CTI culus 8th Edition Stewart Sol utions Manual

2 [J] DERIVATIVES

21 Derivatives and Rates of Change

Ay _ [~ /()

1. (a) This is just the slope of the line through two points: mpg = Ay = ~ 3

J@) = 1(3)
3

(b) This is the limit of the slope of the secant line PQ as @ approaches P: m = lin%
r— €T —

2. The curve looks more like a line as the viewing rectangle gets smaller.

2 1 0.5
y=sinx y=sinx y=sinx
-2 2 -1 | 1 —0.5
-2 -1 -0.5
3. (a) (i) Using Definition 1 with f(2) = 42 — 2* and P(1, 3),
m— Tim flx) = fla) _ lim (dx—a%) =3 _ lim (@ -4z +3) lim (x —1)(x—3)
z—a T —a z—1 r—1 z—1 r—1 z—1 x—1

=lim3—-2)=3-1=2

x—1
(ii) Using Equation 2 with f(x) = 4z — 22 and P(1,3),
[4(14+h)—(1+h)*] -3

N o ) R (C) W (B D {C N
h—0 h h—0 h h—0 h
zlim4+4h 1—2h—h 3:Iim h +2h:hmh( h+2)zlim(—h+2):2
h—0 h h—0 h h—0 h h—0

(b) An equation of the tangent line is y — f(a) = f'(a)(x — a)

0.5

= y—fO)=fD-1) = y-3=20-1),

ory =2x + 1.

() 6 The graph of y = 2z + 1 is tangent to the graph of y = 42 — z? at the
point (1,3). Now zoom in toward the point (1, 3) until the parabola and
the tangent line are indistiguishable.

-1 0 5

4. (a) (i) Using Definition 1 with f(z) = & — 2® and P(1,0),

_ _ 3 - _
z—1 x—1 z—1 T — z—1 T — z—1 r—1

= lim [—z(1 +2)] = —1(2) = -2

r—1
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100 [ CHAPTER2 DERIVATIVES
(ii) Using Equation 2 with f(z) = 2 — 2% and P(1,0),

fla+h) = fla) _ o fO+R) —f(1) _ . [A+R) —(1+h)*] -0

m= %1—>n10 h h—0 - %Ho h
. 14+h—(Q+3h+3R2+h* . —h*—3R*—2h . h(—h®—3h—2)
= lim = lim —F——— = lim —n——=
h—0 h h—0 h h—0 h

= lim(—~h® —3h — 2) = -2
h—0

(b) An equation of the tangent line isy — f(a) = f'(a)(z —a) = y—f(O)=f(1)(z-1) = y—0=-2(z—1),

ory = —2x + 2.
(c) 2 The graph of y = —2x + 2 is tangent to the graph of y = x — % at the
\ } point (1, 0). Now zoom in toward the point (1, 0) until the cubic and the
-2 2 tangent line are indistinguishable.

5. Using (1) with f(z) = 42 — 32% and P(2, —4) [we could also use (2)],

— 4z — 32%) — (-4 9.2
m:limM:hm(m m) ( )Zlim 3z +4x+4
r—a r—a z—2 xr—2 T—2 rx—2

e (B —2)(z—2) .. B B
= lim ~——— == = li; (-3¢ — 2) = —3(2) -2 = -8

Tangentline: y — (—4) = —8(z —2) & y+4=-8r+16 & y=—8xr+12.

6. Using (2) with f(z) = 2® — 3z + 1 and P(2, 3),
flath) —f@ _ fC+N)—f@) _ . Q2+h)°*-32+h)+1-3

m= flng%) h h—0 h h—0 h
. 8+ 12h+6R*+h*—-6—-3h—2 . Oh+6h>+h®  Rh(9+6h+h?)
= lim = lim = lim
h—0 h h—0 h h—0 h

= lim (9 + 6h + h?) =9
h—0

Tangentline: y —3=9(z—2) & y—3=9%2—-18 & y=9z-15

7. Using (1),

\/__\/T:r Ve -D)(z+1) r—1 1 1

= li —lim—— = lim— =
T T o1 TN - DGE 1) el (@Dl enyz+l 2

Tangentline: y —1=1(z—1) & y=1z+1
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SECTION 2.1  DERIVATIVES AND RATES OF CHANGE U

2z + 1

8. Using (1) with f(z) = PO and P(1,1),
20 +1 2e+1—(z+2)
metim L@ =IO w2 g z+2 — lim — 21
z—a T —a z—1 x—1 z—1 x—1 z—1 (.1’ — ])(m + 2)
:lim I _1

9. (a) Using (2) withy = f(z) = 3 + 42 — 225,

fla+h)— f(a) ~ Jim 34+4(a+h)* —2(a+h)® — (34 4a® — 24%)

m= illl—r% h h—0 h
— i 3 4(a® + 2ah 4 h?) — 2(a® + 3a*h 4 3ah® + h3) — 3 — 4a® + 24°
- h—0 h
i 3t 4a® + 8ah + 4h® — 2a® — 6a°h — 6ah® — 2h® — 3 — 4a® + 2a°
- h—0 h
. 8ah +4h* — 6a®h — 6ah® —2h® . h(8a + 4h — 6a® — 6ah — 2h?)
= hm = hm
h—0 h h—0 h

= }llir%(Sa + 4h — 6a* — 6ah — 2h?) = 8a — 6a®

(b) At (1,5): m = 8(1) — 6(1)% = 2, so an equation of the tangent line (©) 10

isy—5=2xz-1) & y=2zx+3.

At (2,3): m = 8(2) — 6(2)% = —8, so an equation of the tangent

lineisy—3=-8@xz—-2) & y=-8x+19. —2| \ |4
10. (a) Using (1), -
11 Va—_ e
m:lim\/E \/E:lim—\/@ = lim (\/_7\/5)(\/6+ﬁ):1im R
a—a T —a eme r—a  e—evaz(z—a)(Vat+Vr)  e—e Var(z-a)(Vat V)

= lim ! = ! 1 or —la’ [a > 0]
M marvE)  Yaya) | wr O 2

(b) At (1,1): m = —%, so an equation of the tangent line (c)

sy—1=-1(z-1) & y=-iz+3%

At (4, 3): m = —5, s0 an equation of the tangent line

sy—1=-%@x-4) & y=—-x5z+i

12

101

11. (a) The particle is moving to the right when s is increasing; that is, on the intervals (0, 1) and (4, 6). The particle is moving to

the left when s is decreasing; that is, on the interval (2, 3). The particle is standing still when s is constant; that is, on the

intervals (1, 2) and (3,4).
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102 U CHAPTER2 DERIVATIVES

vA (m/s)
(b) The velocity of the particle is equal to the slope of the tangent line of the I_o
graph. Note that there is no slope at the corner points on the graph. On the il
l 4 o o
interval (0, 1), the slope is 3-0_ 3. On the interval (2, 3), the slope is ol j 7
1-0 T (seconds)
1-3 3—-1 T o—

=1

—— = —2. On the interval (4, 6), the slope is 64 1

3-2

12. (a) Runner A runs the entire 100-meter race at the same velocity since the slope of the position function is constant.

Runner B starts the race at a slower velocity than runner A, but finishes the race at a faster velocity.

(b) The distance between the runners is the greatest at the time when the largest vertical line segment fits between the two

graphs—this appears to be somewhere between 9 and 10 seconds.

(c) The runners had the same velocity when the slopes of their respective position functions are equal—this also appears to be
at about 9.5 s. Note that the answers for parts (b) and (c) must be the same for these graphs because as soon as the velocity

for runner B overtakes the velocity for runner A, the distance between the runners starts to decrease.

13. Let s(t) = 40t — 16¢>.

- 40t — 16t%) — 16 —16t2 - —8(2t> — 5t +2
) = iy {502 gy BRI iy SO G0y RO

i S8E—2)2t—1)

lim — = —8lim(2t — 1) = —8(3) = 24

Thus, the instantaneous velocity when ¢t = 2 is —24 ft/s.

14. (a) Let H(t) = 10t — 1.86¢>.
[10(1 + h) — 1.86(1 + h)*] — (10 — 1.86)

H(1+h)— H(1)

v = fim T = ]
.10+ 10h — 1.86(1 + 2h + h®) — 10 + 1.86
= lim
h—0 h
. 10+ 10h — 1.86 — 3.72h — 1.86h% — 10 + 1.86
= lim
h—0 h
_ 2
— lim 8280 L8R i (6.98 — 1.86h) = 6.28
h—0 h h—0

The velocity of the rock after one second is 6.28 m/s.

®) v(a) = Jim H(a + h}i — H(a) _ Jim [10(a + h) — 1.86(a +hh) ] = (10a — 1.86a%)

_ iy 10a + 100 — 1.86(a® + 2ah + h?) — 10a + 1.86a>

h—0 h
. 10a + 10h — 1.86a% — 3.72ah — 1.86h% — 10a + 1.86a> . 10h — 3.72ah — 1.86Ah>
= lim = lim
h—0 h h—0 h
— Jim P10 =372a — 186h) _ lim (10 — 3.72a — 1.86h) = 10 — 3.72a

h—0 h
The velocity of the rock when ¢t = a is (10 — 3.72a) m/s.
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SECTION 2.1  DERIVATIVES AND RATES OF CHANGE T1 103

(c) The rock will hit the surface when H =0 < 10t —1.86t> =0 < t(10—1.86t)=0 <« ¢ =0or1.86t= 10.
The rock hits the surface when ¢ = 10/1.86 ~ 5.4 s.

(d) The velocity of the rock when it hits the surface is U(%) =10 — 3.72(%) =10—20=—-10m/s.

1 1 a® — (a+ h)?
. sla+h)—s(a) . (a+h)?2 a2 . a2(a+h)2 . a®—(a®+2ah+h?)
8. v(a) = lim h = h = h = T haat b
—(2ah+h?) . —h(2a+h) .. —(2a+h) —2a -2

T a0 ha2(a+ h)? s ha?(a+ h)2 [y a2(a+h)? a2 a2 a3 m/s

Sowv(l) = ;3 =-2m/s,v(2) = ;—32 = fz—irn/s, and v(3) = ;—32 = f% m/s.

16. (a) The average velocity between times ¢ and ¢ + h is

s(t+h) —s(t)  3(t+h)®—6(t+h)+23— (5t — 6t +23)

(t+h)—t h
A +th+ih® —6t—6h+23 — 117 + 6t —23
B h
th+$h®> —6h  h(t+3h—6

(i) [4,8]: t = 4, h = 8 — 4 = 4, so the average velocity is 4 + 3 (4) — 6 = 0 ft/s.
(i) [6,8]: t = 6, h = 8 — 6 = 2, so the average velocity is 6 + 3 (2) — 6 = 1 ft/s.
(iii) [8,10]: t = 8, h = 10 — 8 = 2, so the average velocity is 8 + 5(2) — 6 = 3 ft/s.
(iv) [8,12]: t = 8, h = 12 — 8 = 4, so the average velocity is 8 + £ (4) — 6 = 4 ft/s.

(b) v(t) = 11{% S(tLiz_s(t)

=t—6, sov(8) =2 ft/s.

:%iﬂ%(t—k%h—@ (c) ¢

20

075 & 6 8 10 127
17. ¢'(0) is the only negative value. The slope at z = 4 is smaller than the slope at z = 2 and both are smaller than the slope
atz = —2. Thus, ¢'(0) < 0 < ¢g'(4) < ¢'(2) < ¢'(-2).

£(60) — £(20) 700 —300 400

18. (a) On [20, 60]: =—cr—s=> = ——— = == =10

(b) Pick any interval that has the same y-value at its endpoints. [0, 57] is such an interval since f(0) = 600 and f(57) = 600.

(60) — £(40) _ 700 —200 _ 500 _

(c) On [40, 60]: /

=——=2

60 — 40 20 20 ~
f(70) — f(40) _ 900 —200 _ 700

On [40, 70]: (73_4(5 ) _ = :%:235

Since 25 > 23%, the average rate of change on [40, 60] is larger.
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104 U CHAPTER2 DERIVATIVES

f(40) — f(10) _ 200 — 400 _ —200 _ _62

(d) 40-10 30 30 3

This value represents the slope of the line segment from (10, £(10)) to (40, f(40)).

19. (a) The tangent line at 2 = 50 appears to pass through the points (43, 200) and (60, 640), so

640 —200 440 _

! ~ —_— T~ .
1'(50) 60 — 43 17 26

(b) The tangent line at x = 10 is steeper than the tangent line at z = 30, so it is larger in magnitude, but less in numerical
value, that is, f'(10) < f’(30).

(c) The slope of the tangent line at z = 60, f’(60), is greater than the slope of the line through (40, f(40)) and (80, £(80)).

/(80) — 7(40)

So yes, f'(60) > 30 — 10

20. Since g(5) = —3, the point (5, —3) is on the graph of g. Since ¢'(5) = 4, the slope of the tangent line at z = 5 is 4.

Using the point-slope form of a line gives us y — (—3) = 4(z — 5), ory = 4o — 23.

21. For the tangent line y = 4o — 5: when z = 2, y = 4(2) — 5 = 3 and its slope is 4 (the coefficient of x). At the point of

tangency, these values are shared with the curve y = f(z); thatis, f(2) = 3 and f'(2) = 4.
22. Since (4,3) isony = f(x), f(4) = 3. The slope of the tangent line between (0, 2) and (4,3) is 1, so f'(4) = 1.

23. We begin by drawing a curve through the origin with a y y

slope of 3 to satisfy f(0) = 0 and f'(0) = 3. Since Ir

,_.
+

1/ (1) = 0, we will round off our figure so that there is " — —t Kx

a horizontal tangent directly over x = 1. Last, we

make sure that the curve has a slope of —1 as we pass

over x = 2. Two of the many possibilities are shown.

24. The condition g(0) = g(2) = g(4) = 0 means that the graph intersects the z-axis at (0, 0), (2, 0), and (4, 0). The condition
g'(1) = ¢’(3) = 0 means that the graph has horizontal tangents at = 1 and = 3. The conditions ¢'(0) = ¢'(4) = 1 and
¢'(2) = —1 mean that the tangents at (0, 0) and (4, 0) have slope 1, while the tangent at (2, 0) has slope —1. Finally,
the conditions lim,_,5— g(z) = coand lim,_, ,+ g(z) = —c0 J

imply that ¢ = —1 and « = 5 are vertical asymptotes. A sample

graph is shown. Note that the function shown has domain (—1, 5).

That domain could easily be extended by drawing additional graph 1 2\5/1 x

segments in (—oo, —1] and [5, co) that satisfy the vertical line test.

x=-1 x=5
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SECTION 2.1  DERIVATIVES AND RATES OF CHANGE U

25. We begin by drawing a curve through (0, 1) with a slope of 1 to satisfy g(0) = 1
and ¢’ (0) = 1. We round off our figure at x = —2 to satisfy g’'(—2) = 0. As

x — —5T, y — o0, so we draw a vertical asymptote at z = —5. Asx — 5,

y — 3, so we draw a dot at (5, 3) [the dot could be open or closed].

x=-5
26. We begin by drawing an odd function (symmetric with respect to the origin) 4
through the origin with slope —2 to satisfy f'(0) = —2. Now draw a curve starting
at z = 1 and increasing without bound as © — 27 since lim f(z) = co. Lastly,
x—27 0
reflect the last curve through the origin (rotate 180°) since f is an odd function.
27. Using (4) with f(2) = 32® —z®and a = 1,
vy JAFR) Q) L [BA+h)—(14+h)P] -2
FO=m = =i h
. (34+6h+3R*)—(1+3h+3n2+h*—2  3h—h®
= lim = lim = lim
h—0 h h—0 h—0
=lim(3—-h*)=3-0=3
h—0
Tangentline: y—2=3(z—-1) & y—-2=32-3 & y=3z-1
28. Using (5) with g(z) = 2* —2and a = 1,
iy 9@ =g (@ -2 (=) et -1 (@ 4+ D 1)
g(l)—iﬂ rz—1 _;erll z—1 _ilinix—l _£LH11 z—1
2 J—
i EEDEFDEZD a2 ) (1) = 2(2) = 4
r—1 x—1 r—1
Tangentline: y — (—1) =4(z—1) & y+1l=4r—-4 < y=4c—-5
29. (a) Using (4) with F(z) = 52/(1 + 2?) and the point (2, 2), we have (b) 4
52+h)
_ 2
F'(2) = lim F(2+h)—F(2) ~ im 1+ (2+4h)
h—0 h h—0 h
5h+10 5h 4 10 — 2(h? + 4h + 5)
— lim h?+4h+5 — lim h? +4h+5 -2
h—0 h h—0 h
—2h? — 3h . h(=2h-13) . —2h-3 -3

= lim — 2" _ = =
WO0 h(h® +4h+5)  ho h(hZ +4h+5)  ho0hZ+4h+5 5

So an equation of the tangent line at (2,2) isy — 2= —2(z —2) or y = -2z + 2.

105
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106 O CHAPTER2 DERIVATIVES
30. (a) Using (4) with G(z) = 42 — 23, we have

G(a+h) — G(a) [4(a+ h)? — (a+ h)®] — (4a® — a®)

N 1 o
CO=mT T I
~ lim 4a® + 8ah + 4h* — (a® + 3a*h + 3ah® + h?) — 4a® + a®
T h—0 h
. 8ah+4h* —3a®h —3ah® —h®* . h(8a +4h — 3a® — 3ah — h?)
= lim = lim
h—0 h h—0 h

= }lLir%(8a—|—4h—3a2 — 3ah — h?) = 8a — 3a®

At the point (2,8), G'(2) = 16 — 12 = 4, and an equation of the (b) 12

tangent line is y — 8 = 4(z — 2), or y = 4. At the point (3, 9),
G'(3) = 24 — 27 = —3, and an equation of the tangent line is
y—9=-3(x—3),ory=—-3x+18.

—2| \ )7

31. Use (4) with f(z) = 32% — 4 + 1.

fla+h) = f(a) [3(a +h)? — 4(a+ h) +1] — (3a® — 4a + 1)]

oy .
o= =i z
. 3a>+6ah+3h% —4da—4h+1—-3a®>+4a—1 . 6ah +3h% —4h
= Jimy D B R
h h—4
— im MO0 =)y 60+ 30— 4) = 60— 4
h—0 h h—0

32. Use (4) with f(t) = 2t> +¢.

_ 3 (9.3
) — i LD = @) [t ) (k)] = (20° +0)
h—0 h h—0 h
. 2a®4+6a*h+6ah®>+2R3+a+h—2a® —a . 6a’h +6ah®>+ 20>+ h
= hm = hm
h—0 h h—0 h
2 2
_ i 1607+ 6ah + 207 +1) lim (6a® + 6ah + 2h* + 1) = 6a” + 1

h—0 h

33. Use (4) with f(¢t) = (2¢+1)/(t + 3).

2a+h)+1 2a+1

i Jath) —fl@) . (ath)+3  a+3
h—0 h _h—>0 h

~ lim (2a+2h+1)(a+3) — (2a+1)(a + h + 3)
T h—0 h(a+h+3)(a+3)

f'(a) =

— Jim (2a® + 6a + 2ah + 6h + a + 3) — (2a® + 2ah + 6a + a + h + 3)
T RS0 h(a+h+3)(a+3)

5h 5 R

L .
b h(@a+h+3)@t3) hoo(atht3)@t3) (a+3)?
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SECTION 2.1  DERIVATIVES AND RATES OF CHANGE T1 107

34. Use (4) with f(z) = 272 = 1/2°.

1 1 a® — (a+ h)?
Wy — g L@ FR) = fl@) (et h)? e a?(ath)?
L
~ im a’®—(a®+2ah+h?) . —2ah—h® ‘m h(—2a — h)
T RS0 ha?(a + h)? = ha?(a + h)? ~ a0 ha?(a + h)2

—2a—h —2a —2

) a?2(a+h)?  a2(a®)  dad

35. Use (4) with f(z) = /1 — 2z.
flat+h)—fla) _

V1-2(a+h)—+v1-2a

f'(a) = lim

h—0 h h—0 h

i V1-2(a+h)—vVI—-2a +/1-2(a+h)++v1-2a
= lim .

h—0 h \/1—2(a+h)+\/1—2a

(1—2(a+h))2—(v1—2a)2:hm (1—2a—2h) — (1 - 2a)
h Oh<\/1f2(a+h)+\/172a)

= lim

h=0 (¢1f2 + h) +\/1f2a)

= lim —2h = lim —2
hﬂoh(\/1—2(a+h)+\/1—2a) =0 \/T—2(a+h)++/T-2a
2 2 -1

TV T-2a+v1-2a 2v1i-2a Ji-2a

36. Use (4) with f(z) = 4 .
1—x
4 4
. fla+h)— V1—(a+h) - Vi-a
Ty —
7o) = i R0 = z
Vi—-a—+v1—a—h
. l1—a—h+1—-a Vi—a—+v1—a—nh
=4 lim h e R ey Y
411m\/1 —Vl-a—-h Yl-—a++Vl-a—h — 4lim (V1I—=a)® = (vV1—a—h)?
h—0 hy/1—a—h+1—a \/1—a—|—\/l—a— h—>0h\/1—a—h\/1—a(\/1—a+\/1—a—h)
4 lim (1—a)—(1—a—h) At h

h=0 hy/1—a—h+v1—a(/T—a++1—a—h) 4f1tli%h\/1—a—hx/l—a(\/l—a-i-\/l—a—h)

=4 lim ! =4. !
hHO\/l—a—h\/l—a(\/l—a—l—\/l—a—h) O Vi—avi—a(WI—a++V1—a)
4 2 2

T l-0eVioa (U-a'(l-a 2 (1-ap?

3. By (4), Jim LTL—?’ — '(9), where f(z) = /7 and a = 9.
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38.

39.

40.

41.

42.

43.

45.

46.

. U = =

Ll CHAPTER2 DERIVATIVES
23th _ g
By (4), }lLir% — = f'(3), where f(z) = 2° and @ = 3.
25 — 64
By Equation 5, lim2 5 = f'(2), where f(z) = 2% and a = 2.
r— €T —
1
By Equation 5, li ;_4—)“(4) heref()—l and _1
Y ey 1 W V=3 “=7
4

cos(m+ h)+1

By (4), lim -

= f'(r), where f(z) = coszanda = 7.

Or: By (4), lim C()S(th)ﬂ = f'(0), where f(z) = cos(m + z) and a = 0.

. 9_ l
By Equation 5, egin/a Slen_izz = f’(%),Where f(0) =sinfand a = %

fi LA+ =@ _ [80(4 + h) — 6(4 + h)*] — [80(4) — 6(4)?]

v(4) = fl(4) s h h—0 h
. (3204 80h — 96 — 48h — 6h2) — (320 — 96) . 32h — 6h?
= lim = lim ——
h—0 h h—0 h
— Jim PB2=6R) _ lim (32 — 6h) = 32 ms

h—0 h

The speed when ¢ = 4 is 32| = 32 m/s.

45 45
PP TR G exe=) I G s)

h—0 h h—0 h

45-9(5+h) .. —9h

T T R AR AS6R(BER) —p s

B e T 75

The speed when ¢t = 4is |—2| = 2 m/s.

The sketch shows the graph for a room temperature of 72° and a refrigerator
temperature of 38°. The initial rate of change is greater in magnitude than the

rate of change after an hour.

The slope of the tangent (that is, the rate of change of temperature with respect

75 — 168

55— 0~ —0.7 °F /min.

to time) at t = 1 h seems to be about

= lim

h—0

72

38

Temperature
(in °F)

T(F)

2001

100

i é Time
(in hours)

30 60 90 120 150 180
(mif
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SECTION 2.1  DERIVATIVES AND RATES OF CHANGE L1 109

47. () (i) [1.0,2.0]: 0(2; - 10(1) _ 0.018 - 0.033 _ _5.015 g%
(i (15, 2.0 C=C(L5) _ 00180024 _ 0006 _ 0, g/dL

2—-15 0.5 0.5 h

C(2.5) — C(2)  0.012—0.018  —0.006 g/dL
2.0,2.5]: = = = _0.012 ==
(iif) [2.0,2.5): —=2— 05 05 0.012 =1

(iv) [2.0, 3.0]: 0(3?)) — 20(2) . .007 I 0.018 _ 011 &L

(b) We estimate the instantaneous rate of change at ¢ = 2 by averaging the average rates of change for [1.5,2.0] and [2.0, 2.5]:

—0.012 +2(_0'012) = —0.012 % After 2 hours, the BAC is decreasing at a rate of 0.012 (g/dL) /h.
48. (2) (i) [2006,2008]: (2385; = ;\g (026006) _ 16,680 ; 12,440 _ 42240 — 2120 locations /year
(ii) [2008, 2010]: N(2010) = N (2008) _ 16858 — 16,680 _ 178 _ 89 locations /year.

2010 — 2008 2 2
The rate of growth decreased over the period from 2006 to 2010.

N(2012) — N(2010) _ 18,066 — 16,858 _ 1208

(b) [2010,2012]: 5019 — 2010 : 5 = 604 locations/year.

Using that value and the value from part (a)(ii), we have 89—’_72604 = %3 = 346.5 locations /year.
(c) The tangent segment has endpoints (2008, 16,250) and (2012, 17,500). N

An estimate of the instantaneous rate of growth in 2010 is 15,000 1

17,500 — 16,250 1250
2012 — 2008 4

10,000 +

= 312.5 locations/year.

5,000 +

02008 ' 2008 2012
84,077 — 66,533 17,544

49. () [1990,2005]: — -t =

= 1169.6 thousands of barrels per day per year. This means that oil
consumption rose by an average of 1169.6 thousands of barrels per day each year from 1990 to 2005.

76,784 — 70,099 6685

(b) [1995,2000]: —oee——ere= = —— = 1337
84,077 — 76,784 7293
[2000, 2005]: —sre— b= =~ = 1458.6

An estimate of the instantaneous rate of change in 2000 is % (1337 + 1458.6) = 1397.8 thousands of barrels

per day per year.
‘ V(1) —V(4)  94-53 —436 _ RNA copies/mL
80. (a) () [4 11): ———m— = - = = ~ 623 Ty
.. vy -vE) 94-18 86 RNA copies/mL
(i) [8,11]: 11-8 = 3 =—3 ~ 2.87 day
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110 0 CHAPTER2 DERIVATIVES

(iii) [11, 15]:

V(15) —V(11)  52-94  —4.2

15—-11

V(22) - V(11)  3.6-94 —58 _

4 4

(iv) [11,22]: 59 11

11 11

1.05

0.53

~ —

RNA copies/mL
day

RNA copies/mL
day

(b) An estimate of V/(11) is the average of the answers from part (2)(ii) and (iii).

RNA copies/mL

/ ~ 17 _ —_1
V/(11) &~ 1 [~2.87 4 (~1.05)] = —1.96 Ty

V’(11) measures the instantaneous rate of change of patient 303’s viral load 11 days after ABT-538 treatment began.

AC  C(105) — C(100)  6601.25 — 6500

5. (@) (i) = $20.25/unit.

Az~ 105—100 5
.. AC _ C(101) — C(100) _ 6520.05 — 6500 .
(i) A 101 =100 = 1 = $20.05/unit.

b) C(100 + h) — C(100) _ [5000 + 10(100 + h) 4 0.05(100 + h)*] — 6500  20h 4 0.05h>
h B h - h
=20+ 0.05h, h #0
C(100 + h) — C(100)
h

(

So the instantaneous rate of change is ,llin%) = }Lin%) (20 + 0.05R) = $20/unit.

t+h\? t\?
52. AV =V (t+h) —V(t) =100,000 (1 — —— ] —100,000(1— —
60 60
= 100,000 1—ﬂ+(“h)2 — 1—i+ £ = 100,000 —i+ﬂ+ U
I 30 3600 30 3600/ | T 30 3600 ' 3600
250

100,000

h(=120+2t + h) = =—h (=120 + 2t + h
3600 1 (T120+2t+h) = —=h (=120 + 2t + h)

Dividing AV by h and then letting h — 0, we see that the instantaneous rate of change is % (t — 60) gal/min.

t | Flow rate (gal/min) | Water remaining V' (¢) (gal)
0 —3333.3 100,000
10 27777 69,444 .4
20 —22222 44,4444
30 —1666.6 25,000
40 —1111.1 11,111.1
50 — 555.5 2,777.7
60 0 0

The magnitude of the flow rate is greatest at the beginning and gradually decreases to 0.

53. (a) f'(z) is the rate of change of the production cost with respect to the number of ounces of gold produced. Its units are

dollars per ounce.

(b) After 800 ounces of gold have been produced, the rate at which the production cost is increasing is $17/ounce. So the cost

of producing the 800th (or 801st) ounce is about $17.

(c) In the short term, the values of f'(z) will decrease because more efficient use is made of start-up costs as x increases. But

eventually f’(z) might increase due to large-scale operations.
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55.

56.

57.

58.

59.

60.

SECTION 2.1  DERIVATIVES AND RATES OF CHANGE O 111

(a) f'(5) is the rate of growth of the bacteria population when ¢ = 5 hours. Its units are bacteria per hour.

(b) With unlimited space and nutrients, f’ should increase as ¢ increases; so f'(5) < f’(10). If the supply of nutrients is

limited, the growth rate slows down at some point in time, and the opposite may be true.

(a) H'(58) is the rate at which the daily heating cost changes with respect to temperature when the outside temperature is

58 °F. The units are dollars/ °F.

(b) If the outside temperature increases, the building should require less heating, so we would expect H' (58) to be negative.

(a) f'(8) is the rate of change of the quantity of coffee sold with respect to the price per pound when the price is $8 per pound.
The units for f'(8) are pounds/(dollars/pound).

(b) f'(8) is negative since the quantity of coffee sold will decrease as the price charged for it increases. People are generally
less willing to buy a product when its price increases.

(a) S'(T) is the rate at which the oxygen solubility changes with respect to the water temperature. Its units are (mg/L)/°C.

(b) For T = 16°C, it appears that the tangent line to the curve goes through the points (0, 14) and (32, 6). So

—14 . .
6 -3 —0.25 (mg/L)/°C. This means that as the temperature increases past 16°C, the oxygen

! =~ —_——_— =
5(16)”32—0_ 32

solubility is decreasing at a rate of 0.25 (mg/L)/°C.

(a) S'(T) is the rate of change of the maximum sustainable speed of Coho salmon with respect to the temperature. Its units
are (cm/s)/°C.

(b) For T = 15°C, it appears the tangent line to the curve goes through the points (10, 25) and (20, 32). So

S'(15) ~ 2(2) — fg = 0.7 (em/s)/°C. This tells us that at 7" = 15°C, the maximum sustainable speed of Coho salmon is
changing at a rate of 0.7 (cm/s)/°C. In a similar fashion for 7' = 25°C, we can use the points (20, 35) and (25, 25) to

25 —35
25 —-20

obtain S’(25) ~ = —2(cm/s)/°C. As it gets warmer than 20°C, the maximum sustainable speed decreases
rapidly.

Since f(x) = zsin(1/x) when x # 0 and f(0) = 0, we have

}llinb fO0+h) = 10 = }llir% W = %irr}) sin(1/h). This limit does not exist since sin(1/h) takes the

f1(0) =
values —1 and 1 on any interval containing 0. (Compare with Example 1.5.4.)
Since f(x) = z?sin(1/z) when = # 0 and f(0) = 0, we have

— lim FO+h) — f(0) — lim h2 sin(lh/h) -0

= lim hsin(1/h). Since —1 < sinl < 1, we have
h—0 h—0 h—0 h

f'(0)

—1|h| < |h\sin% <|h] = =< hsin% < |h|. Because %imo(— |h]) = 0 and }lliné|h| = 0, we know that

—0

lim (h sin %) = 0 by the Squeeze Theorem. Thus, f'(0) = 0.
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61. (a) The slope at the origin appears to be 1.

-2
(b) The slope at the origin still appears to be 1.
—0.4
(c) Yes, the slope at the origin now appears to be 0.
—0.008

2.2 The Derivative as a Function

0.005

—0.005

2

0.4

0.008

1. It appears that f is an odd function, so f’ will be an even function—that
is, f'(—a) = f'(a).
(@ f(-3) = —-0.2
(b) f'(=2) =0
(e f(1)~1

© f(-)~1
® f'(2)=0

(d) f'(0) ~ 2
(@ f'(3) ~ —0.2
2. Your answers may vary depending on your estimates.

(a) Note: By estimating the slopes of tangent lines on the

graph of f, it appears that f'(0) ~ 6.

®) /(1) =0

(©) f'(2)~—-15

) f'(5)~—0.3

@ f'(3)~—-1.3
(g f'(6)~0

(e) f'(4) = —0.8
(h) f'(7) ~ 0.2

3. (a) = 11, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0, then positive, then 0, then

negative again. The actual function values in graph II follow the same pattern.

(b) = 1V, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly

become negative, then positive again. The discontinuities in graph IV indicate sudden changes in the slopes of the tangents.

(c)' =1, since the slopes of the tangents to graph (c) are negative for x < 0 and positive for z > 0, as are the function values of

graph 1.
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(d)’ = 111, since from left to right, the slopes of the tangents to graph (d) are positive, then 0, then negative, then 0, then

positive, then 0, then negative again, and the function values in graph III follow the same pattern.

Hints for Exercises 4 —11: First plot z-intercepts on the graph of f” for any horizontal tangents on the graph of f. Look for any corners on the graph
of f—there will be a discontinuity on the graph of f’. On any interval where f has a tangent with positive (or negative) slope, the graph of £/ will be

positive (or negative). If the graph of the function is linear, the graph of f’ will be a horizontal line.

4, J 5. y 6. J
" o R
0 i X
/ 0 X i
0 X
y y y
f ,
f ST
, 0 X
/ 0 X
0 X
7 y 8. y 9 y
0 X 0 X
0 X
y
]
r R r
f! -5 0 X
0 x g T_c
\(i X

10. y 1.

y
’ ’ / ° ’
' y
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12.

13.

14.

15.

16.

17.

The slopes of the tangent lines on the graph of y = P(t) are always
positive, so the y-values of y = P(t) are always positive. These values start
out relatively small and keep increasing, reaching a maximum at about

t = 6. Then the y-values of y = P'(t) decrease and get close to zero. The

graph of P’ tells us that the yeast culture grows most rapidly after 6 hours

and then the growth rate declines.

(a) C'(t) is the instantaneous rate of change of percentage
of full capacity with respect to elapsed time in hours.

(b) The graph of C’ (%) tells us that the rate of change of
percentage of full capacity is decreasing and
approaching 0.

(a) F'(v) is the instantaneous rate of change of fuel
economy with respect to speed.

(b) Graphs will vary depending on estimates of I, but

will change from positive to negative at about v = 50.

(c) To save on gas, drive at the speed where F'is a

maximum and F” is 0, which is about 50 mi/ h.
It appears that there are horizontal tangents on the graph of M for ¢ = 1963
and ¢ = 1971. Thus, there are zeros for those values of ¢ on the graph of

M’ . The derivative is negative for the years 1963 to 1971.

1001

50T

y
401
20\\\\\\\\\\\5“
0 2 4 &6 0 121

1\

0l 10 20 30 40 SN v

t
—0.03

1950 1960 1970 1980 1990 2000

The graph of the derivative

(a) By zooming in, we estimate that f'(0) =0, f'(3) =1, f'(1) =2,
and f'(2) =4

(b) By symmetry, f'(—z) = —f(x). So f'(=3) = =1, f'(-1) = -2,
and f'(—2) = —4.

(c) Tt appears that f'(z) is twice the value of z, so we guess that f'(z) = 2.

X looks like the graph of the

cosine function.
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_ —
) f'(x) = %%w — lim W

2 2 2
+2hx +h7) — 2
= lim (= r )2 = lim 2ha + B” _ im h2e + 1) = lim (2x + h) = 22
h—0 h h—0 h h—0 h h—0

18. (a) By zooming in, we estimate that f'(0) = 0, f'(3) ~ 0.75, (b) By symmetry, f'(—z) = f'(z). So f'(—3%) ~ 0.75,

F1(1) =3, f/(2) = 12,and f'(3) ~ 27. F(=1) =3, f'(—2) =~ 12,and f'(—3) =~ 27.
©) Y (d) Since f'(0) = 0, it appears that f’ may have the
N form f'(x) = ax®. Using f'(1) = 3, we have a = 3,
so f'(x) = 32°.
B X
vy o fl@+h)—f@) . (+h)P—2® (2®+32°h + 3zh® + hP) — 2®
Of@=m = =T i h
2 2 3 2 2
i SR STRT AR RGBT ASSR AR (502 4 30k + h2) = 322
h—0 h h—0 h h—0
19. f(2) = lim flx+h) = f(x) — lim [B(x + h) — 8] — (3z — 8) ~ fim 3r+3h—8—3z+38
' h=50 h h—0 h h—0 h
=lim —=1m3=3
h—0 —0
Domain of f = domain of f' = R.
2. f'(2) = lim flz+h)— f(z) ~ Jim [m(z+ h)+ b — (mz+0b) ~ lim mx +mh+b—mx—b
) h=0 h R0 h h—0 h

. mh .
=lim — =limm=m
h—0 h h—0

Domain of f = domain of f' = R.

. (o) = jim LEED =IO _ [2:5(t + h)* + 6(t + h)] — (258 + 6t)

2.5(t + 2th + h®) + 6t + 6h — 2.5¢> — 6t - 2.5t + 5th + 2.5h* + 6h — 2.5¢°

- }ILIL% h flLLo h
2
— lip Sth+ 2507 +6h _ . h(5t+25h+6) _ . (5t + 2.5h + 6)
h—0 h h—0 h h—0
=5t+6

Domain of f = domain of f' = R.
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flx+h)— f(x) [4+8(z +h) —5(x+h)*] — (4+ 8z — 5a°)

2= T = h
. 4+8x4+8h—5(x?+2xh+h?) —4—8x+52> . 8h—5z% —10xh — 5h? 4 522

= lim = lim

h—0 h h—0 h

J— J— 2 — —

_ iy Sh—10zh = 5h7 hmw: lim (8 — 10z — 5h)

h—0 h h—0 h h—0
=8 — 10z

Domain of f = domain of f' = R.

2. f(x) = tim LETER —S@ (@t h)' =2+ )] - (@F - 207

h—0 h h—0 h
. 24 2zh + h? — 22% — 62%h — 6zh? — 2h% — 22 4+ 223
= lim
h—0 h
. 2zh+h* —62*h —6xh®> —2R% . h(2z 4+ h — 62% — 6zh — 2h?)
= lim = lim
h—0 h h—0 h
= %irr%)(2x +h — 62 — 6zh — 2Rh?) = 2z — 62>
Domain of f = domain of f’ = R.
11 VEi— Vit h
v o gt+R) —glt) . VEIFh VE .. NIERVE . (VE=VE+h VE+VE+R
2. ¢(t)=lim =—Fr—2 = ljm ~—~————¥~ = |jm ————¥ = lim .
h—0 h h—0 h h—0 h h—0 \ ha/t+hvt Vi+Vi+h
= lim t—(t+h) = lim —h = lim —1
h=0 hA/t + hvE(VE+VE+R) =0 h/E+ RVE(VE+VETR) =0T+ hVE(VE+VETR)
-1 -1 1

TVIVE(VERVE) C tvE) 2

Domain of g = domain of g’ = (0, c0).

25 ,(x)_hmg(a:—l—h)—g(x) lim\/9—(m+h)—\/9—x \/9—(x+h)+\/9—x
=35 h nmo I N T I ET:
— lim O—(z+h)]—(9—2x) — lim —h
hHOh[JQ—(x—l—h)—l—VQ—x} hﬂoh[\/Q—(x—l—h)—l—\/Q—x}
—1 -1

= lim =
h=0./9—(z+h)+/9—2 29—z

Domain of g = (—o00, 9], domain of ¢’ = (—00,9).
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(z+h)? -1 _m2—1
f(erh)ff(x):lim 20x+h)—3 2z-3

% fiw)= flbli% h h—0 h
[(z+h)? —1](2z — 3) — [2(z + h) — 3](z* — 1)
— lim [2(z + h) — 3](2z — 3)
h—0 h
— im (2% +2zh + h* — 1)(22 — 3) — (22 + 2h — 3)(2® — 1)
T h—0 hi2(z + h) — 3](2x — 3)
— lim (22% + 4a?h 4 22h* — 2x — 32® — 6xzh — 3R% + 3) — (22 4 22°h — 32 — 22 — 2h + 3)
T hs0 h(2z + 2h — 3)(2z — 3)
 lim 4z>h 4 2zh® — 6zh — 3h* — 22°h + 2h - h(2z* 4 2zh — 63 — 3h + 2)
T Ao h(2z + 2h — 3)(2z — 3) " h—0  h(2z+2h —3)(2z — 3)

lm2x2+2xh—6x—3h+2_2x2—6x+2
>0 (2x+2h—3)(2r—3) = (2z —3)2

Domain of f = domain of f* = (—c0,3) U (2,00).

1-2(t+h) 12
G(t—l—h)—G(t):lim 34+ (t+h) 3+t
h h—0 h
[1—2(t+h)]B+t) -3+ +h)](1—2)
B+({E+h)]B+1)

2. G'(t) = lim

= b, h
g 3t 6t =27 —6h—2ht — (3—6t+t— 24"+ h—2ht) _ . —6h — h
) R[B+ (t+h)(3B+1)  hs0h(3+t+h)(3+1)

—Th -7 -7

T TG S BTG Bro?

Domain of G = domain of G' = (—o0, —3) U (—3, o0).

oy S ) = f@) (@) —at [ W) = 2+ 0P e
8. f(w) = Jim h = h = h(z + h)*/% + 23/2]
~ i (x4 h)® —a? ~ im 2® +32°h + 3zh® + h® —2® im h (32® —|—3xh—|—h2)
" h—0 h[(x 4+ h)3/2 + 23/2] T h—0 h[(z 4 h)3/2 + 23/2) "~ h—0 h[(z + h)3/2 + 23/2]

322 4 3zh + h? 32 1/2
= lim = = 31‘ /
h—0 (x + h)3/2 + 23/2  223/2 2

Domain of f = domain of f’ = [0, c0). Strictly speaking, the domain of f’ is (0, co) because the limit that defines f(0) does
not exist (as a two-sided limit). But the right-hand derivative (in the sense of Exercise 62) does exist at 0, so in that sense one

could regard the domain of f’ to be [0, 00).

- 44 44 42%h + 622K + 4xh® + BY) — 2t
. @) =l LEFR @ g ot (@b G el W) e

h—0 h h—0 h h—0 h
3 212 3 4
= i 2R OTR A AR TRy (408 4 60%h + A2 4 BP) = 40P
h—0 h h—0

Domain of f = domain of f' = R.
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30. (a) y y y

r by =J—(x — 6) =6 —
- y=N—(x—6)=V6—x
y =i y=v= ] —
1 ' l\

(b) Note that the third graph in part (a) has small negative values for its slope, f; butasz — 6, f' — —oo.

See the graph in part (d).

© f(x) = i LEXN I @

= fim, h

V6—(z+h)—v6—2 |\/6—(z+h)+V6—= =
V6—(x+h)+v6—x -1

N (e G 0) R Rt ., —h

hﬂoh[¢6_<m+h)+¢6_x] h=0h(vV6—z—h+6—x)

= lim 1 = 1

S h=0\6—z—h+v6—z 26—z

Domain of f = (—o0, 6], domain of f' = (—o0, 6).

. z+h)— f(z . x+h)r+2x+h)] — (2t + 22
1@ £ fim SEER Iy (@41 200410 = 0+ 20
— lim 2t +423h + 622h2 + 4ah® + bt + 22+ 2h — 2t — 2z
_hHO h
42°h + 62°h® + 4zh® + h* +2h lim h(42® + 62%h + 4xh® + h® + 2)
h _h—>0 h

= lim
h—0

= ;Lir%(4x3 +62%h 4 dah® + b3 +2) = 423 4+ 2

(b) Notice that f'(z) = 0 when f has a horizontal tangent, f'(z) is
positive when the tangents have positive slope, and f'(z) is 1%

negative when the tangents have negative slope. 72 5

-2

(z+h)?4+1 2241

. z[(x+h)+1) = (z+h)(2?+1) . (234 2na”® +xh? 4+ 1) — (23 + x4+ ha® +h)
= hm = hm

h—0 h(z + h)x h—0 h(z + h)x
~ im hx2+xh27h_hm h(z® +zh —1) ~ im 2’ +azh—1 2°-1 or 1_i
~h=0 h(z+h)x k-0 h(z+h)x k>0 (z+h)z 22 x2
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(b) Notice that f'(z) = 0 when f has a horizontal tangent, f'(z) is 4

positive when the tangents have positive slope, and f'(z) is ‘ I \/

negative when the tangents have negative slope. Both functions 6| | 6

are discontinuous at x = 0.

33. (a) U'(t) is the rate at which the unemployment rate is changing with respect to time. Its units are percent unemployed

per year.

(b) To find U’ (t), we use lim Ult+h) U@ Ult+h) — U

lim A R W for small values of h.

U(2004) — U(2003) 55— 6.0
2004 — 2003 1

For 2003: U’(2003) ~ -0.5

19

For 2004: We estimate U’ (2004) by using h = —1 and h = 1, and then average the two results to obtain a final estimate.

U(2003) — U(2004) 6.0 —55

h=-1 = VRO~ == —1 ~ — -

—0.5;

U(2005) — U(2004) 5.1—55
2005 — 2004 - 1 -

h=1 = U'(2004) ~ —0.4.

So we estimate that U’(2004) &~ £[—0.5 + (—0.4)] = —0.45. Other values for U’(t) are calculated in a similar fashion.

t 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
U'(t) | -0.50 —-0.45 —0.45 —0.25 060 235 190 —0.20 -—0.75 —0.80

34. (a) N'(t) is the rate at which the number of minimally invasive cosmetic surgery procedures performed in the United States is

changing with respect to time. Its units are thousands of surgeries per year.

(b) To find N'(t), we use }lbir% N+ h})L - N (@) ~ N+ h})L - N () for small values of h.

N(2002) — N(2000) 4897 — 5500

For 2000: N’ (2000) ~ -
or (2000) 2002 — 2000 2

= —-301.5

For 2002: We estimate N'(2002) by using h = —2 and h = 2, and then average the two results to obtain a final estimate.

N(2000) — N(2002) 5500 — 4897

= - ! ~ —301.
h=-2 = N'(2002) 50002002 — 301.5
B , _ N(2004) — N(2002) 7470 — 4897
h=2 = N(2002) x —Zi—rn =" = 5 = 1286.5
So we estimate that N’ (2002) ~ $[—301.5 + 1286.5] = 492.5.
t 2000 2002 2004 2006 2008 2010 2012

N'(t) | —=301.5 4925 1060.25 856.75 605.75 534.5 737
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35.

36.

37.

38.

39.

40.

41.

42.

