even function, so it would be symmetric about the y-axis. Suppose f is even and
g is even. Then f(g(—=z)) = f(g(x)), since g(—x) = g(x).

Copyright (© 2011 Pearson Education, Inc. Publishing as Addison-Wesley.



1.2. REPRESENTING FUNCTIONS 11

1.1.70 This would be an odd function, so it would be symmetric about the origin. Suppose f is odd and g
is odd. Then f(g(—z)) = f(—g(x)) = —f(g(x)).

1.1.71 This would be an even function, so it would be symmetric about the y-axis. Suppose f is even and
g is odd. Then g(f(~a)) = g(f(x)), since f(—z) = ().

1.1.72

N f(z) = f(a) _ 3—2x—(3—2a) _ —2x + 2a _ (=2)(z —a) _

b fl@+h)—f(z) 3-2x+h)—B-2r) 3-20—-2h—-3+2r —2h )
' h a h a h T h 7

1.1.73

N f(z) — f(a) :4x—3—(4a—3) _ 4z —da _ (4)(x —a) _4

fla+h)—f(z) 4(x+h)—3—4r—-3) 4dor+4h—-3—4z+3 4h
b~ h == h = h :ﬁ:é‘:.

1.1.74

o J@ @) _4e?-1-(a—1) 4P’ @e-a)eta) o

flx+h)— f(x) 4(x+h)?—1— (422 - 1) 422 + 8xh +4h? — 1 — 42?2 + 1 (8x + 4h)(h)

8z + 4h.
1.1.75
@) @) Aok g a-r _ (De-a -1
' T —a T —a T —a (2az)(x —a)  (2ax)(x —a) 2ax’
1 1 x x+h
p feth) = f@) @6 "% _ BEhE _ OethE _ —h _ -1
h h h 2)(z +h)(@)(h)  (2)(z + h)(2)

1.2 Representing Functions

1.2.1 Functions can be defined and represented by a formula, through a graph, via a table, and by using
words.

1.2.2 The domain of every polynomial is the set of all real numbers.

1.2.3 The domain of a rational function % is the set of all real numbers for which ¢(x) # 0.

1.2.4 A piecewise linear function is one which is linear over intervals in the domain.
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12 CHAPTER 1. FUNCTIONS

1.2.5 1.2.6

y

151 b

10 1.0

5t 0.5

g x
-2 1 2 . x

-5fF 1 2
-10p
_15-

1.2.7 Compared to the graph of f(x), the graph of f(xz 4 2) will be shifted 2 units to the left.

1.2.8 Compared to the graph of f(x), the graph of —3f(x) will be stretched vertically by a factor of 3 and
flipped about the x axis.

1.2.9 Compared to the graph of f(x), the graph of f(3z) will be scaled horizontally by a factor of 3.
1.2.10 To produce the graph of y = 4(x + 3)2 + 6 from the graph of x2, one must

1. shift the graph horizontally by 3 units to left

2. scale the graph vertically by a factor of 4

3. shift the graph vertically up 6 units.

—3-(-1)
3—0

1.2.11 The slope of the line shown is m =
is given by f(z) = (-2/3)x — 1.

1.2.12 The slope of the line shown is m = = —4/5. The y-intercept is b = 5. Thus the function is
given by f(z) = (-4/5)x + 5.

1.2.13 Using price as the independent variable p and the average number of units sold per day as the
dependent variable d, we have the ordered pairs (250, 12) and (200, 15). The slope of the line determined by
these points is m = z2=12; = —3-. Thus the demand function has the form d(p) = (—3/50)p + b for some
constant b. Using the point (200,15), we find that 15 = (—3/50) - 200 + b, so b = 27. Thus the demand
function is d = (—3/50)p+ 27. While the natural domain of this linear function is the set of all real numbers,
the formula is only likely to be valid for some subset of the interval (0,450), since outside of that interval

either p <0 or d < 0.

= —2/3. The y-intercept is b = —1. Thus the function

1.2.14 The profit is given by p = f(z) = 8z — 175. The break-even point is when p = 0, which occurs when
x =175/8 = 21.875, so they need to sell at least 22 tickets to not have a negative profit.

