Chapter 1

1. Estimate the slope of $f(x)=2 x^{2}+7$ at $x=4$.
A) 6
B) 28
C) 16
D) 56

Ans: C Difficulty: Moderate Section: 1.1
2. Estimate the slope of $f(x)=4 x^{3}+9$ at $x=3$.
A) 12
B) 36
C) 108
D) 27

Ans: C Difficulty: Moderate Section: 1.1
3. Estimate the slope of $f(x)=2 \sin x$ at $x=\frac{3 \pi}{2}$.
A) -2.00
B) 0.00
C) 1.00
D) 1.41

Ans: B Difficulty: Moderate Section: 1.1
4. Estimate the slope of $f(x)=\sqrt{8 x+9}$ at $x=2$.
A) 0.8000
B) 4
C) 100
D) -1.6000

Ans: A Difficulty: Moderate Section: 1.1
5. Estimate the length of the curve $y=\sqrt{x^{2}+2}$ on the interval [0,3] using three line segments. Round the answer to 3 decimal places.
A) 3.552
B) 3.604
C) 1.902
D) 0.634

Ans: B Difficulty: Moderate Section: 1.1
6. Estimate the length of the curve $y=2 x^{2}+4$ on the interval $[-2,2]$ using four line segments. Round the answer to 3 decimal places.
A) 16.492
B) 8.000
C) 16.638
D) 16.000

Ans: C Difficulty: Moderate Section: 1.1
7. Complete the tables appropriately and use the numerical evidence to conjecture the value of $\lim _{x \rightarrow 3} \frac{(x-3)^{2}}{x^{4}+6 x^{3}-54 x-81}$.

x	$\frac{(x-3)^{2}}{x^{4}+6 x^{3}-54 x-81}$
2.9	
2.99	
2.999	
2.9999	

x	$\frac{(x-3)^{2}}{x^{4}+6 x^{3}-54 x-81}$
3.1	
3.01	
3.001	
3.0001	

A) 0
B) $3 \quad$ C) -3
D) -81

Ans: A Difficulty: Moderate Section: 1.2
8. Complete the tables appropriately and use the numerical evidence to conjecture the value of $\lim _{x \rightarrow 2} \frac{5 x-10}{x^{2}-3 x+2}$.

x	$\lim _{x \rightarrow 2} \frac{5 x-10}{x^{2}-3 x+2}$
1.9	
1.99	
1.999	
1.9999	

x	$\lim _{x \rightarrow 2} \frac{5 x-10}{x^{2}-3 x+2}$
2.1	
2.01	
2.001	
2.0001	

A) 0
B) $5 \quad$ C) -10
D) 2

Ans: B Difficulty: Moderate Section: 1.2
9. For the function graphed below, identify

$$
\lim _{x \rightarrow 0^{-}} f(x)
$$

or state that the limit does not exist.

$\begin{array}{llll}\text { A) } 1 & \text { B) } 2 & \text { C) } 3 & \text { D) does not exist }\end{array}$ Ans: A Difficulty: Moderate Section: 1.2
10. For the function graphed below, identify

$$
\lim _{x \rightarrow 0^{+}} f(x)
$$

or state that the limit does not exist.

$\begin{array}{llll}\text { A) } 0 & \text { B) } 1 & \text { C) } 3 & \text { D) does not exist }\end{array}$
Ans: C Difficulty: Moderate Section: 1.2
11. For the function graphed below, identify

$$
\lim _{x \rightarrow 3^{-}} f(x)
$$

or state that the limit does not exist.

A) 0
B) 2 C) -2
D) does not exist

Ans: A Difficulty: Moderate Section: 1.2
12. For the function graphed below, identify

$$
\lim _{x \rightarrow-2^{-}} f(x)
$$

or state that the limit does not exist.

$\begin{array}{llll}\text { A) } 0 & \text { B) }-1 & \text { C) }-2 & \text { D) does not exist }\end{array}$
Ans: A Difficulty: Moderate Section: 1.2
13. For the function graphed below, identify

$$
\lim _{x \rightarrow 3^{+}} f(x)
$$

or state that the limit does not exist.

A) 0
B) 2
C) -2
D) does not exist

Ans: C Difficulty: Moderate Section: 1.2
14. For the function graphed below, identify

$$
\lim _{x \rightarrow-2^{+}} f(x)
$$

or state that the limit does not exist.

A) 0
B) -1
C) -2
D) does not exist

Ans: C Difficulty: Moderate Section: 1.2
15. For the function graphed below, identify

$$
\lim _{x \rightarrow 1^{-}} f(x)
$$

or state that the limit does not exist.

A) 0
B) -1
C) $-2 \quad$ D) does not exist

Ans: B Difficulty: Moderate Section: 1.2
16. For the function graphed below, identify

$$
\lim _{x \rightarrow 3^{-}} f(x)
$$

or state that the limit does not exist.

$\begin{array}{llll}\text { A) } 0 & \text { B) }-1 & \text { C) }-2 & \text { D) does not exist }\end{array}$
Ans: D Difficulty: Moderate Section: 1.2
17. Sketch the graph of

$$
f(x)=\left\{\begin{array}{ll}
-4 x & \text { if } x>0 \\
4 x^{2} & \text { if } x \leq 0
\end{array} .\right.
$$

What is $\lim _{x \rightarrow 4^{-}} f(x)$?