U CHAPTER2 DERIVATIVES
y
(c) (d) We could get more accurate values
15,000 + y
for N'(t) by obtaining data for
1200 4
10,000 + more values of ¢.
800+
5,000 1
4004 y=N(
0 + + + + + + 0 + + + + + +
2000 2004 2008 2012 ! / 2004 2008 2012 1
—4001
As in Exercise 33, we use one-sided difference quotients for the J

first and last values, and average two difference quotients for all 27

other values.

t |14 21 28 35 42 49 1
H(t) |41 54 64 72 78 83

! 13 23 18 14 11
H (t) 7 14 14 14 14

|

|

|

|
o

y
As in Exercise 33, we use one-sided difference quotients for the 0 %
15 20 25 30 X
first and last values, and average two difference quotients for all Ll
other values. The units for W’ (z) are grams per degree (g/°C). 2l
x 155  17.7  20.0 224 244 6l y=We
W (z) 37.2 31.0 19.8 9.7 —9.8 ol
W'(z) | —2.82 —3.87 —453 —6.73 —9.75
—104

(a) dP/dt is the rate at which the percentage of the city’s electrical power produced by solar panels changes with respect to

time ¢, measured in percentage points per year.
(b) 2 years after January 1, 2000 (January 1, 2002), the percentage of electrical power produced by solar panels was increasing

at a rate of 3.5 percentage points per year.

dN/dp is the rate at which the number of people who travel by car to another state for a vacation changes with respect to the

price of gasoline. If the price of gasoline goes up, we would expect fewer people to travel, so we would expect dN/dp to be

negative.
f is not differentiable at x = —4, because the graph has a corner there, and at = 0, because there is a discontinuity there.
f is not differentiable at x = —1, because there is a discontinuity there, and at x = 2, because the graph has a corner there.

f is not differentiable at x = 1, because f is not defined there, and at x = 5, because the graph has a vertical tangent there.

f is not differentiable at * = —2 and = = 3, because the graph has corners there, and at x = 1, because there is a discontinuity

there.
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46.

47.

48.

49.

50.

51.

SECTION2.2 THE DERIVATIVEASAFUNCTION O 121

As we zoom in toward (—1, 0), the curve appears more and more like a straight g 2

line, so f(x) =  + /]z] is differentiable at = —1. But no matter how much

we zoom in toward the origin, the curve doesn’t straighten out—we can’t _2 :

eliminate the sharp point (a cusp). So f is not differentiable at x = 0. C )
-1

As we zoom in toward (0, 1), the curve appears more and more like a straight p 3 \

line, so g(z) = (2% — 1)?/3 is differentiable at 2 = 0. But no matter how much

we zoom in toward (1, 0) or (—1,0), the curve doesn’t straighten out—we can’t

eliminate the sharp point (a cusp). So g is not differentiable at x = +-1. - L ) ’

~1
Call the curve with the positive y-intercept g and the other curve h. Notice that g has a maximum (horizontal tangent) at
x = 0, but h # 0, so h cannot be the derivative of g. Also notice that where g is positive, h is increasing. Thus, h = f and
g = f'. Now f’(—1) is negative since f' is below the z-axis there and f"’(1) is positive since f is concave upward at z = 1.

Therefore, f''(1) is greater than f'(—1).

Call the curve with the smallest positive x-intercept g and the other curve h. Notice that where g is positive in the first
quadrant, h is increasing. Thus, h = f and g = f’. Now f’(—1) is positive since f’ is above the z-axis there and f''(1)

appears to be zero since f has an inflection point at z = 1. Therefore, f'(1) is greater than f”(—1).

a= f,b= f',c= f". We can sece this because where a has a horizontal tangent, b = 0, and where b has a horizontal tangent,
¢ = 0. We can immediately see that c can be neither f nor f’, since at the points where c has a horizontal tangent, neither a

nor b is equal to 0.

Where d has horizontal tangents, only c is 0, so d’ = c. ¢ has negative tangents for < 0 and b is the only graph that is
negative for x < 0, so ¢’ = b. b has positive tangents on R (except at z = 0), and the only graph that is positive on the same

domain is a, so b’ = a. We conclude thatd = f,c= f',b= f"”,and a = f"".

We can immediately see that a is the graph of the acceleration function, since at the points where a has a horizontal tangent,
neither ¢ nor b is equal to 0. Next, we note that ¢ = 0 at the point where b has a horizontal tangent, so b must be the graph of

the velocity function, and hence, b’ = a. We conclude that c is the graph of the position function.

a must be the jerk since none of the graphs are 0 at its high and low points. a is 0 where b has a maximum, so b’ = a. bis 0

where ¢ has a maximum, so ¢’ = b. We conclude that d is the position function, c is the velocity, b is the acceleration, and a is

the jerk.
_ 2 _ (2,2
() = Tim flath)—fl=) _ lim B+h)+2(x+h)+1] - Bz +2z+1)
h—0 h h—0 h
. (32 +6zh+3h2+2x +2h+1)— (322 +2x+1) . 6zh+3h%+2h
= lim = lim ——
h—0 h h—0 h
= }Lir% w = ,llin%(&r +3h+2)=6z+2 [continued]
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! —f 2] — 2 2) — 2

) tim L@ R = F @) (6 2 (G0 42) (624 6h42) — (6 +2)
h—0 h h—0 h h—0 h
=lim — = lim 6 =
h

We see from the graph that our answers are reasonable because the graph of

f is that of a linear function and the graph of f” is that of a constant

function.

—4 C ] 4
—1
_ 3 3
2 (o) i LEEN = I@) (@ 1) =3 4 b))~ (" = 3a)
hs0 h—0 h
. (2® +32%h 4 3zh® + h® — 3z — 3h) — (2® — 3x) . 32%h +3zh®> + h® —3h
= lim = lim
h—0 h h—0 h
2 2 _
i BT BT AR Z8) (302 4 Swh 4 B2 — 3) = 32% — 3
h—0 h h—0
’ o 2 - 2 2 2 _ _ 2 _
F(2) = lim f'(x+h)— f(z) ~ lim [3(z + h)* —3] — (3z° — 3) 1 (3z° 4+ 6zh + 3h* — 3) — (3z* — 3)
h—0 h h—0 h h—0 h
2
i $2PEBITgy ROZ SR (604 38) = 62
h—0 h h—0 h h—0
3 We see from the graph that our answers are reasonable because the graph of
[ '.'f nf / f ] f is that of an even function (f is an odd function) and the graph of f” is
-3 k 3 that of an odd function. Furthermore, f' = 0 when f has a horizontal
/ tangent and f” = 0 when f’ has a horizontal tangent.
-3
oy e S@th) = f@) o [2@ 4 h)? = (w4 h)] - (227 — %)
53. fi(z) =1 = lim
—0 h h—0 h
a2 32
= lim h(dz + 2h - 327 = 3zh = h') = lim (4 + 2h — 32® — 3zh — h?) = 4z — 32?
h—0 h h—0
' —f 4(z + h) — 3(x + h)*] — (4o — 32° — 6z —
) i L@ ED =S ) [ 3R] - e b= 6o = 3h)
h—0 h h—0 h h—0 h
:%im(4f6x73h) =4—6z
1 "
" T f(l’-l—h)—f(l‘)_ : [4—6($+h)}—(4—61‘)_ : 76h_ H _6) = —
(@) = i, z = h =Am T =i (6 =6
" 1
Wy et ) = @) —6—(=6) 0
=i z MR Sy =0
3
( g N\
f \f The graphs are consistent with the geometric interpretations of the
—4 4 6
\ derivatives because f' has zeros where f has a local minimum and a local
I ‘\‘ maximum, f”' has a zero where f’ has a local maximum, and f'” is a
\ I .
C uE| > constant function equal to the slope of f”'.
-7
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54. (a) Since we estimate the velocity to be a maximum v
50+

att = 10, the acceleration is 0 at t = 10.

25T

0__ 1(\/ t

0 10 20 ¢

(b) Drawing a tangent line at ¢ = 10 on the graph of a, a appears to decrease by 10 ft/s* over a period of 20 s.

Soatt = 10's, the jerk is approximately —10/20 = —0.5 (ft/s?)/s or ft/s.

55. (a) Note that we have factored x — a as the difference of two cubes in the third step.

fla) = tim {OI@ _ 2P o
T—a Tr—a Tz—a Tr—a T—a (1-1/3 — a1/3)(x2/3 + x1/3a1/3 + a2/3)
1 1
= lim = or 1a=2/3

o—a x2/3 + £1/3q1/3 1 ¢2/3 302/3

3
(b) f(0) = lim FO+1) = F(0) = lim Vh-0 = lim i This function increases without bound, so the limit does not
h—0 h h—0  h h—0 h2/3

exist, and therefore f/(0) does not exist.

. . 1 . . . .
(©) hn}) |f'(z)] = hrr%) 5,25 = and f is continuous at z = 0 (root function), so f has a vertical tangent at x = 0.
r— T

xr—

_ 2/3 _
56. (a) ¢'(0) = lirnO g(mﬂ)jiig(o) = lim =0 lim ! which does not exist.

z—0 xT z—0 1/3°
_ 2/3 _ 2/3 1/3 _ 1/3y(,.1/3 1/3
(b) gla) = tim LB =9 _ @m0y, (@ —a )@ tal)
T—a Tr—a r—a Tr—a r—a (xl/?’ — a1/3)(1‘2/3 —+ 1‘1/30,1/3 + a2/3)
21/3 +a1/3 2q1/3 9
= lim — = = or 247173
o—a 1273 + 21/3g1/3 + q2/3  3g2/3  3ql/3 3
(c) g(z) = 2*/ is continuous at 2 = 0 and (d) - o4 ~
2
. ) . _ .
ilil% lg'(z)| = ili% PV W oo. This shows that
g has a vertical tangent line at = 0.
-02™ 0 0.2
z—6 ifx—6>6 z—6 ifx>6
57. f(z) = |z — 6] = : = .
—(x—6) ifz—6<0 6—z ifz<6
So the right-hand limit is lim f@=FO) oy 2620 g 226 g g 1, and the left-hand limit
z—6+ z—6 z—6+ T —6 z—6T T —6  z—6+

is lim () — /(6) = lim w = lim 6z = lim (—1) = —1. Since these limits are not equal,

z—6— z—6 z—6- X —6 z—6— T —0 26—
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f/(6) — lim f(l‘) — f(6)

lim pow— does not exist and f is not differentiable at 6. y y=fx)
1__ o
0 f la for £/ is ['(2) 1 if £>6 .
owever, a formula for [ is f'(x) = :
-1 ifz<6 0 g X
-1
r—6

Another way of writing the formula is f'(z) = Tk

58. f(x) = [z] is not continuous at any integer n, so f is not differentiable
at n by the contrapositive of Theorem 4. If a is not an integer, then f

is constant on an open interval containing a, so f(a) = 0. Thus,

f(z) = 0, z not an integer.

z? if >0

59. (a) f(z) =z|z| = { (b) Since f(z) = 2 for x > 0, we have f'(x) = 2z forz > 0.

—z? ifx <0
y [See Exercise 17(d).] Similarly, since f(z) = —2? for z < 0,
we have f'(z) = —2z for z < 0. Atz = 0, we have
0 oy — 1o L) = FO) ] _
: FO=fm= = =iy =imkl=0
So f is differentiable at 0. Thus, f is differentiable for all .

2¢ if x>0
(c) From part (b), we have f'(z) = { N } =2|z|.

-2z ifx<0
x if x>0
60. (a) |z| = ] Y
—x if <0
(@) » 2¢ if x>0 )
SO z)=x+ |x| = . 1
g 0 ifz<O
Graph the line y = 2z for x > 0 and graph y = 0 (the x-axis) for x < 0. 1
0 1 X

(b) g is not differentiable at x = 0 because the graph has a corner there, but

is differentiable at all other values; that is, g is differentiable on (—oo, 0) U (0, co).
© o) 20 if x>0 ') 2 ifx>0
C xTr) = = x) =

g 0 ifxz<0 g 0 ifz<O

Another way of writing the formula is ¢'(z) = 1 + sgn z for x # 0.

61. (a) If f is even, then
oy i TR = f(mr) Sl )] — f(=)
Fee = g — g
i L@ @ @ @) e ay =y
h—0 h h—0 —h
_ flet+Ar) = flz) _ 4

Therefore, f’ is odd.
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(b) If f is odd, then

h—0 h - }ILIEH) h
= i L@ HI@ oy J@Z W @) e ny =y
h—0 h h—0 —h
_ o flet+Az) — f(z)
o Alalc—>0 Az F(z)
Therefore, f’ is even.
62. (a) f_(4)= lim M = lim M (b) y
h—0— h h—0— h
T > =5 ¥
h—0— h
and 0 4 X
_
, fA+h)—f4) .. 5—(44h)
+(4) = lim, h = b, h
T e Sl P S

h—0+ h(l — h) - h—0+ 1—-h

0 if <0
© fz)=4 5-z ifo<z<4
1/(6—x) if z>4

1 .
At4wehave lim f(z) = lim (5—«)=1and lim f(z)= lim —— =1,s0 lim f(z) =1= f(4) and f is
z—4— z—4— z—4t z—4+ O — T z—4

continuous at 4. Since f(5) is not defined, f is discontinuous at 5. These expressions show that f is continuous on the

intervals (—o0, 0), (0,4), (4,5) and (5, c0). Since lim+ f(z) = lim+(5 —z)=5#0= lim f(z), lin% f(z) does
z—0 z—0 x—0— T—
not exist, so f is discontinuous (and therefore not differentiable) at 0.
(d) From (a), f is not differentiable at 4 since f (4) # f (4), and from (c), f is not differentiable at 0 or 5.

63. These graphs are idealizations conveying the spirit of the problem. In reality, changes in speed are not instantaneous, so the

graph in (a) would not have corners and the graph in (b) would be continuous.

(@) (b) Y y = ds/dt
0 3 8 10 15 19 1
t
64. (a) T
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(b) The initial temperature of the water is close to room temperature because of the water that was in the pipes. When the
water from the hot water tank starts coming out, d7'/dt is large and positive as 7" increases to the temperature of the water
in the tank. In the next phase, dT'/dt = 0 as the water comes out at a constant, high temperature. After some time, d7°/dt
becomes small and negative as the contents of the hot water tank are exhausted. Finally, when the hot water has run out,

dT'/dt is once again 0 as the water maintains its (cold) temperature.

© '

y=dT/dt

65. In the right triangle in the diagram, let Ay be the side opposite angle ¢ and Ax
the side adjacent to angle ¢. Then the slope of the tangent line £

ism = Ay/Az = tan ¢. Note that 0 < ¢ < . We know (see Exercise 17)

that the derivative of f(x) = 2 is f/(x) = 2z. So the slope of the tangent to

the curve at the point (1, 1) is 2. Thus, ¢ is the angle between 0 and 5 whose

tangent is 2; that is, ¢ = tan~' 2 ~ 63°.

2.3 Differentiation Formulas

1. f(z) = 2%° is a constant function, so its derivative is 0, that is, f'(z) = 0.

2. f(x) = ©* is a constant function, so its derivative is 0, that is, f'(z) = 0.

3 f(x) =520+23 = f(z)=52(1)+0=52

4. g(x)=22°-3z+12 = g'(z)=1(22)—3(1)+0=2z-3

5. f(t) =2t — 31> —4t = f'(t) =2(3t?) — 3(2t) —4(1) = 6t*> — 6t — 4

6. f(t)=1.4t5— 252 +6.7 = f(t) =1.4(5t*) —2.5(2t) +0=7t* — 5t

7. g(x) =2%(1 —22) =2* — 22 = ¢'(x) = 22 — 2(32?) = 22 — 622

8. Hu)=Bu—1(u+2) =3’ +5u—2 = H'(u)=302u)+51)—-0=6u+5
0. 9() =27 = g =2(-5T) =3

10. B(y) =cy™® = B'(y) =c(-6y~ ") = —6ey "

M. Fr)===5"2 = F'(r)=5(-3"*)=-15r"*= -1

_ ,.5/3 2/3 /_5,2/3 _2,-1/3
12, y =23 — 223 = y—gx/—gx /
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16.
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1
Sp)=yp—-p=p""-p = S =ip?-1or —=-1
0 = v v = 4 N
2 4
y=r2+x) =223+ = y'zQ(%rfz/s)—&—%xl/S:%r*Z/S—i—%xl/S or —=+ -z
3vax2 3

R(a) =(Ba+1)*=9*>+6a+1 = R'(a)=9(2a)+6(1)+0=18a+6

S(R) =4rR*> = S'(R)=4m(2R) =87R

y = il o ek SV SRV SN E VLR
Vz
2
v =322 4 4(3)a V2 +3(-3)a =5V + N % [note that 2%/% = 22/ . 21/2 = xx/ﬂ
z 2zVrm

30 4 3 3P 4dr-3
20V 2oVr 22V 22V

The last expression can be written as

T+ x x T _ _ _ _ _ — _ _
18.y:\/;2 :w_\/z_+ﬁle/2 240172 2 g2 4 gl oy = 3752 4 (1272) = 375/ _ g2
19.G@)= (1+q ")’ =142 +q7 = G@)=0+2(-1¢7)+(-2¢"°") = —2¢ > —2¢"°
20. G(t) = /5t + g =Bt 4Tt = G(t) =5 (%t—l/Z) FVT(-1t72) = 2—‘/\2 - g
Mae (LY _L_ 2 1o oiap g

w=(3-7) @ mEti=t - +t =
2 3 1 2 3 1
o3 _o(_3\4—5/2 _ (_qy-2__~2 , 5 L _ 2 _ 1
u =2t 2(=3)t + (=Dt = t3+t5/2 2 t3+t2\/f 12
2. D(t) 1+ 1667 1+ 16t s
' T T T 64 o a
D)=L (=3t 4+ 1(-1t72) = -2¢+7* - 1472 or _3 1
64 4 64 4 6414 412
23. Product Rule: f(z) = (1 + 22%)(z — 2?) =
f(2) = (1+22%)(1 — 22) + (z — 2?)(4z) = 1 — 2z + 22 — 42° + 4% — 42® = 1 — 22 + 62° — 82>
Multiplying first: f(z) = (1 + 22%)(z — 2®) = 2 —2® + 22> —22* = f'(z) = 1 — 22 4 62° — 82 (equivalent).
4 .3 4 £ 3 1/2
24. Quotient Rule: F'(z) = ik VA _ v oor =

2 72

x?(4a® — 1527 + émfl/Q) — (z* = 52® + 2% (2x) _ 4z® — 15x* + %m3/2 —22° + 102 — 223/2

F ('T) = (1,2)2 7

22° — bat — 223/2
= 1 2 :21‘—5—%1‘75/2
T

' — 52+ Jr

Simplifying first: F'(x) = 5
x

? —br4+2%? = Fl(zx)=2z-5- %x75/2 (equivalent).

For this problem, simplifying first seems to be the better method.
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25. f(z) = (52> — 2)(z® +32) =

f'(z) = (522 — 2)(32® + 3) + (2 + 32)(10z) = 152* + 92% — 6 + 10z* 4 302% = 252" + 3922 — 6

2. B(u) = (u®+1)(2u® —du—1) =

B'(u) = (u® +1)(4u — 4) + (2u® — 4u — 1)(3u?)
= du* — 4u® 4+ 4u — 4+ 6u* — 120® — 3u? = 10u* — 16u® — 3u? + 4u —4

27. F(y) = <y—12 - %)(y +58) = (2 -3y Hy+5°) =

F'(y) = (y=2 =3y~ ") (1 + 15y°) + (y + 5y°) (—2y > + 12y °)
=(y 24+ 15 -3y~ * —45y72) + (—2y "2 + 12y~* — 10 + 60y ~?)
=5+ 14y~ 249y~ or 5+14/y% +9/y*

28. J(v) = (v* —20) (vt +072) &

J'(v) = (v® = 20)(—4v™° = 2073 + (v + 072 (30 - 2)
= 42— 20+ 80 442 4+30 2 -2 43— 2w =140 24+ 60"

142 ® o, (3—4x)(2)—(1+2x)(—4) 6—-8x+4+8z 10
B9@) =3 — 9@= (3 —dz)? T T B-4)2 | (3_4n)?
_6t+1 or o, (6t—1)(6) — (6t +1)(6) 36t—6-36t—6 12
W) =g—7 7 M= (6t — 1) ST t—12 (612
224+1
Noy= P =
;@ —1D)2r) - (@2 4+1)32?)  z[(@®-1)(2) - (@ +1)(B3x)]  2(22® —2-32° —3z)  a(—2® -3z —2)
B (23 —1)? B (z3 —1)? B (z3 —1)? (@12
o 1 R (t° +2t2 —1)(0) —1(3t* +4t) 3> +4t
SRR E R Yo v= (5 + 262 — 1)2 B CE S EEE
43t
By= e hys
, (P —4t+3)(32 +3)— (P +3t)(2t — 4)
v= (12 — 4t + 3)2
33— 126 — 120+ 97 +9— (2 — 4P+ 6t7 —12t) ' —8t° +6t°+ 9
B (t2 — 4t + 3)2 (2 —4t+3)2

_ (u+2)?  w+4du+4 &

4.y

1—u 1—u
;= w)u+4)— (WP H+du+4)(-1) 2u+4—-2u®—dutu’+4du+4  —uP+2u+8
- (1—w? - (1—w)y? Ty
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B.y= s2 g2 52 =5 8 = Yy =-5"+3s g2 255/2 ~  9245/2
VT R
36. y =
Y 24+ =
1 1 N 24x—2z
2 — ) -zl =¥ crr— s
, +x)(2\/5) Ve A VR TS e
v= (2 +2)? T 2+2)? (2422 2/z(2+a2)?
Viooor
37. f(t) =
foy =25 2
—2t 3
1,-2/3 1/3
e (t*?’)(gt / ) —t1/3(1) RS RS P s T3 243
(t—3)2 (t—3)2 (t—3)2 (t—3)2 3t2/3(t — 3)2
38 o — T L (1+cz)(c) = (cx)(c) c+Px—c’x c
SR gy v= (14 cx)?  (I+cx)2 T (1+cx)?
5., .4 _ 4.3
39. F(z) = w =222+ —-6272% = F’(x):4x—|—1+12a:_3 :4x+1+1—§or4x+—x3+12
x x x
40. A(v) = v*3(20% +1 —v72) = 283 43 ™3 =
_ _ _ 2(8v* +v° +2
Al(v) = L03/3 4 2p71/3 4 4y7/3 = 27 T/3(812/3 4 6/3 4 9y = ( — )
B Ry (Ay® + B)(0) — B(3Ay?) 3ABy?
41. = — = —
CW=gpys — YW (Ay? + B)? (Ay? + B)?
At A QR
2. F() = gp +Ct3  Bt+Ct?
F(t) = (Bt+Ct*)(0) — A(B+2Ct)  —A(B+2Ct)  A(B+2Ct)
B (Bt + Ct2)? C ()2(B+Ct)?2  t2(B+Ct)?
x (x4+c/x)(1) —xz(1 —c/2®) z+c/z—x+c/z 2¢c/x z? 2cx
43'f(x):x—|—c/x = @)= c\? - 2 2 :(x2+c)2'ﬁzm
T+ _) x” +c
( x z x?
ar+b (cx +d)(a) — (ax +b)(c) acx+ ad —acx —be ad — b
4. — ") = — —
1) cx+d F'(@) (cz + d)? (cx + d)? (cx + d)?
45. P(z) = ana™ + an1z" '+ tar® +axtan = P(z) = nanx" ' + (n— l)anflxnf2 + oo+ 2a0x + a1
46. f(:n)zmQ_l = 5
f,(m)_(:ﬁfl)lfx@x)_ - -1 ®+1 f
ST @-r @ @1 L —
Notice that the slopes of all tangents to f are negative and f'(z) < 0 F f
always.
-5
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47. f(z) = 32" —52° +3 = f'(x) =45z — 1522, 8
{ : ’
Notice that f’(z) = 0 when f has a horizontal tangent, f’ is positive i 12
1
when f is increasing, and f” is negative when f is decreasing.
-9
8. fz)=x+1/z=z+z! = flx)=1-22=1-1/2" p 6 .
f
Notice that f'(z) = 0 when f has a horizontal tangent, f’ is positive f f
when f is increasing, and f’ is negative when f is decreasing. —6 N7 6
f
\ J
-6
49. (a) 50 (b) From the graph in part (a), it appears that f’ is zero at z1 &~ —1.25, z2 ~ 0.5,

and 3 ~ 3. The slopes are negative (so f’ is negative) on (—oco, z1) and

(w2, x3). The slopes are positive (so f’ is positive) on (z1, z2) and (z3, 00).

Bl ~
-10 f
J5

© f(z) =a* —32® — 62> + T +30 = 100

f(x) =42® —92% — 1224+ 7

7

WA

50. (a) 1.5 (b) y

—40

From the graph in part (a), it appears that g’ is zero at x = 0. The
slopes are negative (so ¢’ is negative) on (—oo, 0). The slopes are

positive (so ¢’ is positive) on (0, c0).
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2
€ 1

(©) g(z) =

211
) = D) —2®Q2r) 2 M
g( )_ (£E2+1)2 - ($2+1)2 L )

2% , @+ D@ - Qo)1) 2
zr1 YT (@+1)2 BRCESVEN

51. y =
At (1,1),y" = 3, and an equation of the tangent lineisy — 1 = $(x — 1), ory = 3z + 3.

5. y=2x% —224+2 = ¢ =622z At(1,3),y = 6(1)% — 2(1) = 4 and an equation of the tangent line is

y—3=4(x—1) or y =4z — 1.

1
8.@y=[f(z)= 1522 (b) 13
o (1+23)(0)—1(2z) 22
fix) = T+ a7 T So the slope of the (-1,05)
tangent line at the point (—1, %) is f'(—1) = 2% = £ andits 74[ J 4
equationisy — 3 = 1(z+1)ory = 2o+ 1. -0s
x
— — 0.75
5. (@) y = () = 75 (®)
oy A+l —z(22) 1-—2? (3,0.3)
fl(z) = i+ a9)° TS So the slope of the
-2 5
tangent line at the point (3,0.3) is f(3) = 1g5 and its equation is J
y — 0.3 = —0.08(z — 3) or y = —0.08z + 0.54. Yy

5. y=z+Vr = ¢y =1+3i272=1+1/(2Vz). At(1,2),y = 2, and an equation of the tangent line is

y—2=35(x—1),ory = %x + % The slope of the normal line is 7%1 so an equation of the normal line is

Nlw

y—2=—2(x—1),ory=—2z+3.

5. y? =2 = y= 22 [sincez and y are positiveat (1,1)] = ¢ = %xl/Z. At (1,1),y" = 2 and an equation of the

tangent lineisy — 1 = %(x —1) ory= %x - % The slope of the normal line is f% (the negative reciprocal of %) and an

equation of the normal lineisy — 1 = —2(z — 1) or y = -2z + 3.
2 J— p—
5.y = if _—::i = y= @+ 1)((?;)2 +(f;62+ 1)(@22) . OAtL(1,2),y = 62—28 = f%, and an equation of the tangent line
isy—2=—2(x—1),ory = —3x + 2. The slope of the normal line is 2, so an equation of the normal line is

y—2=2(x—1),ory =2x.
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@+ 1) —==) - vz )
Vo , 2z (x+1) — (22) -z
58. y = = y = 5 = = .
z+1 (z+1) 2Vz(z+1)2  2Va(z+1)2
At (4,0.4),y = 555 = —0.03, and an equation of the tangent line is y — 0.4 = —0.03(x — 4), or y = —0.03z + 0.52. The
slope of the normal line is 132, so an equation of the normal lineisy — 0.4 = X (z —4) & y=107-4042 &
y= g g
59. f(x) = 0.0012® — 0.022° = f'(x) =0.0052* —0.062> = f"(x)=0.022° —0.12z
.G =ViE VT S G =B S G = g
x> 14 22)(2z) — 2%(2 2z + 4a? — 222 222 + 2z
61. f(z) = Fla) = )(2z) y 2 _ 2 d
1+ 2% (14 2x) (14 2x) (1+2x)
() = (1+22)*(4x +2) — (20 +20) (1 + 4o +42?)"  2(1+22)*(22 + 1) — 2z(z + 1)(4 + 82)
[(1+ 2z)2]? (14 2x)*
C2(1+422)[(1 4 22)° —da(z +1)]  2(1 44w + 42 —42® —4a) 2
- (1+2x)4 - (1+2x)3 T (1422)3
. . 1 (3—=x) -1 1
62. Using the Reciprocal Rule, f(x) = 3L = f(z) = ERmE = EEESE = EESE =
Fra) = — (B2 (9-6z+2®) —6+22  -2B8-z) 2
(8 —=)?]? (8 —=z)* (B —=)* B-z)*  (B-a)?
63. @) s=1t3-3t = ot)=s{t)=3>—-3 = a(t)=v(t) =6t
(b) a(2) = 6(2) = 12 m/s?
(¢) v(t) = 3t> —3 =0 whent®> = 1, thatis, ¢t = 1 [t > 0] and a(1) = 6 m/s>.
64. ) s=t* -2 +* -t = () 3 :
v(t) =s'(t) =4t — 6> +2t —1 = i af vf
t)=0'(t) =12t — 12t + 2
a(t) =v'(t) + 0 {=—— : 25
() a(1) =12(1)> —12(1) +2 =2m/ s> < J
-1.5
3 2 drL 2
65. L = 0.0155A4° — 0.3724° +3.95A 4+ 1.21 = 1= 0.0465A4° — 0.744A + 3.95, so
dL ) o
TA s = 0.0465(12)% — 0.744(12) 4 3.95 = 1.718. The derivative is the instantaneous rate of change of the length of an
=1
Alaskan rockfish with respect to its age when its age is 12 years.
66. S(A) = 0.8824%%%2 = S'(A) = 0.882(0.842A7%158) = (.742644 A7 %158 5o

S’(100) = 0.742644(100) %-!58 ~ 0.36. The derivative is the instantaneous rate of change of the number of tree species with

respect to area. Its units are number of species per square meter.
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67. (a) P = é and P = 50 when V' = 0.106, so k = PV = 50(0.106) = 5.3. Thus, P = 5—‘; and V = 5—P3
dv 5.3 av 5.3
=53p7! — =53(—-1P7 %) ==, = — = —— =—0. . ivative i
(b) V=53 = 1P 5.3( ) T2 When P = 50, P 702 0.00212. The derivative is the

instantaneous rate of change of the volume with respect to the pressure at 25 °C.  Its units are m®/kPa.

68. (a) L = aP? +bP + ¢, where a =~ —0.275428, b ~ 19.74853, and ¢ ~ —273.55234.

dL
(b) P 2aP +b. When P = 30, % =~ 3.2, and when P = 40, (Cil_ZLD ~ —2.3. The derivative is the instantaneous rate of

change of tire life with respect to pressure. Its units are (thousands of miles)/(1b/in®). When j—]LD is positive, tire life is
. . dL T .
increasing, and when P < 0, tire life is decreasing.

69. We are given that f(5) = 1, f'(5) = 6, g(5) = —3, and ¢’ (5) = 2.

@ (f9)'(5) = f(5)g'(5) + 9(5)f'(5) = (1)(2) + (-3)(6) =2 — 18 = —16
) (f)'(5) _9B)f'(B) — f(5)g'(5) _ (=3)(6) — (1)(2) _ 20

9

[9(5)]? (=3)? -9

© (g)'(5) _1(B)gB) —9BG)'(B) _ (D(2) = (=3)(6) _,,

f B IR
70. We are given that f(4) = 2, g(4) =5, f'(4) = 6,and ¢'(4) = —3.
(@) h(z) =3f(z) +8g(x) = N (x)=3f"(x)+ 8¢ (x),s0
B/(4) = 3f'(4) + 8¢/ (4) = 3(6) + 8(—3) = 18 — 24 = —6.
) h(z) = f(z)g(z) = h'(z) = f(x)g'(z) + g(z) f'(x), s0
R(4)=f(4)g'(4) +9g(4) f'(4) =2(-3) +5(6) = —6 + 30 = 24.

@ hie) = L8 o gy = LS —T@I @)

9(x) l9(z)]?
Wi - SO @ SO 5623 0+6 36
lg(4)]? B 52 T 25 25
__ g(=)
@ H) = 7o) + o)
v - LA +0@17 @ — o) @ + (@] _ @43 (3)=5f6+ (9] _ —2n-15 __3
[F(4) + g(4)]? (2+5)? 7 49
Mf@) =Vag) = f@)=Vag@) +ol) za /%50 f'(4) = Vg (4) +g(4)- 2%1 =2.748-7=16
d [h(x)] k' (2) - h(z)-1 d [h(@)] W) —h@) 2-3)—@4) 10
R ﬁ@%ﬂm* » 4 1
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73. (a) From the graphs of f and g, we obtain the following values: f(1) = 2 since the point (1, 2) is on the graph of f;

g(1) = 1 since the point (1,1) is on the graph of g; f'(1) = 2 since the slope of the line segment between (0, 0) and

(2,4) is ;1 : 8 = 2; ¢’(1) = —1 since the slope of the line segment between (—2, 4) and (2, 0) is 20_;(:42) =-1.
Now u(z) = f(z)g(z), so /(1) = f(1)g'(1) + 9(1) f'(1) =2-(-1) +1-2=0.
_ sy~ 9O() — f(B)g'(5) _2(=3)—3-3 -5 _ 2
(b) ’U(J)) - f(x)/g(a:), sov (5) - [9(5)}2 - 2 22 & = T - _g
74. (a) P(z) = F(z) G(z),s0 P'(2) = F(2)G'(2) + G(2) F'(2) =3- 2+ 2.0 = &
®) Qla) = F@)/Gla). 0 @/(1) = LD ZOED Lo 7 ) 1,10 5

5. (y=zg9(z) = y =zg'(2)+g() 1=z¢(2)+g(z)

_ T r_gl)-1—ag'(x) _ g(x) —xg'(x)
®v=tm =¥ lo()F l9()2
©y= 9(z) J = zg'(z) —g(x) -1 _ xg'(x) — g(x)

T (z)? 2

76. @ y=2f(z) = ¢ =2 (x)+ f(z)(2x)

By=tD L o f’(x)(;Q)fQ(w)(%) _ ol @) ~21(c)
o ,_ f@)) —2*f (x)
@v=Fm =V F@)P
@y -2
VE[ef (@) + F(@) - [1 + 2f()] ﬁ
y/ = 2
(V7)
:L‘B/zf,(x) + l’l/2f(l’) _ %xfl/Z _ %ml/2f(x) . 2$1/2 B l’f(:lf) + 2$2fl($) 1
- T 2x1/2 223/2

77. The curve y = 22° + 32> — 122 + 1 has a horizontal tangent when ¢/ = 62% + 62 —12=0 < 6z’ +2x—-2)=0 <
6(x+2)(x—1)=0 < x=—2orz = 1. The points on the curve are (—2,21) and (1, —6).

78. f(x) = 2® + 32% + 2 + 3 has a horizontal tangent when f'(z) = 32> + 62 +1=0 <«

o —0EV36-12 \/6%—12:,11%\/5

7. y=62>+5x—-3 = m=1y =182% + 5, but2? > 0 forall z, so m > 5 for all .

80. y=x2*+1 = ¢ =4x>. Theslope of the line 32z — y = 15 (or y = 32z — 15) is 32, so the slope of any line parallel to

itisalso 32. Thus,y’ =32 < 42°=32 < 2®=8 & =2, whichis the 2-coordinate of the point on the curve
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SECTION 2.3 DIFFERENTIATION FORMULAS U

at which the slope is 32. The y-coordinate is 2* 4+ 1 = 17, so an equation of the tangent line is y — 17 = 32(x — 2) or
y = 32x — 47.

The slope of the line 3z — y = 15 (or y = 3z — 15) is 3, so the slope of both tangent lines to the curve is 3.
y=2>-322+3r-3 = y =322 -62+3=3(z>-22+1)=3(x—1)% Thus,3(zx—1)2 =3 =
(x—1)*=1 = x—1=41 = x =0or2, which are the z-coordinates at which the tangent lines have slope 3. The
points on the curve are (0, —3) and (2, —1), so the tangent line equations are y — (—3) = 3(x — 0) or y = 3z — 3 and
y—(-1)=3(x—-2) or y=3z—1T1.

x—1 ; (+1)Q)—(z—-1)(1) 2

= = = .Ifthe t t int t 6
Yy T+ 1 = y (:L‘-i— 1)2 (:L‘-i— 1)2 € tangent 1mtersects

~
>y

the curve when z = a, then its slope is 2/(a 4 1)2. But if the tangent is parallel to

2 _1
(a+1)2 2

r — 2y = 2, thatis, y = %m — 1, then its slope is % Thus, =

(a+1)?>=4 = a+1=42 = a=1lor—3. Whena=1,y=0and the

equation of the tangentisy — 0 = 2(z — 1) ory = 2z — 2. Whena = -3,y = 2 and

the equation of the tangent isy — 2 = 2(z + 3) ory = s + £.

The slope of y = /x is given by y = lp-12 = # The slope of 2z + y = 1 (or y = —2x + 1) is —2, so the desired
(]

2

1
= =

1
2V 2

Vt=1 = z=1 Whenz =1,y =+/1 =1, and an equation of the normal lineis y — 1 = —2(z — 1) or

normal line must have slope —2, and hence, the tangent line to the curve must have slope % This occurs if

y=—2x+ 3.

y=f(x)=2>-1 = f'(z) =2z So f'(—1) = —2, and the slope of the
normal line is 3. The equation of the normal line at (—1,0) is
y—0=1[z— (—1)] ory = 2x + 3. Substituting this into the equation of the

parabola,weobtain%x—l—%:$2—1 s rz+1=22-2 &

20—z —-3=0 & (2r-3)(x+1)=0 < x=2or—1. Substituting £

into the equation of the normal line gives us y = %, Thus, the second point of

intersection is (2, 2), as shown in the sketch.
y Let (a, a2) be a point on the parabola at which the tangent line passes
(@) through the point (0, —4). The tangent line has slope 2a and equation
y = y—(—4) =2a(x —0) < y=2az — 4. Since (a,a”) also lies on the

line, a® = 2a(a) — 4, or a®> = 4. So a = %2 and the points are (2, 4)

(0, -4)
and (—2,4).
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86. (a) Ify = 22 4 x, then ' = 2z + 1. If the point at which a tangent meets the parabola is (a, a? + a) , then the slope of the

2
tangent is 2a + 1. But since it passes through (2, —3), the slope must also be % = La;—?).
x a—

a’*+a+3

5 Solving this equation for a we get a®> + a +3 =2a?> —3a — 2 <
a—

Therefore, 2a + 1 =

a*—4a—5=(a—5)(a+1)=0 < a=50r—1. Ifa= —1,thepointis (—1,0) and the slope is —1, so the
equationisy — 0 = (—1)(z + 1) ory = —x — 1. If a = 5, the point is (5, 30) and the slope is 11, so the equation is
y—30=11(x —5)ory = 11x — 25.

(b) As in part (a), but using the point (2, 7), we get the equation

2 —
2@_’_1:ch27 = 2¢2-3a—-2=d’+a-7 & a®—4a+5=0.
a—

The last equation has no real solution (discriminant = —16 < 0), so there is no line
through the point (2, 7) that is tangent to the parabola. The diagram shows that the

point (2, 7) is “inside” the parabola, but tangent lines to the parabola do not pass

through points inside the parabola.
87. (a) (fgh)' = [(fg)h]' = (fg)'h+ (fo)h' = (f'g+ fg)h+ (fo)h' = f'gh+ fg'h + fgh'
(b) Putting f = g = h in part (a), we have %[f(ﬂff)]3 =(fFN) =FFf+ P f+FFf =3Fff =3[f(@)]f (2).
(©y=(z*+32° +172 +82)> = o =3(a* + 3% + 17z + 82)%(42® + 927 + 17)
88. (@) f(z)=2" = f(2)=nz"' = f'(@)=nnh-12"2 = ... =

f(”)(x) =nn—-1Mn-2)---2-12" " =nl

® f@)=2"' = fll@)=(-Dz? = f@)=(-)(-2)z> = .. =
£ @) = (<D(=2)(=3) -+ (—ma~ ) = (1)nta— ) o LU

89. Let P(x) = ax® + bz + c. Then P'(x) = 2ax + band P’(x) =2a. P"(2) =2 = 2a=2 = a=1
P'(2)=3 = 21)(2)+b=3 = 4+b=3 = b=-1
P2)=5 = 12+ (-1)2)+c=5 = 2+c=5 = c=3.5P(z)=12>—-x+3.
9.y = Az’ + Bz +C = o =2Az+B = y” =2A. We substitute these expressions into the equation
y" +1y — 2y = x? to get
(2A) + (2Az + B) — 2(Az* + Bx + C) = 2°
24 +2Az + B —2A2” — 2Bz —2C = 2°

(—24)2® + (2A — 2B)z + (2A+ B — 2C) = (1)2® + (0)z + (0)

The coefficients of 2 on each side must be equal, so —2A =1 = A= f%. Similarly, 24 —2B =0 =

A=B=-3and2A+B-2C=0 = -1-3-20=0 = C=-3.
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M. y=f(z)=ax® +bx’+cx+d = f(z)=3az®>+2bx+c. Thepoint(—2,6)ison f,s0 f(—2) =6 =
—8a +4b —2c+d =6 (1). The point (2,0) ison f,so f(2) =0 = 8a+4b+ 2c+d =0 (2). Since there are
horizontal tangents at (—2, 6) and (2,0), f'(£2) =0. f(-2) =0 = 12a—4b+c¢=0 3)and f'(2) =0 =
12a + 4b + ¢ = 0 (4). Subtracting equation (3) from (4) gives 80 =0 = b = 0. Adding (1) and (2) gives 8b + 2d = 6,
so d = 3 since b = 0. From (3) we have ¢ = —12a, so (2) becomes 8a + 4(0) + 2(—12a) +3=0 = 3=16a =

a= 2. Nowc=—-12a = —12(Z) = —2 and the desired cubic functionisy = 22 — 2z + 3.

92. y=ax®+br+c = o' (z)=2ax+b. Theparabola hasslope 4 atz = 1 andslope —Satz = —1,s0%'(1) =4 =
2a+b=4 (I)andy’(—1) = -8 = —2a+b=—8 (2). Adding (1) and (2) givesus 20 = —4 < b= —2. From
(1),2a —2=4 < a = 3. Thus, the equation of the parabola is y = 322 — 2z + ¢. Since it passes through the point

(2,15), we have 15 = 3(2)% —2(2) + ¢ = ¢ =7, so the equation is y = 3z — 2z + 7.

93. If P(t) denotes the population at time ¢ and A(t) the average annual income, then T'(t) = P(t)A(¢) is the total personal
income. The rate at which T'(¢) is rising is given by T (¢) = P(¢)A'(t) + A®)P'(t) =
T'(1999) = P(1999)A’(1999) + A(1999)P’(1999) = (961,400)($1400/yr) + ($30,593)(9200/yr)
= $1,345,960,000/yr + $281,455,600/yr = $1,627,415,600/yr
So the total personal income was rising by about $1.627 billion per year in 1999.
The term P(t) A’ (t) ~ $1.346 billion represents the portion of the rate of change of total income due to the existing

population’s increasing income. The term A(t) P’ (t) =~ $281 million represents the portion of the rate of change of total

income due to increasing population.

94, (a) f(20) = 10,000 means that when the price of the fabric is $20/yard, 10,000 yards will be sold.
f'(20) = —350 means that as the price of the fabric increases past $20/yard, the amount of fabric which will be sold is

decreasing at a rate of 350 yards per (dollar per yard).

() R(p) =pf(p) = R =pf'(p)+flp)-1 = R (20)=20f'(20)+ f(20) -1 = 20(—350) + 10,000 = 3000.
This means that as the price of the fabric increases past $20/yard, the total revenue is increasing at $3000/($/yard). Note
that the Product Rule indicates that we will lose $7000/(8$/yard) due to selling less fabric, but this loss is more than made

up for by the additional revenue due to the increase in price.

0.14[S] ‘v (0.015+[S1)(0.14) — (0.14[SD(1) _  0.0021

B Uu=Go s ds] (0.015 + [5]) (0.015 + [S])*

dv /d[S] represents the rate of change of the rate of an enzymatic reaction with respect to the concentration of a substrate S.

9. B(t) = N(t) M(t) = B'(t) = N(t)M'(t) + M(t) N'(t), so

B'(4) = N(4) M'(4) + M(4) N'(4) = 820(0.14) + 1.2(50) = 174.8 g/week.
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f@) 2241 ifz<l
xT) =
r+1 ifx>1

Calculate the left- and right-hand derivatives as defined in Exercise 2.2.62:

_ 2 _ 2
F)y= tim JOED O[O FYZAHD o BE20 19y — 2and
h—0— h h—0— h h—0— h h—0~
, . fA+R)—fQ) . [(A+h)+1]-(1+1) h . .
@)= hlir0n+ h N hli%l+ h N h1~>0+ h hliIng =1
Since the left and right limits are different, 2y
}lin}) w does not exist, that is, f'(1) (1,2) 1l
does not exist. Therefore, f is not differentiable at 1. :
y=fw /0 1 v
0 1 X
2z if £ <0
glx) =<2z —2? f0<a<?2
2—x if ©>2
Investigate the left- and right-hand derivatives at z = 0 and z = 2:
g (0) = lim 9(0+h) =9 _ o 2h=20) _ 5 4
h—0— h h—0—
— — 2 J—
g4 (0) = lim w = lim (th—h)m) = lim (2~ h) = 2,50 is differentiable at z = 0.
— _ 2 _ o 12
g (2) = lim 92+h) —9(2) = lim 20+ = @+h) - (2-2) = lim Z2h oW lim (-2 —h) = -2
h—0— h h—0— h h—0— h h—0—
and
- 9(2+h) —g(2) . 2-24+n]-(2-2) .  —h L _
9+ (2) N hlLI(IJIJr h o hli,0+ h a hlir(r)gr B hli,rng( 1) =-L
so g is not differentiable at z = 2. Thus, a formula for ¢’ is
y y
2 if <0 5
g@)=<{2-2z if0<z<2 y=g(x) y=g'tx)
-1 if x> 2
0 2 X 0 i X
_2 4
(@) Notethat x> —9 < 0forz? <9 & |z/|<3 & -3<2<3. %
-9  ifz<-3 20 ifz<-3
2x if || >3
fz)={ —2*+9 if 3<z<3 = f(x)={ -2z if 3<zx<3 = ‘
] -2z if |z| <3
z2 -9 if >3 2z if >3
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by computing the left- and right-hand derivatives

fB+h) - 1B)
h

To show that f’(3) does not exist we investigate }llir%

defined in Exercise 2.2.62.

. h) — . — h)? — .
. R

iy — i JBER) = f(3) [(B+h)*-9] -0 _ 6h+h®
f®) = hlirng h h—0+ h N hllI& h

lim (6 4+ h) = 6.
h—0+

\O

Since the left and right limits are different, (b) Y y /
i LB R) — 1(3) !
h

lim does not exist, that is, f'(3)

does not exist. Similarly, f'(—3) does not exist. S N3 x

Therefore, f is not differentiable at 3 or at —3.