1.2.15 For = < 0, the graph is a line with slope 1 and y- intercept 3, while for x > 0, it is a line with slope
—1/2 and y-intercept 3. Note that both of these lines contain the point (0,3). The function shown can thus
be written

T+ 3 if x <0;
flz) =
(=1/2)z+3 if x> 0.

1.2.16 For x < 3, the graph is a line with slope 1 and y- intercept 1, while for x > 3, it is a line with slope
—1/3. The portion to the right thus is represented by y = (—1/3)x + b, but since it contains the point (6, 1),
we must have 1 = (—1/3)(6) + b so b = 3. The function shown can thus be written

z+1 if x < 3;
flz) =
(—=1/3)z+3 ifz>3.

Note that at « = 3 the value of the function is 2, as indicated by our formula.
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1.2. REPRESENTING FUNCTIONS 13

1.2.17 1.2.18
p.q
1 2
1.2.19 1.2.20
¥ y
3.0 at
2.5
2.0 3
" , \
0.5 1
, x . .
-2 -1 1 2 -1 1 2 3 4
1.2.21
a.
y
15+
b. The function is a polynomial, so its domain is the
10 set of all real numbers.

c. It has one peak near its y-intercept of (0,6) and

SF one valley between x = 1 and x = 2. Its -
intercept is near x = —4/3.
L L L = X
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14 CHAPTER 1. FUNCTIONS

1.2.22
a.
Yy
4 -
b. The function is an algebraic function. Its domain
3F .
is the set of all real numbers.
2t c. It has a valley at the y-intercept of (0,—2), and
1f is very steep at © = —2 and x = 2 which are the
N x-intercepts. It is symmetric about the y-axis.
-6 -4 2 4 6
—1f
1.2.23
a.
y
25f b. The domain of the function is the set of all real
2 numbers except —3.

c. There is a valley near x = —5.2 and a peak near
15¢ x = —0.8. The z-intercepts are at —2 and 2, where
10f the curve does not appear to be smooth. There is

a vertical asymptote at x = —3. The function is
5t never below the z-axis. The y-intercept is (0, 4/2).
\/ x
-8 -6 -4 -2 2 4 6
1.2.24
a.
y
1.5F
1o b. The domain of the function is (—oo, —2] U [2, c0)
0.5f
c. x-intercepts are at —2 and 2. Since 0 isn’t in the
5 10 15 domain, there is no y-intercept. The function has
a valley at x = —4..
L 1 if x < O0;
1.2.25 The slope function is given by s(z) = ne
—-1/2 ifx >0.
1 if x < 3;
1.2.26 The slope function is given by s(x) = s
—-1/3 ifx > 3.
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1.2. REPRESENTING FUNCTIONS 15

1.2.27
a. Since the area under consideration is that of a rectangle with base 2 and height 6, A(2) = 12.
b. Since the area under consideration is that of a rectangle with base 6 and height 6, A(6) = 36.

c. Since the area under consideration is that of a rectangle with base x and height 6, A(x) = 6.

1.2.28
a. Since the area under consideration is that of a triangle with base 2 and height 2, A(2) = 2.

b. Since the area under consideration can be divided into two triangles and a trapezoid, the area function
at © = 6 is the sum of the areas from 0 to 2 (which is 2) plus the area from 2 to 4 (which is 4) plus
the area 4 to 6 (which is 7), so A(6) =2+4+ 7 =13.

c. If = is between 0 and 2, we have a trapezoid whose base is x and whose average height is %2—@ =
2 — (2/2), so the area in this case is A(x) = x(2 — (2/2)) = 2z — (2?/2). If = is between 2 and 4,
the area in question is that of a triangle of area 2 plus that of a triangle over the interval [2,z]. The
area of this second triangle is (z — 2)(2z — 4) = (z — 2)? = 22 — 4z + 4. So the area from 0 to z
for 2 <2 <4is2+2? —4x+4 =22 — 42 + 6. If 2 is between 4 and 12, the area in question is the
sum of a triangle of area 2, a triangle of area 4, and a trapezoid over the region [4, x]. The base of this
trapezoid is = — 4 and the average height is WM = 5—(x/4). Thus the area of this trapezoid is
(x—4)(5— (2/4)) = bz — (22/4) — 20 + = = (=22 /4) + 62 — 20. So the area from 0 to = for 4 < z < 12

is 2+ 4+ (—22/4) + 62 — 20 = (—2%/4) + 62 — 14. Thus we have

2x — ifo<ax<2;

m2
2
Alx) =922 -4z +6  if2<z<d4

= 46— 14 ifd<z<12.