A) 0
B) -16
C) $16 \quad$ D) does not exist

Ans: B Difficulty: Moderate Section: 1.2
18. Sketch the graph of

$$
f(x)=\left\{\begin{array}{ll}
2 x^{3}+2 & \text { if } x<-2 \\
x^{2}+1 & \text { if } x \geq-2
\end{array} .\right.
$$

What is $\lim _{x \rightarrow 2^{-}} f(x)$?

A) -2
B) 0
C) 5
D) does not exist

Ans: C Difficulty: Moderate Section: 1.2
19. Use graphical and numerical evidence to estimate the limit.

$$
\lim _{x \rightarrow 0} \frac{\sin x}{\cos x}
$$

A) 0
B) $\frac{\pi}{4}$
C) $\frac{\pi}{2}$
D) π

Ans: A Difficulty: Moderate Section: 1.2
20. Use graphical and numerical evidence to estimate the limit.

$$
\lim _{x \rightarrow 8} \frac{x^{2}-64}{x-8}
$$

A) 8
B) $-8 \quad$ C) -16
D) 16

Ans: D Difficulty: Moderate Section: 1.2
21. Use graphical and numerical evidence to determine if

$$
\lim _{x \rightarrow 8} \frac{x^{2}-64}{x^{2}-16 x+64}
$$

exists. If so, state the limit.
A) The limit exists and is -8 at $x=8$.
B) The limit exists and is 8 at $x=8$.
C) The limit does not exist; the function is increasing without bound from the left and decreasing without bound from the right at $x=8$.
D) The limit does not exist; the function is decreasing without bound from the left and decreasing without bound from the right at $x=8$.
Ans: D Difficulty: Moderate Section: 1.2
22. Use graphical and numerical evidence to estimate the limit.

$$
\lim _{x \rightarrow \pi / 2} \frac{\cos x}{\left(x-\frac{\pi}{2}\right)}
$$

A) -1
B) 0
C) $\frac{\pi}{2}$
D) π

Ans: A Difficulty: Moderate Section: 1.2
23. Use graphical and numerical evidence to determine if

$$
\lim _{x \rightarrow 0} \frac{4 \sin x}{x}
$$

exists. If so, state the limit.
A) The limit exists and is -1 at $x=0$.
B) The limit exists and is 4 at $x=0$.
C) The limit does not exist; the function is increasing without bound at $x=0$.
D) The limit does not exist; the function is decreasing without bound at $x=0$.

Ans: B Difficulty: Moderate Section: 1.2
24. Use graphical and numerical evidence to determine if

$$
\lim _{x \rightarrow-8} \frac{x+8}{|x+8|}
$$

exists. If so, state the limit.
A) the limit exists and is -1 at $x=-8$
B) the limit exists and is 0 at $x=-8$
C) does not exist; the right and left limits at $x=-8$ are different
D) does not exist; the function is increasing without bound at $x=-8$

Ans: C Difficulty: Moderate Section: 1.2
25. Sketch the graph of a function with the given properties.

$$
f(-1)=0, f(0)=1, f(1)=0, \lim _{x \rightarrow 1} f(x) \text { does not exist }
$$

Ans: One possible function that fits the listed criteria is shown here:

Difficulty: Moderate Section: 1.2
26. Sketch the graph of a function with the given properties.

$$
f(0)=2, f(1)=5, \lim _{x \rightarrow-1} f(x)=1, \lim _{x \rightarrow 2} f(x)=3
$$

Ans: One possible function that meets the criteria is:

Difficulty: Moderate Section: 1.2
27. A ski rental shop charges $\$ 7.00$ for each hour, or portion of an hour, its ski equipment is rented for up to a maximum of $\$ 56.00$ for all day. If $f(t)$ equals the total charge for the ski equipment for t hours, determine the limit $\lim _{t \rightarrow 6.5} f(t)$, if it exists.
A) $\$ 45.50$
$\begin{array}{lll}\text { B) } \$ 42.00 & \text { C) } \$ 49.00\end{array}$
D) The limit does not exist.

Ans: C Difficulty: Moderate Section: 1.2
28. Evaluate the limit, if it exists.

$$
\lim _{x \rightarrow 4} \sqrt{2 x+5}
$$

A) 3
B) 13
C) $\sqrt{13}$
D) $3 \sqrt{13}$

Ans: C Difficulty: Moderate Section: 1.3
29. Find the limit or explain why it does not exist.

$$
\lim _{x \rightarrow 4^{-}} \sqrt{16-x^{2}}
$$

A) 4
B) 0
C) 16
D) The limit does not exist; the function is not defined for $x<4$.

Ans: B Difficulty: Moderate Section: 1.3
30. Find the limit or explain why it does not exist.

$$
\lim _{x \rightarrow 5^{+}} \sqrt{25-x^{2}}
$$

A) 5
B) 0
C) The limit does not exist; the function increases without bound as x approaches 5 from the right.
D) The limit does not exist; the function is not defined for $x>5$.

Ans: D Difficulty: Moderate Section: 1.3
31. Find the limit or explain why it does not exist.

$$
\lim _{x \rightarrow-2^{+}} \sqrt{x^{2}+3 x+2}
$$

A) -2
B) 0
C) 2
D) The limit does not exist; the function is not defined for $x<-2$.