Ifz>1,thenh(z)=|z—1|+|z+2|=2—-14+2+2=2z+1.
If-2<z<1thenh(z)=—(z—1)+z+2=3.
Ifx < —2,then h(z) = —(x — 1) — (x + 2) = —2x — 1. Therefore,

2 -1 ifz<—2 -2 fz< -2
h(z) =14 3 if 2<z<1 = Rh@)=40 if 2<z<1
2+ 1 if >1 2 if ¢ >1

h(z) — h(1 .
To see that A’ (1) = lim Ll() does not exist, y y

r—1 €T —

_ _ y=n)
observe that lim M = lim ﬁ = 0 but 27 o/
z—1— r—1 z—1— 3 —1

y = h(x)
. h(x)—h(1) .. 20-2 o , , B
e e R 50

1/ (—2) does not exist.

y=f(z) =az® = f'(z) =2ax. So the slope of the tangent to the parabola at x = 2 is m = 2a(2) = 4a. The slope
of the given line, 2 +y =b < y= —2x+ b,isseentobe —2,so we musthaveda = -2 < a= —%. So when
x = 2, the point in question has y-coordinate —% .22 = —2. Now we simply require that the given line, whose equation is

2z +y = b, pass through the point (2, —2): 2(2) + (—2) =b < b=2.Sowemusthavea = —1 and b = 2.

(a) We use the Product Rule repeatedly: F = fg = F' = f'g+ fg =
F'=(f"g+1'9)+ g +19")=F"g+2f'd + fg".

(b) = fmg + f//g/ +2 (f//g/ + f/g//) + f/g// + fg/u _ fmg + 3f//g/ + 3f/g// + fg/// =
F(4) — f(4)g + f///g/ 43 (f///g/ + f//g//) +3 (f//g// 4 f/g///) + f/g/// + fg(4)

— f(4)g + 4f///g/ + 6f//g// + 4f/g/// 4 fg(4)
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(c) By analogy with the Binomial Theorem, we make the guess:

FO) = g g 4 p =D 4 (Z) Fo=gn Ly <:> FOR ) 4 gD g

n n! nn—(n—-2)---(n—k+1
Where<k>:k!(n—k)!:( A k)l ( 2

103. The slope of the curve y = ¢ Vrzisy = 5 \C/_ and the slope of the tangent line y = %m +6is % These must be equal at the
z
point of tangency (a, cVa ) , SO # = g = ¢ = 3+Va. The y-coordinates must be equal at z = a, so
a

c a:%a—l—G = (3\/5)\/5:%@—!—6 = 3a:%a—|—6 = %a:G = a:4.Sincec:3\/E,wehave
c=3/4=6.

104. f is clearly differentiable for x < 2 and for x > 2. Forz < 2, f'(z) = 2z, s0 f_(2) = 4. Forz > 2, f'(x) = m, so
f(2) = m. For f to be differentiable at z = 2, we need 4 = f’ (2) = f\(2) = m. So f(z) = 4z + b. We must also have

continuity at z = 2,s04 = f(2) = lim f(z) = lim (4z +b) = 8 4+ b. Hence, b = —4.

z—2t z—2

105. F=f/g = f=Fg = f =Fg+F¢ = Ff:f'—Fg/:f/—(f/g)g’:f’g—zfg’

g 9 9
106. @) zy =c = y= S LetP = (a, E). The slope of the tangent line at z = a is y'(a) = —%. Its equation is
T a a
c ¢ _c 2c . . . 2c Setti o . he 2-i .
i) (x—a)ory = —Em + o’ so its y-intercept 1s P etting y = 0 gives = 2a, so the z-intercept is 2a.

The midpoint of the line segment joining (O, %) and (2a,0) is (a, 2) =P.

(b) We know the x- and y-intercepts of the tangent line from part (a), so the area of the triangle bounded by the axes and the

tangent is 5 (base)(height) = 22y = $(2a)(2¢/a) = 2¢, a constant.

_ 1000 _
107. Solution 1: Let f(x) = x'°%°. Then, by the definition of a derivative, f'(1) = lim1 ) {(1) = lim1 z T 1.
T— xTr — xrT— xTr —

But this is just the limit we want to find, and we know (from the Power Rule) that f'(z) = 10002°°%, so

1000 _
f/(1) = 1000(1)?°° = 1000. So lim ””—11 = 1000.

Solution 2:  Note that (z1°° — 1) = (z — 1)(@°%° + 2% + 27 4+ ... + 22 + 2+ 1). So

1000 . 999 998 997 | . 2
limu:hm ] Gl i e A +x+1):lim(zggg—i-xggs+1997+---+x2+x+1)
z—1 x—1 z—1 r—1 z—1
=1+1+1+---4+1+1+1=1000, as above.
1000 ones
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In order for the two tangents to intersect on the y-axis, the points of tangency must be at
equal distances from the y-axis, since the parabola y = z? is symmetric about the y-axis.

Say the points of tangency are (a, a®) and (—a, a®), for some a > 0. Then since the

derivative of y = 2? is dy/dx = 2z, the left-hand tangent has slope —2a and equation

y —a* = —2a(x + a), or y = —2ax — a*, and similarly the right-hand tangent line has

equation y — a® = 2a(z — a), or y = 2ax — a*. So the two lines intersect at (0, —a2). Now if the lines are perpendicular,

: : 2 _ 1 1 e 1
then the product of their slopes is —1, s0 (—2a)(2a) = =1 & a® =21 <& a = 3. So the lines intersect at (0, —3).

y=2> = vy =2z, so0 the slope of a tangent line at the point (a, a?) is ¢’ = 2a and the slope of a normal line is —1/(2a),

2 2
. . . a’—c a” —c 1
for a # 0. The slope of the normal line through the points (a, a*) and (0, ¢) is w_0’' % =-g5, =
a— a a
a’> —c= f% = a>=c— % The last equation has two solutions if ¢ > %, one solution if ¢ = %, and no solution if

c< % Since the y-axis is normal to y = x* regardless of the value of ¢ (this is the case for a = 0), we have three normal lines

ifec > % and one normal line if ¢ < %

110. Y yexi— 242 From the sketch, it appears that there may be a line that is tangent to both
R curves. The slope of the line through the points P(a, a®) and
y=ux
V¥ —20+2—a® .
Q(b,b*> —2b+2)is %, The slope of the tangent line at P
0
{ is2a [y =2z] andatQis2b—2 [y’ = 2z — 2]. All three slopes are
0q x
equal,s02a =2b—2 < a=b-1.
2 ] 2 _ _ 2
Also,2b— 2= L2220 gy 5 V220D g a1 =
b—a b—(b—1)
2b=3 = b=3anda= 32 —1= 1. Thus,an equation of the tangent line at P is y — (%)2 =2(3)(z—3)or
y=x—;
APPLIED PROJECT Building a Better Roller Coaster
1. @) f(z) =ax? +br+c = f'(x)=2ax+b.

The origin is at P: f(0)=0 = c=0

The slope of the ascent is 0.8: f'(0)=08 = b=0.8

The slope of the drop is —1.6: f(100) = -1.6 = 200a+b=—1.6

2.4

(b)b=0.8,50200c +b=—-16 = 200a+08=-1.6 = 200a=-24 = a= 300 = —0.012.

Thus, f(x) = —0.0122° + 0.8z.

©)2016 Cengage Learning. All Rights Reserved: May notbe scanned; copied, or duplicated, of posted toja publicly accessibleswebsite, in'whole ot in part.



142 0O CHAPTER2 DERIVATIVES

(c) Since L, passes through the origin with slope 0.8, it has equation y = 0.8z. 50
LA L
The horizontal distance between P and () is 100, so the y-coordinate at Q) is _SJ P(0,0) ) 1 150
£(100) = —0.012(100)* + 0.8(100) = —40. Since Ly passes through the 0(100,—40)
point (100, —40) and has slope —1.6, it has equation y + 40 = —1.6(xz — 100) !
—100
ory = —1.6x + 120.
(d) The difference in elevation between P(0,0) and (100, —40) is 0 — (—40) = 40 feet.
2. (a)
Interval Function First Derivative Second Derivative
(—00,0) Li(z) = 0.8z Li(z) =0.8 Li(z)=0
[0,10) g(zx) = kx® +12® + mz +n g (x) = 3ka® 4 2lx +m g’ (z) = 6kx + 21
[10,90] q(r) = ax® + bz +c q(x) =2ax+b q"'(z) =2a
(90, 100] h(z) = pa® + qz* + rz + s B (x) = 3px® + 2qx +r B'(x) = 6px + 2¢
(100, c0) Ly(z) = —1.6z 4+ 120 Ly(z) = —1.6 Li(z)=0

There are 4 values of = (0, 10, 90, and 100) for which we must make sure the function values are equal, the first derivative

values are equal, and the second derivative values are equal. The third column in the following table contains the value of

each side of the condition — these are found after solving the system in part (b).

Atx = Condition Value Resulting Equation
0 g(0) = L1(0) 0 n=0

g'(0) = L (0) 2 m=0.8
g"(0) = L{(0) 0 20=0

10 g(10) = ¢(10) g 1000k + 1001 + 10m + n = 100a + 10b + ¢
g'(10) = ¢'(10) 2 300k + 200 +m = 20a + b
g"(10) = ¢"(10) —% 60k + 21 = 2a

90 h(90) = ¢(90) -2 729,000p + 8100g 4 907 + s = 8100a + 90b + ¢
R/ (90) = ¢'(90) -2 24,300p 4 180q + r = 180a + b
R"(90) = ¢"(90) - 540p + 2q = 2a

100 h(100) = L2(100) —40 1,000,000p + 10,000¢ + 1007 4+ s = —40

R/ (100) = L5(100) -3 30,000p + 200q +r = —1.6
h"(100) = L% (100) 0 600p + 2 =0
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(b) We can arrange our work in a 12 x 12 matrix as follows.

a b c k l m n p q r s constant
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0.8
0 0 0 0 2 0 0 0 0 0 0 0
—100 | —10 | —1 | 1000 | 100 10 1 0 0 0 0 0
-20 -1 0 300 20 1 0 0 0 0 0 0
-2 0 0 60 2 0 0 0 0 0 0 0
—8100 [ —90 | —1 0 0 0 0 729,000 8100 90 1 0
—180 -1 0 0 0 0 0 24,300 180 1 0 0
—2 0 0 0 0 0 0 540 2 0 0 0
0 0 0 0 0 0 | 1,000,000 | 10,000 | 100 1 —40
0 0 0 0 0 0 30,000 200 1 0 -1.6
0 0 0 0 0 0 0 600 2 0 0 0
Solving the system gives us the formulas for g, g, and h.
_ k= —0.0004 = — 5
a=-0.013 = _% o 2250
b=093=1 qlz) = —Fa® + Lo — 2 084 9(z) = —5352° + 2z
c=—-04= —% 5
n=20
p = 0.0004 = 22150
g=—-0.13= —115
i M) = g’ — a? + 18y — 200

The graph of the five functions as a piecewise-defined function:

50
[ g(pmm }
ema Y
s 0pe T < 150
7| (90.—220/9N/
: (100, —40)
2
—100 -100
This is the piecewise-defined function assignment on a A comparison of the graphs in part 1(c) and part 2(c):
TI-83/4 Plus calculator, where Yo = L1, Y6 = g, Y5 = q,
Y7 = h,and Ys = Lo. 20
[ «— Problem 2 ]
Flakl Flote Flokz —10| 110
sWasesCACE +Y 6 Problem |
CaZd and K182 +Y
ekCxE1E and X290
M PR FIE and K
=188+ 21080 ~50
~Na=
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2.4 Derivatives of Trigonometric Functions

. f(z) = 2’ sinz = f'(z) = 2* cosx + (sinz)(22) = 2% cosx + 2rsinx

f(z) =xcosz+2tanxz = f'(z) = x(—sinz)+ (cosz)(1) + 2sec’ x = cosx — xsinx + 2sec’

. f(z) =3cotx —2cosz = f'(x)=3(—csc’x) — 2(—sinx) = —3csc® x + 2sinx
.y=2secx —cscx = y =2(secx tanz)— (—cscx cotx) = 2secz tanz + cscx cot T

.y =secldtanf = 1y’ =sech (sec®d) + tanf (secftanf) = sech (sec’> @ + tan® #). Using the identity

1+ tan? @ = sec? 0, we can write alternative forms of the answer as sec @ (1 + 2tan® ) or secf (2sec?d — 1).

. g(t) =4sect +tant = g¢'(t) =4sect tant +sec’t
.y=ccost+t’sint = y =c(—sint)+t*(cost) +sint (2t) = —csint + t(tcost + 2sint)

.y = u(acosu + beotu) =

y' = u(—asinu — besc®u) + (acosu +beotw) - 1 = acosu + bcotu — ausinu — bucsc® u

x , (2—tanz)(1) —z(—sec’z) 2—tanz+ xsec’z
9.y=—= = 4= _
2 —tanz (2 — tanz)? (2 — tanx)?
10. y =sinf cos® = ¢y =sinf(—sinf) + cosd(cosh) = cos? —sin®> [or cos 20]
sin 0
1". f(0) = ———
1) 1+ cosf
£1(0) = (1+cosf)cos — (sinf)(—sinf)  cosf+cos’d+sin®0  cosf+1 1
- (14 cos 6)2 N (14 cos6)? " (1+4+cosf)?2  1-+cosb
12, y = —2%
1—sinx
, _(1—sinz)(—sinz) —cosz(—cosz) —sinz +sin®z+cos’z  —sinz+1 1
v= (1 —sinz)? B (1 —sinz)? " (1—sinz)?2  1-—sinz
tsint
3.y = ——
YT T4
, _ (L+t)(tcost +sint) —tsint(1)  tcost+sint+t°cost +tsint —tsint  (t* +t)cost +sint
V= 1 +1)2 - A +1)? - 1 +1)?
sint
10, y= S0
Y7 Titant
. sint
’ (14 tant) cost — (sint)sec? ¢ _ cost +sint — cos?t _ Cost+sint —tantsect
(1+ tant)? (1+ tant)? (1+ tant)?
15. Using Exercise 2.3.87(a), f(0) = O cosf sinf =

F/(0) = 1cos® sin 6 4 6(— sin 0) sin @ 4 0 cos O(cos §) = cos § sin@ — Osin? @ + 0 cos> 0

= siné cos 0 + O(cos® 6 — sin® @) = 1 sin20 + G cos26 [using double-angle formulas]
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Using Exercise 2.3.87(a), f(z) = 2®sinz tanz =

f(z) = (2*) sinz tanz + 2*(sinz)’ tanx + z? sinz (tanz)’ = 2rsinz tanz + 2 cos = tan x + 2? sin x sec® x

= 2zsing tanz + 2% sinx 4 2 sinx sec’> = wsinz (2tanx + 2 + xsec? x).

d d 1 (sinx)(0) — 1(cosz) —cosz 1 cosz

— (cscx) = — | = = — =——=—= R = —cscx cotx

dx dx \ sinz sin® x sin® x sinx sinz

d (secz) = d 1 _ (cosz)(0) — 1(—sinz) _sinz 1 sinz _ e tanx

dx dr \ cosx cos? x cos?2xr cosx cosx

d (cot z) = d (c'osx) _ (sina:)(—sinac.) ~ (cosz)(cosx) _ _sin2 x.—l;cos2 T 12 s
dx dr \sinz sin“ x sin® x sin“ x

f(z) =cosz =

F(x) = lim flx+h)— f(x) — lim cos(z+ h) —cosz lim 952 cosh —sinz sinh — cosx

h—0 h h—0 h h—0 h
. cosh—1 . sin h . cosh—1 . . sinh
= lim { cosxt ———— —sinx =cosx lim ———— —sinz lim
h—0 h h h—0 h h—0 h

= (cos x)(O) — (sinm)(l) = —sinx

y=sinz +cosz = 1y =cosz —sinz,s0y (0) =cos0—sin0=1— 0 = 1. An equation of the tangent line to the

curve y = sinz + cos z at the point (0,1)isy —1=1(x —0) or y =z + 1.

y=(1+z)cosz = y =(1+xz)(—sinx)+cosz-1. At(0,1),y" =1, and an equation of the tangent line is
y—1l=1(xz—0)ory=z+1.

y=cosz —sinz = y = —sinx—cosz,s0y (r) = —sinm —cosm =0— (—1) = 1. An equation of the tangent

line to the curve y = cosx — sin z at the point (7, —1)isy — (—1) =1(zx —m)ory =z — 7 — 1.

y=x+tanz = gy =1+sec®x,s0y’(r) =1+ (—1)®> =2. An equation of the tangent line to the curve
y = x + tanz at the point (7, 7) isy — 7 = 2(x —7) ory = 2z — 7.

(@) y =2zsinz = y =2wcosz+sinz-1). At(5,m), (b) 3777

y' =2(% cos§ +sin3) =2(0+ 1) = 2, and an equation of the

tangent lineis y — 7 = 2(x — 3 ), ory = 2.

(@y=3x+6cosz = 3y =3—6sinz. At (3,7 +3), (b)

y' =3—6sinZ :376§ = 3 — 3/3, and an equation of the
tangent lineisy — (r +3) = (3—3v3)(z — %), or

Y= (3—3\/§)m+3+7r\/§.

-2

0
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27. (a) f(z) =secx—xz = ['(z) =secw tanz —1

w
f J Note that f' = 0 where f has a minimum. Also note that f' is negative

m
2 when f is decreasing and f’ is positive when f is increasing.
f/

-

28. (a) f(z) =+/xsinz = f'(z)= ﬁcosx—l—(smm)(zx 1/2) =./xcosz +

sinz
2z

Notice that f’(z) = 0 when f has a horizontal tangent.

k A f is positive when f is increasing and f' is negative when f is decreasing.

-3
29. H9) = 0sinf = H'(A) = 6 (cosh) + (sinf) -1 = fcosf +sinf =
H"(0) = 0(—sinf) + (cosf) -1+ cosf = —Osinf + 2 cos b

30. f(t) =sect = f'(t) =secttant = f"(t) = (sect)sec’t+ (tant)sect tant = sec®t + sect tan>t, so

F(2) = (V2) +vV3(1)? = 2v2 + V3 = 33,

tanz — 1
@ fl@) = ——
sec T
o) = secz(sec’ r) — (tanz — 1)(secxrtanz)  secx(sec’z —tan’z +tanz) 1+ tanw
B (secx)? n sec? x " secx
sinx 1 sinz — cosx
tanz —1 _ cosg cosx : ' : :
() f(z) = = = =sinz —cosx = f'(x)=cosx — (—sinz) =cosz +sinz
secx 1 1
cosz cosz
1+t 1 t L . .
(c) From part (a), f'(z) = tlans 4+ 222 _ cosz +sin x, which is the expression for f'(x) in part (b).
secx secr  secr

32. (@) g(x) = f(z)sinz = ¢'(x) = f(z)cosx +sinz - f'(z), so

9(3)=f(Feos +sing f(5) =43+ (-2)=2-3

_ cosw ;_ f(x)(=sinz) —cosz - f'(x)
(b) h(z) = @ = h'(z) = F@F , SO
Wz - LB)(Csing) —cos g S'(5) _ 1(—F) - (3)(-2) _ 2341 _1-2V3
3 T G R
33. f(z) = x + 2sina has a horizontal tangent when f'(z) =0 < 1+4+2cosz=0 < cosz=-1 &

T = 2" + 27n or 2% 4 27n, where n is an integer. Note that and o+ are =% units from . This allows us to write the

solutions in the more compact equivalent form (2n 4+ 1)7 & Z, n an integer.
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cos T ,  (24sinz)(—sinz) —cosz cosx  —2sinx —sin®z —cos’x  —2sinz — 1
By=—r-— = y = - = - = - = 0 when
2+sinz (2 + sinz)? (2 + sinx)? (2 + sinx)?
—2sinz—1=0 & sinz=-3 & z=254%42morz ="+ 2wn, nan integer. Soy:%ory:—%and

the points on the curve with horizontal tangents are: (“T’T + 27n, %), (%” + 2mn, f%), n an integer.
35. (a) z(t) =8sint = wv(t) =2'(t) =8cost = a(t)=2a"(t) = —8sint
(b) The mass at time ¢ = 2% has position z(2f) = 8sin 2F = 8(@) = 4v/3, velocity v(Z£) = 8cos 2 = 8(—1) = —4,

and acceleration a (%) = —8sin 2% = —8 (@) = —4+/3. Since v (%) < 0, the particle is moving to the left.

36. (a) s(t) =2cost+ 3sint = wov(t) =—2sint+ 3cost = (b) 4

a(t) = —2cost — 3sint r s/

U /

to\ 1t
(¢)s=0 = t2~2.55. So the mass passes through the equilibrium 0 I" -

position for the first time when ¢ & 2.55 s. al X
\\/
—4

dv=0 = ¢ ~0.98,5s(t1) ~3.61cm. So the mass travels

a maximum of about 3.6 cm (upward and downward) from its equilibrium position.
(e) The speed |v| is greatest when s = 0, that is, when ¢ = t2 + n, n a positive integer.

37. From the diagram we can see thatsin = /10 < = = 10sin . We want to find the rate

of change of = with respect to 0, that is, dz:/d6. Taking the derivative of x = 10sin 0, we get

10
dx/df = 10(cos ). So when 6 = %, 42 = 10cos T = 10(%) = 5 ft/rad.
L]
X
uWw dF (usin€ + cos0)(0) — uW(pucos® —sinf)  puW(sinf — pcosb)
38 () F= — Y ar _ ( < _ W L
psin 6 4 cos 0 do (1sin 6 + cos 0) (sin @ 4 cos 9)

(b)‘;—gzo & uW(sinh — pcosf) =0 < sinh=pcosf < tanf=pu < 6O=tan 'p

0.6(50)

_ Uy <g<
0.65in0 & cosf for 0 < 6 < 1, we see that

© 12 From the graph of F' =

% =0 = 0 = 0.54. Checking this with part (b) and ;« = 0.6, we

calculate § = tan~' 0.6 ~ 0.54. So the value from the graph is consistent

with the value in part (b).

39. lim sin bx — lim é sin bx _ § i sin bx _
z—0 X z—0 3 bx 3z—0 bx
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sinx . sinzx T 1 . s 1
40. lim — = lim - .= = lim /= . — = [0 =mz]
z—0sinTr -0 x sinmx ®™ +—0 x 6—0sinf T
fm Lo Lt
6—o0 sinf T o
0

4.1

42.

43.

45.

46.

47.

48.

49.

50.

‘m tan6f lim sin 6¢ 1 t — im 6 sin 6¢ lim 1 lim 2t
t—0 sin 2t t—0 t cos6t sin2t) t—0 6t t—0 cos 6t t—0 2sin 2t

sin 6t 11 2t 11
— 61l im —— - = i —6(1)-=-=(1) =
6 lim == - lim g im o =65 (1) =3

cosf — 1 lim cosf — 1
. cosf—1 . 0 _ 60 0 _0_
;13(1) sin _glir(l) sinf .. sinf 1 =0
lim
9 0—0 0
lim sin3z lim sin 3x 3 — lim sin 3x lim 3 -1 i . 7%
250 53 — 4z 2—0 3z bx2—-4) «50 3z 2—05x2—4 —4) 4
. sin3zxsinbzx . 3sin3x 5sinbx . 3sin3x .. bsinbx
. lim ——————— = lim . = lim - lim
z—0 x2 z—0 3x 5 z—0 3x z—0  bx
— 3 lim 3T 5y, ) SIOT _ 51y 5(1) = 15
Divide numerator and denominator by .  (sin 6 also works.)
sin I sin 6
, sin 0 , 9 i o 1 1
hm0 tan0 620 sind 1 sin 0 1  1+1-1 2
=0 Uftanf  6-0 : 1+ lim lim ——
0  cosf 6—0 6O 0650 cosf
. s . sin(sinx) . sinf )
lim cscz sin(sinz) = lim ———= = lim [Asz — 0,0 =sinz —0.] =1
x—0 z—0 sinx 6—0
. cosf—1 . cosf—1 cosf+1 . cos?f —1 . —sin? 6
lim ——— = lim — - = lim — = lim ——+——
6—0 20 6—0 20 cosf+1 6-020%(cosf+1) 6-0260%(cosh+ 1)
_ 1 lim sinf siné 1 _ 1 ‘m sin 0 lim sin 6 lim 1
2050 6 0 cos@+1 2050 O o6—0 6 6—o0cosf+1
_ 1 1 _ 1
T2 1+1 4
s 2 . 2 . 2 .
lim M = lim {x M] = lim z - lim w —0- lim 22¥ [Wherey = 932]
x—0 x z—0 xr-x z—0 z—0 €T y—0t Y
( sinx)
— —— ) -cosx .
1—tanz . cosx . cosx —sinx .

= lim
z—n/4 SINT —COST  z—n/4 (sinz —cosz)-coszr aw—n/4 (SIDXT —COST)COST  z—m/4 COST

lim sin(z —1) m sin(z — 1) — lim 1 lim sin(z — 1) _1.q_1

m—>1x2+x72_x—>1($+2)(x71) z—1lgx+2z—1 x—1 3

1=0
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51.

52.

53.

54.

55.

SECTION 2.4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS  UJ

d 2 d3 4
o (sinz) =cosz = pre] (sinz) = —sinz = e (sinz) = —cosz = e (sinz) = sinz.
99 pal
The derivatives of sin = occur in a cycle of four. Since 99 = 4(24) + 3, we have 409 (sinz) = e (sinx) = —cosz.

Let f(z) = zsinz and h(z) = sinx, so f(z) = xh(zx). Then f'(x) = h(z) + zh'(z),
f'(x) = W (z) + h'(z) + zh"(z) = 21/ (z) + =h'' (z),

f"(z) =2n"(z) + b (x) + zh"' (x) = 31" (z) + zh""' (x), - - - ,f(")(;r) = nh("_l)(ac) + xh(”)(x).

2
Since 34 = 4(8) + 2, we have h®¥ (z) = h? (z) = % (sinz) = —sinx and h®% (z) = — cos z.

35

d
Thus, e (zsinz) = 35hCY () + zh®® (z) = —35sinx — xcos .

y= Asinz + Becosz = 1y = Acosz — Bsinz = y” = —Asinz — Bcosz. Substituting these
expressions for y, ', and "’ into the given differential equation 3" + ¢’ — 2y = sinx gives us

(—=Asinz — Beosz) + (Acosz — Bsinx) — 2(Asinz + Beosz) =sinz <

149

—3Asinz — Bsinz + Acosz —3Bcosz =sinz < (—3A— B)sinz + (A — 3B) cosz = 1sinz, so we must have

—3A — B =1and A — 3B = 0 (since 0 is the coefficient of cos x on the right side). Solving for A and B, we add the first

equation to three times the second to get B = — 1—10 and A = — %,
Since —1 < sin (1/z) < 1, we have (as illustrated in the figure) = xsint
xsin
—|z| < zsin(1/z) < |z|. We know that liH(l) (Jz]) =0 and
lin}) (= |z|) = 0; so by the Squeeze Theorem, lin%:nsin (1/z) =0. 1
@) d tan oz — d sinx L gty SOSTCOST — sinz (—sinx) _ cos? —|—sin2x. So sec? 1 — 1 .
dz dz cosx cos? x cos?x cos? x
d d 1 0) — 1(—si i
(b) —secz = — = secr tanx = (cos)(0) ( smx). Sosecs tanz = ——er-
dx dx cosx cos? cos?x
d , . d 1+cotx
(¢ In (sinz + cosz) = p e —

. cscx (—csc®x) — (1 +cotz)(—cscx cotx)  csca [—csc® x4 (1 + cotx) cot x]
cosz —sinx = =

csc? csc? x
—CSC2:U+COt2£L‘+COtIL‘ —1+cotx
cscx cscx
. cotx —1
Socosx —sing = ——
cscx
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56. We get the following formulas for r and A in terms of 6:

.0 r _ .0 0 h _ 0
Sm—_l_O = r-lOsmi and cos§—10 = h-lOcos2

Now A(0) = $7r? and B(0) = % (2r)h = rh. So

=

. AG) o 1 .. 10sin(6/2)
015(% ) oo+ Th 27r91ir(1)1+ N 271-012& 10 cos(6/2)

>3

=17 lim tan(6/2) =0
p Jlim tan(6/2)

57. By the definition of radian measure, s = r6, where 7 is the radius of the circle. By drawing the bisector of the angle 6, we can

/2 ro C2.(0/2) . 02

= d=2r sing So lim im im
B 2’ o—o+ 2sin(0/2) ~ 9—o sin(6/2)

see that sing = - lim ——
2 o—o+ d  e—o+ 2rsin(6/2)

[This is just the reciprocal of the limit lim % = 1 combined with the fact that as 6 — 0, % — 0 also.]

T—

has a jump discontinuity at x = 0.

58, 2 It that f(z) = ————
(a) appears that f(z) NiST

-

—

-2

x _ x _ x _ x
V1—cos2z  \/1—(1—2sin?z) V2sin’z V2|sinz|

(b) Using the identity cos 2z = 1 — sin®z, we have

Thus lim —e=fee = lim —— = = lim ——
’ e—0- /T —cos2x a—0- ﬁ\sinm\ B V2 a—0- —(sinx)
1 1 11 V2
=——lim —=——%--=——
V2 z—o0- sinz/x V2 1 2

Evaluating hm+ f(z) is similar, but | sin x| = 4 sin z, so we get %\/5 These values appear to be reasonable values for
x—0

the graph, so they confirm our answer to part (a).

Another method: Multiply numerator and denominator by /1 + cos 2x.

2.5 The Chain Rule

dy dydu 1, —2/3 4
1. Letu =g(x) = 1+4 = f(u) = ¢u. Then 2 = Z4 20 _ (1 f)y=—o
etu = g(z) +4zandy = f(u) = ¢/u. Then dr = duds (3u™7)(4) R ETE
2. Letu = g(x) = 22® + 5and y = f(u) = u*. Then dy _ dydu _ (4u®)(62?) = 2422 (22> + 5).
dr  dudzx
— g(z) = - flu) = dy _dydu _ o2 — rsec?
3. Letu = g(z) = mx and y = f(u) = tanu. Then e duds = (sec® u)(m) = wsec’ wx.
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14.

15.

16.

17.
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SECTION25 THECHAINRULE O 151

_ _ _ . dy dydu 2 N 2
. Letu = g(z) = cotz and y = f(u) = sinw. Then o duds (cosu)(— csc® ) = — cos(cot x) csc” z.
Letu = g(z) =sinzand y = f(u) = Vu Then@*@d—u*lu’l/zcosx*msx L
' 7 Y e T dude 2Va  2vsma

. Letu = g(x) = Vzandy = f(u) = sinu. Then dy _ dydu _ (cosu)(%x’l/z) = 8% _ cos v

dz ~ dudx T ove 2vz

F(z) = (52° +22%)* £ F'(2) = 4(52° + 22%)% . d%(mﬁ +22%) = 4(52° + 223)3(302° + 622).

We can factor as follows: 4(z%)?(523 + 2)362% (52> + 1) = 242 (52® + 2)3(52% + 1)

£ (1+z+22) =99(1 + +22)%(1 + 22)

T

d 5
: =VBrFil=06z+1)"Y? & f@)=Li6z+1)""2 —(Gr+1) = ———n
fla) = VEEFT= (24 D2 & ) = b+ 1) o+ ) = e
g(z) = (2 — sinz)®/? £
g'(x)z%(2—sinac)1/2~dix(2—sinac)=%(Z—Sinm)l/z(—cosa:):—%cosac(Z—sina:)l/2

1 2(sint — sec’t)

_ _ —_92 CR ’ - _ —3(_ qj 2 = —————:c
A(t) = Tcost T tan)? (cost + tant) = A'(t) 2(cost + tant) " (—sint + sec” t) (cost + tant)?
_ 1 2 —1/3 R T —4/3 _ —2x

)

f) = cos(92) = f'(0) = fsin(92 7 (6’2) = fsin(ez) -(20) = —20 sin(6’2)

g(0) = cos?6 = (cos0)? = ¢'(f) =2(cosh)' (—sinh) = —2sinh cosf = — sin 260

h(v) = v/1+ 02 = v(1 + 0?3 =

502 4+ 3

h/(’u) —. %(1 _'_1)2)72/3(2,0) + (1 +’02)1/3 1= %(1 +U2)—2/3[21}2 + 3(1 +'02)] = 3( 3T -1 T2 )2

f@t) =tsinmt = f'(t) =t(cosmt) - m+ (sinnt) - 1 = wtcosmt + sinmt

flx) =2z -3)*@*+2+1)° =
fl(@)= 2z —3)* 5>+ 2+ 1)*Q2c+ 1)+ (@® + .+ 1)° - 422 — 3)% -2
=22 -3%@* +2+1)*(2x—3)-5(2z+ 1)+ (2 + 2+ 1) - §]

= (22 — 3)*(2? + 2 4+ 1)*(202? — 20z — 15 + 82 4 8z + 8) = (22 — 3)*(a? + = + 1)*(282% — 122 — 7)
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18. g(z) = (2> +1)*(2* +2)° =
g'(z) = (x2 +1)°%. 6(.7,’2 + 2)5 - 2x 4+ (x2 + 2)6 . 3($2 + 1)2 -2z

= 6x(x? + 1) (2% +2)°[2(2® + 1) + (2 + 2)] = 6x(x? 4+ 1)*(2* +2)°(32% + 4)
19. h(t) = (t+ 1?32t —1)° =
R(t)=(t+1)%%-3(2> —1)> -4t + (22 = 1) - 2(t + 1)/ = 2(¢ + 1) 7/3(2¢% — 1)*[18¢(¢ + 1) + (2t — 1)]
=2(t+1)7'/3(2t* — 1)*(20¢> + 18t — 1)
2. F(t)=3t—1D*2t+1)72 =
F'(t) = (3t — 1)*(=3)(2t + 1)74(2) + (2t + 1) 72 - 4(3t — 1)3(3)
=6(3t—1)3(2t+1)"4~(3t — 1) +2(2t +1)] = 6(3t — 1)*(2t +1)"*(t + 3)

w?—1\°
21. g(u) = (u3—|—1> =

b =1 d Wt =1 (@@ 1) (W 4+ 1)(3u) — (W — 1)(3ud)
g(“)_S( ) Wl W)y @ 1)

)" 3u?[(w? +1) = (u¥ —1)] 8(u3 17 3wu?(2)  48u*(u® —1)7
ud +

R VE @) @1 @1

5 4 4
2. y= a:—f—l = y =5 :L’—f—l a r—i—l =5 ac—&—l - L),
T r) dx T T 2

5(x + 1)*(2? — n

_ o 1
_8( -

Another form of the answer is

T T 1/2
2. y= = (=
Y=z 11 (:1:+1) =

,_ 1 e NP d e Y1 2T @+ 1)) —2()
Y=o\ 11 w\z+1) "2 0 2 (@+1)p
1@+ 1 1
T2 g2 (412 2y/x(z+1)3/2
4 5
_ (vt
2. U(y) = (y2 +1>
U(y) =5 VI D@ - 6+ D@2y 5+ D220+ D) — (v + 1))
y*+1 (v?+1)? (v2 + D)y +1)?
_ 10y(y* + D)yt 207 — 1)
(y? +1)°
25. h(0) = tan(6?sin0) £
h'(0) = sec*(6*sin9) - %(02 sin §) = sec?(6” sin ) - [#2 cos @ + (sin 0)(26)] = 6 sec? (62 sin 0) (0 cos § + 2sin §)
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2. f(t) =

27.

28.

29.

30. s

3.

32,

SECTION 2.5 THE CHAIN RULE

t B t 1/2
t24+4 \t24+4

7t = %(t 14)”2 4 (t2 14) _ %(t t+4>”2. G +(f2)(i)4)—2t(2t)

_ (P49 a2 4
- 2t 1/2 (t2+4)2 - 2t1/2(t2+4)3/2

COsS

v= V1 +sinx

y' = (cosz) - (—3)(1+sinz) ~3/2cosx + (14 sinz) Y3 (—sinx)

= (cosz)(1 +sinz) 2 =

—2(1+sinz

=—2(1+sinz)” 3/2[cos?x + 2(1 + sinz) sinz] = f%(l+sinx)_3/2(0032x+2sinx+2sin2x)
Y73/2(1 4 2sinx + sin?z) = %(1+sinx)73/2(l+sinz)2
)

=—2(1+sinz 12 or —1V1T+sinz
t2
Vit +1
(8 + 1)M2(2t) — 12 - (3 +1)71/2(3¢%) _ e+ )72 2 4+ 1) — 347
(\/t3 +1)° (3 +1)!

_ P +2) (14
(t3 + 1)3/2 2(t3 + 1)3/2

F(t) =

F'(t) =

_ (7’271)3
H(T)—m =

_ @41 307 = 12(2r) = (PP = 1) -5(2r £ DY2)  2(2r + D*(r? = 1)*[3r(2r +1) = 5(r? — 1)]

[(2r +1)5]2 (2r +1)10
2(r> = 1)%(6r*> + 3r —5r> +5) _ 2(r> — 1)*(r*> 4+ 3r + 5)
(2r +1)8 o (2r +1)8

1—|—smt 1+sint 1/2 -
1+cost \1-+cost

S(t) = 1(1+sint>_1/2 (14 cost)cost — (1 +sint)(—sint)
2

1+ cost (1+ cost)?
1 (14 sint) "2 cost + cos? t + sint + sin® ¢ _ cost +sint +1
2 (14cost)"1/2 (1+cost)? "~ 2y/T¥smi(l+cost)??

y = cos(secdz) =

y' = — sin(sec 4x) di:lp sec4x = —sin(sec4x) - sec4x tandx - 4 = —4 sin(sec 4x) sec 4z tan 4x

J(0) = tan®(nf) = [tan(nd)]®* =

J'(0) = 2[tan(nd)]* die tan(nd) = 2tan(nd) sec?(nd) - n = 2n tan(nd) sec?(nd)
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154 [ CHAPTER2 DERIVATIVES
B.y=sinvVI+a22 = y =cosvVI+aZ I(1+2%) "2 2z= (z cosvV1+a?)/V1+a?

xcos(1 4 z?)

34, y = \/sin(1 + 22) = [sin(1 + 2?)]V/? = ¢ = 1lsin(1 + 2)]” Y2 cos(1+a?) 2z =
sin(1 + z2)

1—cos2z\*
/B.y=(—"7-—
y (1 + cos 295)
'y 1—cos2z\® (1 + cos2z)(2sin2z) + (1 — cos 2z)(—2sin 2x)
Y= 1T+ cos2z (1 + cos2x)?

_ 4<1 - C052m>3 2sin2z (1 +cos2x +1—cos2x) 4(1— cos2z)® 2sin2z(2)  16sin2z (1 — cos2z)?

1+ cos2z (1 + cos2z)? ~ (1 +cos2z)3 (1+4cos2x)? (1 + cos2x)®
1 P | 1 1 .11 1
3. y=xsin—- = y =sin—+zcos—|—— ) =sin— — —cos—
x x x\ T x T x

37. y = cot?(sinf) = [cot(sinf)]> =

y' = 2[cot(sin 0)] - die [cot(sin @)] = 2 cot(sin §) - [ csc(sin @) - cos ] = —2cos § cot(sin @) csc?(sin )
38. y =sin(t +cosvt) =

y' = cos(t + cosv/t) - 7 t+cos\/_ = cos(t + cos V1) - (1fsin\/f.i)_cost+cos\/— 2\/_ sin v/t

2/t T ovi
39. f(t) = tan(sec(cost)) =
’ 2 d 2 d
f'(t) = sec*(sec(cost)) - 7 sec(cost) = sec”(sec(cost)) - sec(cost) tan(cost) - o cost
= —sint sec?(sec(cost)) sec(cost) tan(cost)
40. g(u) = [(v* - 1)° - 3u]* =
i[(u2 —1)% — 3u] = 4[(v® — 1)® — 3u]® - [6(u® — 1)® - 2u — 3]

" du
=12[(uv* — 1)® — 3u)®[4u(u® — 1)° — 1]

g'(w) = 4(u? = 1)° — 3uf®

Ny=\etyz = y=3i@+z)” 1/2(1+1 1/2)—2W<1+2\lﬁ>

2. y=\z+Ve+vz = y'=%(m+ x+\/;)71/2{14-%(m+\/§)71/2(1+%x71/2)}

43. g(x) = (2rsinrz +n)? = ¢'(x) = p2rsinre +n)?"1(2rcosrxz - r) = p(2rsinrx +n)P1(2r? cosrx)
4. y = cos*(sin®z) = [cos(sin®z)]* =

y' = 4[cos(sin® z)]3(— sin(sin® 2)) 3sin® z cosz = —12sin® = cos = cos®(sin® x) sin(sin® z)
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45. y = cos \/sin(tan 7x) = cos(sin(tan7z))*/? =

—12 4

d
y' = — sin(sin(tan 7z))*/2 - T (sin(tan 72))/? = —sin(sin(tan 7z))"/? - 1 (sin(tan 7z)) (sin(tan 7z))
x
— sin 4/sin(ta: d — sin 4/sin(ta:
—— ntanrz) cos(tan7z) - — tanmx = - - n(tanrz) cos(tan ) - sec®(wz) -
2 y/sin(tan wx) dz 2 y/sin(tan wx)

— cos(tan wx) sec () sin /sin(tan )

2 y/sin(tan wx)

46.y:[m+(x+sin2m)3]4 = y':4[x+(x+sin2m)3]3-[1+3(x+sin2x)2~(1+2sinxcosm)]

47. y = cos(sin30) = 1y’ = —sin(sin30) - (cos30) - 3 = —3 cos 30 sin(sin30) =
y" = —3[(cos 3) cos(sin 30) (cos 30) - 3 + sin(sin 30)(— sin 30) - 3] = —9 cos?(30) cos(sin 30) + 9(sin 30) sin(sin 30)

1 2 , —2sec’ x

48. y=———— = (1 +tanz) ° = =—2(1+tanxz) 3sec?r = ———_.
4 (1 + tanz)? ( ) Y ( ) (1 +tanz)®

Using the Product Rule with y' = [—-2(1 + tan x)73] (secx)?, we get
y' = —2(1 4 tanz) "2 - 2(secz)(secx tanz) + (secz)® - 6(1 4 tanz) *sec® x

2 is the lesser exponent for sec

=2sec’z (1 +tanz)* [-2(1 + tanz) tan x + 3sec® z] and —4 for (1 + tan )

=2sec?z (1 +tanz) * [-2tanz — 2tan® z + 3(tan® z + 1)]
_ 2sec’ x (taan — 2tana:+3)
B (1 + tanx)*

—sect tant

49. y =T —sect = 9y =21(1—sect) ?(—sect tant) = —————.
Yy Yy 2( ) ( ) 2m
Using the Product Rule with y = (—3 sect tant) (1 — sect)™'/2, we get
y" = (—3sect tant) [—%(1 —sect)"%/?(—sect tant)} + (1 —sect)™1/2 (—1)[sect sec®t + tant sect tant].

2

Now factor out — sec ¢(1 — sec t)~3/2. Note that —3 is the lesser exponent on (1 — sect). Continuing,

Y’ = —21sect (1 —sect)®/? [3sect tan® ¢ + (1 — sect)(sec® t 4 tan” t)]
= —2sect (1 —sect) 2 (1sect tan®t + sec’ ¢ + tan’ t — sec® ¢t — sect tan”t)
= —%sect (1 —sect)” 3/2[ sect (sec®t — 1) +sec®t + (sec®t — 1) — sec® ¢]
= —1sect (1 —sect) 3/2( 2sec®t +2sec’ t + 2 sect — 1)

sect (1 —sect) ™2 (3sec®t —sec®t — Ssect + 3)

_ sect (3sec®t —4dsec®t —sect + 2)
o 4(1 — sect)3/2

sect (3sect + 2)y/1 — sect

7 . We chose to find a factored form with

There are many other correct forms of 3y, such as y” =

only secants in the final form.
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B0y — ol
'y_\/x+1
, VrHl-d—do-f@+ 1)V arrl-2/Vr 1l 4A@+1)—22  2z+4
. (Varli) - r+1 T RNk
s @+ 2-Qe+4) 3@+ (@4 DY?R@+1)-3+2)] 20+2-3x-6  —x—4
. @+ D7 B (@ + 1) T @R @y

5l.y=0Bx—1)"°% = ¢y =-6Br—1)""-3=-1803z—1)"". At(0,1),y = —18(—1)"" = —18(—1) = 18, and an

equation of the tangent line is y — 1 = 18(z — 0), ory = 18z + 1.

322 3.4
52 y=v1+ad =142 = ¢ =11+42%)"Y2.322 = —=—— At(2,3),y' = =—— = 2, and an equation of
y ( ) y =3 ) Niew (2,3),y Wil q

the tangent lineis y — 3 = 2(x — 2), ory = 2z — 1.

53. y = sin(sinz) = gy’ =cos(sinz)-cosz. At(m,0),y" = cos(sin) - cosm = cos(0) - (—1) = 1(—1) = —1, and an

equation of the tangent lineisy — 0 = —1(z — 7),ory = —x + 7.

54. y =sin?rcosx = 1y =sin®x(—sinz)+ cosz(2sinzcosz). At (7/2,0),y = 1(—1) + 0 = —1, and an equation of

the tangent lineisy — 0 = —1 (x - %),ory =-r+ 7.

55. () y = f(z) =tan(Z2®) = f'(z) =sec®(32%)(2- Zz). (b) 3
The slope of the tangent at (1, 1) is thus a.n
f'(1) =sec® (%) =2+ F = =, and its equation 0 1.4
isy—l=n(z—Nory=nmz—m+1. J

X
NeEri ®) ‘

VZ=22(1) —z(3)(2 - 2*)7V/?(—22) (2 x?)t/?
(VZ—a2) (2—a2)1/2 (L 1)

(2 —2°) + 22 2 -15 15
= (2 — 22)3/2 = (2 — 22)3/2 L J

56. (a) Forz > 0, |[z| = z,andy = f(z) =

f'(x) =

-1

So at (1, 1), the slope of the tangent line is f'(1) = 2 and its equationisy — 1 =2(z — 1) ory = 2z — 1.

5. (a) f(z) = evV2 — 22 = 2(2 — 2H)V? =

2 — 222

fll@)=z-12-2)""2(=22)+ (2-2)? 1=(2-2°)""? [-2® + (2-27)] = Worwr

2

b

(b)

f' = 0 when f has a horizontal tangent line, f’ is negative when f is

2 decreasing, and f' is positive when f is increasing.

-3
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. (a) 1 From the graph of f, we see that there are 5 horizontal tangents, so there
f must be 5 zeros on the graph of f’. From the symmetry of the graph of f,
we must have the graph of f' as high at x = 0 as it is low at z = 7. The
intervals of increase and decrease as well as the signs of f’ are indicated in
0 ' ' & the figure.
FALFVEFALFY I £y
feif =i fif— i f-
y
0 z o

f'(z) = cos(x +sin 2z) - di (z +sin 2z) = cos(z +sin 2z) (1 + 2 cos 2x)
x

3
(b) f(x) =sin(x 4+ sin2z) = F\ w
Ot \17

. For the tangent line to be horizontal, f'(z) = 0. f(z) = 2sinz +sin’z = f'(z) = 2cosz +2sinz cosz =0 <

-3

2cosz(l +sinz) =0 < cosz=0orsinz =—1,s02 = 5 + 2nmw or 37” + 2nm, where n is any integer. Now
f(%) =3 and f(%") = —1, so the points on the curve with a horizontal tangent are (% + 2nm, 3) and (37" + 2nm, 71),

where n is any integer.