1.2.29 f(z) = |z — 2| + 3, since the graph of f is obtained from that of |z| by shifting 2 units to the right
and 3 units up.

g(x) = —|z 4+ 2| — 1, since the graph of g is obtained from the graph of |x| by shifting 2 units to the left,
then reflecting about the x-axis, and then shifting 1 unit down.

1.2.30
a b.

Yy

y 4

4.
3.

2.
2.

X
2 4
\/\/ x
-4 -4 -3 -2 -1 0 1 2
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16 CHAPTER 1. FUNCTIONS

: x
-2
€.
: X
-4
1.2.31
a b.
y y
8 s
6 6+
4 4
2 2
Loy x
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
C d.
y y
4 4
2 2
Ly . . . . . Ly
-1 1 2 3 4 5 -1 1 2 3 4 5
-2 -2
-4l -4t
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1.2. REPRESENTING FUNCTIONS

1.2.32

a. b.

1.2.33

X

This function is —3 - f(x) where f(z) = 2?

1.2.34

This function is 2 - f(z) — 1 where f(z) = 23
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18 CHAPTER 1. FUNCTIONS

1.2.35
y

30
25¢

20y

This function is 2 - f(z + 3) where f(z) = 22

1.2.36

By completing the square, we have that p(z) = , , , , , C
(22 +3z+(9/4)) — (29/4) = (z+ (3/2))* — (29/4).
So it is f(x + (3/2)) — (29/4) where f(x) = 2.

1.2.37

By completing the square, we have that

h(z) = —4(2® + 2 — 3)

1 1
=—4<$2+$+——3>

4 4
= —d(z + (1/2))* + 13

So it is —4f(x + (1/2)) + 13 where f(z) = 22.

1.2.38

Since |3z —6|+1 = 3|z —2|+1, thisis 3f(z—2)+1 al
where f(z) = |z|.

1.2.39
p(z)

a. True. A polynomial p(z) can be written as the ratio of polynomials =, so it is a rational function.
However, a rational function like % is not a polynomial.

b. False. For example, if f(z) = 2z, then (f o f)(z) = f(f(x)) = f(2z) = 4z is linear, not quadratic.
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c. True. In fact, if f is degree m and g is degree n, then the degree of the composition of f and g is m-n,

regardless of the order they are composed.

d. False. The graph would be shifted two units to the left.

1.2.40 The points of intersection are found by solving z? + 2 = x + 4. This yields the quadratic equation
22—z —2=0or (x —2)(z+ 1) = 0. So the z-values of the points of intersection are 2 and —1. The actual

points of intersection are (2,6) and (-1, 3).

1.2.41 The points of intersection are found by solving z? = —x2 + 8x. This yields the quadratic equation
222 — 8z = 0 or (2z)(z —4) = 0. So the z-values of the points of intersection are 0 and 4. The actual points

of intersection are (0,0) and (4, 16).

1.2.42 y = x + 1, since the y value is always 1 more than the x value.

1.2.43 y = \/x — 1, since the y value is always 1 less than the square root of the x value.

1.2.44

y =23 — 1. The domain is (—00, 00).

1.2.45

y = bx. The natural domain for the situation is
[0, h] where h represents the maximum number of
hours that you can run at that pace before keeling
over.