Ans: B Difficulty: Moderate Section: 1.3
32. Evaluate the limit, if it exists.

$$
\lim _{x \rightarrow 3 \pi / 2} x^{2} \cos x
$$

A) 0
B) 36
C) 1
D) does not exist

Ans: A Difficulty: Moderate Section: 1.3
33. Evaluate the limit, if it exists.

$$
\lim _{x \rightarrow 3} \frac{x-7}{x^{2}+9}
$$

A) $-\frac{2}{9}$
B) -4
C) 18
D) does not exist

Ans: A Difficulty: Moderate Section: 1.3
34. Evaluate the limit, if it exists.

$$
\lim _{x \rightarrow 3} \frac{x^{2}+4 x-21}{x^{2}-10 x+21}
$$

A) 10
B) $-\frac{5}{2}$
C) 3
D) does not exist

Ans: B Difficulty: Moderate Section: 1.3
35. Evaluate the limit, if it exists. Assume that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

$$
\lim _{x \rightarrow 0} \frac{10 \tan x}{\sin x}
$$

A) 0
B) 10
C) $\frac{1}{10}$
D) The limit does not exist.

Ans: B Difficulty: Moderate Section: 1.3
36. Evaluate the limit, if it exists.

$$
\lim _{x \rightarrow 0^{+}} x^{3} \sec ^{3} x
$$

A) 0
B) 1
C) $\frac{\pi}{2}$
D) does not exist

Ans: A Difficulty: Moderate Section: 1.3
37. Evaluate the limit, if it exists.

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+3 x+36}-6}{x^{2}+3 x}
$$

A) $\frac{1}{12}$
B) 6
C) 36
D) does not exist

Ans: A Difficulty: Moderate Section: 1.3
38. Evaluate the limit, if it exists.

$$
\lim _{x \rightarrow 0} \frac{6 x}{2-\sqrt{x+4}}
$$

A) 12
B) 24
C) -24
D) does not exist

Ans: C Difficulty: Moderate Section: 1.3
39. Evaluate the indicated limit, if it exists.

$$
\lim _{x \rightarrow-3}\left(\frac{1}{x+3}+\frac{6}{x^{2}-9}\right)
$$

A) $-\frac{1}{6}$
B) $\frac{1}{6}$
C) 0
D) does not exist

Ans: A Difficulty: Moderate Section: 1.3
40. Evaluate $\lim _{x \rightarrow-1} f(x)$ where

$$
f(x)=\left\{\begin{array}{ll}
3 x^{2}+3 & \text { if } x<-1 \\
2 x+3 & \text { if } x \geq-1
\end{array} .\right.
$$

A) 0
B) 6
C) 1
D) does not exist

Ans: D Difficulty: Moderate Section: 1.3
41. Evaluate $\lim _{x \rightarrow 3} f(x)$ where

$$
f(x)=\left\{\begin{array}{l}
4 x-2 \quad \text { if } x<-3 \\
14 \quad \text { if }-3<x<3 . \\
4 x+2 \quad \text { if } x>3
\end{array}\right.
$$

A) 14
B) 12
C) 10
D) does not exist

Ans: A Difficulty: Moderate Section: 1.3
42. Evaluate the limit, if it exists.

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{3}-27}{h}
$$

A) 9
B) 27
C) 18
D) does not exist

Ans: B Difficulty: Moderate Section: 1.3
43. Evaluate the limit, if it exists. Assume that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

$$
\lim _{x \rightarrow 0} \frac{\tan 9 x}{4 x}
$$

A) 0
B) $\frac{9}{4}$
C) $\frac{4}{9}$
D) The limit does not exist.

Ans: B Difficulty: Moderate Section: 1.3
44. For the position function $f(t)$

$$
f(t)=4 t^{2}+6(\text { feet })
$$

find the instantaneous velocity at time $t=3$ seconds.
A) 12 feet per second
B) 30 feet per second
C) 24 feet per second
D) 42 feet per second

Ans: C Difficulty: Moderate Section: 1.3
45. For the position function $f(t)$

$$
f(t)=2 t^{3}(\text { feet })
$$

find the instantaneous velocity at time $t=5$ seconds.
A) 150 feet per second
B) 125 feet per second
C) 75 feet per second
D) 50 feet per second

Ans: A Difficulty: Moderate Section: 1.3
46. Given that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

find the limit or explain why it does not exist.

$$
\lim _{x \rightarrow 0} \frac{2-2 \cos ^{2} x}{8 x^{2}}
$$

A) 2
B) 1
C) $\frac{1}{4}$
D) The limit does not exist; the function is not defined at $x=0$.

Ans: C Difficulty: Moderate Section: 1.3
47. Given

$$
\lim _{x \rightarrow a} f(x)=1 \text { and } \lim _{x \rightarrow a} g(x)=-5,
$$

find

$$
\lim _{x \rightarrow a}[6 f(x)-4 g(x)] .
$$

A) 6
B) 11
C) 2 D) 26

Ans: D Difficulty: Moderate Section: 1.3
48. Given

$$
\lim _{x \rightarrow a} f(x)=5 \text { and } \lim _{x \rightarrow a} g(x)=-5,
$$

find

$$
\lim _{x \rightarrow a}[2 f(x) \cdot 3 g(x)]
$$

A) -25
B) -150
C) 6
D) The limit does not exist.