1
Ly=vV1+2z = ¢y =211+22)"?.2=——— Theline6z + 2y =1 (ory = —3z + 1) has slope —3, so the
ymvide = sl ito 7+ 2y =1 (ory = —3z+3) has slop
1 1
tangent line perpendicular to it must have slope 2. Thus, = = —— <& 142x=3 = 14+2x=9 <
& petp Pe3 3 Vitor

20 =8 & z=4.Whenz =4,y =+/1+2(4) = 3, so the point is (4, 3).
F(x) = f(g(z)) = F'(z)=["(9(x)) g (x),50 F'(5) = f'(9(5)) - g'(5) = f'(-2) - 6 =4-6 =24

hz) = /4+3f(x) = h(z)= %(4+3f(a:))71/2 -3f'(x), so

W(1)=34+3f1)?-3f(1)=3(@4+3-7)7"/?.3.4=-L =8¢

5

- @ h(z) = f(g(z)) = h'(z)=f"(9(x)) g (),s0 h'(1) = f'(g(1)) - ¢'(1) = f(2) - 6 =56 = 30.
(b) H(z) =g(f(x)) = H'(z)=g(f(2)) f(2),s0 H'(1) =g (f(1))- f'(1) =¢'(3)-4=9-4=36.
@ F) = f(f(z)) = F(z)=[f () f(z),s0F(2)=f(f(2)-f(2)=f(1)-5=4-5=20.

(b) G(z) =g(9(z)) = G'(z) =¢'(9(z)) - g'(x),50G'(3) = g'(9(3)) - ' (3) =¢'(2)- 9=T-9=63.
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65.

66.

67.

68.

69.

70.

7.

72,

@ u(z) = flg(x)) = v'(z)=f'(9(x))g'(x). Sow'(1)=f"(9(1))g'(1) = f'(3)g'(1). Tofind f(3), note that f is

. . . 3—4 1 - .
linear from (2, 4) to (6, 3), so its slope is 2 — =7 To find ¢’ (1), note that g is linear from (0, 6) to (2, 0), so its slope

is 5 — 5 =3 Thus, f'(3)g'(1) = (=1)(-3) = }.

®)v(z) =g(f(z)) = ' (z)=4(f(2)f (x). Sov'(1)=g'(f(1))f (1) =¢'(2)f'(1), which does not exist since

g’ (2) does not exist.

(©) w(z) =g(g9(z)) = w'(x)=g(9(x))g (z). Sow'(1) =g (9(1))g'(1) = ¢'(3)g'(1). To find ¢'(3), note that g is

—0_ % Thus, ¢’ (3)g/(1) = (2)(~3) = —2.

. . .2
linear from (2, 0) to (5, 2), so its slope is 5

@ h(z) = f(f(2)) = W(x)=[f(f@)f (). Soh'(2)=f(fNS(2)=FD)f Q)= (-1)(-1) =1

®) g(z) = f(2*) = ¢'(x)=f'(a?)- d% (%) = f'(2®)(22). Sog'(2) = f'(2*)(2-2) =4f'(4) = 4(2) = 8.
The point (3, 2) is on the graph of f, so f(3) = 2. The tangent line at (3, 2) has slope Ay = %4 = ,;

9@@) =/f@) = ¢'@@)=3/@] " fa) =

) G(2) = [f(2)]" = G'(2) =alf(@)"" f(2)

r(x) = flg(h(x)) = r'(z) = f'(9(h(x))) - g'(h(x)) - B (x), s0
r'(1) = f'(g(h(1))) - g'(h(1)) - B'(1) = f'(9(2)) - '(2) - 4= f'(3)-5-4=6-5-4=120

fl@) =2g(a®) = [f(2)=2g(2") 20 +g(?) 1= 22" (2) + g(a*) =
f'(x) = 22%¢" (2%) 22 + ¢ (%) 4z + g’ (2%) 22 = 42" (2%) + dag' (2?) + 22g' (2?) = bag'(2?) + 42°g" (2?)

F() = f3(4f(@)) =
F/(e) = /3141 @) - = BFAF (@) = f BFAF (@) -3 (4F(2)) - - (4f(2))
= F'3AS @) 3 (4f (@) - 4f (@), 5o
F/(0) = F'(3F(41(0))) -3/ (4F(0)) - 45'(0) = f'(3/(4-0)) -3 (4:0) -4-2 = f/(3:0)-3-2-4-2=2:3.2.4.2.= 96,
F@) = fef(@f@) =
F(a) = 1o (@ (@) - 5 (o (af@) = 1o @f@) - [ F@f@) - S f @) + f(ef@) 1
= ['(@f@f @) [ef @f @) - @ @)+ £) 1) + fef @], so

FI) = @) - Q) - () + f) + £ = £ (f(2) - [f(2) - (44 2) + f(2)]
=f'(3)-[p-6+3] =6-33=198.
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74.

75.

76.

7.

78.

79.

80.

81.
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Let f(z) = cosx. Then Df(2x) = 2f'(2x), D*f(2x) = 22 f"(2x), D* f(2x) = 23 f""'(2x), .. .,
D™ f(2z) = 2" f(™)(2z). Since the derivatives of cos z occur in a cycle of four, and since 103 = 4(25) + 3, we have
f(103) (z) = f(?’) (x) = sinz and D% cos 2z = 2103f(103)(2x) = 2103 gin 2z,
Let f(x) = zsinmz and h(z) = sinwx, so f(z) = zh(z). Then Df(x) = zh'(z) + h(z),
D*f(z) = xh” (x) + h'(x) + b’ (z) = zh” (z) + 2h' (x), D3 f(2) = zh"(z) + W' (z) + 21" (z) = =h'" (x) + 3" (z), ...,

D" f(x) = zh{™ () + nh("~Y (x). We now find a pattern for the derivatives of h: h'(z) = 7 cos 7, b’/ (z) = —n? sin 7z,

R (x) = —7% cos mx, h*(x) = ©* sin 7wz, and so on. Since 34 = 4(8) + 2, we have h*¥ (z) = —7** sin 7z and
h®) () = —7% cos wx. Thus,

D3 f(x) = xh®® (x) + 353 (z) = 2(—73° cos mx) + 35(—7>* sinwz) = —7°°z cos mx — 35754 sin 7.

s(t) =10+ 2 sin(10mt) = the velocity after ¢ seconds is v(t) = s'(t) = 1 cos(10mt)(10m) = 2F cos(107t) cm/s.

(@) s = Acos(wt +68) = velocity = s’ = —wAsin(wt + §).

nw—0

(b)IfA#0andw #0,thens’ =0 < sin(wt+46)=0 & wt+d=nr & t= , m an integer.

(a)B()—40—|—035sm@ = ﬁ:(035 2 )<2W>:—O'7Wcosﬁ:7—7rcos@

5.4 dt 5.4 5.4 5.4 5.4 54 5.4
dB 77T 2w

L(t) =12+ 2.8sin(2=(t — 80)) = L'(t) = 2.8cos(2=(t — 80)) (2%).

565 (
On March 21, ¢ = 80, and L'(80) = 0.0482 hours per day. On May 21, ¢ = 141, and L'(141) ~ 0.02398, which is
approximately one-half of .’ (80).

dvidvdsidv

By the Chain Rule, a(t) = Dl ds v(t) = v(t)

The derivative dv/dt is the rate of change of the velocity

with respect to time (in other words, the acceleration) whereas the derivative dv/ds is the rate of change of the velocity with

respect to the displacement.

(a) The derivative dV/dr represents the rate of change of the volume with respect to the radius and the derivative dV//dt

represents the rate of change of the volume with respect to time.

. B 4 3, av. _ dVdr o dr
(b) Since V' = o dr A 4drr 7
45(t — 2)®

(a) Derive gives ¢'(t) = without simplifying. With either Maple or Mathematica, we first get

(2t +1)10

gl(t) (t ) —18 (t _ 2)9

( 1) TSNk and the simplification command results in the expression given by Derive.

(b) Derive gives 3y = 2(z® — z + 1)3(2z + 1)*(172® + 622 — 92 4 3) without simplifying. With either Maple or

Mathematica, we first get ¢’ = 10(2x + 1)*(2® — x + 1)* + 4(2z + 1)5(2® — = + 1)3(32% — 1). If we use
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Mathematica’s Factor or Simplify, or Maple’s factor, we get the above expression, but Maple’s simplify gives

the polynomial expansion instead. For locating horizontal tangents, the factored form is the most helpful.

4 —
e 1\ (Bat — 1)y s x+1
82. (a) f(z) = (m) . Derive gives f'(z) = E— 1)(24_53;—:_ ) whereas either Maple or Mathematica
4
. , -1 . .
give f' (z) = = 3 after simplification.
[T 2L a a1y
441 ;
®) f(2)=0 & 3*-1=0 o x:if/gsio.ms. f 1
—4 4
(c) Yes. f'(z) = 0 where f has horizontal tangents. f’ has two maxima and £
one minimum where f has inflection points.
-2

83. (a) If f is even, then f(x) = f(—z). Using the Chain Rule to differentiate this equation, we get

fl(x) = f'(—=) % (—z) = —f'(—=). Thus, f'(—z) = —f'(x), so f is odd.

(b) If f is odd, then f(z) = —f(—=z). Differentiating this equation, we get f'(z) = —f'(—z)(—1) = f'(—z),so0 [ is
even.
| 28] — (1@ @)Y = £ @ @]+ ()o@ @10

g(x
_ '@ f@)d' @) _ g@)f' (@) - f(@)g'(x)
g(z)  [g(x)]? [g(x))?

This is an alternative derivation of the formula in the Quotient Rule. But part of the purpose of the Quotient Rule is to show

that if f and g are differentiable, so is f/g. The proof in Section 2.3 does that; this one doesn’t.

d e . .
85. (a) o (sin™ x cosnx) = nsin™ "' & cosx cosnx + sin™ x (—n sinnx) [Product Rule]
x
=nsin" ! x (cosnz cosx — sinnz sinx) [factor out nsin™ " z]
= nsin" !z cos(nx + x) [Addition Formula for cosine]
=nsin" ! z cos[(n + 1)x] [factor out ]
d n n—1 : n :
(b) T (cos™ x cosnz) = ncos" " x (—sinx) cos nx 4 cos” x (—nsinnz) [Product Rule]
x
= —ncos” ! x (cosnx sinx + sin nx cos x) [factor out —n cos™ ! ]
= —ncos" ! xsin(nz + z) [Addition Formula for sine]
= —ncos" ! xsin[(n + 1)x] [factor out ]

86. “The rate of change of y° with respect to x is eighty times the rate of change of y with respect to 7 <

d d d d .
Lp=80Y & 5yt g0l o 5y = 80 (Note that dy/dx # 0 since the curve never has a
dx dx dz dz

horizontal tangent) < y* =16 < y=2 (sincey > O forall x)
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T

: o d : o d ™ ™ o
87. Since §° = (15 )0 rad, we have — 7 (sinf°) = — 7 (sin 1£560) = 155 cos 1550 = 155 cos 6°.

88. (a) f(z) = |z| = Va2 = (2?2 = f(z)=3(2%)""*(22) =2/Va2 =g/ |z|forz #£0.
f is not differentiable at x = 0.

() f(z) = |sinz| = Vsin’z =

sinx

f'(z) = 3(sin’ z) "'/?2sinz cosz = Tsing] cosx XX Jr\ ! > >
NN

CcosS T if sinz >0
—cosz if sinz <0

f is not differentiable when x = n, n an integer.
(©) g(z) =sin|z| =sinvVz? = y

. 4
cos T if >0
g (z) = cos|z| - e = = cosw = . 27 /N — I\,
T —cosz if x<0 N QWL Nl Nmox

g is not differentiable at 0.

89. The Chain Rule says that d— dy du
dr ~ dudz’

d2y d (dy d (dydu\ |d (dy\|du dy d (du
da?  dx (dm =Gz \dude) " |dz \du )| @@ " duds \ @z ) [ProductRule]
du+dyd2 d%y @2+dyd2
dr = du dz? du2 dx du dx?

2 2
90. From Exercise 89, M & gy (35) + =2 dy d”u =
T2

So

dz? ~ du? du dz?
Py_ d Py _ d [y (0] | d[dye
de3 ~ drdx®  dx |du dx dz | du dz?
d (dy\] (du)® | |d (du\*| dy  [d (dy\]dPu  [d (d®u)]dy
dz \ du? dx dx \ dz du? dx \ du dx? dx \ dx? du
d (dy\du] (du\* dududly  [d (dy\du] (du)  dudy
du \ du? ) dz dx dx dx? du? du \du ) dz dx? dx3 du

dPy (@)3 Sdudzucﬁy dy d*u

T dud \ dx dr do? du? ' du dzd

APPLIED PROJECT Where Should a Pilot Start Descent?

1. Condition (i) will hold if and only if all of the following four conditions hold:
(a) P(0) =0
(8) P'(0) = 0 (for a smooth landing)
(7) P'(£) = 0 (since the plane is cruising horizontally when it begins its descent)

) P(£) = h. [continued]
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First of all, condition o implies that P(0) = d = 0, s0 P(z) = ax® + bx®> +cx = P'(z) = 3ax® + 2bx + c. But

P'(0) = ¢ = 0 by condition 3. So P'(¢) = 3al? + 2b¢ = £ (3al + 2b). Now by conditiony, 3al +2b =0 = a= 72—2.
2b 3 _2b g 2
Therefore, P(z) = —3% + ba?. Setting P(¢) = h for condition d, we get P({) = Zf +blf=h =
1 3h 2h 2h 3h
_ 22 2 Lo _ _on _ eI
bé +bl=h = 3b€ h = b 2 T e= 5 Soy = P(z) = —BT Tt

2. By condition (ii), Z—f = —v forall ¢, so x (t) = ¢ — vt. Condition (iii) states that | —= d < k. By the Chain Rule,

we have % :Z il; = i? (32%) C(li_j + 3—h (2z )d;v = 6h;20 - 6}2:;” (forz <0 =

% = % (2 )Z—f - %% = —12;?) x+ 6};) . In particular, when ¢t = 0, x = £ and so

% . =— IQ;U {+ 62: i = —GZ: Thus, Z; 61;;) : < k. (This condition also follows from taking = 0.)
3. We substitute £ = 860 mi/h?, b = 35,000 ft x 52818 3 and v = 300 mi/h into the result of part (b):

6(35,000 - ===)(300)* [ 35,000 _
< > S 2 64. .
72 <860 = ¢>3004/6 5980 . 860 64.5 miles

4. Substituting the values of A and ¢ in Problem 3 into

P(z) = 3? 4 :Z—Zm gives us P(x) = ax® + ba?,

where a ~ —4.937 x 1075 and b ~ 4.78 x 1073,

0 64.52

2.6 Implicit Differentiation

1. (a)%(sz—yZ):i(l) = 18z-2yy' =0 = 2y =18z = ¢y =—

dx
®92% —9y*=1 = > =9>-1 = y:i\/gxz—1,soy’:i%(9x2—1)*1/2(18x):i%.
72
(c) From part (a) o % which agrees with part (b)
Py T e ¢ partio)
2, (a)i(2x2+x+:1cy):i(1) = 4dr+l4+ay+y-1=0 = zy=—dz—y-1 = y,:_4x—|—y—|—1
dx dx x
2 2 1 / 1
b)2z"+z+zy=1 = wy=1-22"-2 = y=—--2r—1lsoy =—— —2
x x
(¢) From part (a),
T T e
x T T x x x
agrees with part (b).
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4 _4 Lo Lo IR VY
'(a)dx(ﬁ+\/g)_dx(1) = 3% +3Y y=0 = 2\/yy— N = y NG

O v+ y=1 = Jy=1-/z = y=01-vz)? = y=1-2yz+4x,50

163

O R VN PR
y =-2 2:E +1=1 \/E
(c) From part (a), vy’ = —% =— ! ?/%/E [from part (b)] = —% + 1, which agrees with part (b).
d (2 1 d _ _ 1 2 2y2
-(a)%(;—§>=a(4) = 2’4y =0 = ?ylzﬁ = y'=$—y2
(b)zflzél = l:274 = 1_2-40 = y:L,so
T oy Yy Y T 2 —4x
, (2-42)(1) —x(—4) 2 or 1
N (2 — 4z)? (2 —4x)2 21 —2x)2 |
2
(=x)
242 2 — 4z 222 2 . .
(c) From part (a), y' = x_yz == [from part (b)] = 22— 42)? = 2= 4$)z,whlch agrees with part (b).

d d
.%(xz—élxy—l—yz):%(él) = 2z —4[zy +y()]+2yy =0 = 2yy —dxy =4y -2z =

2y —x
"y — 22) = 2 — = =2 =
y(y—22)=2y—z V= o

d d
2ty — ) = —(2) = drtay +y(l) -2y =0 = zy —2yy = —4dx—y =

dx dx
—4xr —y
_ ! — _ — I " J
(z—2y)y dr—y = y p—
d 4, 22, 3 d 3., .2 ry2 2 2, 2 3 2
E(m +xy +y)=%(5) = 4o+ 2yy' 4y -20+3y°y =0 = 2z°yy +3y°y = —4dx® — 22y =

—4z® — 2zy® _2$(2$2 + %)
2x2y +3y2  y(222 + 3y)

222y + 3% )y = —4ax® — 22y = Y =

dx

2 2 2 2
— 3z y° — 3x
32 —22y)y =y — 322 = o = 2 -
(By” —2zy)y' =y~ — 3z Y = 3 oy ~ 3Gy —20)

!

2y =

‘Az \zty) dx (z +y)2

/

227 +2zy — 2 — 2y =2y(x +v)?y = 2422y =2z +y)y +2y =

x(x + 2y)
222y + 4dxy? + 293 + 22

/

oz +2y) = 2y(2® + 22y + %) + 2%y = Y =

Or: Start by clearing fractions and then differentiate implicitly.
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d d
10. . (v° +2%y°) = . (1+2%) = bBy'y +2° 3% +¢y° 22 =0+2" +y-42° =

43y — 2x7°

4 2,2 4y _ 4.3 3 —
y'(5y + 3z%y —a:)—4my—2fvy = y/_5y4+3x2y2—$4

1. di;(ycosx):d;i(xz—&—yz) = y(—sinz)+cosz-y =2x+2yy = cosz-y —2yy =2z +ysinz =

9 .
y'(cosx — 2y) = 2z + ysinz = y':w
cosT — 2y

12, 4 cos(xy) = dd (1+siny) = —sin(zy)(xy’ +y-1)=cosy -y = —xy'sin(zy) —cosy -y’ =ysin(zy) =

dx dr

— N o L ysin(zy) _ __ ysin(zy)
yl-wsin(y) — cosy] = ysin(ay) Y —zsin(zy) — cosy zsin(zy) + cosy

d d B
B Vrty=— (" +y") = F@+y) PA+y) =4t + 4ty =

dx dx
1 1 / 3 3,/ 1 3 3,/ 1 /

+ =4z +4 = ——42° =4 - =
2z +y 2,/ac+yy vy 2v/x+y Y 2\/as+yy
1—8x3\/x+y_8y3\/m+y—1 N ,_1—8$3\/m+y

2/ +y 2/ +y Y Y 8y2vr+y—1

14. di [ysin(z?®)] = di [zsin(y®)] = ycos(a?) -2z +sin(z®) -y = zcos(y?) - 2yy +sin(y®) -1 =
x x

, _ sin(y?) — 2zy cos(z?)
" sin(x2) — 2zy cos(y?)

y' [sin(z®) — 2zy cos(y?)] = sin(y®) — 2zycos(z?) =

d d y-l—x-y
15 L = @)y =1y
5 - tan(z/y) Tn (z+y) = sec(z/y) 7 Tty =

ysec’(z/y) —xsec®(z/y) -y =y* + v’y = ysec’(x/y) —y® = >y +wsec(z/y) =
2 2

2 2 1.2 2 / , _ ysec (z/y) —y

ysec’(z/y) —y* = [v* +zsec®(z/y)] -y = o = PERa—T

d d B
16— (2y) = =V T2 = ay +y() =3 (@ +y") P et y) =

xy +y= a + Y = ay — Y = < -y =
Y Yy \/x2 +y2 \/x2 +y2y Y /$2+y2y /m2+y2 Yy
svetyr oy, royyaeriy? o s yyatty?
/22 + 12 Yy /22 + 12 /22 +y2 —y
d _d 2 1 —1/2(,. 1 _ 2.
17 —oy=—1+27y) = 5(zy) (zy +y-1)=0+2"y +y-2z =
dx dx
z / Y 2 / x 2 Yy
Yy + =2y +2zy = vy —x° | =2zy —
2/ xy 2/ xy <2 Ty ) 2/ xy
J x—2x2\/:cy :4my\/xy—y N y,:4xy\/xy—y
2/ zy 2\/zy T — 222 +\/xYy
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SECTION 2.6 IMPLICIT DIFFERENTIATION U1 165

.i(msiny—i—ysinaﬁ):i(l) = xzcosy-y +siny-1+ycosz+sinz-y' =0 =

dx dx

/ : ' : ’ . . , —siny—ycoszx
zcosy -y +sinz-y =—siny—ycosz = y'(xcosy+sinz)=—siny—ycosz = Yy =—"-""""—
T COSY + sInx

dix sin(xy) = % cos(z+vy) = cos(zy)-(zy +y-1)=—sin(z+y)- 1+y) =

zcos(zy)y + ycos(ry) = —sin(zx +y) —y'sin(z +y) =
zcos(zy)y’ +y sin(z +y) = —ycos(zy) —sin(z +y) =

_ycos(zy) +sin(z +y)
z cos(zy) + sin(z + y)

[z cos(zy) +sin(z +y)]y = —1[ycos(zy) +sin(z +y)] = y' =
d _d (v 2 )=
dxtan(m y)_dm (1—!—1‘2) = (1+z%)tan(zx —y)=y =
1+ 2% sec’(z—y)- (1 —y) +tan(z —y) - 20 =3y =
(1+2*)sec’*(z —y) — (1 +2%)sec’*(z —y) - v + 2zxtan(z —y) =y =
(1+a®)sec’(z —y) + 2ztan(z —y) = [1+ (1 +2°)sec®(z —y)] -y =

, (14 2%)sec®(z —y) + 2z tan(z — y)
v= 14 (1+22?)sec?(z —y)

L@+ 2 @P) = (10) = f(@) +a? 3@ @)+ @] 20 =0. 1z =1,we have
PO+ 3FOP - FO+FOP20)=0 = f(1)+1-3-22-f(1)+2°-2=0 =

) +12f'(1)=-16 = 13f/(1)=-16 = [f'(1)=—-1.

dix [9(z) + xsing(z)] = % (#?) = g'(z)+zcosg(x)- g'(x) +sing(z) -1 =22 Ifz=0,wehave

g'(0)+0+sing(0) =2(0) = ¢'(0)+sin0=0 = ¢(0)+0=0 = ¢'(0)=0.

d d
d—y(x4y2—m3y+2xy3):d—y(0) = o' 2y+y? 4t — (2 14y 327 ) + 2 -3t +yd ) =0 =

drdy? o’ — 32y’ + 2982’ = 2ty +2® —6xy? = (42®y® — 32y + 2% 2’ = 22ty +2® — 6 =

, _dx 22ty + % — 62>

v dy ~ 4xdy? — 332y + 293

d d
d—(ysecr)zd—(xtany) = y-secx tanz -z’ +secr-1=x-sec’y+tany -z =
Y Y

ysecr tanx -’ —tany -z’ = xsec’y —secx = (ysecx tanz —tany)x’ = xsec’y —secr =

, _dr xzsec’y —secx
dy ~— ysecx tanx —tany
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25.

26.

27.

28.

29.

30.

31.
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ysin2z = xcos2y = y-cos2x-2+sin2z-y = z(—sin2y-2y’) +cos(2y)-1 =
sin2z -y + 2zsin2y -y = —2ycos2zx +cos2y = 4'(sin2x + 2wsin2y) = —2ycos2x + cos2y =

; f2yc0s2x+cos2y' When 2 — =

(—m/2)(-1)+0 w/2 1 .
Y= Sno. T+ 2zsin2y 5 ~— L~ = ' = — 50 an equation of the

O04+m-1 T 2

andy = Z, we have y =

tangent lineisy — Z = 3(z — 5),ory =

sin(z+y)=2x—-2y = cos(z+vy)- 1+y)=2-2¢y = cos(z+y) y +2y=2—cos(z+y) =

2—-1 1
.When95:7randy:7r,wehavey/:1—4_2 :§,s0

2 — cos(z + y)
! 2 =92— = g =2 T Y
y'[cos(z +y) + 2] cos(z +y) Y cos(@ T+ 9) +2

an equation of the tangent line is y — 7 = 1 (z — 7), ory = 2 + 2.

2 —zy—1yP=1 = 20— (zy'+y-1)—2yy =0 = 2x—ay —y—2yy' =0 = 22x—y=oy +2yy =

2 4—1 .
2r—y=(z+2y)y = y = acx—i— 23. Whenz = 2andy = 1, we have ¢’ = 773 %, so0 an equation of the tangent

lineisy —1=2(zx—2),ory =32 — 3.

2?42y +4y2 =12 = 2o +22y +2y+8yy' =0 = 2y +8yy =-20-2y =

T +y
x4+ 4y

241
2+4

1 .
(z+4y)y =—2z—y = y =— .Whenz =2andy = 1, we have ¢y = — :—E,soanequatlonofthe

tangent lineisy — 1= —3(z —2)ory = —22 + 2.
2?+y? = (22" +2y° —2)° = 2z+2yy =2(22°+2y° —x)(dx +4yy’ —1). Whenz =0andy = 1, we have

0+y =2(3)2y' —1) = ¢y =2y—1 = ¢ =1,s0anequation of the tangent line is y — 3 = 1(z — 0)

or y=x+ 3.

1 ’ i’,/_
2/3 2/3 _ 2, —-1/3 | 2, —1/3,1 __ y ’_ Y _
22/3 4+ —4 = 2571342 =0 = —+ =0 = y =-——=. Whenz=-33

! : WY Ve Uy YT

2/3
-3v3
andy = 1, we have iy = — ! 73 :—( \/_) = 3 —i,so an equation of the tangent line is
(=3/3) —343 3v3 V3

y—l:%(m—l—iﬁﬁ) or y:%x+4.

2022 +y3)? = 25(x —¢%) = 4(2® + )2z +2yy) = 25(2x — 2yy) =
Az +yy)(@® +y°) =25z —yy') = 4yy'(=®+y°) + 259y = 250 — da(2® +y°) =

, 25z —da(a® + %)

_ _ _75-120 _ 45 _ _ 9
Yy = By T AT 1 ) Whenz =3andy = 1, wehavey = =28 = —32 = — 13,
so an equation of the tangent lineisy — 1 = — % (z — 3) or y = — 3z + 2.
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SECTION 2.6 IMPLICIT DIFFERENTIATION U1 167

32. (P —4) =2%(2? —5) = ' 4P =2-52> = 4Py —8yy =42® — 10z
Whenz =0andy = —2, we have =32y’ + 16y’ =0 = —16y' =0 = 3 =0, so an equation of the tangent line is

y+2=0x—0)ory =—2.

3 _ 5
33. @y =5z'—2? = 2y =5Usd)-2x => ¢ = M (b)
Yy
. 10(1)* — 1 .
So at the point (1,2) we have 3y = % = %, and an equation 1,2
-2 2
of the tangent lineisy —2 = 2(z — 1) or y = 22 — 2. L / /\ J
-2
2
3. @)y =23 +327 = 2y =322 +3122) = o = % So at the point (1, —2) we have
2
Y = 3(1;(—"_2()3(1) = 7%, and an equation of the tangent lineisy +2 = —2(z — 1) or y = -2z + 1.
(b) The curve has a horizontal tangent where y' =0 < () 3

(=2,2) ;

32°4+6x=0 & 3z(z+2)=0 & x=0o0rz=-2.
But note that at x = 0, y = 0 also, so the derivative does not exist.
Atz =—2,y> = (-2)® +3(-2)° = -8+ 12=4,s0y = £2. K

So the two points at which the curve has a horizontal tangent are o2 -
-3

(1,-2)

(—=2,—2) and (-2,2).

3B +4y2 =4 = 22+8yy =0 = ¢y =-—x/4y) =

w_ ly-1—wm- Y _ ly- zl—z/(4y)] 1 4y? + 2® _ 14 since = and y must satisfy the
Yy = 4 y2 - 4 y2 - 4 4y3 - 44y3 original equation 3:2+4y2 =4
1
Th "=
us, y e
2 2 ! / / / *2$*y
6. z°+zy+y°=3 = 242y +y+2yy’ =0 = (z+2y)y' =-22—y = y:m,

Differentiating 2x + zy’ + y + 2yy’ = 0 to find y'’ gives 2 + xy” + vy’ + ' +2yy”" + 20’y =0 =

20 +y 2x +y 2
29y’ =—-2—-2y —2(y) = -2 |1—
(z+2y)y y —2(y) [ T2y <x+2y> =
=2 (z +2y)* —(2w+y)(m+2y)+(2w+y)2]
T+ 2y (z + 2y)?
2
= —m (x2 +dzy + 4y® — 222 — Aoy — zy — 2y° + 4a2? —|-4xy—|—y2)
_ 2 2 2\ 2 since = and y must satisfy the
N _(x + 2y)3 (327 + 3wy +3y°) = _(x + 2y)3 9) |:0riginal equation z2 + zy + y> = 3
18
Th V= ooo—
oy (z +2y)*
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38.

39.

40.

41.

U CHAPTER2 DERIVATIVES

. , . , sinx
siny4+coszr=1 = cosy-y —sinx=0 = y =

cosy

, _ cosy cosx —sinz(—siny)y’  cosy cosx + sinz siny(sinz/ cosy)

(cosy)? cos?y

. cos?y cosz + sin® x siny . cos? y cosz + sin® z siny

cos? y cosy cos?y

Using siny + cos ¢ = 1, the expression for 4 can be simplified to 3’ = (cos® x + siny)/ cos® y.

22—y =7 = 32— =0 = y== =

_2z(y—2/y?) _ 2a(y® —a®)
(y?)? yt y3 y3y? y° y°

g = YR2) — 2 2yy) _ 2wyly —a(@/y)]

Ifx =0inzy +y> =1, thenwegety? =1 = y = 1, so the point where = = 0 is (0, 1). Differentiating implicitly with
respect to @ gives us zy’ + y - 1+ 3y” ¢’ = 0. Substituting 0 for z and 1 for y givesus 1 + 3y’ =0 = ¢ = —1.
Differentiating zy’ 4 y 4+ 3y? y' = 0 implicitly with respect to = gives us 3" + v + 3’ + 3(v%y" + v - 2yy') = 0. Now

substitute 0 for z, 1 fory,and —3 fory’. 0— 3 — 2 +3[y" +(—3)-2(—3)] =0 = 31" +3)=2 =

Ife=1inz?+oy+y® =1 thenwegetl+y+4°=1 = ¢*+y=0 = yk?>+1) = y=0,sothepoint
where « = 11is (1, 0). Differentiating implicitly with respect to « gives us 2z + zy’ 4y - 1 + 3y* - ' = 0. Substituting 1 for
zand0forygivesus2+7y +04+0=0 = 3 = —2. Differentiating 2z + zy’ + y + 33>y’ = 0 implicitly with respect
tox givesus 2+ zy” + v - 1+ v + 3(¥*y" + v - 2yy’) = 0. Now substitute 1 for x, 0 for y, and —2 for y/'.

249" 4+ (=2)+ (-2) +3(0+0)=0 = 3"’ =2. Differentiating 2 + 23" + 2y’ + 3y%y” + 6y(y’)* = 0 implicitly
with respect to « gives us xy”’ +y” - 1+ 2y” + 3(y*y"”" +y" - 2yy’) + 6[y - 2y'y” + (v')?y’] = 0. Now substitute 1 for z,

Ofory, —2fory’,and 2 fory”. v +2+44+3(04+0)+6[0+(-8)]=0 = ¢ =-2—-4+48=42.

(a) There are eight points with horizontal tangents: four at x ~ 1.57735 and - 1 N
four at = 0.42265. </
32% — 62 + 2 ~)
b)y' = "= —lat(0,1)andy’ = 3 at (0,2). Y - —
()y 2(2y373y27y+1) = Yy a(O,)any 33(03) 2 5
Equations of the tangent lines are y = —z + 1l and y = %m + 2. \/\
\ J
3

©y =0 = 322—62+2=0 = a=1+1V3

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



(d) By multiplying the right side of the equation by x — 3, we obtain the first
graph. By modifying the equation in other ways, we can generate the other

graphs.

SECTION 2.6

IMPLICIT DIFFERENTIATION O

4

A

/|

y(y* =Dy —2)
=z(x —1)(z —2)(z —3)

y(y* —4)(y - 2) y(y+1)(y° - 1)y - 2) (+D* -1y —-2)
=z(z—1)(xz—2) =z(z—1)(x—2) =(z—-1)(xz—2)
3 4 4
-3 3 . N\ . -4 4
=
) -3 ’ -3 h -4
z(y+1)(y* = 1)(y - 2) y(y* + 1y —2) y(y+1)(y* - 2)
=y(z—1)(z —2) =z(2® - 1)(z—2) =a(r—1)(z* - 2)
42. (a) . 3 \ (b) %(2y3+y2—y5): %(:pkzxﬂgﬂ) =
j 6%y +2yy —Syty =4a® —62% + 22 =
-3 o) 4 , 2x(22° -3z +1)  2z(2x—1)(z—1)

+2—5y3)

/\ VT e r2y syt g6y
values for which ¢’ = 0, we speculate that there are 9 points with horizontal

From the graph and the

4 tangents: 3atx =0, 3 atx = %, and 3 at x = 1. The three horizontal

tangents along the top of the wagon are hard to find, but by limiting the

y-range of the graph (to [1.6, 1.7], for example) they are distinguishable.
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43.

45.

46.

47.

48.

49.

U CHAPTER2 DERIVATIVES

From Exercise 31, a tangent to the lemniscate will be horizontal ify’ = 0 = 25z —4a(2® +y*) =0 =
225 —4(z* +y3)] =0 = 2?47 = 275’ (1). (Note that when « is 0, y is also 0, and there is no horizontal tangent

at the origin.) Substituting % for 2 + 42 in the equation of the lemniscate, 2(x* + 3%)? = 25(z* — y?), we get

22 _ . 2_ 1 2 _
2% —y? = 22 (2). Solving (1) and (2), we have z* = 72 and y* = 22,

s
so the four points are (:t%, :t%).

22 4P ' 2
— + b_2 =1 = z—f + 2213 =0 = ¢ = —22—93 = an equation of the tangent line at (zo, yo) is
32 2
Y—Yo = azyxo (z — mo). Multiplying both sides by % gives % - ?;—g = —@ + O . Since (xo, yo) lies on the ellipse,
0
wehave% + yg)zy = @ +b—2 =1
2 2 ' 2
% - Z_Q =1 = z—f - 2133/23; =0 = ¢y = ZTZ = an equation of the tangent line at (xo, yo) is
b2z S . Yo . Yoy Yo woxr md
Yy—yo = 70 (z — xo). Multiplying both sides by R Eves S — = T Since (o, yo) lies on the hyperbola,
2 2
ToT Yoy _ To Yo _
Wehave?—bT—ﬁ—ﬁ—l.

Vat+\y=ve = L+——0 =y =-

Voo 24y
Vo

sy —yo=— (z—20).Nowax =0 = y=19yo—
Vo /1’0

vV Yo Yo VI
Yo+ Vzrov/yo. Andy=0 = —yo=— (x—x0) = z—20=
Vg VYo

T = xo + Vo \/Yo, S0 the x-intercept is xo + v o v/ Yyo. The sum of the intercepts is

(yo+\/m_0\/%)+(xo+x/ﬁ\/z£):xo+2\/5\/z%+yo:(VRJM/;E)Q:(\/E)Q:&

= an equation of the tangent line at (xo, yo)

5 SIS

(—z0) = yo + Vxo /Yo, so the y-intercept is

If the circle has radius 7, its equationis z° + 3> =7 = 2242y’ =0 = ¢ = —E, so the slope of the tangent line
Yy

= @, which is the slope of O P, so the tangent line at
—zo/Yo  Zo

at P(zo,y0) is — 20 The negative reciprocal of that slope is
Yo

P is perpendicular to the radius OP.

q P

1 1 “1.p/
= qui 1y/ —p$p71 = ' = pxP _ pxP 1y _ paP~ P/ _ Qx(lﬂ/q)*l

qye~1 qy? qxP q

y =T

x? 4 y* = r? is a circle with center O and a2 + by = 0 is a line through O [assume y

2

and b are not both zero]. 2>+ =1 = 20 +2yy =0 = y = —x/y,sothe

slope of the tangent line at Py (o, yo0) is —xo/yo. The slope of the line O P, is yo /o,

which is the negative reciprocal of —z¢/yo. Hence, the curves are orthogonal, and the

families of curves are orthogonal trajectories of each other.
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50. The circles 2 + > = ax and 22 4+ 3> = by intersect at the origin where the tangents are vertical and horizontal [assume a

51.

52,

53.

and b are both nonzero]. If (20, %o ) is the other point of intersection, then 3 + 33 = axo (1) and 23 + v = byo (2).

y

Nowz? +y? =az = 20+2yy=a = y = a—2u andz? +y2=by =

! / ! 2$
2c+2yy =by = Y = s Thus, the curves are orthogonal at (o, y0) < >
a — 2% = _b=2y & 2axo — 4w = 4y —2byo & axo +byo = 2(2f + i),
2y0 2$()
which is true by (1) and (2).
y=cz? = y =2crandz®+2y®> =k [assumek >0] = 2z +4yy =0 = y
, , T T 1 .
2y = —r = Y =-—-—~ =—z—>5 = —=—, so the curves are orthogonal if

2(y) ~ 2(cx?) 2cx
¢ # 0. If ¢ = 0, then the horizontal line y = cx?® = 0 intersects = + 2y* = k orthogonally
at (i\/E, 0), since the ellipse 2> + 2y> = k has vertical tangents at those two points.

y=azx® = 3y =3az?anda®+3y> =b [assumedb>0] = 2z +6yy =0 =

1 .
3yy = —x = o = —ﬁ = —ﬁ = g3 s0 the curves are orthogonal if

a # 0. If a = 0, then the horizontal line y = az® = 0 intesects 2 4 3y = b orthogonally

at (i Vb, O) , since the ellipse 22 + 3y? = b has vertical tangents at those two points.

Since A% < a2, we are assured that there are four points of intersection.
2 2 / /
x Yo 2 2yy vy
(l)ﬁ—’_b_z_l = ﬁ-‘r b2 =0 = b—2——§ =
, xb?
y =mi = ——2
ya
2 2 ! ’
x Yo 2x 2yy yy T
@75~ 5 T 0T mETae T
P — zB?
y 2 yA2 .
zb®> xB? B% g? . . . 2?2yt a? 3>
Now mimeg = fﬁ . W = ? (3). Subtracting equations, (1) — (2), gives us o + AT + Zhe 0 =
2 2 2 2 2 2 272 2 2 242 2072 2 202 42
y_+y_:x_7x_:>yB+yb:ma z?A :>y(b+B)::1c(a A)(4).Since
2 T B2 T AT g2 b2 B2 A2q2 b2 B2 a2 A2
2 2 2 2 2
2 2 _ 42 2 2 2 _ 32 2 : y T z= _ A’a
a® —b* = A + B*, we have a® — A° = b° + B~. Thus, equation (4) becomes 2RI A2g2 E = W,and
. z? . , v¥’B? a’A? .
substituting for ? in equation (3) gives us mima = — PR —1. Hence, the ellipse and hyperbola are orthogonal

trajectories.
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5. y=(z+c)' = y=—(z+c) *andy=a(z+k)"? = y =3la(z+k) >3 so the curves are othogonal if the

a

-1
(@+o)? 3(@+k323 -1 = a=3@+’@@+k)"* =

product of the slopes is —1, that is,

2 2
a:3<l> (g) [since y> = (z +¢) 2and 3 = a*(z + k)?/?] = a:3<i2) = =3 = a= 3.
Yy a a
55. @) (P+ %) (V—nb) = nRT = PV—Pub+ 0% oy
: V2 - 1% Iz

d 2 1,1 3 —2 _i
dP(PV Pnb+n“aV n°abV )—dP(nRT) =

PV +V-1—nb—n?aV 2.V +20%abV 2. V' =0 = V' (P-n?aV 2+2nabV "3 =nb-V =

nb—V oV _ V3(nb—V)
P —n2aV-2+42n3abV-3  dP ~ PV3 —n2aV + 2n3ab

V' =
(b) Using the last expression for dV/dP from part (a), we get

av (10 L)3[(1 mole)(0.04267 L /mole) — 10 L]
dP

(2.5atm)(10 L)® — (1 mole)?(3.592 L?- atm/ mole?)(10 L)
+ 2(1 mole)®(3.592 L- atm/ mole?)(0.04267 L/ mole)

. 4
_ 9957.33 L ~ —4.04 L/ atm.
2464.386541 L3- atm

—2rx—vy

5. (@) 2° +ay+yP+1=0 = 2z+xy +y-1+200+0=0 = ¢(z+2)=-20-y = ¢ = P

(b) Plotting the curve in part (a) gives us an empty graph, that is, there are no points that satisfy the equation. If there were any
points that satisfied the equation, then = and y would have opposite signs; otherwise, all the terms are positive and their
sumcannotequal 0. 2?4+ ay+y*+1=0 = 2>+ 2xy+y’—ay+1=0 = (x+y)®>=xy— 1 Theleft
side of the last equation is nonnegative, but the right side is at most —1, so that proves there are no points that satisfy the

equation.

Another solution: * +zy+y* +1 =32 +ay+2y° + 122+ L2 + 1 =12 + 2ay+ v°) + 1 (2® + %) + 1
=30+’ +30@"+y?) +121

Another solution: Regarding 2 4 zy + y* + 1 = 0 as a quadratic in z, the discriminant is y* — 4(y* 4+ 1) = —3y* — 4.

This is negative, so there are no real solutions.

(c) The expression for 3/’ in part (a) is meaningless; that is, since the equation in part (a) has no solution, it does not implicitly

define a function y of z, and therefore it is meaningless to consider y'.

57. To find the points at which the ellipse 2> — zy + y® = 3 crosses the z-axis, let y = 0 and solve for .
y=0 = 22—2(0)+0°=3 & z= ++/3. So the graph of the ellipse crosses the z-axis at the points (:I:\/g, 0).

[continued]
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Using implicit differentiation to find y/, we get 2z —xy' —y +2yy’' =0 = Y (2y—2z)=y—-2z & ¢ =

0-23
2(0) — /3

0+2V3

Soy’ at (\/3, 0) is 20) 13

=2andy at (—\/3, 0) is

58. (a) We use implicit differentiation to find 3/ = gy_fz as in Exercise 57. The slope

1—2(-1) = 3 = 1, so the slope of the

of the tangent line at (—1,1) ism = -1 3

L 1 . L
normal line is —— = —1, and its equationisy — 1 = —1(z + 1) <
m

y = —x. Substituting —x for y in the equation of the ellipse, we get
2?—2(-2)+ (—2) =3 = 32°=3 <& ===l Sothenormal line
must intersect the ellipse again at z = 1, and since the equation of the line is

y = —uz, the other point of intersection must be (1, —1).

(b)

IMPLICIT DIFFERENTIATION O 173

y —2x
2y —x

= 2. Thus, the tangent lines at these points are parallel.

(=11

SN

5. 22 tay=2 = 2.2y +y* 20 t+a-y +y-1=0 & y(2rlPy+a)= 22—y &

;o 2wy’ +y 2y’ +y

T2ty +a o_2r2y+x

=1 & 2z +y=22%+zr & yRey+1)=22zy+1) <

y(Rry+1) —z2zy+1)=0 & QRay+1)(y—2)=0 & ay=—jory=axButzy=-1 =

x2y2+xy:%f%752,sowemusthavex:y.Then 2P dry=2 => '422=2 & 2*422-2=0 &

(z? 4+ 2)(2* — 1) = 0. So x® = —2, which is impossible, or > = 1 <« =z = +1. Since = = y, the points on the curve

where the tangent line has a slope of —1 are (—1, —1) and (1, 1).

60. 22 +4y° =36 = 2248y =0 = ¢ = —%. Let (a, b) be a point on 2> + 4y> = 36 whose tangent line passes

through (12, 3). The tangent line is then y — 3 = -z (x—12),s0b—3 = —% (a — 12). Multiplying both sides by 4b

4b

gives 4b® — 12b = —a® + 12a, s0 4b® + a® = 12(a + b). But4b®> + a®> = 36,5036 = 12(a +b) = a+b=3 =

b = 3 — a. Substituting 3 — a for b into a® + 4b*> = 36 gives a® +4(3 —a)* =36 & a®+36—24a+4a®> =36 &
50> —24a=0 < a(5a—24)=0,s0a=00ra=2.1fa=0,b=3-0=3,andifa=2,p=3-2 =2,
So the two points on the ellipse are (0,3) and (2, —2). Using s

“ y=3 10.3) (12.3)
y—3= —£(x — 12) with (a, b) = (0, 3) gives us the tangent line /2 \ /
y—3=0ory=3. With (a,b) = (2, —2), we have ) o x

24/5
4(-9/5)

y—3=— (-12) & y—-3=2(x-12) & y=2z-5.

A graph of the ellipse and the tangent lines confirms our results.

y= ?7
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6. @y=J@x)andzy" +y +2y=0 = zJ"(z)+ J'(z)+zJ(z) =0.Ifz =0, wehave 0 + J'(0) + 0 = 0,
so J'(0) = 0.
(b) Differentiating zy” + 3" + zy = 0 implicitly, we get zy"”’ +y" -1+ ¢y +zy' +y-1=0 =
2y +2y" +ay +y=0,s0xJ" (x) +2J"(x) + 2J'(z) + J(z) = 0. If z = 0, we have
0+2J"(0)+0+1 [J(0)=1lisgiven] =0 = 2J(0)=-1 = J"(0)=—3.
62. 22 +4y° =5 = 20+4Q2w)=0 = ¢ = —%. Now let h be the height of the lamp, and let (a, b) be the point of

tangency of the line passing through the points (3, 2) and (—5, 0). This line has slope (h — 0)/[3 — (—5)] = £h. But the

slope of the tangent line through the point (a, b) can be expressed as 3’ = ,i, or as b0 = b [since the line
4b a—(=5) a+5
passes through (—5, 0) and (a, b)], so 74% = _?_5 & 4 = —a® —5a & a® +4b* = —5a. Buta® +4b* =5
a
[since (a, b) is on the ellipse], s0 5 = —5a < a = —1. Then4b® = —a® —5a = —1—5(—1) =4 = b= 1, since the
oint is on the top half of the ellipse. So h_o b 1 1 = h = 2. So the lamp is located 2 units above the
P P P 0 T 5 T1+5 1 - P

T-axis.