1.2.46

y = 22, Theoretically the domain is (0,00), but

the world record for the “hour ride” is just short
of 50 miles.
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20 CHAPTER 1. FUNCTIONS
1.2.47
y
800
3200 x dollars per gallon
= ——. Note that : iles
4 x ¥ PR T35 miles per gallon Y HHes 6001
would represents the numbers of dollars, so this
must be 100. So we have £ = 100, or y = 2200, 400
We certainly have = > 0, but unfortunately, there
appears to be no no upper bound for z, so the 200
domain is (0, 00).
: : : : =X
10 20 30 40 50
1.2.48 1.2.49
y
2F — y
3t o——
1 —o0
2f o——
? x
-3 -2 -1 2 3 ©O—
. e - X
R e | 3
—o0 -2
o— -1
E— -3
[ -2
1.2.50 1.2.51
y
1.0 0 —_—
0.8}
0.6}
0.4}
0.2f
X
1 2 3 o o - x
-1 1 2 3
1.2.52 1.2.53
y
80} Y
20}
601
10f
401
L P
2
20t
X
-2 -1 1 2
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1.2. REPRESENTING FUNCTIONS 21

1.2.54
y
2.0f
15}
1o}
0.5
1 2 3 4 s *
1.2.55

a. By comparing various pairs of points, it appears that the slope of the line is about 328.3. At ¢t = 0, the
value of p is 1875. Therefore a line which reasonably approximates the data is p(t) = 328.3t + 1875.

b. Using this line, we have that p(9) = 4830.

1.2.56

a. We know that the points (32,0) and (212,100) are on our line. The slope of our line is thus 211020:302 =

138 = 2. The function f(F) thus has the form C = (5/9)F + b, and using the point (32,0) we see that
0=(5/9)32+b, so b = —(160/9). Thus C = (5/9)F — (160/9)

b. Solving the system of equations C' = (5/9)F —(160/9) and C' = F, we have that F' = (5/9)F —(160/9),
so (4/9)F = —160/9, so F' = —40 when C' = —40.
1.2.57
a. Since you are paying $350 per month, the amount paid after m months is y = 350m + 1200.

b. After 4 years (48 months) you have paid 350 - 48 4+ 1200 = 18000 dollars. If you then buy the car for
$10,000, you will have paid a total of $28,000 for the car instead of $25,000. So you should buy the
car instead of leasing it.

1.2.58

r
0.8f
0.6f

Since S = 4mr?, we have that r> = 2, so |r| =
NG - C . /s 0.4f

WL but since r is positive, we can write r = PN
0.2f

S
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1.2.59
\4
4 L
3 -
The function makes sense for 0 < h < 2. o’
1 -
' ' ' " h
0.5 1.0 15 2.0
1.2.60
d
a. Note that the island, the point P on shore, and 800
the point down shore z units from P form a right \
triangle. By the Pythagorean theorem, the length 600
of the hypotenuse is v/40000 4+ 2. So Kelly must
row this distance and then jog 600 — x meters to 400
get home. So her total distance is
200¢
d(x) = /40000 + 22 4+ (600 — x).
100 200 300 400 500 600"
T
300 /
b. Since distance is rate times time, we have that 250
time is distance divided by rate. Thus 200F
V40000 + 22 600 o
x -
T(x) = : i
(x) 5 + 1 100
50F

. . . . . Cox
100 200 300 400 500 600

c. By inspection, it looks as though she should head to a point about 115 meters down shore from P.
This would lead to a time of about 236.6 seconds.

1.2.61

Yy
500
.9 . 400}

a. The volume of the box is x°h, but since the box has
volume 125 cubic feet, we have that 22h = 125, so 300t

h = %5 The surface area of the box is given by
22 (the area of the base) plus 4- hx, since each side 200¢

has area hz. Thus S = 22 + 4hx = 2 + 4'11,# =
22 4 500 100}

L X
0 5 10 15 20
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1.2. REPRESENTING FUNCTIONS 23

b. By inspection, it looks like the value of  which minimizes the surface area is about 6.3.