Ans: B Difficulty: Moderate Section: 1.3
49. Given

$$
\lim _{x \rightarrow a} f(x)=1, \lim _{x \rightarrow a} g(x)=-5 \text { and } \lim _{x \rightarrow a} h(x)=0,
$$

find

$$
\lim _{x \rightarrow a} \frac{[6 f(x)+4 g(x)]}{h(x)}
$$

A) -4
B) -14
C) 10
D) The limit does not exist.

Ans: D Difficulty: Moderate Section: 1.3
50. Suppose that a state's tax code states that tax liability is 12% on the first 18,000 of taxable earnings and 19% on the remainder. Find the constants a and b in the tax function $T(x)$

$$
T(x)= \begin{cases}a+0.12 x & \text { if } x \leq 18,000 \\ b+0.19(x-18,000) & \text { if } x>18,000\end{cases}
$$

such that $\lim _{x \rightarrow 0^{+}} T(x)=0$ and $\lim _{x \rightarrow 18,000} T(x)$ exists.
A) $\quad a \neq 0$ and $b=0$
B) $\quad a=0$ and $b=2,160$
C) $\quad a=18,000$ and $b=2,160$
D) $\quad a \neq 0$ and $b=18,000$

Ans: B Difficulty: Moderate Section: 1.3
51. Find all discontinuities.

$$
f(x)=\frac{4 x-24}{x^{2}-36}
$$

A) discontinuous at $x=0$
C) discontinuous at $x=36$
B) discontinuous at $x= \pm 6$
D) continuous for all x

Ans: B Difficulty: Moderate Section: 1.4
52. Find all discontinuities.

$$
f(x)=\frac{6 x-12}{x^{2}-4}
$$

For each discontinuity that is removable, define a new function that removes the discontinuity.

Ans: discontinuous at $x= \pm 2$
The discontinuity at $x=2$ is removable:

$$
f(x)=\frac{6}{x+2}
$$

Difficulty: Moderate Section: 1.4
53. Find all discontinuities.

$$
f(x)=\frac{3 x}{x^{2}+2 x-15}
$$

A) discontinuous at $x=-3,5$
C) discontinuous at $x=3,-5$
B) discontinuous at $x=-15$
D) continuous for all x

Ans: C Difficulty: Moderate Section: 1.4
54. Find all discontinuities.

$$
f(x)=\frac{2 x}{x^{2}+4}
$$

A) discontinuous at $x=4$
C) discontinuous at $x=-2,2$
B) discontinuous at $x=-2$
D) continuous for all x
Ans: D Difficulty: Moderate Section: 1.4
55. Determine where f is continuous.

$$
\frac{2 x^{2}}{\sqrt{5 x^{3}-x^{2}}}
$$

A) $x \neq 0$
B) $x>0$
C) $x>\frac{1}{5}$
D) continuous on all reals

Ans: C Difficulty: Moderate Section: 1.4
56. Find all discontinuities.

$$
f(x)= \begin{cases}3 x & \text { if } x<1 \\ 7 x^{2} & \text { if } x \geq 1\end{cases}
$$

A) discontinuous at $x=1$
C) discontinuous at $x=-3,-7$
B) discontinuous at $x=3,7$
D) continuous for all x

Ans: A Difficulty: Moderate Section: 1.4
57. Explain why the function fails to be continuous at $x=1$ by indicating which of the conditions in the definition of continuity are not met.

$$
f(x)=\left\{\begin{array}{cc}
x^{2}-2 & \text { if } x<1 \\
8 & \text { if } x=1 \\
3 x-4 & \text { if } x>1
\end{array}\right.
$$

A) $\quad f(1)$ exists but $\lim _{x \rightarrow 1} f(x)$ does not exist
B) $\quad \lim _{x \rightarrow 1} f(x)$ exists but $f(1)$ does not exist
C) neither $f(1)$ nor $\lim _{x \rightarrow 1} f(x)$ exist
D) $\quad f(1)$ exists and $\lim _{x \rightarrow 1} f(x)$ exists but $\lim _{x \rightarrow 1} f(x) \neq f(1)$

Ans: D Difficulty: Moderate Section: 1.4
58. Determine the intervals where f is continuous.

$$
f(x)=\sqrt{2 x+12}
$$

A) $(-6, \infty)$
B) $[-6, \infty)$
C) $(-\infty,-6]$
D) $(-\infty,-6)$

Ans: B Difficulty: Moderate Section: 1.4
59. Determine the intervals where f is continuous.

$$
f(x)=(x-5)^{3 / 2}
$$

A) $(-\infty, 5]$
B) $[5, \infty)$
C) $[5, \infty)$
D) $(-\infty, 5)$

Ans: C Difficulty: Moderate Section: 1.4
60. Determine the intervals where f is continuous.

$$
f(x)=\sin (3 x+3)
$$

A) $(-\infty, \infty)$
B) $[3,3 \pi]$
C) $[-3,3 \pi]$
D) $[0,2 \pi]$

Ans: A Difficulty: Moderate Section: 1.4
61. Suppose that a state's tax code states that tax liability is 11% on the first 19,000 of taxable earnings and 19% on the remainder. Find the constants a and b in the tax function $T(x)$ that make the function $T(x)$ continuous.

$$
T(x)= \begin{cases}0 & \text { if } x=0 \\ a+0.11 x & \text { if } 0<x \leq 19,000 \\ b+0.19(x-19,000) & \text { if } x>19,000\end{cases}
$$