LABORATORY PROJECT Families of Implicit Curves

1. (a) There appear to be nine points of intersection. The “inner four” near the origin are about (£0.2, —0.9) and (£0.3, —1.1).

The “outer five” are about (2.0, —8.9), (—2.8, —8.8), (—7.5, —7.7), (—7.8, —4.7), and (—8.0, 1.5).

-1

(b) We see from the graphs with ¢ = 5 and ¢ = 10, and for other values of ¢, that the curves change shape but the nine points

of intersection are the same.

2. (a) If ¢ = 0, the graph is the unit circle. As c increases, the graph looks more diamondlike and then more crosslike (see the

graph for ¢ > 0).
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SECTION 2.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES U 175

For —1 < ¢ < 0 (see the graph), there are four hyperboliclike branches as well as an ellipticlike curve bounded by
|z] < 1and|y| <1 for values of ¢ close to 0. As c gets closer to —1, the branches and the curve become more rectangular,
approaching the lines || = 1 and |y| = 1.

Forc = —1, we get the lines x = £1 and y = £1. As c decreases, we get four test-tubelike curves (see the graph)

that are bounded by |z| = 1 and |y| = 1, and get thinner as |c| gets larger.

c>0 —-1<e<O0 c< -1
1.1 5
c=0
c=1
c=5
c=20 c=-2 c=-10
¢=100
—
—1.1 1.1 =5 5
|
__c=-1
—1.1 =5 =5

(b) The curve for ¢ = —1 is described in part (a). Whenc = —1, weget z° +y?> —2%y> =1 <
0=2%—2>—9*+1 & 0=(2>-1@*—-1) & z==%1 or y=+1, which algebraically proves that the

graph consists of the stated lines.
d 2 2 2,2 d / 2 / 2
(c)%(ac +y —l—cxy):%(l) = 2z+2yy +c(z® 2yy +y° -22)=0 =

_z(l+cy’)

2yy +2ca’yy’ = -2z — 2cxy? = 2y(l+ca?y = -22(1+cy?) = y = y(1+ca?)’

1—y%) z(1+y)(1—y) :
Fore— 1,4 = 20—v) _ " —Owheny = +1 — 0 (which leads to y = +1
or ¢ ,Y ) y(l—i—x)(l—x)’soy when y or x (which leads to y )

and v’ is undefined when & = &1 or y = 0 (which leads to x = £1). Since the graph consists of the lines x = 41 and

y = =1, the slope at any point on the graph is undefined or 0, which is consistent with the expression found for 3.

2.7 Rates of Change in the Natural and Social Sciences

1. (@) s = f(t) =3 — 9% + 24t (infeet) = w(t) = f'(t) = 3t> — 18t + 24 (in ft/s)
(b) v(1) = 3(1)% — 18(1) + 24 = 9 ft /s

(c) The particle is at rest when v(t) = 0. 3t — 18t +24 =0 < 3(t*—6t+8)=0 < 3(t—-2)(t—4)=0 =
t=2sort=4s.

(d) The particle is moving in the positive direction when v(t) > 0. 3(t —2)(t —4) >0 < 0<t¢<2ort>4.

(e) v changes sign at t = 2 and 4 in the interval [0, 6]. The total distance traveled during the first 6 seconds is

1£(2) = fOO) 4+ |f(4) — f(2)|+|f(6) — f(4)] =120 — 0] + |16 — 20| + |36 — 16| =20 + 4 + 20 = 44 ft.
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t=6
(f) s=36
(=
s=16
t=2
20
t=0 s
s=0
(@ v(t)=3t2— 18t +24 = thy %

a(t) = v'(t) = 6t — 18 [in (ft/s) /s or ft/s°].

a(l) =6 — 18 = —12 ft /s>,

0 L
//
—-20

() a(t)>0 < 6t—18>0 < t> 3. The particle is speeding up when v and a have the same sign. From the figure

in part (h), we see that v and a are both positive when 4 < ¢ < 6 and both negative when 2 < ¢ < 3. Thus, the particle is
speeding up when 2 < ¢ < 3and 4 < ¢t < 6. The particle is slowing down when v and a have opposite signs; that is, when

0<t<2and3<t<4
2. (a) s = f(t) = 0.01t* — 0.04t (infeet) = w(t) = f'(t) = 0.04t> — 0.12¢> (in ft/s)
(b) v(3) = 0.04(3)® — 0.12(3)> = 0 ft/s
(c) The particle is at rest when v() = 0. 0.04t> —0.12t> =0 < 0.04t*(t —3)=0 < t=0sor3s.

(d) The particle is moving in the positive direction when v(t) > 0. 0.04t*(t —3) >0 < t> 3.

(e) See Exercise 1(e). ()
|£(3) = f£(0)| = |—0.27 — 0] = 0.27. by s %048
|£(8) — £(3)| = |20.48 — (—0.27)| = 20.75. i i~ 05— 0
The total distance is 0.27 4+ 20.75 = 21.02 ft. : >

(2) v(t) = 0.04t> — 0.12t> = a(t) =v'(t) = 0.12¢> — 0.24t. a(3) = 0.12(3)® — 0.24(3) = 0.36 (ft/s)/s or ft/s>.

(h) Here we show the graph of s, v, and a L

for0<t<4and4 <t <8.

—0.3
(1) The particle is speeding up when v and a have the same sign. This occurs when 0 < ¢t < 2 [v and a are both negative]
and when t > 3 [v and a are both positive]. It is slowing down when v and a have opposite signs; that is,

when 2 < t < 3.
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3. (a) s = f(t) =sin(nt/2) (infeet) = wv(t) = f'(t) = cos(mt/2) - (w/2) = % cos(wt/2) (inft/s)

(b) v(1) = Fcos T = 5(0) =0ft/s

(c) The particle is at rest when v(t) = 0. S cos 5t =0 <« cosft=0 & ft=7T +nm < t=142n,wheren
is a nonnegative integer since ¢t > 0.
(d) The particle is moving in the positive direction when v(¢) > 0. From part (c), we see that v changes sign at every positive

odd integer. v is positive when 0 < t < 1,3 <t < 5,7 <t < 9, and so on.

(e) v changes sign at t = 1, 3, and 5 in the interval [0, 6]. The total distance traveled during the first 6 seconds is
[F(1) = FO)+1fB) = fFMI+1fB) = fFB) +[£(6) = fB) =1 = 0]+ [-1 =1+ [1 = (=1)[ + [0 — 1]
=142424+1=6"1t

) ;if) (g) v(t) = S cos(nt/2) =
=3 s a(t) = v'(t) = § [~ sin(nt/2) - (7/2)]
s=-1
=1 _ 2 : 2
Y = (—n*/4)sin(nt/2) ft/s
t=0 s 2 . 2 2
5=0 a(l) = (== /4)sin(n/2) = —n* /4 ft /s
(h) 3¢ N (i) The particle is speeding up when v and a have the same sign. From
Lo the figure in part (h), we see that v and a are both positive when
B s
3 < t < 4 and both negative when 1 < ¢ < 2and 5 < ¢t < 6. Thus,
0 6
the particle is speedingup when 1 < ¢ < 2,3 < t < 4, and
| 5 < t < 6. The particle is slowing down when v and a have
5 a opposite signs; that is, when 0 < ¢t < 1,2 <t < 3,and 4 < t < 5.
_ 9 o (499 —9t(2t) -9 +81  —9(t*—9) .
4. (a)s=f(t) = 719 (infeet) = w(t)=f'(t) = @2+ 9)° BN CETE (in ft/s)
-9(1-9) 72
b)v(l) = ——=—=0.721t
) v(1) =719 =10 ~ T2 R/
o —9(t* - 9) 2 .
(c) The particle is at rest when v(t) = 0. NCFTER =0 <& t*—-9=0 = ¢=23s [sincet>0].

(d) The particle is moving in the positive direction when v(t) > 0.

—9(t2 —
u>0 = —9#*-9)>0 = ¥ -9<0 = <9 = 0<t<3.
GEE
(e) Since the particle is moving in the positve direction and in (f) 1,
the negative direction, we need to calculate the distance }
traveled in the intervals [0, 3] and[3, 6], respectively. Pt PP
s=0 1.5

1f(3) = F(0)| = |3 —0| =3
116) = f@) =[5 - %l=%5
The total distance is 3 + -5 = 2 or 1.8 ft.
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@ () = ~9 g
o o492 - (920 +9)(2t) 2t + 9[> +9) — 2> —9)] _ 18t(t* —27)
alt) = v'(t) = =9 (GEDRE =9 @ +9)7 ENEETE
a(l) = %0326) = —0.468 ft/s”
(h)

(i) The particle is speeding up when v and a have the same sign. a is negative for 0 < ¢ < /27 [~ 5.2], so from the figure in
part (h), we see that v and a are both negative for 3 < ¢ < 3+/3. The particle is slowing down when v and a have opposite

signs. This occurs when 0 < t < 3 and when ¢ > 3+/3.

5. (a) From the figure, the velocity v is positive on the interval (0, 2) and negative on the interval (2, 3). The acceleration a is
positive (negative) when the slope of the tangent line is positive (negative), so the acceleration is positive on the interval
(0,1), and negative on the interval (1, 3). The particle is speeding up when v and a have the same sign, that is, on the
interval (0, 1) when v > 0 and a > 0, and on the interval (2, 3) when v < 0 and a < 0. The particle is slowing down
when v and a have opposite signs, that is, on the interval (1,2) whenv > 0 and a < 0.

(b) v>00n(0,3)andv <0on(3,4). a>0on(1,2)anda < 0on (0,1) and (2,4). The particle is speeding up on (1, 2)

[v>0,a>0]andon (3,4) [v <0, a < 0]. The particle is slowing down on (0,1) and (2,3) [v > 0,a < 0].

6. (a) The velocity v is positive when s is increasing, that is, on the intervals (0, 1) and (3, 4); and it is negative when s is
decreasing, that is, on the interval (1, 3). The acceleration a is positive when the graph of s is concave upward (v is
increasing), that is, on the interval (2, 4); and it is negative when the graph of s is concave downward (v is decreasing), that
is, on the interval (0, 2). The particle is speeding up on the interval (1,2) [v < 0,a < 0] and on (3,4) [v > 0,a > 0].
The particle is slowing down on the interval (0,1) [v > 0,a < 0] and on (2,3) [v < 0, a > 0].

(b) The velocity v is positive on (3,4) and negative on (0, 3). The acceleration a is positive on (0, 1) and (2, 4) and negative
n (1,2). The particle is speeding up on the interval (1,2) [v < 0, a < 0] and on (3,4) [v > 0, a > 0]. The particle is

slowing down on the interval (0,1) [v < 0,a > 0] and on (2, 3) [v < 0, a > 0].

7. (a) h(t) =2 +24.5t —4.9t> = v(t) = h'(t) = 24.5 — 9.8t. The velocity after 2 s is v(2) = 24.5 — 9.8(2) = 4.9 m/s

and after 4 sis v(4) = 24.5 — 9.8(4) = —14.7m/s.
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(b) The projectile reaches its maximum height when the velocity is zero. v(t) =0 < 245-98t=0 <

245
t=222 _ 955
98 s

(¢) The maximum height occurs when ¢ = 2.5.  h(2.5) = 2 + 24.5(2.5) — 4.9(2.5)> = 32.625m [or 322 m|.

(d) The projectile hits the ground when h =0 < 24245t —4.9t> =0 <

—24.5+ /24.52 — 4(—4.9)(2
‘= \/2(_49) ( )(2) = t=t; ~5.08s [sincet > 0]

(e) The projectile hits the ground when ¢ = ¢. Its velocity is v(t;) = 24.5 — 9.8ty ~ —25.3 m/s [downward)].

. (a) At maximum height the velocity of the ball is 0 ft/s. v(t) =s'(t) =80—32t =0 < 32t=80 < t=3.

So the maximum height is 5(2) = 80(2) — 16(2)* = 200 — 100 = 100 ft.

(b) s(t) =80t —16t> =96 < 16t>° —80t+96=0 < 16(t> —5t+6)=0 < 16(t—3)(t—2)=0.
So the ball has a height of 96 ft on the way up at ¢ = 2 and on the way down at ¢ = 3. At these times the velocities are

v(2) = 80 — 32(2) = 16 ft/s and v(3) = 80 — 32(3) = —16 ft/s, respectively.

. (@) h(t) =15t — 1.86t> = w(t) = h'(t) = 15 — 3.72t. The velocity after 2 s is v(2) = 15 — 3.72(2) = 7.56 m/s.

15 + /152 — 4(1.86)(25)

t=t1 ~ 23500t =ty ~ 5.71.
2(1.86) ! ort=te

©)25=h < 186t2—15t+25=0 < t=
The velocities are v(t1) = 15 — 3.72¢1 & 6.24 m/s [upward] and v(t2) = 15 — 3.72t2 ~ —6.24 m/s [downward].

(@) s(t) =t* — 413 — 201> + 20t = o(t) =s'(t) =4t — 126> — 40t +20. v=20 &
43 — 1267 — 40t +20 =20 & 4¢3 — 122 40t =0 < 4t(t*-3t—10)=0 <
4t —5)(t+2)=0 & t=0sorbs [fort>0]
G alt)=v'(t)=12t2 —24t —40. a=0 & 122 -24t—-40=0 & 43> -6t—10)=0 <

,_ 6% 62 — 4(3)(—10)
o 2(3)

=1+ %\/ 39 ~ 3.08 s [for t > 0]. At this time, the acceleration changes from negative to

positive and the velocity attains its minimum value.

(@) A(x) =2 = A'(z) = 22. A'(15) = 30 mm?/mm is the rate at which

/
Ax 4 4

the area is increasing with respect to the side length as = reaches 15 mm.
(b) The perimeter is P(z) = 4, so A'(z) = 2z = 1(4z) = 3 P(z). The
figure suggests that if Ax is small, then the change in the area of the square x - x(Ax)

is approximately half of its perimeter (2 of the 4 sides) times Ax. From the

figure, AA = 2x (Ax) + (Az)?. If Az is small, then AA ~ 2x (Ax) and

s0 AA/Az =~ 2z. X Ax
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dV dv .
_ .3 _ a2 _ 2 _ 3
12 (@) V(z) =2" = e = 3z°. . = 3(3)° = 27 mm° /mm is the

r=3
rate at which the volume is increasing as x increases past 3 mm.
(b) The surface area is S(z) = 627, so V'(z) = 32® = 1(62°) = 15(). % x
X

The figure suggests that if Az is small, then the change in the volume of the

X
cube is approximately half of its surface area (the area of 3 of the 6 faces)

X
times Az. From the figure, AV = 322(Axz) + 3z(Az)? + (Ax)3. JJ
) Ax
If Az is small, then AV ~ 32%(Ax) and so AV/Azx =~ 322 ! ax
13. (a) Using A(r) = 72, we find that the average rate of change is:
L AB)—A(2) 9 —4Am . A(2.5) —A(2)  6.25m —4mw
D W=55—2 = o5 "
A(21) — A(2)  441m —4nm

(iii)

51-2 01 A7

(b) A(r) =mr? = A'(r) =2nr,s0 A'(2) = 4.

(¢) The circumference is C(r) = 27r = A’(r). The figure suggests that if Ar is small,
then the change in the area of the circle (a ring around the outside) is approximately
equal to its circumference times Ar. Straightening out this ring gives us a shape that
is approximately rectangular with length 277 and width Ar, so AA =~ 27r(Ar).
Algebraically, AA = A(r 4+ Ar) — A(r) = w(r + Ar)? —7r? = 2nr(Ar) + (A7)
So we see that if Ar is small, then AA = 27r(Ar) and therefore, AA/Ar = 27r.

14. After ¢ seconds the radius is r = 60¢, so the area is A(t) = 7(60t)> = 36007t> = A'(t) = 72007t =
(a) A'(1) = 72007 cm? /s (b) A'(3) = 21,6007 cm?/s (c) A'(5) = 36,0007 cm? /s
As time goes by, the area grows at an increasing rate. In fact, the rate of change is linear with respect to time.

15. S(r) = 4nr® = S'(r)=8rr =
(a) S'(1) = 8 fi? /ft (b) S§'(2) = 167 fi /ft (c) S'(3) = 24n ft?/ft

As the radius increases, the surface area grows at an increasing rate. In fact, the rate of change is linear with respect to the

radius.

16. (a) Using V(r) = §7rr we find that the average rate of change is:
V(8) — V(5) —71(512) — 371(125)

_ 3
S5 3 = 1727 pm® /um
271(216) — 47(125 _
(ii) (6é ;/( ) _ — 37 ult )1 m(125) = 121.37 pm®/pm
1) — 17(5.1)% — 27(5)3 _
(iif) V(5;i _5(5) _ 5™ )0.1 370N _ 102,013 pm? /pm

(b) V'(r) = 4nr?, so V'(5) = 1007 pm?® /pm.
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() V(r)=3mr® = V'(r) = 4mr® = S(r). By analogy with Exercise 13(c), we can say that the change in the volume
of the spherical shell, AV, is approximately equal to its thickness, Ar, times the surface area of the inner sphere. Thus,

AV = 4rr?(Ar) and so AV/Ar ~ 4772,

The mass is f(z) = 322, so the linear density at x is p(z) = f'(x) = 6z.

(@ p(1) = 6 kg/m (b) p(2) = 12 kg/m (©) p(3) = 18 kg/m

Since p is an increasing function, the density will be the highest at the right end of the rod and lowest at the left end.

V(t) = 5000(1 — &t)* = V'(t) =5000-2(1 — kt)(—%) = —250(1 — t)

(@) V'(5) = —250(1 — %) = —218.75 gal /min (b) V'(10) = —250(1 — 43) = —187.5 gal/min
() V'(20) = —250(1 — 23) = —125 gal/min (d) V'(40) = —250(1 — 33) = 0 gal/min

The water is flowing out the fastest at the beginning— when ¢ = 0, V' (¢) = —250 gal/min. The water is flowing out the

slowest at the end—when ¢ = 40, V'(t) = 0. As the tank empties, the water flows out more slowly.

The quantity of charge is Q(t) = t> — 2t> + 6t + 2, so the current is Q' (t) = 3t> — 4t + 6.
(a) Q'(0.5) = 3(0.5)> — 4(0.5) + 6 = 4.75 A b Q(1)=3(1)>-4(1)+6=5A
The current is lowest when Q' has a minimum. Q" (¢) = 6t — 4 < 0 when ¢ < 2. So the current decreases when ¢ < Z and

increases when ¢ > 2. Thus, the current is lowest at t = 2 s.

(@) F = Gm_QM = (GmM)r—? = (2—F = —2(GmM)r—3 = — QGTZM, which is the rate of change of the force with
r r T

respect to the distance between the bodies. The minus sign indicates that as the distance 7 between the bodies increases,

the magnitude of the force F' exerted by the body of mass m on the body of mass M is decreasing.

(b) Given F”(20,000) = —2, find F’(10,000). —2 = *EOGSS% = GmM = 20,000%
F’(10,000) = _2(20.000°) _ —2-2% = —16 N/km
’ T 10,0003 N
U2 —1/2
Withm:m0<1f—2) s
C

d d d 02\ 1 o\ P 20\
F:E(mv):ma(v)JrvE(m):mo(lfc—Q) ~a+wv-mg -5 (170—2) <f§)a(v)

(1N Y L] mea
= 1o 2 2 2| (A —v2/c2)3/2

Note that we factored out (1 — v2 /c?)~%/2 since —3,/2 was the lesser exponent. Also note that % (v) = a.

(a) D(t) = 7+ 5¢0s[0.503(t — 6.75)] = D'(t) = —5sin[0.503(t — 6.75)](0.503) = —2.515sin[0.503(¢ — 6.75)].
At 3:00 AM, t = 3, and D'(3) = —2.515sin[0.503(—3.75)] = 2.39 m/h (rising).

(b) At 6:00 AM, ¢ = 6, and D'(6) = —2.515sin[0.503(—0.75)] ~ 0.93 m/h (rising).

() At9:00 AM, ¢ = 9, and D'(9) = —2.5155in[0.503(2.25)] ~ —2.28 m/h (falling).

(d) Atnoon, t = 12, and D’(12) = —2.515sin[0.503(5.25)] &~ —1.21 m/h (falling).
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23. (a) To find the rate of change of volume with respect to pressure, we first solve for V' in terms of P.

C av C

(b) From the formula for dV/d P in part (a), we see that as P increases, the absolute value of dV/dP decreases.

Thus, the volume is decreasing more rapidly at the beginning.

@ LAV _ 1/ Ccy__¢c _C _1
© VdP~ V\ P2) (PV)P CP P

4. (a) [C] = aZ:]fl = rate of reaction = % _ (akt + 1)((;1251—1)(2(1%75)((1]?) _ a2k(((l:]§t111)_2akt) _ (akf—fl)z
(b) Ifz = [C],thena —z =a — alilfl = aZkta—ll;ta+—1a2kt = akta—l— T
So k(a —x)* = k(akta—i— 1)2 = (ak(tzz—flﬁ = % [from part (a)] = Z—f
25. (a) 1920: my = H - 11—100 =11, my = H - 21_1(? — o1,
(m1+m2)/2 = (114 21)/2 = 16 million/year
1980: m; — 4450 — 3710 740 s 5280 — 4450 _ 830 — 83,

1980 — 1970 10 T 1990 — 1980 10
(m1+m2)/2 = (74 + 83)/2 = 78.5 million/year

(b) P(t) = at® + bt*> + ct + d (in millions of people), where a =~ —0.000 2849003, b ~ 0.522 433 122 43,
¢~ —6.395641 396, and d ~ 1720.586 081.
() P(t) =at® +bt> +ct+d = P'(t) = 3at® 4 2bt + c (in millions of people per year)

(d) 1920 corresponds to ¢ = 20 and P’(20) & 14.16 million/year. 1980 corresponds to ¢ = 80 and

P’(80) ~ 71.72 million/year. These estimates are smaller than the estimates in part (a).

(e) P’(85) ~ 76.24 million/year.

26. (a) A(t) = at® +bt® + ct® + dt + e, where a ~ —1.199 781 x 107°, (d)
b~ 9.545853 x 10%, ¢ ~ —28.478 550, d ~ 37,757.105 467, and

e~ —1.877031 x 107.

b)) Alt) =at* + bt +ct? +dt +e = A'(t) = 4at® + 3bt + 2ct + d.

025
(c) Part (b) gives A’(1990) = 0.106 years of age per year.

0.15

0.05

O Nl L 1111

1950 | 1970 | 1990 | 2010
1960 1980 2000
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27. (a) Usingv = 4%(1%2 —r?) with R = 0.01, 1 = 3, P = 3000, and = 0.027, we have v as a function of r:

o(r) = %(0.012 —72). (0) = 0.925 cm/s, v(0.005) = 0.694 cm/s, v(0.01) = 0.
(b) v(r) = 4L;]Z(R2 - = J(r)= 4%;[(727") = f%. When ! = 3, P = 3000, and = 0.027, we have

3000

v (r) = ~ 300273 v’'(0) = 0, v'(0.005) = —92.592 (cm/s)/cm, and v'(0.01) = —185.185 (cm/s) /cm.

(c) The velocity is greatest where » = 0 (at the center) and the velocity is changing most where r = R = 0.01 cm

(at the edge).

\

I

[\
=)=
= %\

|
A~

[N~}

h
—

S
N———
el
I

U
3%

|
N =

(i) f = i - (2_\/LT> oz o W1 (@) yor_ VT

(b) Note: Illustrating tangent lines on the generic figures may help to explain the results.

@) % < Oand L is decreasing = fisincreasing = higher note

df

¥ > 0and T is increasing => fisincreasing =- higher note

(i)

... df - . . .

(iii) P < Oand pisincreasing = f isdecreasing =- lower note
P

M 7 G f (iii) f

0 L 0 T 0 o

29. (a) C(x) = 2000 + 3z + 0.01z2 +0.00022° = C’(z) = 0+ 3(1) 4 0.01(2z) 4 0.0002(32?) = 3 4 0.02z + 0.00062>
(b) C’'(100) = 3+ 0.02(100) + 0.0006(100)? = 3 + 2 + 6 = $11/pair. C’(100) is the rate at which the cost is increasing as
the 100th pair of jeans is produced. It predicts the (approximate) cost of the 101st pair.
(c) The cost of manufacturing the 101st pair of jeans is
C(101) — C(100) = 2611.0702 — 2600 = 11.0702 ~ $11.07. This is close to the marginal cost from part (b).
30. (a) C(q) = 84 + 0.16¢ — 0.00064¢> + 0.000003¢> = C’(q) = 0.16 — 0.0012¢ + 0.000009¢>, and

C'(100) = 0.16 — 0.0012(100) 4 0.000009(100)* = 0.13. This is the rate at which the cost is increasing as the 100th

item is produced.

(b) The actual cost of producing the 101st item is C'(101) — C'(100) = 97.13030299 — 97 ~ $0.13
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() — -1 (1) —
A'(x) >0 = A(z) is increasing; that is, the average productivity increases as the size of the workforce increases.
p(x)
x

(b) p'(x) is greater than the average productivity = p'(z) > A(z) = p'(z) > = zp'(z) > p(z) =

zp'(z) —p(z) >0 = M>O = A'(z) > 0.

1,'2
0.4 0.4 —0.6y _ 0.4 —0.6
32. (a) B = 40 + 24x o og- ar _ (1 +42™%)(9.627°°%) — (40 4 242°%)(1.627"°)
1+ 4204 dx (14 420-4)2
_ 9.607 %% 43842 %% — 640" "% — 3842 %% 54407
(1 + 4m0'4)2 - (1 + 4m0'4)2
(b) 4 At low levels of brightness, R is quite large [R(0) = 40] and is quickly

expected: at low levels of brightness, the eye is more sensitive to slight

changes than it is at higher levels of brightness.

0 N
M decreasing, that is, S is negative with large absolute value. This is to be
0 1
Vel
J

—40

PV PV 1
3. PV = nRT =17 -
nRT = nR ~ (10)(0.0821) _ 0.821

(PV). Using the Product Rule, we have

dr 1

— =—|[P ! P’ = — —0.1 1 .10)] &~ —0.2436 K/min.

= s [POV/(1) + V()P ()] = 552 [(8)(~0.15) + (10)(0.10)] ~ ~0.2436 K /min

' 1 —-1/2 D D . . .
M. f(r)=2vDr = f'(r)=2-5(Dr) -D = =4/ —. f'(r) is the rate of change of the wave speed with
v Dr T
respect to the reproductive rate.
. . .. . . dC aw

35. (a) If the populations are stable, then the growth rates are neither positive nor negative; that is, e 0 and v 0.

(b) “The caribou go extinct” means that the population is zero, or mathematically, C' = 0.

(c) We have the equations % =aC — bCW and % = —cW +dCW. Let dC/dt = dW/dt = 0, a = 0.05, b = 0.001,
¢ = 0.05, and d = 0.0001 to obtain 0.05C — 0.001CW =0 (1) and —0.05W/ 4 0.0001CW = 0 (2). Adding 10 times
(2) to (1) eliminates the C'W-terms and gives us 0.05C' — 0.5W =0 = C = 10W. Substituting C' = 10W into (1)
results in 0.05(10WW) — 0.001(10W)W =0 < 0.5W —0.01W? =0 < 50W -W?=0 <&
WBO—-—W)=0 < W =0or50.Since C = 10W, C = 0 or 500. Thus, the population pairs (C, W) that lead to

stable populations are (0, 0) and (500, 50). So it is possible for the two species to live in harmony.
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36. (a) If dP/dt = 0, the population is stable (it is constant).

P 8 P rp_. B _ B
(b) _0 = ,BP—ro(l PC)P = ro_l 2 = Pc_l - = P_Pc(l )

If P. = 10,000, 7o = 5% = 0.05, and 3 = 4% = 0.04, then P = 10,000(1 — £) = 2000.

(¢) If B = 0.05, then P = 10,000(1 — 2) = 0. There is no stable population.

2.8 Related Rates

v dV dz , dx

_ .3 — ar
e N TR T
dA dAdr dr dr
2 (@ A=mr" = e T = 27r o (b) =27 7 27(30 m)(1 m/s) = 607 m*/s

3. Let s denote the side of a square. The square’s area A is given by A = s2. Differentiating with respect to ¢ gives us

C(lif =2s % When A = 16, s = 4. Substitution 4 for s and 6 for d— gives us C(lif = 2(4)(6) = 48 cm?/s.
B dA _ dw a )
4 A=tw = v =L w Tt = 20(3) 4+ 10(8) = 140 cm/s.
dv dh dh dh 3
2 2, _ av _
5. V=mr‘h=n(5)"h =257th = il = 257 - 3 =257 7w = m/min.
av _ dr av 2
_ 4.3 av 2 &Y qn(L. = 3
6.V =3mr’ = — Bt = 4m (5 - 80)"(4) = 25,600 mm?/s.
1S—dm? = By o 45 5. 2 = 1287 cm? /min.
dt dt dt
8 A= Labsing dA—lb 9d0—1 1 = 2 /mi
. (@) A= absinf = g = 2abcost o = £(2)(3)(cos £)(0.2) = 3(3)(0.2) = 0.3 cm® /min.

(b) A= %absin@ =

A 0 1
(il_t = ; (bcosea + sin 6&) = 3(2)[3(cos 3)(0.2) + (sin 3)(1.5)]
=3(3)(02) + 1v3 (%) =03+ 3V3 cm’/min [~ 1.6]

() A= %absin@ =

% _ % (@ bsind + a % sinf + abcos ﬁ) [by Exercise 2.3.87(a)]

3[(2:5)(3)(3V3) + (2)(1.5)(3V3) + (2)(3)(3)(0.2)]
(Bv3+2v/340.3) = (23 +0.3) cm?/min [~ 4.85]

Note how this answer relates to the answer in part (a) [# changing] and part (b) [b and 6 changing].
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B dr dy dydz 1 —1/2 B 3 _ody B
9. (@) y =2z + land dt_3 > ST L d 2(2:10—&-1) 2-3= 2$+1.Whenz—4, dt_\/§_1'

b y=+v2x+1 = y¥*=22+1 = 2r=9y*-1 = x—2y f—anddt 5 =

dr _ dzdy _
= .5 = 5y. =12,y = /25 = 5,50 = = 5(5) = 25.
a T dydt 5 = 5y. When z Y 5= 5s0 dt 5(5) 5
10. (a)—(4:1: +9y?) = jt(?’ﬁ) = SxCCll—tJrlS ‘j;z—o = 4x%+92 =0 =

4(2)d +9<3\/5)<%):0 = 8@:—2\/5 = @:—1\/5

dt dt dt 4
(b) 4z =2 +9y§i{f0 = 4(72)(3)+9(§\/5)%:0 = 6\/5%:24 = %:%
11.;):( FoP 2% = jt(g) = 2m‘;—t+2y‘$+2z%_o = m%—l—yfg %:0.
If%*B ‘2ﬂand(m,y,z):(2,2,1),then2(5)+2(4)+1%:o = %:—18.
12.%(@/):%(8) = Zt—i- il;*O. Iff;; —3cm/sand (z,y) = (,2),then4(—)+2§—:§:0 =
% = 6. Thus, the z-coordinate is increasing at a rate of 6 cm/s.

13. (a) Given: a plane flying horizontally at an altitude of 1 mi and a speed of 500 mi/h passes directly over a radar station.

If we let ¢ be time (in hours) and = be the horizontal distance traveled by the plane (in mi), then we are given

that dz/dt = 500 mi/h.

(b) Unknown: the rate at which the distance from the plane to the station is increasing (c) =
when it is 2 mi from the station. If we let y be the distance from the plane to the station, ! ‘ :y
then we want to find dy/dt when y = 2 mi.

(d) By the Pythagorean Theorem, y? = 2> +1 = 2y (dy/dt) = 2z (dz/dt).

V3

zdz _ %5 (500) = 250 /3 ~ 433 mi/h.

(e)a Jd (500) Since y*> = 2% + 1, wheny = 2,z = /3, s0

dt

14. (a) Given: the rate of decrease of the surface area is 1 cm?/min. If we let ¢ be ()
time (in minutes) and S be the surface area (in cm?), then we are given that
dS/dt = —1 cm?/s.
(b) Unknown: the rate of decrease of the diameter when the diameter is 10 cm.
If we let « be the diameter, then we want to find dz:/dt when = 10 cm.
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187
(d) If the radius is 7 and the diameter x = 2r, thenr = 1z and S = 47r® = 47r(%r)2 =mz? =
4S _dSdr _, v
dt ~ drdt dt’
ds dx dx dx 1
(e) 71—5 2mx dt = E—*ﬁ When:): 10 i

1
%= 20m . So the rate of decrease is —— cm/min.

15. (a) Given: a man 6 ft tall walks away from a street light mounted on a 15-ft-tall pole at a rate of 5 ft/s. If we let ¢ be time (in s)
and z be the distance from the pole to the man (in ft), then we are given that dz/dt = 5 ft/s

(b) Unknown: the rate at which the tip of his shadow is moving when he is 40 ft

(c)
from the pole. If we let y be the distance from the man to the tip of his 15
d 6
shadow (in ft), then we want to find o (z +y) when z = 40 ft
x y
- . 1
(d) By similar triangles, ) _rty

= 1by=6x+6y = 9y=6z = y:%

5dr 4 25
= — = = = = f .
m+3x) 5 7 2(5) = 2 ft/s

(e) The tip of the shadow moves at a rate of 4 (m +y) = i (

16. (a) Given: at noon, ship A is 150 km west of ship B; ship A is sailing east at 35 km/h, and ship B is sailing north at 25 km/h

If we let ¢ be time (in hours), = be the distance traveled by ship A (in km), and y be the distance traveled by ship B (in km)
then we are given that dz/dt = 35 km/h and dy/dt = 25 km/h.

(b) Unknown: the rate at which the distance between the ships is changing at

(© B
4:00 pM. If we let z be the distance between the ships, then we want to find z y
dz/dt whent = 4 h. A
d d X 150 — x
@22=(150—2)%+y> = 2= =20150—2)(-2) +2y
dt dt
(e) At4:00 PM, z = 4(35) = 140 and y = 4(25) = 100 = z = /(150 — 140)2 + 1002 = /10,100.
dz 1 dz dy —10(35) + 100(25) 215
So =z |@ B0 G v dt} /10,100 V101 m/
17. Y

. d , d .

We are given that d—f = 60 mi/h and d_zt/ =25mi/h. 22 =2 +4® =

dz dx dy dz dz dy dz 1 dx dy
2: 2 =222 42y e e

z x T @ TV 77 Ve T (

a ~Ca Y a2\

After 2 hours, z = 2(60) = 120 and y = 2 (25) =50 =

z = 4/120% + 502 = 130,
d 1/ dz d 120(60) + 50(25
© dj z( Y y) = =

= i/h.
at Y 130 65 mi/
dx 24
18. We are given that — = 1.6 m/s. By similar triangles, - = y=— =
dt 12 T T
dy 24 dx 24 dy _ 24(1. 6)
— =——— = ——(1.6). Whenz = — the sh
It i = (1.6). When z = 8, i 6 0.6 m/s, so the shadow

is decreasing at a rate of 0.6 m/s.
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19 T We are given that Ccil_f =4 ft/s and Ccll_ZZ =51ft/s. 22 = (z + y)* + 500> =
X
vty z 2z % 2(x + )<da: ?iifl) 15 minutes after the woman starts, we have
P
y x = (4 ft/s)(20 min)(60 s/min) = 4800 ftand y = 5- 15 - 60 = 4500 =
- 500 z = \/(4800 + 4500)2 + 5002 = /86,740,000, so
dz  x+y/(dx dy) 4800 -+ 4500 837
— = ———(4+5) = ~ 8.99 ft/s.
dt z ( dt  dt /86,740,000 ( ) V8674 /s

20. We are given that % =24 1t/s.

dy dx
— — 2 —_— —_
y> =(90 —2)* + 90> = 2y— i 2(90 )( 7 ) When z = 45,

dy 90 —z dx _ 45 24
= /452 £ 902 = 45 /5, so —= (——) = ==,
90 — x

so the distance from second base is decreasing at a rate of 24 ~ 10.7 ft/s.

(b) Due to the symmetrlc nature of the problem in part (a), we expect to get the same answer—and we do.

2?2490 = 222 90 % Whenw = 45, 2 — 4545, s0 L& = B _ A

dt dt dt F\/g( 4) = E ~ 10.7 ft/S.

21. A = Lbh, where b is the base and h is the altitude. We are given that % = 1 cm/min and % = 2 cm?/min. Using the

dA dh
Product Rule, we have L3 (b 7 +h dt)' When h = 10 and A = 100, we have 100 = 2b(10) = 1b=10 =
1 db db db  4-20
b=2 2=—-120-1+10— 4=2 10 — — = =—1. in.
0, so 2(0 + 0d> = 0+ Odt = 10 6 cm/min
. dy dzx dy dx
. pulley 29— i — 2 =2 - i
22 Given 7 1 m/s, find o whenz =8m.y*=z2"+1 = 2y I 2z 7 =
y
0t° ! dr _ydy _ —Y Whenz = 8,y = V65, s0 dz = fﬂ. Thus, the boat approaches
dat  zdt = dt 8
X /
the dock at % ~ 1.01 m/s.
23. 100 B We are given that flj = 35 km/h and % =25km/h. 22 = (z +y)* +100° =
y y -
2z— = (d— ) At4:00 PM, 7 = 4(35) = 140 and y = 4(25) = 100 =

=

\/(14() +100)2 + 1002 = /67,600 = 260, so

dz _z4y(de  dy\ _ 140 4 100 720
(dt 0 ) = e (33+25) = T ~55.4km/h.

d z

S

24. The distance z of the particle to the origin is given by z = /22 + 42, so 2° = 2 + [2sin(7z/2)]* =

dz dx LT T 7 dx dz dx LT T dx
ZZE = 2x$ +4-2sm(§;r) cos(ax) i = ZE = mE +27rs1n(§x) cos(gx) T When
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28.
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(z,y) = ,/ +12 1/ \/ \/ —§\/10+27rsin%cos%-\/m =

189

1dz 1 1 dz 3V3m
3@ 3" (2)(5\/5) = g T
. . . dv 5
If C = the rate at which water is pumped in, then T C — 10,000, where
1 2 . . L. . r h 1 T, T
V = 3mr~h is the volume at time ¢. By similar triangles, 5% = r= §h =
6
_ 2 a3 v _ 7,5 dh h
‘ZL = 20 cm/min, so C' — 10,000 = %(200)2(20) = C =10,000 + 800{’900% ~ 289,253 cm®/min.
o . 3 b
By similar triangles, 1=7% b = 3h. The trough has volume 3 T
b
dv dh dh 2
= 1ph(10) = 5(3h)h = 15h2 12=22 —30p 2L o _ <2 |
V' = 5bh(10) = 5(3h) 5 = 0 30 % - @ h _l_
dh 2 4
12 = == i
When h = 35, it =51°5 ft/min.
025 03 025 The figure is labeled in meters. The area A of a trapezoid is
\ . / 1 (base; + basez) (height), and the volume V' of the 10-meter-long trough is 10A.
0.5
h
03 Thus, the volume of the trapezoid with height /v is V = (10)£[0.3 + (0.3 + 2a)]h.
. . 2 1
By similar triangles, % = % =350 2a =h = V =5(0.6+h)h =3h+5hr%
dv dV dh dh dh 0.2
Now o ama 0'2_(3+10h)dt = o =3 i0n When h = 0.3,
dh 02 02 m/min = L m/min or 10 cm/min
dt ~ 3+10(0.3) 6 ~ 30 3 '
The figure is drawn without the top 3 feet. I 34 |
N b L
V = (b + 12)R(20) = 10(b + 12)h and, from similar triangles, ? X7 Yy
c 6 .y 16 8 8h 11h e —l—1n—1 16—
Z=—andZ="==,s0b= 12 =h+12+ — =12+ —.
A i S A 73
11h 110R7 dv 220\ dh
Th =10( 24 4+ — =24 8=—=1(24 .
us, V ( + 3 >h 0h + and so 0.8 7 ( 0+ 3 h) 7
When h = 5, dh _ 0.8 ~ 3~ 0.00132 ft/min.

dt — 240+ 5(220/3) 2275

3
We are given that v _ 30 ft® /min. V = %m"Zh = l7r<ﬁ> h= mh

dt 3 2 12
WV _vdh 0 xhdh o dh 120
dt — dh dt T4 dt dt — mh?’
When h = 10 ft, dh _ 120 :£z0.38ft/min.

dt 1027 5w
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31.

32.

33.

34.

35.

36.
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We are given dx/dt = 8 ft/s. cot 0§ = 1%)0 = x=100cotf =
> 100
dx do do sin” 0 100 1
=1 60— === When y = 2 6= =
T 00 csc? 7 = 7 100 - 8. en y = 200, sin 300 — 3 = -
X
ili_f (11/020) = 510 rad/s. The angle is decreasing at a rate of 5 rad/s.
The area A of an equilateral triangle with side s is given by A = i 352,
dA d
= iv3-2s d—; — 1/3-2(30)(10) = 150+/3 cm?/min.
1
cosf = 1—10 = —sinf ill—f = 110 le:: From Example 2, % =1and "
. 8
whenz =6,y = 8,s0sinf = —. 10
10 y
8 db 1 do 1
Thus, —— — = —(1 = = —=rad/s.
U To@ 10 T g T g s L ’
X ground
From the figure and given information, we have 2> + y* = L?, dy = —0.15m/s, and
dt wall
% = 0.2m/ s when z = 3 m. Differentiating implicitly with respect to ¢, we get
L
dx dy dy dx . .
2 2 — LZ Qr— 2 —_ = —r—. h Y
7 +y = 2z 7 + dt =0 = y 7 T 7 Substituting the given
information gives us y(—0.15) = —3(0.2) = y=4m. Thus,3°+4*=1°2 =
O
=25 = L=5m. x ground
dy z dx . , .
According to the model in Example 2, o —5 TR e 0, which doesn’t make physical sense. For example, the

model predicts that for sufficiently small y, the tip of the ladder moves at a speed greater than the speed of light. Therefore the
model is not appropriate for small values of y. What actually happens is that the tip of the ladder leaves the wall at some point
in its descent. For a discussion of the true situation see the article “The Falling Ladder Paradox” by Paul Scholten and Andrew
Simoson in The College Mathematics Journal, 27, (1), January 1996, pages 49—54. Also see “On Mathematical and Physical

Ladders” by M. Freeman and P. Palffy-Muhoray in the American Journal of Physics, 53 (3), March 1985, pages 276-277.

The area A of a sector of a circle with radius r and angle 0 is given by A = %r29. Here r is constant and 6 varies, so
% % 2 Ccilf The minute hand rotates through 360° = 2 radians each hour, so % = %r2(27r) = 7mr? cm? /h. This

answer makes sense because the minute hand sweeps through the full area of a circle, 772, each hour.

The volume of a hemisphere is 277°, so the volume of a hemispherical basin of radius 30 cm is 27(30)* = 18,0007 cm®.

If the basin is half full, then V = 7 (rh® — $h%) = 9000m = 7 (30h* — 3h®) = £h® —30h*+9000=0 =

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



37.

38.

39.

40.

41.

42.

SECTION2.8 RELATEDRATES 0 191

h = H =~ 19.58 [from a graph or numerical rootfinder; the other two solutions are less than 0 and greater than 30].

av _ dh L cm® dh
— 2_ 18 dd — _p2 2— ) (1000 =—) = 2
V =7(30n" — 3h%) = — (60h - —h dt) = ( min)( 000 — ) m(60h —h*) —

dh 2000 .
E = m =~ 0.804 Cm/mln.

Differentiating both sides of PV = C with respect to ¢ and using the Product Rule gives us P d_‘t/ + VE = =
av V dP dP av 600 .
- Pa When V' = 600, P = 150 and rre = 20, so we have v —1—50(20) —80. Thus, the volume is

decreasing at a rate of 80 cm?/min.

dv dp dv vt dp vV dpP
1.4 0.4 1.4 av _ _ o _ all
PVii=0 = PV Vg =0 S S T T havei dr © TAP i
dpP dv 400 250
h — 400 P = i have — = — —10) = ——. Thus, the vol is i i
When V 00, 80 and 7 0, so we have 7 1.4(80)( 0) 7 us, the volume is increasing at a
rate of 222 ~ 36 cm®/min.
1 1 1 1 180 9 400 1 1 1
th Ry = =1 === = = ——. Differentiating = = —— + —-
With R; = 80 and R» 00, R 7 + o 30 + 100 — 3000 400,S0R 9 ifferentiating R R + &
. 1 dR 1 dR: 1 dR» dR 1 dRy 1 dR»
with respect to ¢, we have T _R_%W _R_gﬁ = s *RQ(R2 7 R—gﬁ).When Ry =80 and
dR  400%] 1 1 107
R> =100, Tl {802 (0.3) + 1002 (0.2)] = g0~ 0.132 Q/s.
dB . 2/3 2.53
We want to find T when L = 18 using B = 0.007W */° and W = 0.12L*°".
dB _ dB dW dL 2 ,1/3) 1.53 20— 15
dt — dW dL dt (0'007 sW (0.12-2.58 - L) 10,000,000
= [0.007- 2(0.12- 182-53)*1/3] (0.12-2.53 - 18"%%) <%> ~ 1.045 x 10° g/yr
We are given df/dt = 2°/min = g5 rad/min. By the Law of Cosines,
12
x? =122 +15% — 2(12)(15) cos § = 369 — 360 cos = .
dx do dr  180sin6 df
- — i - - — 60° 15
2z T 360 sin 0 7 = T - ¥ . When 6 = 60°,

dm 180sin60° # w3 Tw .
x = /369 — 360 cos 60° = /189 = 3/21 = — = = ~ 0.396 m/min.
°Ur T T ayaT 90 3yar ol /

Using () for the origin, we are given % = —2 ft/s and need to find % when z = —5. P
Using the Pythagorean Theorem twice, we have v/z2 + 122 + \/ y2 + 122 = 39, .
the total length of the rope. Differentiating with respect to ¢, we get

x Q y

x dm dy —0.s @ CTy*+122de

y TVy? +12% do
JETIZE Al | P iD dt Ca T T e dt
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Now when z = —5,39 = \/(=5)2 + 122 + /32 + 122 = 13 + /32 + 122 & /y% + 122 = 26, and

dy (—5)(26) 10
= /262 — 122 = \/532. Sowhen z = —5, 2 = —~ 20 (L) = __—_ ~ (.87 fi/s.
Y dt —  /532(13) =2 133 /

So cart B is moving towards () at about 0.87 ft/s.