1.2.62 Let f(x) = a,a™ + some smaller degree terms and let g(x) = b, 2™ + some smaller degree terms.
a. The largest degree term in f- f is a, 2™ a,2" = a22™*", so the degree of this polynomial is n+mn = 2n.
b. The largest degree term in f o f involves a,, - (a,2™)", so the degree is n?.

c. The largest degree term in f - g is a,b,,z™ '™, so the degree of the product is m + n.
d. The largest degree term in f o g involves a,, - (b, z™)™, so the degree is mn.
1.2.63 Suppose that the parabola f crosses the z-axis at a and b, with a < b. Then a and b are roots of

the polynomial, so (z — a) and (x — b) are factors. Thus the polynomial must be f(x) = ¢(x — a)(xz — b) for
some non-zero real number c. So f(x) = cx? — c(a+b)z + abc. Since the vertex always occurs at the x value

—coefficient of b b
which is e c.len © 12 we have that the vertex occurs at M _ ot , which is halfway between
2 - coefficient on x 2c 2
a and b.
1.2.64

a. We complete the square to rewrite the function f. Write f(z) = az®+bz+cas f(z) = a(z*+ 2o+ £).
Completing the square yields

SR W A N W SR S O
W\ T T 1 a 4a —\" T, ‘)

Thus the graph of f is obtained from the graph of x2? by shifting % units to the left (and then doing

some scaling and vertical shifting) — moving the vertex from 0 to —%.

b. We know that the graph of f touches the z-axis if the equation ax? + bz + ¢ = 0 has at least one real
solution. By the quadratic formula, we know that this occurs exactly when the discriminant > — 4ac
is non-negative. So the condition we seek is for b2 — 4ac > 0, or b > 4ac.

1.2.65

120
100

5 801

60

nl || 1]2]6]|24] 120

40}

20

c. Using trial and error and a calculator yields that 10! is more than a million, but 9! isn’t.
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n (1234|567 |8]9]10
Sn) || 1{3|6|10| 15|21 |28 |36 |45 |55

b. The domain of this function consists of the positive integers. The range is a subset of the set of positive
integers.

c. Using trial and error and a calculator yields that S(n) > 1000 for the first time for n = 45.

1.2.67

n 1123 | 4|5 1] 6 7 8 9 10
T(n) || 1|5] 14|30 | 55|91 | 140 | 204 | 285 | 385

b. The domain of this function consists of the positive integers.

c. Using trial and error and a calculator yields that T'(n) > 1000 for the first time for n = 14.

1.3 Trigonometric Functions and Their Inverses

1.3.1 Let O be the length of the side opposite the angle x, let A be length of the side adjacent to the angle

x, and let H be the length of the hypotenuse. Then sinx = %, cosT = %, tanx = %, cscr = g, secr = %,

_ A
and cotx = 5

1.3.2 We consider the angle formed by the positive x axis and the ray from the origin through the point
P(z,y). A positive angle is one for which the rotation from the positive 2 axis to the other ray is counter-
clockwise. We then define the six trigonometric functqirons as follows: let 7 = \/22 +y2. Then sinf = ¥,

cosf) = £, tanf = £ csc = L, sec = Z, and cot ) = L.
Y x Y
1.3.3 The radian measure of an angle 6 is the length of the arc s on the unit circle associated with 6.

1.3.4 The period of a function is the smallest positive real number k so that f(xz + k) = f(x) for all = in
the domain of the function. The sine, cosine, secant, and cosecant function all have period 27. The tangent
and cotangent functions have period 7.

1.3.5 sin®z +cos?z =1, 1 + cot? z = csc? z, and tan®z + 1 = sec? .

1
cosx’

cosx
sinz *

sinx
cosx’

and cotx =

tanx =

1.3.6 cscx = .L, secr =
sinx

1.3.7 The tangent function is undefined where cosz = 0, which is at all real numbers of the form 7 +
km, k an integer.

1.3.8 secx is defined wherever cosz # 0, which is {z: z # § + km, k an integer}.

1.3.9 The point on the unit circle associated with 27/3 is (—1/2,/3/2), so cos(27/3) = —1/2.
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SRER

1.3.10 The point on the unit circle associated with 27/3 is (—1/2,v/3/2), so sin(27/3) = v/3/2. See the
picture from the previous problem.

1.3.11

The point on the unit circle associated with

—31/4is (—v2/2,—/2/2), so

tan(—3m/4) = 1.

I VZ,
2 72
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