A) $\quad a=0.11$ and $b=3,610$
B) $\quad a=0.11$ and $b=2,090$
C) $\quad a=0$ and $b=3,610$
D) $\quad a=0$ and $b=2,090$

Ans: D Difficulty: Moderate Section: 1.4
62. Use the Intermediate Value Theorem to determine if f has a zero in the interval [1,7].

$$
f(x)=x^{2}-34
$$

Ans: Since $f(x)$ is continuous on the interval [1, 7], $f(x)$ must take on all values between $f(1)$ and $f(7) . f(1)=-33$ and
$f(7)=15$, which have opposite signs. Therefore, $f(x)$ must equal 0 somewhere on the interval [1, 7].
Difficulty: Moderate Section: 1.4
63. Use the Intermediate Value Theorem to determine if f has a zero in the interval [2,7].

$$
f(x)=x^{3}-20 x-54
$$

Ans: Since $f(x)$ is continuous on the interval [2, 7], $f(x)$ must take on all values between
$f(2)$ and $f(7) . f(2)=-86$ and
$f(7)=149$, which have opposite signs. Therefore, $f(x)$ must equal 0 somewhere on the interval [2, 7].
Difficulty: Moderate Section: 1.4
64. Use the graph to identify all discontinuities of f.

Ans: The function is discontinuous at $x=0$. Difficulty: Moderate Section: 1.4
65. Use the graph to identify all discontinuities of f.

Ans: The function is discontinuous at $x= \pm 2$. Difficulty: Moderate Section: 1.4
66. Use the graph to identify all discontinuities f.

Ans: The function is discontinuous at $x=-2$. Difficulty: Moderate Section: 1.4
67. Use the graph to identify all discontinuities of f.

Ans: The function is discontinuous at $x=-3,1,4$.
Difficulty: Moderate Section: 1.4
68. Determine the values of a and b that make $f(x)$ continuous.

$$
f(x)= \begin{cases}3 \frac{\sin x}{x} & \text { if } x<0 \\ a & \text { if } x=0 \\ b \cos 6 x & \text { if } x>0\end{cases}
$$

Use $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
A) $\quad a=3, b=6$
B) $\quad a=3, b=3$
C) $a=-3, b=3$
D) No values of a and b will make $f(x)$ continuous.

Ans: B Difficulty: Moderate Section: 1.4
69. Determine if f is continuous at $x=14$ from the right.

$$
f(x)=\left\{\begin{array}{lc}
4 x^{2} & \text { if } x<14 \\
2 x-28 & \text { if } x \geq 14
\end{array}\right.
$$

A) $\lim _{x \rightarrow 14} f(x) \neq f(14)$, but $f(x)$ is continuous from the right
B) $\quad \lim _{x \rightarrow 14} f(x)=f(14)$, so $f(x)$ is continuous from the right
C) $\quad \lim _{x \rightarrow 14} f(x) \neq f(14)$, so $f(x)$ is not continuous from the right
D) $\lim _{x \rightarrow 14} f(x)=f(14)$, but $f(x)$ is not continuous from the right

Ans: B Difficulty: Moderate Section: 1.4
70. Determine if f is continuous at $x=4$ from the right.

$$
f(x)= \begin{cases}5 x^{2} & \text { if } x \leq 4 \\ 6 x-24 & \text { if } x>4\end{cases}
$$

A) $\lim _{x \rightarrow 4} f(x) \neq f(d)$ but $f(x)$ is continuous from the right
B) $\lim _{x \rightarrow 4} f(x)=f(d)$ so $f(x)$ is continuous from the right
C) $\lim _{x \rightarrow 4} f(x) \neq f(d)$ so $f(x)$ is not continuous from the right
D) $\quad \lim _{x \rightarrow 4} f(x)=f(d)$ but $f(x)$ is not continuous from the right

Ans: C Difficulty: Moderate Section: 1.4
71. Determine the limit.

$$
\lim _{x \rightarrow 3^{+}} \frac{2-9 x}{x^{2}-9}
$$

Answer with a number, ∞, ∞ or that the limit does not exist.
A) ∞
B) $-\infty$
C) $0 \quad$ D) 9
E) The limit does not exist.

Ans: B Difficulty: Moderate Section: 1.5
72. Determine the limit.

$$
\lim _{x \rightarrow-5} \frac{5-8 x}{x^{2}-25}
$$

Answer with a number, ∞, ∞ or that the limit does not exist.
A) ∞
B) $-\infty$
C) 25
D) The limit does not exist.

Ans: D Difficulty: Moderate Section: 1.5
73. Determine the limit.

$$
\lim _{x \rightarrow-4} \frac{x-7}{x^{2}-8 x+16}
$$

Answer with a number, ∞, ∞ or that the limit does not exist.
A) $-\infty$
B) 0
C) $-\frac{11}{64}$
D) $\infty \quad$ E) The limit does not exist.

Ans: C Difficulty: Moderate Section: 1.5
74. Determine the limit.

$$
\lim _{x \rightarrow 10^{+}} \frac{3-x}{(x-10)^{2}}
$$

Answer with a number, $\infty,-\infty$ or that the limit does not exist.
A) 0
B) $-\frac{13}{400}$
C) ∞
D) $-\infty$
E) The limit does not exist.