43. (a) By the Pythagorean Theorem, 4000% + 3> = ¢2. Differentiating with respect to ¢,
. d de d
we obtain 2y d—i] =2 e We know that d—? = 600 ft/s, so when y = 3000 ft, ¢ y
£ = /40002 + 30002 = 4/25,000,000 = 5000 ft 0
4000

d¢  ydy 3000 1800

=22 277 =— = ft/s.
and = (dt =~ 5000 (600) 5 360 ft/s

Y d d y 5, db 1 dy dd  cos?6dy
H _ —_- = —\ - _—=—— _——=—
(b) Here tan§ = 5o = (tan0) = (4000) = O = I00dt  dt 4000 a¢ vren

_ dy B 4000 4000 4 do  (4/5)° B
y = 3000 ft, o = 600 ft/s, £ = 5000 and cos = 7 = 5000 -5 % = 2000 (600) = 0.096 rad/s.

44, We are given that % = 4(27) = 8r rad/min. x = 3tanf = >

dx 5, d0 2 2 3

I = 3sec GE. Whenz = 1, tan6 = %, sosec’d =1+ (3) = 2

P
and Ccll—f =3(3)(87) = L7 ~ 83.8 km/min. x
x dd 1ldx ™2/ T 1dzx
R s =1 ECHICIIT -
5. cot 0 5 = csc th = = csc g 5 = =
2
% = %(%) = I?Pﬂ' km/min [~ 130 mi/h] 5
[4
X

46. We are given that % = 2;;;?1? = 7 rad/min. By the Pythagorean Theorem, when

h=6,z=28,s0sinf = 1% and cos 0 = 1%. From the figure, sin § = % =

. dh df 8 .
h =10sin, so i 10C0SQE = 10(m> m = 87 m/min.

47. We are given that % = 300 km/h. By the Law of Cosines,

y? =2 +1> —2(1)(z) cos120° = 2® + 1 — 2z(—3) =2° +z + 1,50

\ D
~

Qy@*QId—x do @*21+1@.After1minute,m:%:5km

dt — T dt 0 dt dt — 2y dt

dy  2(5)+1 1650
=v524+54+1=+31km = —Z=—"—-(300) = — =296 km/h.
y=v ” at = ovar 0 Ua /

= 1
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We are given that % = 3 mi/h and % = 2 mi/h. By the Law of Cosines,

2% = 2% 4+ 9* — 2xy cos 45° :m2+y2 —\/imy =

dz dx dgé NG r

22— =20 — +2y

- 1
% = y -2 y . After 15 minutes [= ; h], x

dt

— 3 —
wehaver =  andy =

dz 2

3 1o _ 39 — 1 = 2 13— 6\/_ ~ mi1
E_\/TW[Z(Z)?’JFQ(?V V2(3)2-v2(3)3] = /13— 62 ~ 2.125 mi/h.

V13 —-62

Let the distance between the runner and the friend be ¢. Then by the Law of Cosines,

¢
22 =200% 4+ 100% —2-200 - 100 - cos & = 50,000 — 40,000 cos @ (x). Differentiating A\
S . . al . do . 200 ——1
implicitly with respect to ¢, we obtain 2¢ o —40,000(— sin 0) R Now if D is the
distance run when the angle is 0 radians, then by the formula for the length of an arc
on a circle, s = 76, we have D = 1006, so § = LD = 9 = L db L . To substitute into the expression for

100 dt 100 dt 100"

d—f, we must know sin @ at the time when ¢ = 200, which we find from (x): 200% = 50,000 — 40,000 cos§ <

cosf =1 = sinf=4/1— (i) ‘/_ . Substituting, we get 2(200) 36 = 40,000@(%0) =

de/dt = %‘{E ~ 6.78 m/s. Whether the distance between them is increasing or decreasing depends on the direction in which

the runner is running.

The hour hand of a clock goes around once every 12 hours or, in radians per hour,

2z = % rad/h. The minute hand goes around once an hour, or at the rate of 27 rad/h.
So the angle 6 between them (measuring clockwise from the minute hand to the hour
hand) is changing at the rate of df /dt = £ — 27 = —LZ rad/h. Now, to relate 6 to £,

we use the Law of Cosines: £ =42 482 —2.4.8.cosf = 80 — 64cosf ().
. e . al . do .
Differentiating implicitly with respect to ¢, we get 2¢ o= —64(—sin6) I At 1:00, the angle between the two hands is

one-twelfth of the circle, that is, << 12 = & radians. We use (x) to find £ at 1:00: £ = /80 — 64 cos g = /80 — 32 V3.

() L o MO s

Substituting, we get 2¢ % = 64 sin — (—

= — =— ~ —18.6.
6

6 dt 2./80—323 34/80 — 323

So at 1:00, the distance between the tips of the hands is decreasing at a rate of 18.6 mm/h ~ 0.005 mm/s.
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2.9 Linear Approximations and Differentials

1. f(x) =2*—22+3 = f/(z) =32° — 22,50 f(—2) = —9 and f'(—2) = 16. Thus,
L(z) = f(=2) + f'(=2)(z — (=2)) = =9+ 16(x + 2) = 162 + 23.
2. f(z) =sinz = f'(z) =coswz,so f(£) = 5 and f'(Z) = /3. Thus,

L) = f(§) +/(E) e —§) = $+ V30— 8) = $vBa+ § - 5VBr
3 f(x)=vT = f(r)=32""2=1/(2y/7),50 f(4) = 2and f'(4) = L. Thus,
Liz)=f@)+f4)(z—4) =2+ 3(x—-4)=2+32—-1=jz+1

2z
572> 50 f(3) =1and

4 f(x)=2/Va?—5=2(>-5)""? = f(z)=2(-%)("-5)"%*(22) = “E s

J'(3) = 2. Thus, L(z) = f(3) + FB) (@ —3) = 1 - 3(¢ —3) = ~3u + L.

5 flx)=vV1i—2z = f'(ff)=2—m

,s0 f(0) =1and f'(0) = —3.

Therefore,

VI—z=f(z)= f0)+ f(0)(z—0) =1+ (—3)(x—0) =1— 3z
Sov0.9=+yT-01I~1-2(0.1)=0.95

and v0.99 = /T —0.01 ~ 1 — £(0.01) = 0.995.

6. g(z)=VI+ta=1+2)"" = g¢(z)=231+2)"%3s0g(0) =1and 2
g'(0) = 3. Therefore, /1 + 2 = g(x) =~ g(0) + ¢'(0)(z — 0) = 1 + 3. ; o, ')4
So ¥/0.95 = {/T+ (—0.05) ~ 1 + £(—0.05) = 0.983, 325 / 3
and V1.1 = ¢TI+ 0.1~ 1+ 3(0.1) =1.03. ! J

T fl@)=vI+2r = fl(z)=301+22)%*2)=3(1+22)"" 50

f(0) = Land f'(0) = 1. Thus, f(z) =~ f(0) + f'(0)(z — 0) = 1 + 2z

We need v/1+ 2z — 0.1 < 1+ 22 < /T+ 22 + 0.1, which is true when
—0.368 < = < 0.677.

0
8. fz)=(1+2)"* = f(z)=-3(1+x)"*so0f(0)=1and 2
)
f(0) = —3. Thus, f(z) = f(0) + f'(0)(x — 0) = 1 — 3z. We need \
(14+2)™%-0.1<1-3z < (1+2)"2+0.1, which is true when o, F4+01

—0.116 < z < 0.144.
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— ; — —4 L5
.f(x)—(1+2z)4—(1+2az) = \
-8
"(z) = —4(14+22)75(2) = ——— =1 '(0) = -8.
/() = =41+ 22) () = g0 £(0) = Land (0) = =8 N\
Thus, f(z) ~ f(0) + f'(0)(z —0) =1+ (—8)(z — 0) =1 — 8.
1 1
W — =01 <1- —_ .1, which is t —008
eneed(l_i_%v)4 0.1< 8x<(1+2x)4+0 , which is true 05 L
when — 0.045 < x < 0.055.
f(z) =tanz = f'(z) =sec®x,so f(0) =0and f'(0) = 1. p 1 /L
Thus, f(z) ~ f(0) + f(0)(z —0) =0+ 1(z — 0) = =.
We need tanz — 0.1 < x < tanz 4+ 0.1, which is true when f-o.1
-1 1
—0.63 < x < 0.63. F+0.1

(a) The differential dy is defined in terms of dz: by the equation dy = f(z) dx. Fory = f(z) = (z* — 3)72,

’ 2 - 4 4
f(@) = —2(a* —3)7*(2z) = —ﬁ, so dy = —ﬁdm
(6) Fory = F(8) = V=T, £/(t) = 31— 912 (~4t%) = —— 2 sody = —— 2t
> 2 1 —¢& V1 —t4
o 1420, (143w)@) - (1+20B3) -1 e
(@) Fory = f(u) = 75 /'(w) = 1+ 3u)? =T YT e

(b) Fory = f(0) = 6*sin 20, f'(0) = 6°(cos20)(2) + (sin 20)(26), so dy = 20(0 cos 26 + sin 26) d6.

1 sec? \/f sec? \/f
a) Fory = f(t) = tanv/2, f'(t) = sec® V- =t /2 = 2= X" sody = dt.
(a) Fory = f(t) Vi, (1) Vi NG v="7
1 -2
(b) Fory = f(v) = 1102
F() = A+v*)(=20) = (1 —-v*)(20) _ =20[A+v)+ (A -]  —20(2)  —4v
(1+v2?)2 (1+v2?)2 (1+v2)2  (1+0v2)?
—4v
SO dy = m dv.
_ . 1+sint 1+sint
(a) Fory = f(t) = vt —cost, f'(t) = 3(t — cost)"*/*(1 +sint) = PN e dy = PN dt.
B _ 1. , _ 1 1 . xzcosz—sinz __ xcosx —sinx
(b) Fory = f(z) = —sinz, fl(z) = —COST — —sInE = ——— 5, 50 dy = — dz.
(@ y=tanr = dy=sec’zdx
(b) When 2 = 7 /4 and da: = —0.1, dy = [sec(m/4)]*(=0.1) = (v2)* (=0.1) = —0.2.
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16. (a) y = cos mx = dy = —sin 7z -wdr = —7 sinTrdr

(b)z=1anddr =—-0.02 = dy=—sin%(—0.02) = (v/3/2)(0.02) = 0.017 /3 ~ 0.054.

_ _1 2\—1/2 _ L
1 1
_z+1 (e-1DA)—(z+1)(QAQ) , =2
18. () y = p—] = dy= @1y der = 7(17 1) dx
(b)yz=2anddz =0.05 = dy= (2:71)2(0.05) = —2(0.05) = —0.1.

19.y=f(r)=2°—42, x=3, Az =05 =

Ay = f(35)— f(3) = —1.75 — (=3) = 1.25

dy = f'(x)dz = (2 —4)dz = (6 — 4)(0.5) =1

20.y=fx)=z—-2° =0, Az =-03 = Y

Ay = f(—0.3) — f(0) = —0.273 — 0 = —0.273

y=x—x°

—03 dx = Ax
dy = f'(z)dz = (1 — 32%)dz = (1 — 0)(—0.3) = —0.3 -

A
).;,
>
=
—t—
j=J
w
(=}
=

Ny=fx)=vVr—-2, =3, Ae =08 = Y
Ay =f(3.8) — f(3) =v1.8 - 1~0.34
1 1

dy = f'(z)de = ——d 0.8)=0.4
0
X
2 y=2° =1 Az=05 = ’ y=x
Ay = (1.5)> — 1% =3.375 — 1 = 2.375. T
dy = 3z% dx = 3(1)%(0.5) = 1.5
Ay
dy
14 >
~ dx = Ax
0 1 X
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. To estimate (1.999)*, we’ll find the linearization of f(x) = z* at a = 2. Since f'(z) = 42, f(2) = 16, and
f'(2) = 32, we have L(z) = 16 + 32(x — 2). Thus, z* ~ 16 + 32(z — 2) when z is near 2, so

(1.999)* ~ 16 + 32(1.999 — 2) = 16 — 0.032 = 15.968.

y=f(x)=1/z = dy=—1/2"dz. Whenz =4 and dz = 0.002, dy = —+(0.002) = S0

—1i
8000°

1 ~ 1 1 __ 1999 __
Tas A f(4) +dy = 3 — o5 = 1292 = 0.249875.

Ly=f(x) =¥z = dy=3272/*dz. Whenz = 1000 and dz = 1, dy = %(1000)"*/3(1) = k5, so

300°
/1001 = f(1001) = f(1000) + dy = 10 4+ =*= = 10.003 ~ 10.003.
300
cy=f(x) =z = dy=327"?dz. Whenz = 100 and dz = 0.5, dy = %(100)"/?(3) = &, s0

v/100.5 = £(100.5) ~ f(100) + dy = 10 + 55 = 10.025.

.y = f(z) =tanz = dy = sec®xdx. When 2 = 0° [i.e., 0 radians] and dz = 2° [i.e., 30 radians],
dy = (sec® 0) (&) = 1°(&) = &, s0tan2° = f(2°) ~ f(0°) + dy =0+ & = & ~ 0.0349.
y = f(z) =cosz = dy= —sinzdr. When z = 30° [r/6] and doz = —1° [—7/180],
dy=(—sinZ) (&) = —3(—&5) = 55,50 c0s29° = f(29°) ~ f(30°) + dy = 3v/3 + 5% ~ 0.875.
y=f(z) =secx = f'(z)=secz tanz,so f(0) =1and f'(0) =1-0 = 0. The linear approximation of f at 0 is
£(0) + f(0)(x — 0) = 1+ 0(z) = 1. Since 0.08 is close to 0, approximating sec 0.08 with 1 is reasonable.
cy=[f(z)=vz = f'(x)=1/(2y/x),s0 f(4) = 2and f'(4) = ;. The linear approximation of f at 4 is
f(4)+ f'(4)(z —4) =2+ X (z — 4). Now f(4.02) = v/4.02 ~ 2+ $(0.02) = 2+ 0.005 = 2.005, so the approximation is
reasonable.
. (a) If 2 is the edge length, then V = 2® = dV = 32 do. When z = 30 and dz = 0.1, dV = 3(30)?(0.1) = 270, so the
maximum possible error in computing the volume of the cube is about 270 cm>. The relative error is calculated by dividing

the change in V', AV, by V. We approximate AV with dV'.

Relative error = v oY e 3 = 3

2

ﬂNﬂ:&r dx dz 0.1 — 0.0L
30

Percentage error = relative error x 100% = 0.01 x 100% = 1%.

(b) S =62> = dS = 12zdz. When z = 30 and dr = 0.1, dS = 12(30)(0.1) = 36, so the maximum possible error in

computing the surface area of the cube is about 36 cm?.

Relative error = ﬁ & 48 _ Radr 2 de = 2(0'1

T = =2 %) = 0.008.

Percentage error = relative error x 100% = 0.006 x 100% = 0.6%.
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33.

34.

35.

36.

37.

38.
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(@ A=nr? = dA=2nrdr. Whenr = 24 and dr = 0.2, dA = 27(24)(0.2) = 9.6, so the maximum possible error
in the calculated area of the disk is about 9.67 &~ 30 cm?.

. _AA dA _ 2mrdr 2dr 2(02) 02 1 —
(b)Relatlveerror—TNI— g ] —12—60—0.016.

Percentage error = relative error x100% = 0.016 x 100% = 1.6%.

(a) For a sphere of radius r, the circumference is C' = 27 and the surface area is S = 4772, so

C

2 2
=L 4 S:4w<—) ¢ dS:%CdC.WhenC:84anddC:0.5,dS:2 84

27 T 71_(84)(0-5) = o

. . 4 . 4 1
so the maximum error is about 8 ~ 27 cm?. Relative error ~ — = 84/m = — =~ 0.012 =1.2%
™ S 84%/m 84

4 4, 4 (CV P 1, B _
dv = L(84)2(0.5) = @, so the maximum error is about 1764 ~ 179 cm®,
272 w2 w2

2
The relative error is approximately dVV = % = 5_16 ~ 0.018 = 1.8%.
s

For a hemispherical dome, V = 27r® = dV = 27r®dr. Whenr = £(50) = 25 m and dr = 0.05 cm = 0.0005 m,

dV = 2m(25)*(0.0005) = 3Z, so the amount of paint needed is about 3% ~ 2 m®.

@V =nr’h = AV ~dV =2xrhdr = 2rrh Ar
(b) The error is
AV —dV = [n(r + Ar)*h — 7r?h] — 2mrh Ar = 7r2h + 2nrh Ar + w(Ar)2h — rh — 2nrh Ar = 7(Ar)?h.

(a) sinf = = x=20cscl =

8|8

da = 20 20

—~

—cscf cot ) df = —20csc30° cot 30° (£1°)

T 2\/5
= —202)(V3) (#1555 ) =+ 5=

So the maximum error is about :I:% V31~ +1.21 cm.

. . Az dz :t% V3r V3 . .
(b) The relative error is - = T(Z) = iﬁ 7 ~ £0.03, so the percentage error is approximately +3%.
_ 2
V=Rl = I= % = dI = —% dR. The relative error in calculating [ is # ~ d—II = w = —d—g.

Hence, the relative error in calculating [ is approximately the same (in magnitude) as the relative error in R.

dF _ 4kR’dR

_ .p4 _ 3
F=kR* = dF =4kR°dR iR

=4 (d_]f) . Thus, the relative change in F' is about 4 times the
relative change in R. So a 5% increase in the radius corresponds to a 20% increase in blood flow.
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dc d du
39. (a) dc = Ed:c—()dx—o (b) d(cu) = E(cu)dm-cadm—cdu
d du dv du dv
(c)d(u—l—v)—ﬂ(u—kv)da:— <£+%)da:—£dz+%dm—du+dv
d dv du dv du
(d)d(uv)—ﬂ(uv)d:ﬂ— (u%—l—va)da:—uadx—&—vadm—udv—}-vdu
Udu udv vdu da udv da
U _i u _ de dz T dz T U dx _vdu—udv
© d(v) Cdx (U) de = v2 de = v2 N v?
) d(=z") = 4 (z™)dz = na" "t dx
= =

40. (a) f(z) =sinz = f'(x) =cosz,so f(0) =0and f'(0) = 1. Thus, f(z) = f(0)+ f(0)(x —0) =0+ 1(z —0) =

1 y=1.02sinx 0.36 Y=
(b) - - ;
~ .
Ny =0.98sin x y=102sinx
-1 1 / 4
y=0.98sinx
V=x
1 g 0.33 -~ 0.36
-0.33 y=X
'd
b y=1.02sinx
y=10.98sin.x
N
/
~0.36 < —0.33

We want to know the values of z for which y = x approximates y = sin z with less than a 2% difference; that is, the

values of x for which

TTAMTL 902 o —002< 7T g2 o

sinx

{—0.02 sinz < z —sinz < 0.02sinz if sinz > 0 {0.98 sinz < x < 1.02sinz  if sinz >0
=4

—0.02sinxz > z —sinz > 0.02sinz if sinz <0 1.02sinz < x < 0.98sinz if sinx <0

In the first figure, we see that the graphs are very close to each other near = 0. Changing the viewing rectangle
and using an intersect feature (see the second figure) we find that y = z intersects y = 1.02sinx at z ~ 0.344.

By symmetry, they also intersect at x ~ —0.344 (see the third figure). Converting 0.344 radians to degrees, we get
0.344(@) ~ 19.7° ~ 20°, which verifies the statement.

41. (a) The graph shows that f'(1) = 2,s0 L(z) = f(1) + f/()(z — 1) =5+ 2(x — 1) = 2z + 3.
£(0.9) = L(0.9) = 4.8 and f(1.1) ~ L(1.1) =5.2.
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(b) From the graph, we see that f’(z) is positive and decreasing. This means that the slopes of the tangent lines are positive,
but the tangents are becoming less steep. So the tangent lines lie above the curve. Thus, the estimates in part (a) are too

large.
42. @) ¢(z) = V2 +5 = ¢(2) =9 =23 g(1.95) = g(2) + ¢'(2)(1.95 — 2) = —4 + 3(—0.05) = —4.15.
g(2.05) ~ g(2) + ¢'(2)(2.05 — 2) = —4 + 3(0.05) = —3.85.

(b) The formula ¢’ (x) = /22 + 5 shows that g’ () is positive and increasing. This means that the slopes of the tangent lines
are positive and the tangents are getting steeper. So the tangent lines lie below the graph of g. Hence, the estimates in

part (a) are too small.

LABORATORY PROJECT Taylor Polynomials

1. We first write the functions described in conditions (i), (ii), and (iii):

P(z) = A+ Bx + Ca? f(z) =cosz
P'(z) =B+2Cx f'(z) = —sinz
P'(z) =2C /" (z) = —cosz

So, taking a = 0, our three conditions become

P(0) = f(0): A=cos0=1
P'(0)=f'(0): B=-sin0=0
P"(0) = f(0): 2C =—cosO0=-1 = C:_%

The desired quadratic function is P(z) = 1 — %x2, so the quadratic approximation is cosx ~ 1 — %xQ.

1.4

L

y = cos x

The figure shows a graph of the cosine function together with its linear

approximation L(z) = 1 and quadratic approximation P(z) = 1 — 127

=35 3.5
/ \ near 0. You can see that the quadratic approximation is much better than the
P

q J linear one.
-1.4

2. Accuracy to within 0.1 means that [cosz — (1 — 32%)[ < 0.1 & —0.1<cosz— (1—32°) <01 <&

O.1>(1—%m2)—cosx>—0.l = cosx+0.1>l—%;r2>cosx—0.1 & cosm—0.1<1—%m2<cosm+0.1,

1.2 y=cosx+0.1

P / From the figure we see that this is true between A and B. Zooming in or

using an intersect feature, we find that the z-coordinates of B and A are

about +1.26. Thus, the approximation cosx ~ 1 — %:):2 is accurate to

—1.6 (£ \y 1.6 within 0.1 when —1.26 < = < 1.26.
-0.1
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3. If P(z) = A+ B(z —a) + C(z — a)?, then P'(z) = B 4+ 2C(z — a) and P"(z) = 2C. Applying the conditions (i), (ii),
and (iii), we get
Pla) = f(a): A= f(a)
P'(a) = f'(a): B =f'(a)
P’(a) = f"(a): 2C=f"(a) = C=3f"(a)

Thus, P(z) = A+ B(z — a) + C(z — a)® can be written in the form P(z) = f(a) + f'(a)(z — a) + 1 f"(a)(z — a)*.

4. From Example 2.9.1, we have f(1) =2, f'(1) = 3, and f'(z) = (= + 3) /2. 4 L\f
So f'(x) = —3(x+3)7* = (1) =3 %”
From Problem 3, the quadratic approximation P(z) is L
VEFBA () +F WD)+ (D)@ -1)? =2+ -1) - Z— 1" -4l\Pf 1
The figure shows the function f(x) = v/z + 3 together with its linear -1 ’

approximation L(z) = $ + I and its quadratic approximation P(z). You can see that P(z) is a better approximation than

L(z) and this is borne out by the numerical values in the following chart.

from L(x) actual value from P(x)

Vv 3.98 1.9950 1.99499373 ... | 1.99499375
v4.05 2.0125 2.01246118... | 2.01246094
V4.2 2.0500 2.04939015 ... | 2.04937500

5 Tn(x) = co +ci(x —a) + ca(x — a)® + ca(x — a)® + -+ + co(x — a)™. If we put £ = a in this equation,
then all terms after the first are 0 and we get T}, (a) = co. Now we differentiate T}, (z) and obtain
T, (x) = c1 + 2c2(z — a) + 3ez(x — a)® + 4ea(z — a)® + -+ - + nen(x — a)™ L. Substituting x = a gives T}, (a) = c1.
Differentiating again, we have T, (z) = 2¢c2 + 2 - 3cs(z — a) + 3 - dea(x — a?) + -+ - + (n — D)ncy(z — @)™ 2 and so
T} (a) = 2c». Continuing in this manner, we get T (z) = 2- 3¢z +2-3-4ca(z —a) +- -+ (n— 2)(n — Dnca (z — a)" 3

and 7' (a) = 2 - 3cs. By now we see the pattern. If we continue to differentiate and substitute = = a, we obtain

(@) = 23 4cq and in general, for any integer k between 1 and n, T\ (a) =2-3-4-5- - - key = klcy =
(k) (k)
Ccr = In k'(a) . Because we want T}, and f to have the same derivatives at a, we require that ¢, = ! k'(a) for
k=1,2,...,n.

" (n)
6. Tn(z) = f(a) + f'(a)(z — a) + / 2('a) (x—a) 4+ / n'(a) (z — a)™. To compute the coefficients in this equation we

need to calculate the derivatives of f at O:

f(x) =cosx f(0) =cos0=1
f(z) = —sinz f(0) = —sin0 =
f"(z) = —cosz f7(0) =-1
f"(x) =sinz =0

f@(z) = cosx @) =1
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We see that the derivatives repeat in a cycle of length 4, so £©)(0) = 0, f©®(0) = —1, f(7(0) = 0, and f® (0) = 1.

From the original expression for 7}, (z), with n = 8 and a = 0, we have

aa an (8) 0
Ts(z) = f(0) + f'(0)(z — 0) + f2—(,)(x —0)%+ fg—f)(x -0 4+ ! 8,( )(m —0)®
-1 1 -1 1 22 gt 2% o8
=1+0- a:+2—x +0x—|—4x +0x+6x+01+§x =1- 2!+Z—a+§
x2 N
and the desired approximation is cosx ~ 1 — — —|— T + g The Taylor polynomials 7%, T4, and T consist of the
z? 2?2 at
initial terms of T up through degree 2, 4, and 6, respectively. Therefore, T2(x) = 1 — o Tu(z)=1-— o + Ik and
22 xt xﬁ
Te(z)=1— o + = TR We graph T5, Ty, Ts, Tg, and f:
fo I 1.4 I Ti Notice that T () is a good approximation to cos x
near 0, T4 (z) is a good approximation on a larger
interval, Ts () is a better approximation, and
y=cosx y=cosx
s / s Ts(z) is better still. Each successive Taylor
polynomial is a good approximation on a larger
interval than the previous one.
. J
T, T, 14 T, T,
2 Review
TRUE-FALSE QUIZ
1. False. See the note after Theorem 2.2.4.
2. True. This is the Sum Rule.
3. False. See the warning before the Product Rule.
4. True. This is the Chain Rule.
d d i 1 /()
5. True. — z) = —[f(@)]V? = < [f(2)]" V2 f ==
7 VI = U@ = 3@ 1) = 50
6. False. %f(ﬁ):f’(ﬁ)%xil/zz fQ(—\\;_i),WhiChiSHOt 'QL\/Z‘E)
7. False. f(z) =2’ +z|=2’+azforz >00rz < —land |2° + 2| = —(2® + z) for -1 <z < 0.

Sof(m):2x+1form>00rm<—1andf(m):

forz > —%and 2z + 1] = -2z — 1 forz < —1.

—(2z+1)for-1<z<0.But|2z+1]=2x+1
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8. True. f(r) exists = fisdifferentiableatr = fiscontinuousatr = lim f(z)= f(r).

9. True. g(z)=2° = g¢'(z)=5z* = ¢(2) =5(2)* = 80, and by the definition of the derivative,

i 42) = 9(2)
xr—2 xTr — 2

=4'(2) =5(2)* = 80.

2 2 2
10. False. % is the second derivative while (%) is the first derivative squared. For example, if y = «, then % =0,

dy 2 B
but <%> =1.

11. False. A tangent line to the parabola y = 22 has slope dy/dx = 2z, so at (—2, 4) the slope of the tangent is 2(—2) = —4

and an equation of the tangent line is y — 4 = —4(z + 2). [The given equation, y — 4 = 2z(z + 2), is not even

linear!]
12. True. diic (tan® z) = 2 tanz sec® z, and % (sec’ ) = 2 secx (secx tanz) = 2 tanx sec? x.

2 2 2
- 4 . 1 _a .
Or. (sec” x) x( + tan® ) (tan® x)

13. True. If p(z) = anz™ + An_12"" 1+ -+ a1z + ao, then p(z) = na,z"t + (n— 1)an,1x"*2 + ... 4 a1, whichis

a polynomial.

14. True.  Ifr(z) = PE) then r'(z) = g(@)p' (@) — p(x)q'(x)

[q()]?

, which is a quotient of polynomials, that is, a rational

function.

15. True. f(x) = (2% — *)® is a polynomial of degree 30, so its 31st derivative, £V (z), is 0.

EXERCISES

1. (@) s = s(t) = 1 + 2t 4 t* /4. The average velocity over the time interval [1, 1 4 h] is

oo _s(4h)—s(1) 1+20+h)+ (1+Rh)7/4-13/4 10h+h* _10+h
T (1+h) -1 h 4 4

So for the following intervals the average velocities are:
(i) [1,3]: k=2, vave = (1042)/4 =3m/s (i) [1,2]: h =1, vaye = (10 +1)/4 = 2.75m/s

(iii) [1,1.5]: h = 0.5, vaye = (10 + 0.5)/4 = 2.625m/s  (iv) [1,1.1]: h = 0.1, vave = (10 + 0.1)/4 = 2.525 m/s

(b) When ¢t = 1, the instantaneous velocity is lim s +h) = s(1) = lim 10+4 = 10 =2.5m/s.
h—0 h h—0 4 4
2. f is not differentiable: at = —4 because f is not continuous, at z = —1 because f has a corner, at x = 2 because f is not

continuous, and at x = 5 because f has a vertical tangent.
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. The graph of a has tangent lines with positive slope for x < 0 and negative slope for > 0, and the values of ¢ fit this pattern,

so ¢ must be the graph of the derivative of the function for a. The graph of ¢ has horizontal tangent lines to the left and right of
the z-axis and b has zeros at these points. Hence, b is the graph of the derivative of the function for c. Therefore, a is the graph

of f, cis the graph of f/, and b is the graph of f”’.

. 2% =64,50 f(z) =5 and a = 2.

. (a) f'(r) is the rate at which the total cost changes with respect to the interest rate. Its units are dollars/(percent per year).

(b) The total cost of paying off the loan is increasing by $1200/(percent per year) as the interest rate reaches 10%. So if the

interest rate goes up from 10% to 11%, the cost goes up approximately $1200.

(c) As r increases, C increases. So f’(r) will always be positive.

. . . . . . ~ L1 _ ~ =16 _
. (a) Drawing slope triangles, we obtain the following estimates: F’(1950) ~ +1 = 0.11, F'(1965) ~ =5 = —0.16,

10

and F'(1987) ~ 52 = 0.02.

(b) The rate of change of the average number of children born to each woman was increasing by 0.11 in 1950, decreasing

by 0.16 in 1965, and increasing by 0.02 in 1987.

(c) There are many possible reasons:

e In the baby-boom era (post-WWII), there was optimism about the economy and family size was rising.

o In the baby-bust era, there was less economic optimism, and it was considered less socially responsible to have a
large family.

e In the baby-boomlet era, there was increased economic optimism and a return to more conservative attitudes.

. (a) P’(t) is the rate at which the percentage of Americans under the age of 18 is changing with respect to time. Its units are

percent per year (%/yr).
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P(t+h)—P(t) Pt+h)—P(t)

, .
(b) To find P’(t), we use ]!LLHIO W ~ " for small values of h.
o _ P(1960) — P(1950) _ 35.7—31.1 _
For 1950: P'(1950) & —— oo = == = 0.46

For 1960: We estimate P’ (1960) by using h = —10 and h = 10, and then average the two results to obtain a

final estimate.

P(1950) — P(1960) _ 31.1 — 35.7

= — / ~ = — =0.
h=—-10 = P'(1960) e O — 0.46
P(1970) — P(1960)  34.0 — 35.7
1 P'(1960) ~ _ - 01
h=10 = P(1960) 1970 — 1960 10 0-17

So we estimate that P’ (1960) ~ [0.46 + (—0.17)] = 0.145.

t 1950 1960 1970 1980 1990 2000 2010
P'(t) | 0.460 0.145 —0.385 —0.415 —0.115 —0.085 —0.170

y
© P()
0.5+
374
0.4+
354
0.3+
33+ y=P'(t)
0.2+
314
0.1+
294
274 1950 1960\ 1970 1980 1990 2000 2010 !
70.]__
25+
23l —0.2+
70‘3__
1950 1960 1970 1980 1990 2000 2010 ° —0.4+
70.5__

(d) We could get more accurate values for P’(t) by obtaining data for the mid-decade years 1955, 1965, 1975, 1985, 1995, and

2005.
10.f(z):§;i -
4—(z+h) 4-=
vy o fle+h)—f(@) . 3+(x+h) 3+ . (4—xz—h)B+z)—(4—-2)B3+x+h)
Fle) = Jimy h = i I = fim, hB+a+h)(3+ 1)
—7h -7 7

= BTG Y A Brr i Gt Bra?

"N f(z)=2>+5x+4 =
[ +h) = ) _
h

3 T
f(z) = lim i @R 5@+ h) +4- (@7 +5044)
h—0 h—0 h

2 2 3
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:hm\/3—5(z+h)—\/3—51\/3—5(x+h)+\/3—5x
h=0 h V3—5(@+h)+3—bx
i BB AR -3 —5 _ -5
Mh(¢3—5<z+h)+\/3_5m) h=0./3—5(z+h)+v/3—bz 2V3— bz

2. @) f'(x) = lim w

(b) Domain of f: (the radicand must be nonnegative) 3 — 5z > 0 =

br <3 = xe(—oo,%} 6

P
Domain of f’: exclude % because it makes the denominator zero; \f w

s€ (~o0,3) S
f/
(c) Our answer to part (a) is reasonable because f'(z) is always negative and \ J
AN
f is always decreasing. -6

13,y =(2>+2%* = o =4+ 23322+ 32%) = 4(2?)*(1 + 2)32(2 + 32) = 42" (2 + 1)3(32 4 2)

14, y:Lszm_l/Qfm_?’/5 = y’:flm_3/2+§x_8/5 or

N 2 5 5xv/x3  2x\/x

3 1

or 1—1037_8/5(75371/10 +6)

2
2—2+2  am 1 o .3 1 _ 3 1 1
15, y = =—— 22 _ p3/2 _ 41/ 2 /2 _2.1/2 _ - -1/2 _ 3/2 _ 2 =
Y NG S - v =g 27 v Vo e Vo3
tan z ,  (14+cosz)sec?z —tanz(—sinxz) (1+cosz)sec’z +tanz sinz
16. y=——— = ¢y = _
1+ cosz (1 + cosx)? (1 + cosx)?

17. y =2*sintr = 3y = 2?*(cosmz)m + (sinnz)(2x) = x(7x cos mx + 2sinTx)

1\Y7 1\ 2
18.y:(x+—2) = y':ﬁ(er—Q) <17—3)
x x x

19, v — tt—1 I (' + )48 — (¢* — 14> a?[¢* +1) - (¢ —1)] 8¢
ST v= (" + 1)z - (t* +1)2 BEE
20. y = sin(cosx) = 3y’ = cos(cosz)(—sinz) = —sinx cos(cos )

1 )<_1) B _secQ\/m
2V1i—z 21—z

f'(x) 1

[f ()] we have y = sin(z — sinx)

2. y=tany1l -z = g/:(secZ\/l—m)(

22. Using the Reciprocal Rule, g(z) = ﬁ = g'(x)=-

,_ _cos(z —sinz)(1 — cosx)

sin?(z — sin z)

d d
23.£(xy4+x2y)za(x+3y) = -4 4yt 1422y dy20=14+3y =

1—y*— 22y

(4o 2 _3y—_1_44_9 r_
Y (dzy” +2° —3) T A vor s

2. y=sec(l+2?) = 1y =2wsec(l+2?) tan(l + 2?)
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sec 20
1+ tan20
. (1+tan20)(sec 20 tan 20 - 2) — (sec20)(sec®260 - 2)  2sec 26 [(1 + tan 26) tan 20 — sec” 20]
v= (1 + tan 26)2 - (1 + tan 20)2
_ 2sec20 (tan20 + tan® 20 —sec® 20)  2sec 26 (tan 26 — 1) 2
o (14 tan 26)2 - (14 tan26)2 [1+ tan® 2 = sec” z]

(22 cosy + sin 2y) = d (wy) = 2?(—siny-y') + (cosy)(2x) +cos2y -2y =x -y +y-1 =

Yy — 2xcosy

y' (—a®siny +2cos2y —x) =y —2wcosy = Y = -
2cos2y —x2siny —x

Z7.y=1-2"1H"1' =

Y =-11-a ) [(-la7)] = -(1-1/2) 27 = —((z - 1) /) *a™? = (2 = 1)*

1 -1/3 4/3 1

By=—=(z+Va = y=-1(z+Va (+—)

v (ee ) (o vE) i
29, sin(zy) =2® —y = cos(wy)(zy +y-1) =22 —y = wzcos(zy)y +y =2z —ycos(zy) =

22 — y cos(zy)
’ 1] = 20 — 1 2t = Y eos\ry)
y'[zcos(zy) + 1] = 22 — ycos(zy) = y reos(zy) £ 1
—1/2
30. y = sinvez = y = %(sin\/g) (cos\/_) ( ) cosV'z
2V 4V xsinve
3. y =cot(32® +5) = o' = —csc®(3x2 + 5)(6x) = —6x csc?(3z? + 5)
(x+ )" p_ @@ @+ — (@ + N 4®) 4z + 2P - Aa?)
Roy=-T0 oy = . - :
zt+ A (z* + 2\*)? (z* + 1*)?
B.y= VzcosvVr =
! !
y = vV (cos \/E) + cos V' (\/5) =z [— sin vz (%xil/z)] + cosVz (%xil/Q)
=171/ (7\/5 Sin\/EJrcosx/g;) _ cos VvV — vV sinVa
2V
34. y = (sinmax)/z = o' = (mzcosma —sinmz)/x?
35. y = tan?(sin @) = [tan(sin@)]* = 3’ = 2[tan(sin )] - sec?(sin @) - cos O
o 2 r_ r tany
6. ztany=y—1 = tany+ (zsec’y)y’' =y = y —7179“6(:224
37. y = (ztanz)?® = 4 = %(mtanx)f‘lﬁ(tanx + xsec’ x)
%8, 4 — (x—1)(z—4) 2?—-5x+4 I (2> =5z +6)(2z —5) — (z° = bz +4)(2x —5)  2(2z—5)
YT @—2)z—-3) 22-52+6 v= (22 — 5z + 6)2 T (@—-22(z—3)2

39. y =sin(tanv1+23) = 3 =cos(tanv/1+a3)(sec® vV1+a3)[32°/(2vV1+23)]
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208 [1 CHAPTER2 DERIVATIVES
40. y = sin? (COS m) = [Sin (cos m)} ? =
y' =2 [sin(cos \/M)] [sin(cos \/M)} / =2 sin(cos \/M) CcoSs (cos \/M) (cos \/SM)/
= 2sin (cos \/M) Ccos (COS \/M) (f sin \/M) (m)/
= —2sin (cos m) cos (cos m) sinVsin 7z - 3 (sinwa) "/ (sin wx)’
— sin (cos \/M) cos (cos Vsinx ) sin v/sin 7z

sinmx

—7r sin (cos Vsinx ) cos (cos Vsinx ) sin v/sin Tx cos wx
Vsinmx

M) =VvEFTI = f(t)=Li@t+1)"V2 4=204t+1)"* =

Fr)=2(=3)At+1)732 4= —4/(4t +1)*2 50 f(2) = —4/9%/? = — %.

cCOSTTXL - T

42. g(f) =0sind = ¢ () =0cosh+sinf-1 = g¢"(0) =60(—sinbh) +cosf-1+ cos =2cosf — Osinb,
s0 g (m/6) = 2cos(m/6) — (/6) sin(w/6) = 2 (V3/2) — (1/6)(1/2) = V/3 — 7/12.
3.5+ =1 = 62°4+6y°Y =0 = o =-2%° =

o Y (xt) — 2 (5y'y) 5aty? [y — a(—2°/y°)] . 52 [(y° + 2°)/y°] 5zt
y == (45)? =- Y10 =- Yo Ty

M4 fo)=2-2)"" = fl@)=2-2?% = f@)=22-22 = @)=2-32-2)"* =

- n —(n n!
FO()=23-4(2—2) 7 In general, ) (z) =234+ (2 =) = ptis.
. secx  secO 1
4. rlll%lfsinx_ 1—sin0 170_1
3 3 cos® 2 1 32 1 1
46. lim ¢ = imt _COBS t= lim cos® 2t - — —— = lim cos” 2t T = ==
t—0tan32t ¢t—0 sin32t t—0 8sm 2t tﬂog i sin 2¢ 813 8
(2t) Y

4. y =4sin®z = y =4 2sinzcosz. At(%,1),y =8-1- ¥3 — 2./3, s0 an equation of the tangent line

2
isyf1:2\/§(mf%),0ry:2\/§x+lf7r\/§/3.

(22 +1)2 C(z2+1)%

z? -1 , (@ +1)(22) — (2° —1)(22) 4z

By=—— = =
Y 2211 Y

At(0,—1),y" = 0, so an equation of the tangent lineis y + 1 = 0(z — 0), ory = —1.

2cosx

9. y=+/1+4sinz = o =2Li(1+4sinz) V? dcosz=——
Y Y 2( ) V1+4sinz

2 . L
At (0,1),y' = i = 2, 50 an equation of the tangent line is y — 1 = 2(x — 0), ory = 2z + 1.
The slope of the normal line is —%, so an equation of the normal lineis y — 1 = —%(m —0),ory = —%m + 1.
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50.

51.

52.

53.

54,

55.

CHAPTER2 REVIEW O
2 dday+y* =13 = 2o +4(zy +y-D)+29 =0 = z+2xy +2y+yy =0 =
2y +yy' = —z2—-2y = Y(2rty)=—-z-2y = y =

—2-2 4
! _ _ = . . . _ é
At (2,1),y' = i1 - 5 so an equation of the tangent lineisy — 1 = —¢

The slope of the normal line is %, so an equation of the normal lineisy — 1 =
@ fx)=zv/b—2 =

fl@)== %(5—1)“/2(—1) tvh-e= w%* Vo z\/iéi N 2%* 22(\/55—2

—r+10—-2z 10— 3zx
25—z 25—z

(b) At (1,2): f'(1) = 1. () 10

So an equation of the tangent lineisy —2 = Z(z — 1) ory = T + 1. ) (4,4)
—-10 10
At (4,4): f'(4)=-2=-1
So an equation of the tangent lineisy —4 = —1(x —4) ory = —x + 8. f(x)
-10
(d) 4.5 The graphs look reasonable, since f' is positive where f has tangents with
f .. . . . .
positive slope, and f’ is negative where f has tangents with negative slope.
-
s
-1 { \} 45
—-2.5
(@) f(z) =4z —tanz = f'(z)=4—-sec’z = f’(z)=—2secx(secx tanz) = —2 sec’>x tanz.
(b) 5 We can see that our answers are reasonable, since the graph of f’ is 0 where
\ f\ f f has a horizontal tangent, and the graph of f’ is positive where f has
-z T - ) z tangents with positive slope and negative where f has tangents with
f ”\\‘ negative slope. The same correspondence holds between the graphs of f’
L Z
5 and f".

y=sinz+cosr = 3y =coszx—sint=0 <& coszx=sinrand0<z<21r & x:%or%,sothepoints
are (%,v/2) and (32, —/2).
22 4+2° =1 = 2x+4yy’ =0 = ¢ =-2/(2y)=1 & x = —2y. Since the points lie on the ellipse,

wehave (—2y)> +2° =1 = 6y°=1 = y= :I:%. The points are (—%, %) and (%, —ﬁ).

y=f(x)=ax* +br+c = f'(x)=2azx+b Weknow that f'(—1) = 6 and f'(5) = —2,50 —2a + b = 6 and

209

10a + b = —2. Subtracting the first equation from the second gives 12a = -8 = a = —%. Substituting —% for @ in the

first equation gives b = &2, Now f(1) =4 = 4=a+b+csoc=4+2— 2 =0andhence, f(z) = —22° + Lz
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210 O CHAPTER2 DERIVATIVES

56. If y = f(z) = xi—l—l’ then f'(z) = (@ +({r)(—&)l)_2x(1) = @ _: ER When x = a, the equation of the tangent line is

a1
a+1 (a+1)2

a 1
- - (1-
il P A S

20a+1)? —ala+1)=1-a < 2a*+4a+2—-ad*—-a—-14+a=0 & a®*+4a+1=0.

. . . . -4+ /42 —4(1)(1 —4+ /12
The quadratic formula gives the roots of this equation as a = 20 HA) = j; =—24+/3,

y— (z — a). This line passes through (1, 2) when 2 —

so there are two such tangent lines. Since
6

. 2+V3 243 —1FV3 (
f(_Qi\/g)_—2i\/§+1_—1i«/§.—lﬂFx/§ _ﬁl

_2+2V3FV3-3 -1£v3 1F¥V3 al/ L2

1-3 -2 2

the lines touch the curve at A(72 +4/3, 1*—2‘/5) ~ (—0.27,-0.37)

and B(—2 V3, Lﬁ) ~ (~3.73,1.37).

57. f(z) = (x —a)(z—b)(z—c) = fl(x)=(x—-b)(xz—c)+ (z—a)(z—c)+ (z—a)(x—0).
Sof’(x) (z—=b)(z—c)+(x—a)(xr—c)+ (z—a)(z —b) 1 n 1 n 1

(z) (z—a)(z—b)(z—c) r—a xT—b z—c

58. (a) cos2r = cos®’x —sin’xz = —2sin2z = —2cosxsinz — 2sinzcosz & sin2z = 2sinzcosz

(b) sin(xz + a) =sinz cosa + cosx sina = cos(z + a) = cosz cosa — sinz sina.
59. @) S(z) = f(x) +9(x) = S'@)=Ff(2)+d@) = FO=fD+g1)=3+1=4

(b) Pa) = [(@)ga) = P'@)=f(2)g(@)+g(a) [ (@) =
P/(2) = [(2)g'(2) + 92 (2) = 1(4) + 1(2) =4 +2 =6

=

_ fl») 'y = 9@) ['(@) = f(2) g'(x)
© Q(x) = 9(2) = Q'() [9(2)]2

_9W -y _33)-21) _9-2_7

Q'(1)

[g(1)]2 32 9 9
(d C(x) = fg(x)) = C'(x)=f(g9(x)d'(x) = C'(2)=[f(9(2)g(2)=/f(1)-4=3-4=12

60.

,.\
)
N
e
—~
8
N
Il
By
—~
8
N
Q
—~
8
N
!
—~
8
N
Il
~
—~
8
N
Q\
8
N
+

g9(x) f'(z) =

P/(2) = f2)9'(2) +9(2) /') = ) (E8) + W ($2) = @) + @)(-1) =2-4= -2
0 Q@ =18~ g -4 '(T;(;){z(m) i@
(g IR F () = f@) () _ (D=1 _ 6 _ 3
R 70 R R A

© C@) = f(g(x)) = C'(2) = f(g(@)g (@) =
C'(2) = f'(9(2)g' @) = f'(4)g'(2) = (£2)(2) = (3)(2) = 6
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62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

72

73.