Ans: D Difficulty: Moderate Section: 1.5
75. Determine the limit.

$$
\lim _{x \rightarrow-3^{-}} \frac{9-x}{x+3}
$$

Answer with a number, $\infty,-\infty$ or that the limit does not exist.
A) 0
B) $-\frac{1}{3}$
C) ∞
D) $-\infty$
E) The limit does not exist.

Ans: D Difficulty: Moderate Section: 1.5
76. Determine the limit (answer as appropriate, with a number, $\infty,-\infty$, or does not exist).

$$
\lim _{x \rightarrow \pi / 2} x^{4} \sec ^{6} x
$$

A) 0
B) ∞
C) $-\infty$
D) does not exist

Ans: B Difficulty: Moderate Section: 1.5
77. Determine the limit (answer as appropriate, with a number, $\infty,-\infty$, or does not exist).

$$
\lim _{x \rightarrow \infty} \ln \left(\frac{x^{2}+10}{x+3}\right)
$$

A) $\ln \left(\frac{10}{3}\right)$
B) ∞
C) $-\infty$
D) does not exist

Ans: B Difficulty: Moderate Section: 1.5
78. Determine the limit.

$$
\lim _{x \rightarrow \infty} \frac{4 x^{2}+3 x+8}{3 x^{2}+4 x+3}
$$

Answer with a number, $\infty,-\infty$ or that the limit does not exist.
A) $\frac{8}{3}$
B) $\frac{4}{3}$
C) ∞
D) $-\infty$
E) The limit does not exist.

Ans: B Difficulty: Moderate Section: 1.5
79. Determine the limit (answer as appropriate, with a number, $\infty,-\infty$, or does not exist).

$$
\lim _{x \rightarrow \infty} \frac{3-4 / x}{9-5 / x}
$$

A) $\frac{4}{5}$
B) $\frac{1}{3}$
C) ∞
D) $-\infty$
E) does not exist

Ans: B Difficulty: Moderate Section: 1.5
80. Determine the limit (answer as appropriate, with a number, $\infty,-\infty$, or does not exist).

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2} \cos x}{x^{2}+3}
$$

A) 3
B) $\frac{1}{3}$
C) ∞
D) $-\infty$
E) does not exist

Ans: E Difficulty: Moderate Section: 1.5
81. Find all horizontal and vertical asymptotes of $f(x)$.

$$
f(x)=\frac{3 x}{\sqrt{5+x^{2}}}
$$

For each vertical asymptote, determine whether $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ on either side of the vertical asymptote.
A) horizontal asymptotes at $y= \pm 3$; there are no vertical asymptotes.
B) horizontal asymptote at $y=3$, vertical asymptote at $x=-3 ; f(x) \rightarrow \infty$ on both sides of $x=-3$
C) horizontal asymptote at $y=-3$, vertical asymptote at $x=3 ; f(x) \rightarrow-\infty$ on both sides of $x=3$
D) horizontal asymptotes at $y= \pm 3$, vertical asymptote at $x=0 ; \lim _{x \rightarrow 0^{-}} f(x)=\infty$ and

$$
\lim _{x \rightarrow 0^{+}} f(x)=-\infty
$$

Ans: A Difficulty: Moderate Section: 1.5
82. Find all horizontal and vertical asymptotes of $f(x)$.

$$
f(x)=\frac{4 x}{36-x^{2}}
$$

For each vertical asymptote, determine whether $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ on either side of the vertical asymptote.
A) horizontal asymptote $y=0$; there are no vertical asymptotes.
B) horizontal asymptote at $y=0$, vertical asymptotes at $x= \pm 6$;

$$
\begin{array}{ll}
\lim _{x \rightarrow-6^{-}} f(x)=\infty & \lim _{x \rightarrow-6^{+}} f(x)=\infty \\
\lim _{x \rightarrow 6^{-}} f(x)=-\infty & \lim _{x \rightarrow 6^{+}} f(x)=-\infty
\end{array}
$$

C) horizontal asymptote at $y=0$, vertical asymptotes at $x= \pm 6$;

$$
\begin{array}{ll}
\lim _{x \rightarrow-6^{-}} f(x)=\infty & \lim _{x \rightarrow-6^{+}} f(x)=-\infty \\
\lim _{x \rightarrow 6^{-}} f(x)=\infty & \lim _{x \rightarrow 6^{+}} f(x)=-\infty
\end{array}
$$

D) horizontal asymptote at $y=0$, vertical asymptotes at $x= \pm 6$;

$$
\begin{array}{ll}
\lim _{x \rightarrow-6^{-}} f(x)=-\infty & \lim _{x \rightarrow-6^{+}} f(x)=-\infty \\
\lim _{x \rightarrow 6^{-}} f(x)=\infty & \lim _{x \rightarrow 6^{+}} f(x)=\infty
\end{array}
$$

Ans: C Difficulty: Moderate Section: 1.5
83. Find all horizontal and vertical asymptotes of $f(x)$.

$$
f(x)=\sin \left(\frac{x^{2}+4}{x^{2}-4}\right)
$$

For each vertical asymptote, determine whether $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ on either side of the vertical asymptote.
A) horizontal asymptote at $y=1$, vertical asymptotes at $x=\sin (\pm 2)$,

$$
\begin{array}{ll}
\lim _{x \rightarrow 2^{-}} f(x)=-\infty & \lim _{x \rightarrow-2^{+}} f(x)=\infty \\
\lim _{x \rightarrow 2^{-}} f(x)=\infty & \lim _{x \rightarrow 2^{+}} f(x)=-\infty
\end{array}
$$