CHAPTER2 REVEEW O 21
f@)=22g(z) = f'(x) =2 (2) + g(x)(20) = zlag(x) +29(x)]
f@) =g@®) = (@)= g(?)2) = 22g(2?)
f@) =[g@) = f'(x)=2g()] ¢'()=29)d ()
f@) = a9 = [(@) = ac" g(a®) +a%g (@) (ba 1) = aa® ~g(a’) + ba® TP g (a)
f@) = glg@) = ['(@)=g(9()g ()
f(@) =sin(g(x) = f(x) = cos(g(x)) - g'(z)
@) = gsing) = f(2) = ¢(sin) - cosx

flz) = g(tan\/g) =

, , d ) ) d q (tan\/:;) sec® vV

f(:r)zg(tan\/g)~£(tan\/:;)=g(tan\/5)~sec \/EE(\/E): W

_ @)
"= 7@y + o)
W(z) = [f () + 9(@)] [f(z) ¢'(z) + g(z) f'(z)] — f(z) (=) [f'(z) + g’ (2)]

[f () + g(x)]?
_ @' (@) + f(@) g(@) f'(2) + f(x) g(x) ¢ (2) + [9(2)]* ['(x) — f(x) g(2) ['(x) = f(2) g(=) ¢'(x)
[f () + g(=)]?
_ @ [9@)* + ¢ (@) [f ()]
[f () + g(x))?

h(z) = f@) W (z) = f'(@)g(x) — flx)g'(x) _ f'(z)g(z) — f(z) g (2)

2/f(@)/9(z) [g(x))* 2[g(x)]*/2\/f ()

Using the Chain Rule repeatedly, h(z) = f(g(sin4z)) =

W(z) = f'(g(sin4z)) - d%, (g(sindz)) = f(g(sin4z)) - ' (sin 4) - % (sin4z) = f'(g(sin4z))g’ (sin 4z) (cos 4) (4).
@z=vP+32 = oit)=2"=[1/2V2+322)]2t = AN+ =

AV + 282 — Pt(Pt VR + 212 b2c?

j— / j— j—
a(t) =v'(t) = B2 + 2 {2 - (b2 + c22)%/?

(b) v(t) > 0 for ¢t > 0, so the particle always moves in the positive direction.
@y=t>—12t+3 = vt)=y =3t>-12 = a(t) =2'(t) =6t
(b) v(t) = 3(t> — 4) > 0 when t > 2, s0 it moves upward when ¢ > 2 and downward when 0 < ¢ < 2.

(c) Distance upward = y(3) — y(2) = =6 — (—13) =7,
Distance downward = y(0) — y(2) = 3 — (—13) = 16. Total distance = 7 4 16 = 23.
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74.

75.

76.

1.

78.

79.

80.

Ll CHAPTER2 DERIVATIVES
(d) 20 (e) The particle is speeding up when v and @ have the same sign, that is,
y a when ¢ > 2. The particle is slowing down when v and a have opposite
v signs; that is, when 0 < t < 2.
0 7 3
—15
@@V =31mr’h = dV/dh = 3mr® [r constant]

b))V = %71'7’2’1 = dV/dr = %WTh [k constant]
The linear density p is the rate of change of mass m with respect to length z.

m:x(lJr\/;):ermS/Q = p:dm/dx:1+% :1:,sothelineardensitywhenx:4is1+%\/Zzzlkg/m.

(a) C(x) = 920 + 2z — 0.0222 + 0.00007z> = C’'(z) = 2 — 0.04z + 0.000212>

(b) C’(100) = 2 — 4 + 2.1 = $0.10/unit. This value represents the rate at which costs are increasing as the hundredth unit is

produced, and is the approximate cost of producing the 101st unit.

(¢) The cost of producing the 101st item is C(101) — C(100) = 990.10107 — 990 = $0.10107, slightly larger than C"’(100).

If z = edge length, then V = 2®* = dV/dt = 32*dz/dt =10 = dzx/dt =10/(3z%)and S = 62°> =

dS/dt = (12z) dz/dt = 12z[10/(32”)] = 40/x. When = = 30, dS/dt = 22 = 2 cm® /min.

Given dV/dt = 2, find dh/dt when h = 5.V = %ﬂ?“zh and, from similar

2
triangles,%:i = V:z(?)h) h= 3T h3, s0

10 3\10) " 100"
10
gV _9madh dh_ 20 a0 8
Codt 1007 di dt — 97h?  9r(5)% 9w
when h = 5. Yy
Given dh/dt = 5 and dz/dt = 15, find dz/dt. 2*> = 2* + h* =
dz . dx dh dz 1 - n 3
h=45+3(5)=60andz = 15(3) =45 = z= /452 + 602 = 75, T
dz 1
0 = %[15(45) + 5(60)] = 13 ft/s.
We are given dz/dt = 30 ft/s. By similar triangles y__4_ =
4 dy 4 dz 120 — v 4
Yy=——2,80 — = —— — = —— &~ 7.7 ft/s. .’ d
VoAT T dt 241 dt 24T , =
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CHAPTER2 REVIEW O 213

81. We are given df/dt = —0.25 rad/h. tan 8 = 400/z =

z=400cotf = dw = —400csc? 6 ﬁ When 6 = Z,
dr 2 _ 0
Zr = —400(2)(~0.25) = 400 fi/h. : . I
—2z
82. =V25—22 = fl(z)= ——m—= = —x(25 —2?)" /2 b) 53
So the linear approximation to f(z) near 3
is f(@) = f3)+ ['(3)(w —3) =4 — 2(z —3). L
f
1 4.5

(¢) For the required accuracy, we want v/25 — 22 — 0.1 < 4 — 3(2 — 3) and

4 — 3(z —3) < /25 — 22 + 0.1. From the graph, it appears that these both
hold for 2.24 < z < 3.66.

83. (a) f(x) = YT+3z=(1+32)" = f(z) = (1+3z) /3, so the linearization of f at a = 0 is
L(z) = f(0) + f/(0)(x —0) =12 + 1723z = 1 + 2. Thus, YT+ 3z ~ 1 +2 =

¥1.03 = {/1+3(0.01) ~ 1 + (0.01) = 1.01.

(b) The linear approximation is /1 + 3z ~ 1 + x, so for the required accuracy L5

we want /1 + 3z — 0.1 < 1+ z < /1 + 3z + 0.1. From the graph,

it appears that this is true when —0.235 < =z < 0.401. f+ol -0l

—0.4 0.5
0.6

8. y=a—-22"+1 = dy= (32" —4z)dz. Whenz = 2and dz = 0.2, dy = [3(2)> — 4(2)](0.2) = 0.8.

85. A = z? +%7r(%a:)2 = (l—l—%)mz = dA= (2+ %)l‘dl‘. When x = 60

%
and dz = 0.1, dA = (2 + $)60(0.1) = 12 + 37, so the maximum error is
approximately 12 + 37” ~ 16.7 cm®. .
271 d X
i = |—=2a'" =17(1)"* =1
86 lim —— {dmx ]171 7(1) 7
V1 -2 1 1 1
7. lim Y20 TN =2 {i {‘/5] = —g 3/ ===
h—=0 h dx =16 =16 4(V16) 32
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88. lim COSQ;O'B* icos@ *—sinzf—ﬁ
“oon/s O0—7/3 |df o=njs 32

8. lim VI+tanz —+/1+sinz fim (VI+tanz — /1 +sinz)(v1+tanz + /1 +sinz)
T 250 3 ) 3 (\/1+tanz+\/1+sinx)
~ i (1+tanz) — (1 +sinz) 5 sinz (1/cosx — 1) cosz

m
z—0 x3(\/1+tanx+\/l+sinx) z—0 x3(\/1+tanx+\/1+sinx) cosx

. sinz (1 — cos ) 1+ cosz
m .
2=0 73 (y/1+tanz 4+ /1 +sinz ) cosz 1+ cosz

i sinz - sin® z
20 g3 (y/T+tanz + /1 + sinz ) cosz (1 + cos x)

3
= <lim 5 ) lim 1.
=0 T +—0 (y/I+tanz + /1 +sinz ) cosz (1 4 cos z)

=13. 1 :1

(Vi+vi)-1-(1+1) 4

90. Differentiating the first given equation implicitly with respect to  and using the Chain Rule, we obtain f(g(z)) == =

fg@)g@) =1 = 4 = m Using the second given equation to expand the denominator of this expression
ives g'(x) = 1 But the first given equation states that f(g(z)) = =z, so ¢'(z) = L
S I = T TGP given g g 509'() = 75

91. diac [f(2z)] =2 = f'(2z)-2=2 = f'(2z) = 12% Lett =2z Then f'(t) = %(%t)z =1t’,s0 f'(z) = %

92. Let (b, ¢) be on the curve, that is, b*/® + ¢*/® = a*/® Now 2/ + y*/3 = 0?3 = 2o71/3 4 2y71/3 % =0, so

dy  y'® y\L/3 o . - o
T LB (—) , 0 at (b, ¢) the slope of the tangent line is —(c/b) /3 and an equation of the tangent line is
x x x

y—c=—(c/b)3(@—b)ory = —(c/b)3x + (c + b*3c!/?). Setting y = 0, we find that the z-intercept is
b33 4 b = bH3(*% 4+ b%/3) = b'/3a?/? and setting & = 0 we find that the y-intercept is

¢+ b33 = 01/3(02/3 + b2/3) = ¢'/3a?/3. So the length of the tangent line between these two points is

\/(b1/3a2/3)2 + (Cl/3a2/3)2 — \/b2/3a4/3 + ¢2/3g4/3 = \/(52/3 + 02/3)a4/3
= va2/3a%/3 = v/a? = a = constant

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



[J PROBLEMS PLUS

1. Let a be the z-coordinate of Q. Since the derivative of y = 1 — 2% is 3’ = —2u, the slope at Q is —2a. But since the triangle

is equilateral, E/m = \/5/ 1, so the slope at @ is —+/3. Therefore, we must have that —2¢ = —v/3 = a= @

2
Thus, the point () has coordinates (§7 1-— (@) > = (%, i) and by symmetry, P has coordinates (—@, i)

2.y=2-324+4 = y =323, andy=3(2>—-2) = ¢ =6zx—3. y=30-x 3
The slopes of the tangents of the two curves are equal when 322 — 3 = 6z — 3;
that is, when x = 0 or 2. At x = 0, both tangents have slope —3, but the curves do 2.6)
-4 5
not intersect. At x = 2, both tangents have slope 9 and the curves intersect at Common
tangent line
(2, 6). So there is a common tangent line at (2,6), y = 9z — 12.

y=x*-3x+4 —20
3. y We must show that r (in the figure) is halfway between p and g, that is,
y=ax*+bx+c
r = (p + q)/2. For the parabola y = ax” + bz + ¢, the slope of the tangent line is

given by ¢y’ = 2az + b. An equation of the tangent line at z = p is

N P y — (ap?® 4+ bp + ¢) = (2ap + b)(x — p). Solving for y gives us
i /4 *
\/ y = (2ap + b)x — 2ap® — bp + (ap® + bp + ¢)
or y = (2ap +b)x + ¢ — ap® m

Similarly, an equation of the tangent line at z = g is
y=(2aq +b)x+c—ag® (2
We can eliminate y and solve for x by subtracting equation (1) from equation (2).
[(2aq + b) — (2ap + b)]x — ag® +ap® = 0
(2aq — 2ap)z = aqg® — ap?

2a(q — p)z = a(¢® — p?)

s atpla—p) _p+a
2a(q —p) 2

Thus, the z-coordinate of the point of intersection of the two tangent lines, namely r, is (p + ¢)/2.

4. We could differentiate and then simplify or we can simplify and then differentiate. The latter seems to be the simpler method.

sin? x cos? x _ sin? x sinx cos? x cosT sin® x cos® x
l4+cotx 1+4+tanz 14 €T sinx 14 sinr cosx sinx+cosx cosz +sinx
sinx COS T
. 3 3 . . 2 . 2
sin® z + cos® x (sinz 4 cos z)(sin  — sinx cosz + cos® )

[factor sum of cubes] =

sinx + cosx sinx + cosx

=sin?2 — sinz cosx +cos’z =1 —sinz cosz =1 — %(ZSiIl:B cosz)=1-— %sin2x

d sin® x cos? x d .
Thus, o (l—i—cotx + 1+tanm> = o (1 — 551112:5) = —%COSQI'Q = —cos2zx.
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5. Using f'(a) = lim M, we recognize the given expression, f(z) = tlim secz—ﬂ’ as g'(z)
T—a T —a —z —

with g(z) = secz. Now f'(§) = g" (%), so we will find g"(z). ¢'(z) = secxtanz =

s
4

g" (z) = seczsec® x + tan x sec ¥ tan x = sec z(sec’ z + tan® z), so ¢’ (3) = \/5(\/52 +12)=v2(2+1) =3V2.

— .‘3/ —
6. Using f'(0) = lin}) L{;(O), we see that for the given equation, lin}) Vartb-2 _ 1—52, we have f(x) = Vax + b,
T— X — T— x

f(0)=2,and f'(0) = 3. Now f(0) =2 & Vb=2 < b=8.Alsof/(z)=2%(axz+b) %% a,s0
o= < %(8)72/3@:% & 2(3)a=35 & a=5.

.

7. We use mathematical induction. Let S,, be the statement that sin® x 4 cos* ) = 4" cos(4x + n7/2).

el

S1 is true because
d . 4 4 . 3 3 . . . 2 2
o (sin® z + cos® x) = 4sin” x cosz — 4 cos® x sinx = 4sinx cosz (sm T — Ccos a:) T
T

= —4sinz cosx cos2x = —2sin 2z cos2 = — sin 4z = sin(—4x)

= cos(3 — (—4x)) = cos(5 +4x) = 41 cos(4z +n%) whenn =1

k
Now assume S is true, that is, — (s.in4 x + cos* ;r) =41 cos (43& + k‘z). Then
dzk 2
drFtt d [d*

Sy (sin*z + cos® z) = o w(sin4 x+costz)| = 4 [4F 7" cos(4a + kZ)]

= —4F1 sin(4:1: + k%) . d%c (495 + k%) = —4F sin(4x + k%)

=4Fsin(—4z — k%) = 4" cos(% — (—4z — k%)) =4"cos(dz + (k+1) %)

which shows that Sy is true.

mn

d . _ S Lo .
Therefore, p (sin® z 4 cos* ) = 4" cos (437 + n%) for every positive integer n, by mathematical induction.
Another proof: First write

sin® z + cos* z = (sin® z + cos® z)® — 2sin’z cos’ =1 — 2 sin? 22 =1 — 1(1 — cosdz) = 2 + X cosda

v . 4 4y d" (3 1 I T\ ne1 ( 7r)
Then we have T (sin® z 4 cos® x) = T (4+4cos4x> =1 4 cos(4x+n2) =4""" cos 4m+n2 .

o qim L@ =@ _ | f@)—fla) Va+Va

T T AT Vi ve
=lim—f($)_f(a)~lim(\/;+\/g):f'(a)-(\/a—l-\/a):Z\/af'(a)

TrT—a Tr—a r—a

~ i {f(fb")*f(a) . (\/E—s—\/E)]

r—a Tr—a

9. We must find a value x¢ such that the normal lines to the parabola y = x2 at & = £ intersect at a point one unit from the

. 1 .
points (:I::):o, :1:(2)) The normals to y = x? at & = 4 have slopes — o and pass through (ixo, :1:(2)) respectively, so the
Zo
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1

. 1 . .
normals have the equations y — 25 = —=— (x — o) and y — 23 = (x + 20). The common y-intercept is 23 + 5

21‘0 2_1‘()

We want to find the value of zg for which the distance from (O, x2 + %) to (mo, x%) equals 1. The square of the distance is
(zo — O)2 + [x% — (;r% + %)}2 =22+ i =1 & x9= :I:@. For these values of xo, the y-intercept is 3 + % = %, S0
the center of the circle is at (0, 5).

Another solution: Let the center of the circle be (0, a). Then the equation of the circle is z2 + (y — a)® = 1.

Solving with the equation of the parabola, y = 2, we get 2®> + (2 —a)’ =1 & 2?4 2* —2a2’ +a’>=1 &

x* 4+ (1 — 2a)2® + a® — 1 = 0. The parabola and the circle will be tangent to each other when this quadratic equation in 2
has equal roots; that is, when the discriminant is 0. Thus, (1 — 2a)? —4(a®* - 1) =0 <

1—4a+4a®> —4a*>+4=0 < 4a=5,s0a = 3. The center of the circle is (0, 5).

See the figure. The parabolas y = 422 and = = ¢ + 232 intersect each other ' .

at right angles at the point (a, b) if and only if (a, b) satisfies both equations ,

and the tangent lines at (a, b) are perpendicular. y = 42> = ¢’ =8z o > >

andz =c+2y° = 1=4yy = y/:%,soat(a,b)wemust >+2y’

have 8a = 1 = 8a=—4b = b= —2a. Since (a,b) is on both parabolas, we have (1) b = 4a” and (2)

1/(4b)
a = c + 2b%. Substituting —2a for bin (1) givesus —2a = 4a®> = 4a* +2a=0 = 2a(2a+1)=0 = a=0o0r

=

a=—
If a = 0, then b = 0 and ¢ = 0, and the tangent lines at (0,0) are y = 0 and = 0.
Ifa=—%,thenb=—2(—%) =1land —3 =c+2(1)°> = c¢= -2, and the tangent lines at (—3,1) are

y—1l=—-4(x+3) [ory=—-4z—1]andy—1=3(z+3) [ory=z+ 3]

See the figure. Clearly, the line y = 2 is tangent to both circles at the point 4
(0,2). We’ll look for a tangent line L through the points (a, b) and (¢, d), and if
Pt (y-3P=1
such a line exists, then its reflection through the y-axis is another such line. The e G d)
slope of L is the same at (a, b) and (c, d). Find those slopes: 2 +¢*> =4 = ., 2 ,
x*+y' =4 (a, b)
/ / T a 2 2 0
2c4+2yy =0 = y:—a [:—Z} and x -|—(y—3) =1 = /\J\ X
L
242y —3)y =0 = y=-———" |=--_|
z+2(y—3)y y 73 1-3
. . a a a?
Now an equation for L can be written using either point-slope pair, so we gety — b = 3 (xr—a) {or Y =— Em + > + b}
c c c? a c
andy —d = fm(xfc) {ory = *m$+ 13 +d}. The slopes are equal, so 3= "4-3 &
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be . . . 2 2 9 2 2 be\”
d—3:E.Smce(c,d)lsasolutlonofm +(y—3)*=1,wehavec’ + (d—3)* =1,s0¢" + - =1 =

24t =a> = Fa®+b¥)=a® = 4 =a® [since (a,b)isasolutionof 2®> +3> =4] = a=2c

be b b a? 2

Nowd—-3=— = d:3+—c,s0d:3—|——.They-interceptsareequal,so—+b:C——I—d &
a 2c 2 b d—3
a? (a/2)2 b a? b 2 2 2 2
?+b_l7/—2+(3+§> =2 |:?+b %4-34- (2b) & 20+ 20 =a“"+6b+b ==
2, 32 2 b_ 10 , 2 4 _ 32 4
@* b =60 & 4=6b < b=Z ltfllwsthatd =347 =0’ =4-b =4-5=3 = a= 32,

andc2:1—(d—3)2:1—(%)2:% = c:%ﬁ.Thus,Lhasequationy—%:—% (m—é\/ﬁ) o

y—2= —2v/2 2 (z— —\/_) & y=—2v2x + 6. Its reflection has equation y = 2v/2 x + 6.
In summary, there are three lines tangent to both circles: y = 2 touches at (0, 2), L touches at (3 V2, 2)and (2 V2, ),
and its reflection through the y-axis touches at (f 4.7, 3) and (f 22, 10)

' +a2®+2 2P+ 1)+2 2P (x+1) 2

12. = = =
f(@) 1+x r+1 r+1 a:—i—l

o+ 2(x+ 1)1

(46)(z) = (x*5)48) L 2 [(z + 1) ! (49 The forty-sixth derivative of any forty-fifth degree polynomial is 0, so
y y Torty gree polyn
(2**)*® = 0. Thus, f“ (z) = 2 [(—=1)(=2)(=3) - -- (—46) (z + 1) *T] = 2(46!)(z + 1)~*" and 9 (3) = 2(46!)(4)~*"

or (461)2793,

13. We can assume without loss of generality that @ = 0 at time ¢ = 0, so that # = 127t rad. [The angular velocity of the wheel
is 360 rpm = 360 - (27 rad)/(60 s) = 127 rad/s.] Then the position of A as a function of time is

_ . . . .y _ 40sinf sinf 1 .
A-(4Ocos@,4081n9)—(40C05127rt,4051n127rt),sosma——1'2m =0 — 3 = 351n127rt.

(a) Differentiating the expression for sin o, we get cos « - d_a = - - 127 - cos 12nt = 4w cosf. When § = g, we have

4 s
sma——sm@—— socosa = 17 1/ do _ WCOS?’ 27 47T\/gm6.56rad/s.
cosa 11/12 V11

(b) By the Law of Cosines, |[AP|* = |OA|> + |OP|> —2|OA||OP|cos§ =

120% = 40% + |[OP]* —2-40|OP|cos® = |OP|> — (80cosf) |OP| —12,800 =0 =

|OP| = 5(80cos 6 + /6400 cos? 6 + 51,200 ) = 40 cos § + 40 v/cos? f + 8 = 40(cos § + /8 + cos? f ) cm

[since [OP| > 0]. As a check, note that |[OP| = 160 cm when 6 = 0 and [OP| = 80 /2 cm when § = %
(c) By part (b), the z-coordinate of P is given by = 40(cos 6 + /8 + cos?f ), so

dxr  dx df 2cosfsinf cos 6
— = —— =40( —sinf - ————=) - 127 = —4807sinf| 1 + ——) cm/s.
dt  do dt ( 2\/8+cos29> ( \/8+cos29> /

In particular, dz/dt = 0 cm/s when § = 0 and dz/dt = —4807 cm/s when § = &
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The equation of Ty is y — 23 = 221 (x — x1) = 2x12 — 223 or y = 2212 — 3. v
The equation of T is y = 2z2x — x3. Solving for the point of intersection, we L P, 5)

1 1771
get2z(z1 — x2) =27 —x3 = = (@1 + x2). Therefore, the coordinates

) (a, a®)
of P are (5 (1 + x2), z122). So if the point of contact of T'is (a, a”), then By 22) 5
1
Quis (3(a+21),ax1) and Q2 is (3 (a + x2), axz). Therefore, . X 0 A X
|PQ:1)? = 1(a —22)” + 2%(a — 22)* = (a — 22)*(3 +27) and »
\PP1|2 = i(ml - x2)2 +a?(xy — :1:2)2 = (z1 — 1'2)2(% + x%)
2 2 2 2

So |PQu | = (@ = z2) and similarly 1PQa| | _ (21— a) 5. Finally, PG| + |PQs| =27  n7d g

\PPi> (@1 —x2)? |PPs> (21 — x2) |PPi| ' |PPy|  x1—xo @1 — o

It seems from the figure that as P approaches the point (0, 2) from the right, z7 — oo and yr — 27. As P approaches the
point (3, 0) from the left, it appears that z — 31 and yr — oco. So we guess that z7 € (3, 00) and yr € (2, 00). Itis
more difficult to estimate the range of values for zy and yn. We might perhaps guess that zny € (0, 3),
and yny € (—00,0) or (—2,0).

In order to actually solve the problem, we implicitly differentiate the equation of the ellipse to find the equation of the

, 2oy 2r 2 4 . : .
tangent line: % + yZ =1 = Em + Zyy, =0,s0y" = —55 So at the point (zo, yo) on the ellipse, an equation of the

o 4 , , 5 v
tangent line is y — yo = —§ﬂ(x — xo) or 4zox + Yyoy = 4x3 + 9y3. This can be written as :%x + % = % + % =1,
Yo

because (o, yo) lies on the ellipse. So an equation of the tangent line is % + % =1.

Therefore, the z-intercept z for the tangent line is given by W7 1 o xr = —, and the y-intercept yr is given
Zo
4
by YT 1 o oy = —
4 Yo

So as xg takes on all values in (0, 3), z7 takes on all values in (3, 00), and as yo takes on all values in (0, 2), yr takes on

1 9 Yo

all values in (2, 00). At the point (xo, yo) on the ellipse, the slope of the normal line is —————— = —<—, and its
y/ (‘T07 yO) 4 xo
equation is y — yo = %Z—O(;r — 2). So the z-intercept = for the normal line is given by 0 — yo = %%(Z‘N —x0) =
0 0
4 . .
TN = ko +x0 = %, and the y-intercept yn is given by yn — yo = g£(0 —2g) = yYyn= _ o + 90 = —%.
9 9 4 xo 4 4

So as o takes on all values in (0, 3), z takes on all values in (0, 3), and as yo takes on all values in (0, 2), yx takes on
all values in (f%, O).
. sin(3+2)? —sin9
m

li

z—0

= f(3) where f(x) = sinz?. Now f’(z) = (cosz?)(2x), so f'(3) = 6 cos 9.

©)2016 Cengage Learning. All Rights Reserved: May notbe scanned; copied, or duplicated, of posted toja publicly accessibleswebsite, in'whole ot in part.



220 U CHAPTER2 PROBLEMS PLUS
17. (a) If the two lines L, and L2 have slopes m1 and mg2 and angles of
inclination ¢, and ¢,, then m; = tan ¢, and mz = tan ¢,. The triangle

in the figure shows that ¢, + o + (180° — ¢,) = 180° and so

a = ¢y — ¢;. Therefore, using the identity for tan(x — y), we have

t —t —
tana = tan(g, — ¢,) = 2082 ~8NOL g0 tan o = 22T
1+ tan ¢, tan ¢, 14+ mima

(b) (i) The parabolas intersect when 2 = (z — 2)> = = 1.Ify = 2, theny’ = 2z, so the slope of the tangent
toy =2%at(1,1)ismy = 2(1) = 2. Ify = (z — 2)?, then 3y = 2(x — 2), so the slope of the tangent to

. — —2-2 4
y=(x—2)%at (1,1) is me = 2(1 — 2) = —2. Therefore, tan o = fl_im:nmlz =17 32) =3 and

soa =tan"'(5) ~ 53° [or 127°].
(i) 2> — y* = 3and 2* — 42 + y® + 3 = O intersect when 22 — 4z + (2> —3) +3 =0 < 22(r—-2)=0 =
x = 0 or 2, but 0 is extraneous. If x = 2, theny = +1. If2® —y> =3 then22 —2yy' =0 = ¢’ = /yand

22 —dx+ 9P +3=0 => 22442y =0 = y':2_Tx.At(2,1)theslopesarem1:2and

mo = 0,80 tana = % =-2 = a=117° At(2,-1) the slopes are m; = —2 and ma = 0,

0-(=2)

so tana =

18. > =4pr = 2yy' =4p = y =2p/y = slope of tangent at P(x1,1) is m1 = 2p/y1. The slope of FP is

me = = Y1 e so by the formula from Problem 17(a),
L —
2
e — T =P oy yi(m—p) i =2 —p) _ 4pma — 2pas +2p?
1+ (2_17) ( Y1 ) yi(z1—p) v —p)+2py1 Ty — py1 + 2p
Y1 I —p

= 2p(p—+xl) = 2 = slope of tangent at P = tan 3

Cplptr)  wm

Since 0 < «, B < 7, this proves that o = 3.

19. Since ZROQ = ZOQP = 0, the triangle QOR is isosceles, so

|QR| = |RO| = z. By the Law of Cosines, z> = 2% + r* — 2rx cos 6. Hence,

T2

o = o Notethatasy — 07,0 — 0" (since

2rzcosl =12 sox =

sin @ = y/r), and hence © — E—— Thus, as P is taken closer and closer
2cos0 2

to the z-axis, the point R approaches the midpoint of the radius AO.

f@) = JO) @ =0
20. tim L&) _ 4 J@ =0 J@ SO 220 _sz0 a-0 ___ f(0)
a0 g(z) ==0g(x) =0  a=0 g(z) —g(0) =0 g(x) =9(0) . g(x)=9(0) g'(0)
z—0 z—0 x—0
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sin(a + 2z) — 2sin(a + ) +sina

21. lim .-
— lim sina cos2x + cosa sin2x — 2sina cosx — 2cosa sinz + sina
T 250 x2
— lim sina (cos 2z — 2cosx + 1) + cosa (sin 2z — 2sin z)
B x—0 J,‘Z
1 sina (2cos’x — 1 —2cosz + 1) + cosa (2sinz cosz — 2sin )
- IEI%) 1‘2
~ lim sina (2cosz)(cosx — 1) 4+ cosa (2sinz)(cosz — 1)
T 350 x2
— lim 2(cosz — 1)[sina cosz + cosa sinz](cosz + 1)
C 250 x2(cosz + 1)
— lim —2sin® z [sin(a + x)] — 9lim sinz\’ osin(a+a) (1) sin(a+0) _ sing
=0 x?(cosz + 1) x>0\ cosz + 1 cos0+1

22. Suppose that y = ma + c is a tangent line to the ellipse. Then it intersects the ellipse at only one point, so the discriminant

2 2
of the equation % + w =1 & (b +a’m?)2® + 2mea’zs + a®c® — a®b® = 0 must be 0; that is,

0 = (2mca®)? — 4(b* + a®>m?)(a®c® — a®b?) = 4a*Pm? — 4a®b*c® + 4a*b* — 4a*Pm® + 4a*V*m?

= 4ab*(a*m? +1* — )

Therefore, a?m? + b — c2 = 0.
Now if a point (v, 8) lies on the line y = max + ¢, then ¢ = 3 — ma, so from above,

2a3 b2 — B2
2_azm+ a2 — a2

0=a’*m*>+b* — (B —ma)® = (a®> —a®)m? + 2afm +b* — 7 < m?+
a
(a) Suppose that the two tangent lines from the point («, ) to the ellipse

1 1 .
have slopes m and —. Then m and — are roots of the equation
m m

2 _ 52
22+ 2af z+b ﬂz:O.Thisimpliesthat(z—m)(z—%):O &

a? —a? a? —«a

) 1 1 . .
z“—(m+ — |z4+m| — ) =0, so equating the constant terms in the two
m m

. ‘ - B 1 .
quadratic equations, we get % = m(a) = 1, and hence b* — 3% = a® — &®. So (a, B) lies on the

X2 —yr=a?—b?

hyperbola z? — y? = a® — b°.
(b) If the two tangent lines from the point («, ) to the ellipse have slopes m X+ yr=a*+b?

1 1 . .
and ——, then m and —— are roots of the quadratic equation, and so
m m

(z—m) (z + i) = 0, and equating the constant terms as in part (a), we get
m

b2_62

a2 — o2

= —1, and hence b> — 32 = o — a?. So the point (o, 3) lies on the

circle 2% + % = a? + b2.
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23 y=a*—222 —2x = 3y =4a® — 42 — 1. The equation of the tangent line at = = a is
y — (a* — 2a® — a) = (4a® — 4a — 1)(x — a) ory = (4a® — 4a — 1)x + (—3a* + 2a*) and similarly for x = b. So if at
x = a and = b we have the same tangent line, then 4a® — 4a — 1 = 4b% — 4b — 1 and —3a* + 2a® = —3b* + 2b2. The first
equation gives a® —b* =a —b = (a—b)(a®+ ab+b?) = (a — b). Assuming a # b, we have 1 = a® + ab + b*.
The second equation gives 3(a* — b*) = 2(a® — b?) = 3(a® — b?)(a® + b?) = 2(a® — b*) which is true if a = —b.
Substituting into 1 = a® + ab + b* gives 1 = a®> —a® +a> = a = *lsothata = 1andb = —1 or vice versa. Thus,
the points (1, —2) and (—1, 0) have a common tangent line.

As long as there are only two such points, we are done. So we show that these are in fact the only two such points.

Suppose that a® — b% # 0. Then 3(a® — b*)(a® + b*) = 2(a® — b°) gives 3(a® + b*) =2 ora® +b* = 2.

2 1 1 1 2
Thus,ab:(a2+ab+b2)—(a2+bz):1—§:g,sobzg—a.Hence,cf—&—W25,509a4+1:6a2 =
4 2 2 2 2 2 _ 1 2 1 1 2 -~ .
0=9a"—6a"+1=(3a*—-1)*.S03a*-1=0 = a =3 = b =92 =30 , contradicting our assumption

that a® # b2

24. Suppose that the normal lines at the three points (al, a%) s (ag, a%), and (LL3, a%) intersect at a common point. Now if one of

the a; is O (suppose a1 = 0) then by symmetry a2 = —as, so0 a1 + a2 + az = 0. So we can assume that none of the a; is 0.

The slope of the tangent line at (ai, af) is 2a;, so the slope of the normal line is — 5 and its equation is

(3

1 . . . .
y—aZ=— 5 (z — ai). We solve for the z-coordinate of the intersection of the normal lines from (a1, a?) and (az,a3):

a;

1 1 1 1
y=a§—2—al(r—a1)=a§—2—a2(m—a2) = x(TQ—E):a%—a% =

x <a1 — a2> = (—a1 —a2)(a1 +a2) & 2z =—-2a1a2(a1 +a2) (1). Similarly, solving for the z-coordinate of the

2a1 a2
intersections of the normal lines from (al, a%) and ((13, a%) gives x = —2a1a3(a1 +as) (2).
Equating (1) and (2) gives az(a1 + a2) = as(ar +a3) < ai(az —as) = a3 — a3 = —(az +as)(az — a3) <
a1 = —(az +a3) & a1+az+a3=0.

25. Because of the periodic nature of the lattice points, it suffices to consider the points in the 5 x 2 grid shown. We can see that

the minimum value of r occurs when there is a line with slope % which touches the circle centered at (3, 1) and the circles

__5
(5,2) slope = —7(\
(0]

/ ‘P

centered at (0, 0) and (5, 2).

To find P, the point at which the line is tangent to the circle at (0, 0), we simultaneously solve 2> + y* = r? and
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y=-3%2 = 2P+LP=1" = =% = x:\/%r,y:—\/%r.ToﬁndQ,weeitherusesymmetryor
solve (x —3)*+ (y —1)> =r’andy — 1 = —3(z — 3). As above, we getz = 3 — \/_ y*l—&—\/_r Now the slope of

5 5
1+ET—(—ET) 1t VEItlor 2

the line PQ is 2, so mpq = 5 > : =
37\/—2_97‘7\/—2—97’ 3*\/—2—97’ 3\/@—47“ 5

5v29450r =6v29—-8r & B88r=v29 & r= %. So the minimum value of » for which any line with slope %

intersects circles with radius r centered at the lattice points on the plane is 7 = % ~ 0.093.

26. Assume the axes of the cone and the cylinder are parallel. Let H denote the initial
height of the water. When the cone has been dropping for ¢ seconds, the water level has

risen x centimeters, so the tip of the cone is z + 1¢ centimeters below the water line.

Izsgir We want to find dx/dt when = + ¢ = h (when the cone is completely submerged).
Using similar triangles, x:l_ ;= % = = %(m +1).
volume of water and cone at time¢ =  original volume of water +  volume of submerged part of cone
TR?(H + ) = TR*H + imri(z+t)
2
TR*H + nR%x = TRH + %Tr%(x +1)3
3R’ R%x = r2(x + )3
. e . . 252 dT .2 5 dx o dt
Differentiating implicitly with respect to ¢ gives us 3h° R i 3(x+t) T +3(z+1t) u =
dx r?(z 4 t)? dx r2h? r? o
i m = P N = IR 22 R g2 Thus, the water level is rising at a rate of
’f'2
Tz, om /s at the instant the cone is completely submerged.
- . r h 5h .
27. a By similar triangles, — = — = 7 = —. The volume of the cone is
_ 5 16 16
5h\*, 257 oV _ 25m, 5 dh
_1..2p _ 1 3 2
\/ V= zgmr h—§7r<ﬁ> h = 768h T 256h e Now the rate of

change of the volume is also equal to the difference of what is being added

(2 em® /min) and what is oozing out (k7rl, where 77l is the area of the cone and k&

I/

is a proportionality constant). Thus, (ilV =2 —knrl.

Equating the two expressions for % and substituting h = 10, % =-03,r= %ﬁ?) = %5, and ﬁ = 1—2
l= g V281, we get 25?2(10) (-0.3) =2— k:7r§ g V281 & 12516671-7428 =2+ % Solving for k gives us
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224 [0 CHAPTER2 PROBLEMSPLUS

256 + 3757

= —————— To maintain a certain height, the rate of oozing, k7rl, must equal the rate of the liquid being poured in;
2507 /281 g g q q &P

that 1s,—V = 0. Thus, the rate at which we should pour the liquid into the container is

dt
el — 256 + 3757 o 25 5v281 _ 256 4 3757 ~ 11.204 cm*/min
2507 /281 8 8 128
28. (a) f(z) =2(x—2)(x —6) =2° — 82 + 12z = 8
f'(z) = 32® — 162 + 12. The average of the first pair of zeros is ) 8

(0+2)/2 =1. Atz = 1, the slope of the tangent line is f'(1) = —1, so an

equation of the tangent line has the form y = —1x + b. Since f(1) = 5, we

have 5= —1+4+b = b= 6 and the tangent has equation y = —z + 6. -18

Similarly, at z = # =3, y=-9z+ 18 atx = 2—;6 = 4, y = —4x. From the graph, we see that each tangent line

drawn at the average of two zeros intersects the graph of f at the third zero.
(b) ACAS gives f'(z) = (z —b)(x — )+ (x —a)(z — ¢) + (x — a)(x — b) or

f'(z) = 32% — 2(a 4+ b+ c)x + ab + ac + be. Using the Simplify command, we get

)2 )2
f’(a;b) :_(a 4b) andf(a;b) :_(a 86) (a+b—20),soanequationofthetangentlineat:c:QT—H)

_ )2
(m _— _2'_ b) _ e 3 b) (a + b — 2c). To find the z-intercept, let y = 0 and use the Solve

command. The resultis x = c.

Using Derive, we can begin by authoring the expression (z — a)(xz — b)(x — ¢). Now load the utility file
DifferentiationApplications. Next we author tangent (#1, z, (a + b)/2)—this is the command to find an
equation of the tangent line of the function in #1 whose independent variable is x at the z-value (a + b)/2. We then
simplify that expression and obtain the equation y = #4. The form in expression #4 makes it easy to see that the
x-intercept is the third zero, namely c. In a similar fashion we see that b is the x-intercept for the tangent line at (a + ¢)/2

and a is the z-intercept for the tangent line at (b + ¢)/2.

#1l: (x - a)-(x - b)-(x - ¢)

#2: LOAD(C:\Program Files\TI Education\Derive 6\Math\DifferentiationApplications.mth

a+b
#3: TANGENT[(X -a)-(x - b)-(x - c), x, ]

2

#4:
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2 Derivatives

2.1  Derivatives and Rates of Change

SUGGESTED TIME AND EMPHASIS

1-2 classes Essential material

POINTS TO STRESS

1. The slope of the tangent line as the limit of the slopes of secant lines (visually, numerically, algebraically).

2. Physical examples of instantaneous rates of change (velocity, reaction rate, marginal cost, and so on) and
their units.

f@+h)—f ()
h

3. The derivative notations f’ (a) = lim M.
h—0 X —

and f’(a) = lim
X—a a
4. Using f’to write an equation of the tangent line to a curve at a given point.

5. Using f’ as an approximate rate of change when working with discrete data.

QUIZ QUESTIONS

o TEXT QUESTION Why is it necessary to take a limit when computing the slope of the tangent line?
ANSWER There are several possible answers here. Examples include the following:

e By definition, the slope of the tangent line is the limit of the slopes of secant lines.
e You don’t know where to draw the tangent line unless you pick two points very close together.
The idea is to get them thinking about this question.

o DRILL QUESTION For the function g whose graph is given, arrange the following numbers in increasing order
and explain your reasoning:

0 9’ (-2 g9’ (0) 9’ (2 9’ (4

/101234x

ANSWER g’.(0) < 0 < g’ (4) < g'(—2) <. ¢’ (2)
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CHAPTER2 DERIVATIVES

MATERIALS FOR LECTURE

e Review the geometry of the tangent line, and the concept of “locally linear”. Estimate the slope of the
line tangent to y = x3 + x at (1, 2) by looking at the slopes of the lines between x = 0.9 and x = 1.1,
x = 0.99 and x = 1.01, and so forth. Illustrate these secant lines on a graph of the function, redrawing the
figure when necessary to illustrate the “zooming in” process.

y y y
22
2.4
2.1
) 22
2 2
1
19 1.8
T, T,
0 1 2 3 % 0 09 1 L1 12 x 0 08 1 12 14 x

Similarly examine y = X21+1 at (0, 1).

1.2

—_— ]
1
0.6 0.9
= T
-1 =05 0 0.5 1 x —04-02 0 02 04 ~* —0.1 -0.05 0 0.05 0.1 x

0 ifx isrational

x2 if x is irrational
class: Is there a tangent line at x = 0? Then examine what happens if you look at the limits of the secant
lines.

e Have students estimate the slope of the tangent line to y = sin x at various points. Foreshadow the concept
of concavity by asking them some open-ended questions such as the following: What happens to the
function when the slope of the tangent is increasing? Decreasing? Zero? Slowly changing?

e Discuss how physical situations can be translated into statements about derivatives. For example, the
budget deficit can be viewed as the derivative of the national debt. Describe the units of derivatives in
real world situations. The budget deficit, for example, is measured in billions of dollars per year. Another
example: if s (d) represents the sales figures for a magazine given d dollars of advertising, where s is the
number of magazines sold, then s’ (d) is in magazines per dollar spent. Describe enough examples to make
the pattern evident.

o Note that the text shows that if f (x) = x> —8x + 9, then f’(a) = 2a — 8. Thus, f’(55) = 102 and
f’(100) = 192. Demonstrate that these quantities cannot be easily estimated from a graph of the function.
Foreshadow the treatment of a as a variable in Section 2.2.

o If a function models discrete data and the quantities involved are orders of magnitude larger than 1, we
can use the approximation f’ (x) ~ f (x +1) — f (x). (That is, we can use h = 1 in the limit definition
of the derivative.) For example, let f (t) be the total population of the world, where t is measured in years
since 1800. Then f (211) is the world population in 2011, f (212) is the total population in 2012, and
f’(211) is approximately the change in population from 2011 to 2012. In business, if f (n) is the total
cost of producing n objects, f’(n).approximates the cost of producing the (n + 1)th object.
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SECTION 2.1 _DERIVATIVES AND RATES OF CHANGE

WORKSHOP/DISCUSSION

e “Thumbnail” derivative estimates: graph a function on the board and have the class call out rough values
of the derivative. Is it larger than 1? About 1? Between 0 and 1? About 0? Between —1 and 0? About
—1? Smaller than —1? This is good preparation for Group Work 2 (“Qiling Up Your Calculators”).

e Draw a function like the following, and first estimate slopes of secant lines between x = a and x = b,
and between X = b and x = c. Then order the five quantities f’ (a), f’(b), f'(c), mpg, and mqr in
decreasing order. [Answer: f’(b) <mpg <mqr < f’'(c) < ' (a).]

y
R
P
0
a b c x

e Start the following problem with the students: A car is travelling down a highway away from its starting
location with distance functiond (t) = 8 (t3 —6t2 + 12t), where tis in hours, and d is in miles.
1. How far has the car travelled after 1, 2, and 3 hours?
2. What is the average velocity over the intervals [0, 1], [1, 2], and [2, 3]?

e Consider a car’s velocity function described by the graph below.

v

0 A B cC D t
1. Ask the students to determine when the car was stopped.

2. Ask the students when the car was accelerating (that is, when the velocity was increasing). When was
the car decelerating?

3. Ask the students to describe what is happening at times A, C, and D in terms of both velocity and
acceleration. What is happening at time B?

e Estimate the slope of the tangent line to y = sinx at x = 1 by looking at the following table of values.

. sinx —sin1
X sin X _
x—=1
0 0 0.841471

0.5 0.4794 | 0.724091
0.9 0.7833 | 0.581441
0.99 0.8360 | 0.544501
0.999 | 0.8409 | 0.540723
1.0001 | 0.8415 | 0.540260
1.001 | 0.8420 | 0.539881
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CHAPTER2 DERIVATIVES

e Demonstrate some sample computations similar to Example 4, such as finding the derivative of
ft)=+IT+tatt=3,0rofg(x) =x —x%atx =1.
GROUP WORK 1: FOLLOW THAT CAR

Start this problem by giving the students the function d (t) = 8 (t3 —6t2 + 12t) and having them sketch its
graph. Ask them how far the car has traveled after 1, 2, and 3 hours, and then show them how to compute the
average velocity for [0, 1], [1, 2], and [2, 3].

ANSWERS
., 2, Itappearstostopatt = 2.
60l 3. 8 mi/h, 2 mi/h, 0.08 mi/h
1 4, 0 mi/h. This is where the car stops.
401
201
o 1 2 X

GROUP WORK 2: OILING UP YOUR CALCULATORS

As long as the students have the ability to graph a function on their calculators and to estimate the slope
of a curve at a point, they don’t need to have been exposed to the exponential function to do this activity.
The exponential function and the number e will be covered in Chapter 6, and this exercise is a good initial
introduction to the concept.

ANSWERS

1. If the students do this numerically, they should be able to get some pretty good estimates of
In3 /2 1.098612. If they use graphs, they should be able to get 1.1 as an estimate.

2. 0.7 is a good estimate from a graph.

3. As a increases, the slope of the curve at x = 0 is increasing, as can be seen below.

y y y y
3,
2 2 21 2
) 0 1 x ) 0 1 x ) 0 1 x 4 0 1 x

4, The slope is less than 1 at a = 2 and greater than 1 at a = 3. Now apply the Intermediate Value Theorem.
5. The students are estimating e and should get 2.72 at a minimum level of accuracy.

GROUP WORK 3: CONNECT THE DOTS

Closure is particularly important on this activity. At this point in the course, many students will have the
impression that all reasonable estimates are equally valid, so it is crucial that students discuss Problem 4, If
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SECTION 2.1 _DERIVATIVES AND RATES OF CHANGE

there is student interest, this table can generate a rich discussion. Can A’ ever be negative? What would that

mean in real terms? What would (A/)’ mean in real terms in this instance?

ANSWERS
1. A’ (3500) ~ 0.06 %/$ Itis likely to be an overestimate, because the function lies below its tangent line
near p = 3500.
2. After spending $3500, consumer approval is increasing at the rate of about 0.06 % for every additional
dollar spent.

3. Percent per dollar
4. A’ ($3550) ~ 0.06 %/$. This is a better estimate because the same figures now give a two-sided
approximation of the limit of the difference quotient.
HOMEWORK PROBLEMS
CORE EXERCISES 3, 5, 9, 11, 14, 22, 23, 33, 40, 48
SAMPLE ASSIGNMENT 3, 5, 9, 11, 14, 17, 22, 23, 33, 40, 48, 53, 59

| Exerase | D | A | N |
3 X X
5 X
9 X
11 X
14 X
17
22
23
33
40 X
48 X
53 X
59 X

()

X|X|X]|X[X

X
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GROUP WORK 1, SECTION 2.1
Follow that Car

Here, we continue with the analysis of the distance d (t) = 8 (t* — 6t? + 12t) of a car, where d is in miles

and t is in hours.