B) horizontal asymptote at $y=1$, vertical asymptotes at $x= \pm 2$,

$$
\begin{array}{ll}
\lim _{x \rightarrow 2^{-}} f(x)=-\infty & \lim _{x \rightarrow-2^{+}} f(x)=\infty \\
\lim _{x \rightarrow 2^{-}} f(x)=\infty & \lim _{x \rightarrow 2^{+}} f(x)=-\infty
\end{array}
$$

C) horizontal asymptote at $y=\sin (1)$, vertical asymptotes at $x= \pm 2$, Limits from both sides of each vertical asymptote are undefined.
D) horizontal asymptote at $y=\sin (1)$, vertical asymptotes at $x= \pm 2$,

$$
\begin{array}{ll}
\lim _{x \rightarrow-2^{-}} f(x)=-\infty & \lim _{x \rightarrow--^{+}} f(x)=\infty \\
\lim _{x \rightarrow 2^{-}} f(x)=\infty & \lim _{x \rightarrow 2^{+}} f(x)=-\infty
\end{array}
$$

Ans: C Difficulty: Moderate Section: 1.5
84. Determine all vertical and slant asymptotes.

$$
y=\frac{x^{3}}{64-x^{2}}
$$

A) vertical asymptotes: $x=-8, x=8$; slant asymptote: $y=-x$
B) vertical asymptote: $x=8$; slant asymptote: $y=-8 x$
C) vertical asymptote: $x=8$; slant asymptote: $y=-x$
D) vertical asymptotes: $x=-8, x=8$; slant asymptote: $y=-8 x$

Ans: A Difficulty: Moderate Section: 1.5
85. Determine all vertical and slant asymptotes.

$$
y=\frac{x^{4}}{x^{3}+6}
$$

A) vertical asymptotes: $x=-\sqrt{6}, x=\sqrt{6}$; slant asymptote: $y=6 x$
B) vertical asymptotes: $x=-\sqrt[3]{6}, x=\sqrt[3]{6}$; slant asymptote: $y=x$
C) vertical asymptote: $x=-\sqrt[3]{6}$; slant asymptote: $y=x$
D) vertical asymptote: none; slant asymptote: $y=6 x$

Ans: C Difficulty: Moderate Section: 1.5
86. Suppose that the size of the pupil of a certain animal is given by $f(x)$ (mm), where x is the intensity of the light on the pupil. If $f(x)=\frac{80 x^{-0.5}+30}{4 x^{-0.5}+15}$, find the size of the pupil with no light and the size of the pupil with an infinite amount of light.
A) no light: 20 mm ; infinite light: 2 mmC) no light: 80 mm ; infinite light: 0 mm B) no light: 2 mm ; infinite light: 20 mmD) no light: 80 mm ; infinite light: 4 mm Ans: A Difficulty: Moderate Section: 1.5
87. Complete the table appropriately and use the numerical evidence to conjecture the value of $\lim _{x \rightarrow-\infty} \frac{8 x^{4}+8 x^{2}+7}{x^{4}+2 x \cos x}$.

x	$\frac{8 x^{4}+8 x^{2}+7}{x^{4}+2 x \cos x}$
-10	
-100	
-1000	
$-10,000$	

A) 8
B) $\frac{7}{2}$
C) ∞
D) $-\infty$

Ans: A Difficulty: Moderate Section: 1.5
88. Consider

$$
f(x)=x\left(\sqrt{49 x^{2}+6}-7 x\right)
$$

a. Use a graph and numerical values of the function to conjecture a value of $\lim _{x \rightarrow \infty} f(x)$.

x	$f(x)$
10^{4}	
10^{5}	
10^{6}	
10^{7}	
10^{8}	

b. Rewrite the function to avoid loss-of-significance error.

Ans: a. Graphs should show significant oscillation as x gets large; table should exhibit loss-of-significance error around 10^{6} and larger.
b. After multiplying and dividing by the conjugate expression and reducing,

$$
f(x)=\frac{6 x}{\sqrt{49 x^{2}+6}+7 x}
$$

Difficulty: Moderate Section: 1.5
89. Find the limit exactly (Hint: multiply and divide by the conjugate expression and simplify).

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4}-x\right)
$$

$\begin{array}{llll}\text { A) } 4 & \text { B) }-4 & \text { C) } 0 & \text { D) the limit does not exist }\end{array}$
Ans: C Difficulty: Moderate Section: 1.5
90. Find the limit exactly (Hint: multiply and divide by the conjugate expression and simplify).

$$
\lim _{x \rightarrow \infty}\left(\sqrt{16 x^{2}-2 x+1}-4 x\right)
$$

A) -4
B) 0
C) 6
D) $-\frac{1}{4}$

Ans: D Difficulty: Moderate Section: 1.5
91. Find the limit exactly (Hint: multiply and divide by the conjugate expression and simplify).

$$
\lim _{x \rightarrow \infty}\left(\sqrt{5 x^{2}+7 x+5}-\sqrt{5 x^{2}+3 x+1}\right)
$$

A) $\sqrt{5}$
B) $\frac{2 \sqrt{5}}{5}$
C) 5
D) The limit does not exist.

Ans: B Difficulty: Moderate Section: 1.5
92. Suppose the length of an animal t days after birth is given by $h(t)$.

$$
h(t)=\frac{95}{3+8(0.4)^{t}} \mathrm{~mm}
$$

What is the length of the animal at birth?
A) 0 mm
B) 95 mm
C) $\frac{95}{11} \mathrm{~mm}$
D) $\frac{95}{3} \mathrm{~mm}$

Ans: C Difficulty: Moderate Section: 1.5
93. Suppose the length of an animal t days after birth is given by $h(t)$.

$$
h(t)=\frac{87}{2+8(0.4)^{t}} \mathrm{~mm}
$$

What is the eventual length of the animal (i.e., $h(t)$ as $t \rightarrow \infty$)?
A) 0 mm
B) $\infty \mathrm{mm}$
C) $\frac{87}{10} \mathrm{~mm}$
D) $\frac{87}{2} \mathrm{~mm}$

Ans: D Difficulty: Moderate Section: 1.5
94. Find δ in terms of ε for $\lim _{x \rightarrow 0} 4 x=0$.
A) $\frac{\varepsilon}{4}$
B) 4
C) 4ε
D) 0

Ans: A Difficulty: Moderate Section: 1.6
95. Find δ in terms of ε for $\lim _{x \rightarrow 2}(4 x+8)=16$.
A) $\frac{\varepsilon}{8}$
B) 4ε
C) $\frac{\varepsilon}{4}$
D) 2ε

Ans: C Difficulty: Moderate Section: 1.6
96. Find δ in terms of ε for $\lim _{x \rightarrow-2} \frac{x^{2}-4}{x+2}=-4$.
A) 2
B) ε
C) 4
D) $\frac{\varepsilon}{2}$

Ans: B Difficulty: Moderate Section: 1.6
97. Find δ in terms of ε for $\lim _{x \rightarrow 0}\left(x^{3}+5\right)=5$.
A) ε^{3}
B) 5ε
C) $\sqrt[3]{\varepsilon}$
D) $\frac{\varepsilon}{5}$

Ans: C Difficulty: Moderate Section: 1.6
98. Find a δ corresponding to $M=100$ for $\lim _{x \rightarrow 6^{+}} \frac{8}{x-6}=\infty$.
A) $\frac{2}{25}$
B) 800
C) 600
D) $\frac{50}{3}$

Ans: A Difficulty: Moderate Section: 1.6
99. Find a δ corresponding to $M=100$ for $\lim _{x \rightarrow 6^{-}} \frac{9}{\sqrt{36-x^{2}}}=\infty$.
A) $\frac{81}{10,000}$
B) 10,000
C) 0.0008
D) $\frac{9}{100}$

Ans: C Difficulty: Moderate Section: 1.6
100. Find N corresponding to $\varepsilon=0.1$ for $\lim _{x \rightarrow-\infty} \frac{5 x^{2}-5}{x^{2}+1}=5$.
A) $\sqrt{99}$
B) 50
C) $-\sqrt{99}$
D) -50

Ans: C Difficulty: Moderate Section: 1.6
101. Prove that the limit is correct using the appropriate definition. Show all work.

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}+6}-4\right)=-4
$$

Ans: $\left|\frac{1}{x^{2}+6}-4+4\right|<\varepsilon$ if $N=\sqrt{\frac{1}{\varepsilon}-6}$
Difficulty: Moderate Section: 1.6
102. Prove that the limit is correct using the appropriate definition. Show all work.

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{(x-9)^{2}}\right)=0
$$

Ans: $\left|\frac{1}{(x-9)^{2}}\right|<\varepsilon$ if $M=\sqrt{\frac{1}{\varepsilon}}+9$
Difficulty: Moderate Section: 1.6
103. Prove that the limit is correct using the appropriate definition. Assume k is an integer and is greater than 0 . Show all work.

$$
\lim _{x \rightarrow \infty} \frac{4}{x^{k}}=0
$$

Ans: $\left|\frac{4}{x^{k}}\right|<\varepsilon$ if $M=\sqrt[k]{\frac{4}{\varepsilon}}$
Difficulty: Moderate Section: 1.6
104. Given $f(x)$, identify a specific $\varepsilon>0$ for which no $\delta>0$ exists to satisfy the definition of a limit.

$$
f(x)\left\{\begin{array}{ll}
7 x & \text { if } x<1 \\
x^{2}+4 & \text { if } x>1
\end{array} \text { and } \lim _{x \rightarrow 1} f(x) \neq 7\right.
$$

Ans: $\varepsilon<1$
Difficulty: Difficult Section: 1.6
105. A metal washer of (outer) radius r inches weighs $4 r^{2}$ ounces. A company manufactures 5 -inch washers for different customers who have different error tolerances. If the customer demands a washer of weight $100 \pm \varepsilon$ ounces, what is the error tolerance for the radius? That is, find δ such that a radius of r within the interval $(5-\delta, 5+\delta)$ guarantees a weight within $(100-\varepsilon, 100+\varepsilon)$.
A) $\delta=\min \{4 \varepsilon, \varepsilon\}$
B) $\quad \delta=\max \{4 \varepsilon, \varepsilon\}$
C) $\quad \delta=\min \left\{1, \frac{\varepsilon}{44}\right\}$
D) $\delta=\max \left\{1, \frac{\varepsilon}{44}\right\}$

Ans: C Difficulty: Moderate Section: 1.6