1. Draw a graph of d (t) fromt =0tot = 3.

2. Does the car ever stop?

3. What is the average velocity over [1, 3]? over [1.5, 2.5]? over [1.9, 2.1]?

4, Estimate the instantaneous velocity at t = 2. Give a physical interpretation of your answer.
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GROUP WORK 2, SECTION 2.1
Oiling Up Your Calculators

. Use your calculator to graph y = 3*. Estimate the slope of the line tangent to this curve at x = 0 using a
method of your choosing.

. Use your calculator to graph y = 2*. Estimate the slope of the line tangent to this curve at x = 0 using a
method of your choosing.

. It is a fact that, as a increases, the slope of the line tangent to y = a* at x = 0 also increases in a
continuous way. Geometrically, why should this be the case?

. Prove that there is a special value of a for which the slope of the line tangentto y = a* atx = 0is 1.

. By trial and error, find an estimate of this special value of a, accurate to two decimal places.
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GROUP WORK 3, SECTION 2.1
Connect the Dots

A company does a study on the effect of production value p of an advertisement on its consumer approval
rating A. After interviewing eight focus groups, they come up with the following data:

Production Value | Consumer Approval
$1000 32%
$2000 33%
$3000 46%
$3500 55%
$3600 61%
$3800 65%
$4000 69%
$5000 70%

Assume that A (p) gives the consumer approval percentage as a function of p.

1. Estimate A’ ($3500). Is this likely to be an overestimate or an underestimate?

2. Interpret your answer to Problem 1 in real terms. What does your estimate of A’ ($3500) tell you?

3. What are the units of A’ (p)?

4. Estimate A’ ($3550). Is your estimate better or worse than your estimate of A’ ($3500)? Why?
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WRITING PROJECT ~  Early Methods for Finding Tangents

The history of calculus is a fascinating and too-often neglected subject. Most people who study history never
see calculus, and vice versa. We recommend assigning this section as extra credit to any motivated class, and
possibly as a required group project, especially for a class consisting of students who are not science or math
majors.

The students will need clear instructions detailing what their final result should look like. For example,
recommend a page or two about Fermat’s or Barrow’s life and career, followed by two or three technical
pages describing the alternate method of finding tangent lines as in the project’s directions, and completed by
a final half page of meaningful conclusion.
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2.2 TheDerivative as a Function

SUGGESTED TIME AND EMPHASIS

2 classes Essential material

POINTS TO STRESS

1. The concept of a differentiable function interpreted visually, algebraically, and descriptively.

2. Obtaining the derivative function f’ by first considering the derivative at a point x, and then treating x as
a variable.

3. How a function can fail to be differentiable.

4. Sketching the derivative function given a graph of the original function.

5. Second and higher derivatives

QUIZ QUESTIONS

TEXTQUESTION The previous section discussed the derivative f’ (a) for some function f. This section discusses
the derivative f’ (x) for some function f. What is the difference, and why is it significant enough to merit
separate sections?

ANSWER a is considered a constant, x is considered a variable. So f’ (a) is a number (the slope of the tangent
line) and f’ (x) is a function.

DRILL QUESTION Consider the graph of f (x) = &/x. Is this function defined at x = 0? Continuous at x = 0?
Differentiable at x = 0? Why?

—10 =5 0 5 10 x

-1

=2
ANSWER It is defined and continuous, but not differentiable because it has a vertical tangent.

MATERIALS FOR LECTURE

e Ask the class this question: “If you were in a car, blindfolded, ears plugged, all five senses neutralized, what
guantities would you still be able to perceive?” (Answers: They could feel the second derivative of motion,
acceleration. They could also feel the third derivative of motion, “jerk”.) Many students incorrectly add
velocity to this list. Stress that acceleration is perceived as a force (hence F = ma) and that “jerk” causes
the uncomfortable sensation when the car stops suddenly.

o Review definitions of differentiability, continuity, and the existence of a limit.

e Sketch f’ from a graphical representation of f (x) = \xz — 4|, noting where f’ does not exist. Then
sketch (f’)/ from the graph of f’. Point out that differentiability implies continuity, and not vice versa.
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SECTION 2.2__THE DERIVATIVE AS A.FUNCTION

e Examine graphs of f and f’ aligned vertically as shown. If y
you wish to foreshadow f”, add its graph below. /
Discuss what it means for f’ to be positive, negative or zero.
Then discuss what it means for f’ to be increasing, / y

decreasing or constant. Y w

e If the group work “A Jittery Function” was covered in Section 1.7, then examine the differentiability of
0 ifxis rational
f(x)=

x2 if x isirrational
e Show that if f (x) = x* —x% 4 x + 1, then f©® (x) = 0. Conclude that if f (x) is a polynomial of degree
m, then f™M+D (x) = 0.

at x = 0 and elsewhere, if you have not already done so.

WORKSHOP/DISCUSSION

e Estimate derivatives from the graph of f (x) = sinx. Do this at various points, and plot the results on the
blackboard. See if the class can recognize the graph as a graph of the cosine curve.

e Given the graph of f below, have students determine where f has a horizontal tangent, where ' is positive,
where f’ is negative, where f’ is increasing (this may require some additional discussion), and where f’
is decreasing. Then have them sketch the graph of f’.

\
\\ x

TEC has more exercises of this type using a wide variety of functions.
ANSWER There is a horizontal tangent near x = 0. f’ is positive to the right of 0, negative to the left. f’is
increasing between the x-intercepts, and decreasing outside of them.

y

y

~

e Compute f’ (x)and g’ (x) if f (x) = x2+x+2and g (x) = x2+x +4. Pointout that f’ (x) = ¢’ (x) and
discuss why the constant term is not important. Next, compute h’ (x) if h (x) = x2+ 2x + 2. Point out that
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CHAPTER2 DERIVATIVES

the graph of h’ (x) is just the graph of f’ (x) shifted up one unit, so the linear term just shifts derivatives.
TEC contains more explorations on how the coefficients in polynomials and other functions affect first and
second derivatives.

e Consider the function f (x) = 4/[x]. Show that it is not differentiable at 0 in two ways: by inspection
(it has a cusp); and by computing the left- and right-hand limits of f’ (x) atx = 0 (Xirg+ f'(x) = oo,

lim f/(x) = —o0).

x—0~

. TEC can be used to develop students’ ability to look at the graph of a function and visualize the
graph of that function’s derivative. The key feature of this module is that it allows the students to mark
various features of the derivative directly on the graph of the function (for example, where the derivative is
positive or negative). Then, after using this information and sketching a graph of the derivative, they can
view the actual graph of the derivative and check their work.

GROUP WORK 1: TANGENT LINES AND THE DERIVATIVE FUNCTION

This simple activity reinforces that although we are moving to thinking of the derivative as a function of x, it
is still the slope of the line tangent to the graph of f.

ANSWERS

L3 Bl 2.y=-%(x-3%)
: (m/2,(m/2) ay=(1-"0)x-5)+%
0 1
L
.

GROUP WORK 2: THE REVENGE OF ORVILLE REDENBACHER

In an advanced class, or a class in which one group has finished far ahead of the others, ask the students to
repeat the activity substituting “D (t), the density function” for V (t).
ANSWERS

1. » 2. 3. y

0 t ol t

Units are cm?3/s.

When the second derivative
crosses the x-axis, the first

derivative has a maximum,
meaning the popcorn is
expanding the fastest.



SECTION 2.2__THE DERIVATIVE AS A.FUNCTION

GROUP WORK 3: THE DERIVATIVE FUNCTION

Give each group of between three and five students the picture of all eight graphs. They are to sketch the
derivative functions by first estimating the slopes at points, and plotting the values of f’(x). Each group
should also be given a large copy of one of the graphs, perhaps on acetate. When they are ready, with this
information they can draw the derivative graph on the same axes. For closure, project their solutions on the
wall and point out salient features. Perhaps the students will notice that the derivatives turn out to be positive
when their corresponding functions are increasing. Concavity can even be introduced at this time. Large
copies of the answers are provided, in case the instructor wishes to overlay them on top of students’ answers
for reinforcement. Note that the derivative of graph 6 (y = e*) is itself. Also note that the derivative of
graph 1 (y = coshx) is not a straight line. Leave at least 15 minutes for closure. The whole activity should
take about 45-60 minutes, but it is really, truly worth the time.

If a group finishes early, have them discuss where f’ is increasing and where it is decreasing. Also show that
where f is increasing, f’ is positive, and where f is decreasing, f’ is negative.

ANSWER (larger answer graphs are included after the group work)

\ / \ \ \ /
\ / N_ | T . I
e A 1] . ) ,,'
/| R, 177 \\ >
K , [
/! A [
Graph1 Graph 2 Graph 3 Graph4
U
Va
‘/
1/,
] AL AT
S ey : Al N
/ / 4 7 ‘ I~
G =G ~ 71/ \V{ L~ - ,/_~=,=_ =
\s / \\ /’ - b’ ! !
- 1
/' !
Graph 5 Graph 6 Graph? Graph 8
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HOMEWORK PROBLEMS
CORE EXERCISES 1, 3, 5, 8, 11, 19, 33, 50

SAMPLE ASSIGNMENT 1, 3, 5, 7, 8, 11, 16, 17, 19, 33, 42, 50, 53

| EXERGISE | D [ A | N |

1

3

5

X|X|X]| e

7

8

X

11

X

16

17

19

33

42

50

53

X|IX[X]|X[X]|X|X
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GROUP WORK 1, SECTION 2.2
Tangent Lines and the Derivative Function

The following is a graph of g (x) = x cos x.

y
1

It is a fact that the derivative of this function is g’ (x) = cosx — x sinx.

1. Sketch the line tangent to g (x) at x = % ~ 1.57 on the graph above.
2. Find an equation of the tangent line at x = 7.

3. Now sketch the line tangent to g (x) at x = 5 ~ 1.05.

4. Find an equation of the tangent line at x = 7.
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GROUP WORK 2, SECTION 2.2
The Revenge of Orville Redenbacher

1. Consider a single kernel of popcorn in a microwave oven. Let V (t) be the volume in cm? of the kernel at
time t seconds. Draw a graph of V (t), including as much detail as you can, up to the time that the kernel
is taken from the oven.

2. Now sketch a graph of the derivative function V' (t). What are the units of V' (t)?

3. Finally, sketch a graph of V” (t). What does it mean when this graph crosses the x-axis?
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GROUP WORK 3, SECTION 2.2
The Derivative Function

The graphs of several functions f are shown below. For each function, estimate the slope of the graph of f at
various points. From your estimates, sketch graphs of f’.

\|/
/‘//
Graph1 Graph 2
\ |
/
[
\ [
Graph 3 Graph 4
|
/
/
Graph5 Graph 6
/1\
[\
/ \
,/ \\ / / \\\_s

Graph7 Graph 8
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The Derivative Function

Graph 1
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The Derivative Function

Graph 2
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The Derivative Function

Graph 3
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The Derivative Function

Graph 4
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The Derivative Function

Graph 5
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The Derivative Function

Graph 6
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The Derivative Function

Graph7
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The Derivative Function

Graph 8
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The Derivative Function

Answer 2
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The Derivative Function

Answer 3
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The Derivative Function

Answer 4
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The Derivative Function

Answer 5
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The Derivative Function

Answer 6
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The Derivative Function

Answer 7
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The Derivative Function

Answer 8
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2.3  Differentiation Formulas

SUGGESTED TIME AND EMPHASIS

2-3 classes Essential material

POINTS TO STRESS

1. The Power, Constant Multiple, Sum and Difference Rules, and how they are developed from the limit

definition of the derivative.
2, Justification of the Product and Quotient Rules.
3. The computation of derivatives using the above rules.

QUIZ QUESTIONS

o TEXT QUESTION Why don’t we use the Quotient Rule every time we encounter a quotient?
ANSWER Sometimes algebraic simplification can make the problem much easier.

o DRILL QUESTION Compute the derivative of (x® — §x*) (X + ).
6 1,4

X" —gX 5 1.3
ANSHER ——L— +(6x° = ) (VK + )

MATERIALS FOR LECTURE
3

. . . X .
e As an introductory exercise, draw the function f (x) = 3 Ask the students to estimate slopes at several

points, perhaps using secant lines. Create a table of x versus f’ (x) and try to get them to see the pattern.
Then review the idea of the derivative function. Similarly, examine the derivatives of f (x) = 5x + 2 and

f (x) =3.

o Let f (x) = x3 + 2x? 4+ 3x + 4. Find a point a, both visually and algebraically, where f’(a) = 2. Then
ask them to find where the tangent line to the function f (x) = x3 — x + 1 is parallel to the line y = x.
e Derive the Product Rule, and show its relationship to the Constant Multiple Rule (For example, one can

find [3e*]’ using either rule, but [xe*]’ requires the Product Rule.)
e State and demonstrate a proof of the Quotient Rule via the Reciprocal Rule:

Let fg = 1. Then by the Product Rule, f'g+g'f =0 = f'g=-gf = ' =-

g/

1 1
since f = E This is the Reciprocal Rule: If f = 5 then f’ = —?.

This result allows us to prove the Quotient Rule:
(i) = (f 1) = f’ (1) + f (1) (by the Product Rule)
g g g g

=—4f (—%) (by the Reciprocal Rule)

g'f o

g 92

e Show that, if f (x) = x* —x?4+x +1, then f® (x) = 0. Conclude that if f (x) is a polynomial of degree

m, then f(M+D (x) = 0.
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SECTION2.3__DIFRERENTIATION FORMULAS

WORKSHOP/DISCUSSION
e Do a complex-looking differentiation that requires algebraic simplification, such as
X2YX 4 x+/x3 — («/Ex)2
02
e After the students have mastered the basics of the Power Rule, have them differentiate some notationally
tricky functions such as x™, %/x, and a2,

f(x)=

e Give some examples in which the automatic use of the Quotient Rule is not the best strategy to follow, for

X2+ X — IX x3 — 2x
—x I =Tg

think and simplify first (if they can) before using any of the rules.

example, f (x) = ,orh(x) = ; The idea is to get the students to

e Do an example like Exercise 53. If you actually use the Witch of Agnesi, the students may be interested
to hear the history of the curve: Italian mathematician Maria Agnesi (1718-1799) was a scholar whose
first paper was published when she was nine years old. She called a particular curve versiera, or “turning
curve”. John Colson from Cambridge confused the word with avversiera, or “wife of the devil,” and
translated it “witch”.

e Graph f (x) = 4 — x? and compute the equations of the tangent line
and the normal line at x = 1. Draw those lines and point out that, as
predicted, they are perpendicular.

GROUP WORK 1: DOING A LOT WITH A LITTLE

This exercise starts out by showing what can be done with the Power Rule, and ends by foreshadowing the
Chain Rule. The first page should be handed out separately, and then the second sheet handed out to groups
who finish early. Emphasize that the solution to Problem 5 should resemble that of Problem 4 in form. If
a group finishes both sheets far ahead of the others, ask them to figure out a formula for the derivative of
f (x) = (g (x))", and to come up with a few examples to check their formula. (Notice that when we state the
Power Rule, we allow n to be any real number.)

ANSWERS (Notation may vary)

1. f/(x) = 10x° 4+ 7x8 4 4x7 — 35x5% — 1.98x° + 5mx* — 44/2x3
1 3 3 9,7/2 -3/2
2. f/(x) = 33—\/)(—2,9/0() :_F+44—\/x_7’h,(x) = 3x7/2 —x=%
3. f/(x) = 64x3, ¢’ (x) = 15x14
4. This follows immediately when the given functions are expanded.
5. £/ (x).=n(kx)""1k, g’ (x) =n (xk)n_1 kxk-1
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CHAPTER2 DERIVATIVES

GROUP WORK 2: FIND THE ERROR

This is the first of several exercises where students will try to find mistakes in somebody else’s reasoning.
When first faced with a task like this, some students will pick a line towards the end, show it is false, and
then consider the task completed. It is important to stress you want them to find the reasoning error; what the
person who did the work did incorrectly to get that false line.

If a student still doesn’t understand the idea, put it this way: “The person who wrote this listens to what you
just said, and says, ‘What did | do wrong?” Can you give an answer that will help that person avoid making
similar mistakes in the future?”

ANSWER The function “x 4+ x + - - - 4+ x" is defined only for integer values of x and is thus not a differentiable

X times
function.

GROUP WORK 3: BACK AND FORTH
This exercise foreshadows antiderivatives and gives students an opportunity to practice using the derivative
rules they’ve learned so far.

The students pair up, and decide who is A and who is B. Seat the A’s on one side of the room and the B’s
on the other side. All the A’s get one sheet, and all the B’s get the other sheet. The students compute five
derivatives, without simplifying, and write their answers in the space provided. Emphasize that they should
write only their unsimplified answers, not the work leading up to them, in the blanks. Then they trade papers
with their partner and try to undo what their partner has done, that is, find the antiderivative.

If a pair finishes early, have them repeat the exercise, making up their own functions, and simplifying at will.
When closing this exercise, have the class notice that there was no way to recover the constant terms in
Problems 1 and 5. Ask what this implies about the general problem of finding a function whose derivative is
equal to a given function.

ANSWERS

FORMA f (x) = 20x3+3x (the 4 is unrecoverable), g’ (x) = x ~/2—x=3/4 h’ (x) = (x? +2x + 4) (3x2 — 1)+
(VX +1) (4x3 —4) — [(x* —4x +3) / (2X)]

2x+2)(x3=x—=13), j (x) =

k' (x) = —x—4/3 (the 42

is unrecoverable)
FORMB / (x) = —6x2+8./x (the 8 is unrecoverable), g’ (x) = £ [(3x2) (x® +x) + (x® + 1) (3x% + 1) + 12x],
h' (x) = (x3 + %2 + 2x) (10x — 8x3 + 8) + (5x2 — 2x* + 8x) (3x% + 2x + 2),
70 =14+2x (x #0), k' (x) = —Zx~2/3
GROUP WORK 4: SPARSE DATA

This exercise allows the students to practice the rules they have learned, with a minimum of algebraic manip-
ulation. The students should work on these problems in groups of three or four, perhaps choosing groups of
students with similar algebraic proficiency. Problem 5 uses the General Power Rule, which was illustrated in
Group Work 1.

ANSWERS1.0 2. —48 3.2 _4.-18 5.
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SECTION 2.3__.DIFFERENTIATION FORMULAS

HOMEWORK PROBLEMS
CORE EXERCISES 2, 5, 12, 18, 24, 26, 32, 50, 51, 60, 101
SAMPLE ASSIGNMENT 2, 5, 12, 18, 24, 26, 32, 32, 35, 47, 50, 51, 60, 61, 68, 73, 90, 94, 101, 105

| EXERCISE | D |

2
5
12
18
24
26
32
32
35
47 X
50
51
60 X
61 X
68 X | x
73 X
90
94
101
105

(N6

X|X|X|X[X|X|[X]|X[X]| >

X
X

X

X | X|X|X
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GROUP WORK 1, SECTION 2.3
Doing a Lot with a Little

Section 2.3 introduces the Power Rule: ;—Xx” = nx"~1, where n is any real number. The good news is that
this rule, combined with the Constant Multiple and Sum Rules, allows us to take the derivative of even the
most formidable polynomial with ease! To demonstrate this power, try Problem 1:
1. A formidable polynomial:
f(x) =x1+ Ix% + 1x8 — 5x" — 0.33x5 + mx° — vV2x* — 42
Its derivative:

f' ' (x) =

The ability to differentiate polynomials is only one of the things we’ve gained by establishing the Power Rule.
Using some basic definitions, and a touch of algebra, there are all kinds of functions that can be differentiated
using the Power Rule.

2. All kinds of functions:

5 1 1 5_3 2
F(0) = XK+ 92 900 =335~ 75 MX)=%
Their derivatives:
f (x) = g (x) = h"(x) =

Unfortunately, there are some deceptive functions that look like they should be straightforward applications
of the Power and Constant Multiple Rules, but actually require a little thought.

3. Some deceptive functions:

f (0 = @20* 9 () = (%)’
Their derivatives:

700 = g (x) =
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Doinga Lot withaa Little

The process you used to take the derivative of the functions in Problem 3 can be generalized. In the first case,
f (x) = (2x)*, we had a function that was of the form (kx)", where k and n were constants (k = 2 and
n = 4). In the second case, g (X) = (x3)5, we had a function of the form (xk)n. Now we are going to find a
pattern, similar to the Power Rule, that will allow us to find the derivatives of these functions as well.

4, Show that your answers to Problem 3 can also be written in this form:

f'(x) =4(2x)% -2 g (x)=5 (x3)4 - 3x2

And now it is time to generalize the Power Rule. Consider the two general functions, and try to find expres-
sions for the derivatives similar in form to those given in Problem 4. You may assume that n is an integer.

5. Two general functions:

f (x) = (kx)" g (x) = (x¥)"
Their derivatives:

f'(x) =
9 =

M1



GROUP WORK 2, SECTION 2.3
Find the Error

It is a bright Spring morning. You have just finished your Chemistry lab, and have a Physics class starting in
a half hour, so you have a little bit of time to sit on a park bench and relax by leafing through your Calculus
book. Suddenly, you notice a wild-eyed, hungry-looking stranger looking over your shoulder.

“Lies! Lies!” he yells. “That book there is filled with nothing but lies!”

“Why, you are mistaken,” you explain. “My Calculus book is chock-a-block with knowledge and useful
wisdom.”

“Oh yeah? Well what would your calculus book say about THIS?” he demands, and hands you a piece of
paper with the following written on it:

Forx > 0

xr

R
R e P

I himes
9
¥ =r4+a+---+2
———

I himes

D (,r +r++ .f')
——
I limes

D(x)+D(x)+---+D(x)

'

D (x?)

Il

D (x%)

& limes

2w o= 141441
\-—.\’_/

2r = x
L 2=1

— —

& umes

“Put THAT in your pipe and smoke it!” At that, the gentleman runs off, screaming, “I’ll be back!” into the
wind.

Is all of mathematics wrong? Is two really equal to one? Are “two for one” specials really no bargain at all?
Is “six of one” really not “half a dozen of the other”? Or is there a mistake in your new friend’s reasoning?
If so, what is it?
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GROUP WORK 3, SECTION 2.3
Back and Forth (Form A)

Compute the following derivatives. Write your answers at the bottom of this sheet, where indicated. When
finished, fold the top of the page backward along the dotted line and hand to your partner.
Do not simplify.

1 f(x)=5x+3x2 -4

2. g(x) =2x —4Yx
3.h(x)= (x> +2x +4) (x3 —x —3)

x4 —4x +3

I ==

3
5.k(X)=\37—Y+42

ANSWERS
fr (x) =

g’ (x) =
h"(x) =
i) =
k' (x) =
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GROUP WORK 3, SECTION 2.3
Back and Forth (Form B)

Compute the following derivatives. Write your answers at the bottom of this sheet, where indicated. When
finished, fold the top of the page backward along the dotted line and hand to your partner.
Do not simplify.

1. f(x)=-2x3+ JT§X2 -8

(x3+1) (x3 +Xx) + 6x2
5

2.9(x) =

3. h(x) = (x3 +x2 + 2x) (5x2 — 2x* + 8x)

400 ="—

5.k (x) = /11 — 229X

ANSWERS
f' (x) =

9’ (xX) =

h’ (x) =

') =

k' (x) =

14



GROUP WORK 4, SECTION 2.3
Sparse Data

Assume that f (x) and g (x) are differentiable functions about which we know very little. In fact, assume that
all we know about these functions is the following table of data:

Lx [fool g [d® ]

-2 3 1 -5 8
-1 -9 7 4 1
0 5 9 9 -3
1 3 -3 2 6
21 =5 3 8 ?

This isn’t a lot of information. For example, we can’t compute f’(3) with any degree of accuracy. But we
are still able to figure some things out, using the rules of differentiation.

1. Leth (x) = (3/?)4 f (x). What is h’ (0)?

2. Let j (x) = —4f (x) g (x). What is j’' (1)?

xf (X)

3. Letk(X) == W

. What is k’ (—2)?

4. Letl (x) = x3g (x). IfI' (2) = —48, what is g’ (2)?

5. Letm (x) = %x) What is m’ (1)?
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APPLIED PROJECT ~  Building a Better Roller Coaster

This project models a typical hill in a roller coaster ride using two lines as the sides and a parabola for the
peak area. It also discusses how to smooth this model to have a continuous second derivative by using cubic
connecting functions between the parabola and the two lines. A computer algebra system is needed to solve
the resulting equations. In their report, students should address the question, “Why do we want the second

derivative to be continuous?”
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2.4 Derivatives of Trigonometric Functions

SUGGESTED TIME AND EMPHASIS

1 class Essential material

POINTS TO STRESS

Formulas for the derivatives of the standard trigonometric functions.

QUIZ QUESTIONS

. . . sin@
o TEXT QUESTION Why does the text bother going through all the fuss of computing Ollmo% and
%

. cosf —1
lim ———?
6—-0 0
ANSWER When deriving the formulas for the derivatives for sin @ and cos 6, these limits arise when taking

the limits of the difference quotients. These computations are necessary to finish the derivations.
tan (7 +h) —tan (%),

o DRILLQUESTION What is lim
h—0

h
(A) 2 (8) -2 ()0 (D) 1 (E) Does not exist
ANSWER (A)
MATERIALS FOR LECTURE
1
e Many students may need a review of notation: sin®x = (sinx)?, sinx2 = sin (x?), (sinx)™* = — =

sin x
cscx, sinx~1 = sin < but sin—1 x represents the inverse sine of x, arcsin x, and not any of the previous
functions.

e Demonstrate simple harmonic motion in different ways such as observing the end of a vertical spring,
marking the edge of a spinning disk, or swinging an object on a chain.

e Have the students set their calculators to degrees and approximate the derivative of cosx at x = 7 by
zooming in on the graph of cosx. Repeat the exercise with their calculators set to radians. Discuss the
reason why the answers are different, and why only one is considered correct. Show how the slope of the
tangent to the graph of sinx at x = 0 is not 1 if the x-axis is calibrated in degrees instead of radians.
ANSWER The derivation of (sin@)" = cos @ involved using the fundamental trigonometric limit, which
assumed € was in radians.

WORKSHOP/DISCUSSION
. sinax . . . sinax
e Demonstrate that lim = 1 for any positive a. Then ask students to find lim . Show how
x—0 axX x—0
. . d . d .
this argument can be extended to derive the formulas ax sinax = acosax and ax cosax = —asinax.

. . sinax sinax .
Finally, demonstrate that your results make sense by drawing graphs of -~ and » for various

values of a.
17



CHAPTER2 DERIVATIVES

X X JVAVAVW'\‘ ‘b%%ﬁv; X
*277\/*77\/ 0 \/77' \/277' *277\/*77\/ 0 \/77' \/277' =27 -7 T 2T =27 -7 T 2

_ sin 2x y sin 2x sin 5x sin 5x

2X X Y= "5 Y =7
e Consider f (x) = %x + cosx, 0 < x < 2. Discuss local maxima and minima of f (x). Repeat for

gx)= 1%x + cosx and h (x) = x + cos x. Discuss why h is qualitatively different from f and g.
GROUP WORK 1: THE MAGNIFICENT SIX

After showing the students that (sinx)’ = cosx and (cosx)’ = —sinx, it is possible to use the Quotient
Rule to derive the trigonometric derivatives on their own, and the process of deriving these formulas is good

practice at using the rules learned so far.

ANSWERS
1. cOs X 2. —sinx 3. sec? x
4. tan X sec X 5. —Csc? x 6. — COt X CSC X

GROUP WORK 2: USING OUR NEW KNOWLEDGE

ANSWERS
1. -1,3 -1
2.y=—X,y=3x—-3m,y=—Xx+2x
3.

4 y=glx)

2

ASTEID \TLE
-2
—4

4. There is no tangent line at y = % because the function has a vertical asymptote there.

GROUP WORK 3: WHEN THE LIGHTS GO DOWN IN THE CITY

This activity will help the students understand the relationship between a trigonometric function in the ab-

stract, and a trigonometric function as a model for real situations.

Creative use of technology can be encouraged here. It is important to stress to the students that Problem 2
assumes that they are looking at only a one-month window. Problem 6 foreshadows the technique of linear

approximation covered in Section 2.9.
18



SECTION2.4  DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

ANSWERS

1. Maximum: 1, minimum: 20 2.1t is part of a cosine curve. 3. December 4, May
5. 3.095 minutes per day (0.5158 hours per day) 6.3.095 - 31 = 95.94, accurate to within about 1%.

HOMEWORK PROBLEMS
CORE EXERCISES 3, 7, 21, 28, 42, 41, 44
SAMPLE ASSIGNMENT 3, 7, 21, 28, 33, 37, 41, 42, 44

| Exerase [ D | A [N ] 6 |
3
7
21
28
33
37 X
41
42 X
44 X

X

X|X[X|X|[X]|X|X
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GROUP WORK 1, SECTION 2.4
The Magpnificent Six

The derivative of f (x) = sinx was derived for you in class. From this one piece of information, it is possible
to figure out formulas for the derivatives of the other five trigonometric functions. Using the trigonometric

identities you know, compute the following derivatives. Simplify your answers as much as possible.
1. (sinx) =

2. (cosx) =

3. (tanx)’ =

4. (secx) =

5. (cotx) =

6. (cscx) =
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GROUP WORK 2, SECTION 2.4
Using Our New Knowledge

The following is a graph of g (x) =tanx — 2sinXx.

y
4 y=gx)
2
~ )/
0 2}/ T X
-2
—4

There are some things we can say about the graph just by looking at the picture, although our intuition may
sometimes mislead us.

1. Compute g’ (0), g’ (7), and g’ (27).

2. Find equations of the lines tangent to this curve at x = 0, X = 7r, and x = 2.

3. Graph the equations you found in Problem 2, and make sure they look as they should.

4. What happens when you try to find the equation of the line tangent to this curve at x = Z? Why?
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GROUP WORK 3, SECTION 2.4
When the Lights Go Down in the City

The number of hours of daylight in Summitville, Canada varies between 9 hours and 15 hours per day. A
model for the number of daylight hoursonday t is D (t) = 12 —3co0s (0.0172 (t + 11)),0 <t < 365. (t =1
corresponds to January 1.) The graph for a particular month looks like this:

951

9.25

Hours
of
Daylight

9L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Date of Mystery Month

1. On approximately what day of the month does this graph achieve its minimum? Its maximum?

2. Why does this graph have the shape that it does?

3. What montbh is this graph likely to represent?

4, For which month would you expect to see a graph shaped like this one, only upside-down?

5. How rapidly are we gaining daylight 90 days after the minimum occurs?

6. A newspaper in Summitville states that during the period of 31 days starting from day 68 after the
minimum, we gain 1 hour and 35 minutes of sunlight. Use the rate of change computed in Problem 5
to estimate the change in hours of sunlight over this period. How close is your estimate to the figure
reported in the newspaper?
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2.5  The Chain Rule
SUGGESTED TIME AND EMPHASIS
13-2classes  Essential material

POINTS TO STRESS

1. A justification of the Chain Rule by interpreting derivatives as rates of change.
2. The use of the Chain Rule to compute derivatives.

QUIZ QUESTIONS

o TEXT QUESTION The text presents the two forms of the Chain Rule: (f (g (x))) = f’(g (x))g’ (x) and

d dy du
y_ & . Do these two equations say the same thing? Explain your answer.

dx — dudx
ANSWER They do. Let y = f (u) and u = g (x). Then the statement f (g (x))’ = f’ (g (x)) g’ (x) becomes
dy dydu
dx  dudx’
o DRILL QUESTION Compute i sinx? and i sin? x.

dx dx
ANSWER 2x cos x2, 2 sin X COS X

MATERIALS FOR LECTURE

e The following is one way to introduce the Chain Rule:

Before formally discussing the rule, do two examples of differentiating multi-nested functions. Explain
to the students that you aren’t going to justify anything yet, but that you just want them to see the pattern
before getting into the material. After every step, say something like, “The derivative of sin x is cos X, so
the derivative of the sine of this stuff is the cosine of this stuff, times the derivative of what’s left.” After
the students have seen the pattern with functions like (sin (cos (x? + 4x + 5)))33, you should justify the
Chain Rule and discuss the details.

e Show how to compute derivatives, using the Chain Rule, in one line. Take the derivative of sin (x4 + 1),
first by using the Chain Rule explicitly [f (u) = sinu, u(x) = x* + 1], and then by inspection [the
derivative of sin (x* + 1), which is cos (x* + 1) times the derivative of x* + 1, which is 4x> ]

o Address the question: “Where do you stop when using the Chain Rule?” For example, why is it false that

?

dd_x sin (x° 4 4x?) = [cos (x° + 4x2)] (5x* + 8x) (20x* + 8) (60x?) (120x) (120)?

One way to help students decide “when to stop” is to draw their attention to the text’s Reference Page 5
(Differentiation Rules). One stops when the derivative is one of the primitive rules such as the ones on that
page.

e Justify the Chain Rule using rate of change arguments, such as the following: One factory converts sugar
to chocolate (¢ = 8s) and another converts chocolate to candy bars (b = 16c). Finding the rate at which
sugar is converted to candy bars can be used to help justify the Chain Rule, particularly if the units of the
relevant quantities are emphasized.
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CHAPTER2 DERIVATIVES

WORKSHOP/DISCUSSION
3
- CoS X _
o Compute some derivatives, such as those of sec (x2 + x), (x2 ~ 1) , /X + cos xZ, and cos (sin (x?)).
T
Compute the equation of the line tangentto y = cos { X + at (0, —=1).

e Draw the following graph of f (x) (or copy it onto a transparency).

*' \

Tell the students that f' (0) = —1, f' (1) = 3, f/(2) = 1, and f’ (4) = —3. Define g (x) = f (x2). First
compute g (—1), g (0),g (1), ¢ (ﬁ) and g (2). Then compute g’ (0), g’ (—2), and g’ (2). Finally, sketch

g (x) as below. Use the graph to verify the values for g (x) and g’ (x) computed above.
y

AEA

GROUP WORK 1: UNBROKEN CHAIN

This is meant to be a gentle introduction to the mechanics of taking derivatives using the Chain Rule. You
may be surprised at the difficulty some groups have with Problem 4 of the activity, but by the end they all
should be ready to go home and practice.

Start by “warming the class up” as a large group by having them take the derivatives of functions like x3-24,

sinXx, /X, tanx, and so on. This quick review is important, because the activity works best if their mental

focus is on the Chain Rule, as opposed to formulas they should already know.

While helping the individual groups, don’t volunteer that the answers to most of the questions are supersets

of the previous questions. They are supposed to discover this pattern for themselves.
If a group finishes early, give them a function like cos (x? + /X) sin (1/x) to try.

When they are finished, write the_solutions to_Problems 4, 6, and 7_on the board. Ask the students if they
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SECTION2.5 ' THECHAIN RULE

need you to write the solutions to the earlier ones. After they say “no”, try to get them to explain why it isn’t

necessary. (If they say “yes”, refuse and ask them why you are refusing.)

ANSWERS
1.cos3x -3  2.3(sin3x)%cos3x - 3 3.3(sin3x)%cos3x -3+ 5

4. 5[(sin3x)* + 5x]4 [3 (sin3x)? (cos 3x) 3 + 5] (check their parentheses carefully)

-1/2

5.1-x72 63 [x+ /0] (0-x7?)

7. [sin3x)% + 5x]5 3 (x + %)_1/2 (1—x72)+5[(sin3x)® + 5x]4 [3 (sin3x)? (cos 3x) 3 + 5] ( X + %)

(If the students don’t write out the answer to Part 7, instead referring to the answers to previous parts, don’t
penalize them; they have gotten the point.)

GROUP WORK 2: CHAIN RULE WITHOUT FORMULAS

This exercise works best with pairs or groups of three. Before handing it out, write both forms of the Chain
Rule on the board. If a group finishes early, ask them where h’ = 0 and over which intervals h” is constant.

(This turns out to be a tricky problem.)

ANSWERS 1. " (3) g’ (1) ~ 3 2. f7(0)g (0) = —% 3.9’ (2) does not exist, so h’ (2) does not exist.

GROUP WORK 3: EXAMINING A STRANGE GRAPH

Have the students first answer the questions just by looking at the graph, and then go back and verify their
intuition using calculus. If the students find this curve interesting, you can point out another interesting
property. Consider the line segment going from (0, —1) to (0, 1). The curve gets arbitrarily close to every
point on this segment, although it never actually touches the segment. If we consider the combined segment
and curve we get a mathematical object that is “connected” but not “path connected”.

If a group finishes early, perhaps ask them to figure out what the graph of tan (1/x) will look like, and to

verify their guess using their calculators.

ANSWERS

1.y = —%. As X — o0, Y — 0. Therefore the function has a horizontal asymptote. Or, one can
argue that as x — oo, 1/x — 0, so sin (1/x) — 0.

2. The function does not approach a specific y-value as x — 0. (One can look at either the function or its

derivative as x — 0.)
3. The slope of the curve approaches 0.

4, The slope oscillates, but its peaks and valleys get larger and larger without bound as x — 0.
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CHAPTER2 DERIVATIVES

HOMEWORK PROBLEMS
CORE EXERCISES 4, 7, 10, 12, 24, 44, 53, 67
SAMPLE ASSIGNMENT 4, 7, 10, 12, 19, 24, 44, 53, 63, 65, 67, 68, 73, 80, 84

| EXerGSE | D |

4
7
10
12
19
24
44
53
63 X | x
65 X X
67 X
68 X
73 X
80 X
84 X | x

(v 6]

XXX |X[X|X|[X]|X]|>
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GROUP WORK 1, SECTION 2.5
Unbroken Chain

For each of the following functions of x, write the equation for the derivative function. This will go a lot more
smoothly if you remember the Sum, Product, Quotient, and Chain Rules... especially the Chain Rule! Please

do us both a favor and don’t simplify the answers.

1. f (x) =sin3x f (x) =
2. g (x) = (sin3x)° g (x) =
3. h () = (sin 3x)® + 5x h' (X) =
4. j (x) = [(sin3x)° + 5x]° j (%) =
5 K00 =X+ K () =

6.I(x):,/x+; I"(x) =

7.m(x) = (‘ [x + %) [(sin3x)* + 5x]5 m’ (x) =
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GROUP WORK 2, SECTION 2.5
Chain Rule Without Formulas

Consider the functions f and g given by the following graph:

Defineh = f o g.
1. Compute h’ ().

2. Compute h’ (0).

3. Does h’ (2) exist?
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GROUP WORK 3, SECTION 2.5
Examining a Strange Graph

Several times in this course, we have looked at the graph of y = sin (1/x).

y

y=sin(l/x)

There are some things we can say about the graph just by looking at the picture, although our intuition may
deceive us.

1. As we move farther and farther to the right, does the graph oscillate forever, or does it approach some
y-value?

2. As we move closer and closer to zero, does the graph oscillate forever, or approach some y-value?

3. What happens to the slope of the curve as we go farther and farther to the right?

4. What happens to the slope of the curve as we approach zero?

Since intuition could fail us, please consider the function y = sin (1/x) directly, and prove that your answers
to the above questions are correct. If it turns out that you were wrong above, then correct your answer and

note why your intuition led you astray.
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SPECIAL SECTION Derivative Hangman

I recommend doing this activity just after covering the Chain Rule, for a class of students who need more
practice computing derivatives. It is designed to keep all the students involved and practicing both computing
derivatives, and checking their work. Divide the class into teams of 46 students each. Put blanks representing

the letters of a mystery word or phrase on the board. The game then proceeds as follows:

One representative from each team goes to the blackboard. The teacher then puts up a function either on the
blackboard, or using the overhead projector. Everyone in the room tries to compute the derivative. The people

at the board cannot speak, but their teammates can work together, speaking quietly.

The first person at the board to compute the derivative slaps the board, blows a whistle, or claps their hands.
The teacher calls on him or her to state the solution. Then each other team gets a chance to accept the answer,

or challenge.

The team that wins (first to have their representative get it right, or first to challenge successfully) gets to
guess a letter of the puzzle. If they guess A, for example, all instances of A in the mystery phrase are filled

in:

Whether or not their letter was in the phrase, they then get a chance to guess at the puzzle (“QUADRATIC
FORMULA”, in this case). If they get it right, the round is over and they win. If not, each team sends up a

new representative and the game continues.

If this game is officiated with care and enthusiasm, all the students will be involved and working every time a

new problem is put on the board.

APPLIED PROJECT ~ Where Should a Pilot Start Descent?
This project can be used as an out-of-class assignment, or as an extended in-class exercise. At this point in
the course, some students may be asking about opportunities for extra credit, and an oral report based on this

project would be a worthwhile extra-credit activity.

The project includes a computation of the minimum distance from the airport at which an airplane should
begin its descent. A nice addition to this project would be the actual figure (or range of figures) used by a

local airport, obtained by a few well-placed telephone calls.
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2.6 Implicit Differentiation

SUGGESTED TIME AND EMPHASIS

1 class Essential material

POINTS TO STRESS

1. The concepts of implicit functions and implicit curves.

2. The technique of implicit differentiation.

QUIZ QUESTIONS

o TEXT QUESTION Describe what is being illustrated by Figure 3. Make sure your answer is as complete as
possible.

ANSWER The implicit curve x3 + y3 = 6xy does not define a function. Figure 3 illustrates several functions,
each of which is implicitly defined by x3 + y2 = 6xy.

o DRILL QUESTION If x2 + xy = 10, find j—i when x = 2.

7
ANSWER — 7

MATERIALS FOR LECTURE

e Go over the definition of implicit curves, and the method of implicit differentiation. A good starting
example is the curve defined by x = siny (which can be easily graphed and visualized). Another example

isthecurvex +y = (x2 + y2)2, which can be graphed using polar coordinates.

ANSWER y v
3‘ l/
2<
1<
;1 0 i X

_l<

-2 1 X

X =siny ’

r = Jcos6 + sin 6
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CHAPTER2 DERIVATIVES

e Derive the equation of the line tangent to the curve x? — sin (xy) + y2 = 1 at the point (1, 0). Sketch the
curve as below and draw the tangent line.
ANSWER The tangent line is y = 2x — 2.

e Display some interesting looking implicit curves such as the following:
y

7

%
oo

y2 = x3 — 4x x8 4+ y8 = ax?y? — 3y?x4 — 3x2y4 sin(wr(x+y) =0
an elliptic curve a four-leaved rose

Have the students figure out a test to see if a given point is on the implicit curve. For example, is (2, 0)
on the first graph? Is (0.6, 0.2) on the second? Is (1.2, 2.8) on the third? Have the students determine the
slopes of the lines in the third graph, and show that they are parallel.

ANSWER Substituting the coordinates into the equations shows that (2, 0) is on the first graph, (0.6, 0.2) is
not on the second, and (1.2, 2.8) is on the third. The lines on the third graph all have slope —1, and are
therefore parallel.

WORKSHOP/DISCUSSION
o If the students have access to appropriate graphing technology, have them try to come up with interesting-
looking implicit curves. Perhaps have an award for the most aesthetically pleasing one.

e Consider r2 4 2s./t = rt. Show the students how to compute dr/dt when s is held constant, dr /ds and
ds/dr when t is held constant, and dt/ds when r is held constant.

e Have the students differentiate y2 = x’ — 6x implicitly, and then differentiate y = +/x7 — 6x using the
Chain Rule.

o If f (x)*=(x+ f (x))%and f (1) =2, find ' (1).
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SECTION2.6_+ IMPLICITDIFFERENTIATION

GROUP WORK 1: IMPLICIT CURVES

Computer algebra systems are notoriously bad at graphing implicit functions. Even simple functions such
as the ones described above in Materials for Lecture point 5 are often poorly graphed by implicit function
plotters. This activity describes an implicit curve which many calculators graph inaccurately, but which can
be analyzed using a little bit of algebra.
ANSWERS

1. All lines of the form x = =k, y = 5 + wk, k 2. Maple gives the graph below.

an integer.
| 11T
1
i L x
|

T T T T 0

—

i

3. dy/dx = 0 or is undefined when x = 7rk. The derivative must be taken carefully to obtain this result.

14 Wl B
\

GROUP WORK 2: CIRCLES AND ASTROIDS

The basic idea of this activity is for students to visualize flat circles and astroids, and to compute slopes by
implicit differentiation. The question about where the slope is 1 or —1 can be addressed first visually and then
analytically. As a follow-up question, students can be asked to show that the answers are always the points of
intersection with the linesy = x and y = —x.

ANSWERS

dy _

5
X -
vl (y) . The slope of the tangent is 1 at (+271/6, £271/6) and —1 at (+21/6, +:2-1/6).

—
__
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CHAPTER2 DERIVATIVES

2.1f p/q = 3, the slope is 1 at (£27%/4, ¥273/4) and —1 at (£27%/4, £273/4). If p/q = , the slope is 1
at (£275/2, ¥27°2) and —1 at (£27%/2, £27°/2),

GROUP WORK 3: A WALK IN THE PARK

Before beginning this activity, discuss the concepts of orthogonal trajectories (discussed in Exercises 49-52)

and path of steepest descent. Perhaps do a quick example on the blackboard, and then hand out the activity.

Problem 4 requires some deep reasoning.

ANSWERS

1,2. N \j// 3. The steepest descent lines are always
\%\\/ 4 perpendir():ular to the contour lines. ’

4, Yes, there are. There are precarious

" balance points between the paths that go
(L

to one valley or the other. These are

oo so[ 70 60 5 g points of unstable equilibrium.

%)

$o
2
%0
90

W
P /_\
@)

HOMEWORK PROBLEMS
CORE EXERCISES 3, 10, 18, 22, 25, 32, 48, 49, 56
SAMPLE ASSIGNMENT 3, 10, 18, 22, 25, 32, 44, 48, 49, 51, 56, 59

| Eexerase [ D | A [N ]| 6 |
3
10
18
22
25
32
44 X
48 X
49
51 X
56 X
59 X

X|X|X|X|[X]|X

X

X
X
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GROUP WORK 1, SECTION 2.6
Implicit Curves

Consider the implicit function sinx cosy = 0.
1. Without using technology, graph this function. You have to think carefully, but you can get it.

2. If you have access to technology that can graph implicit functions, have it graph this function. Do you get
a good graph?

3. Use implicit differentiation to compute % Does your graph confirm or contradict your answer?
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GROUP WORK 2, SECTION 2.6
Circles and Astroids

1. Consider the “flat” circle x5 + y8 = 1. At what point(s) is the slope of the tangent line equal to 1? Where
is it equal to —1?

2. Below are some curves xP/9 4+ yP/4 = 1 where p is even and q is odd. These curves are sometimes called
astroids when p/q < 1.

-1

At what point(s) is the slope of the tangent line equal to 1 or —1if p/q = %? How about if p/q = %?
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GROUP WORK 3, SECTION 2.6
Looking for the Minimum

The graph of g (x) = arcsin (x2 + e7) is shown below. Clearly there is a minimum value somewhere

between x = 0.2 and x = 0.4.

1.5

1. Find a formula for g’ (x).

2. Find an equation of the line tangent to this curve at x = 0.34. (Round all numbers to three significant
figures.)

3. Does the minimum value of g (x) occur to the left or to the right of x = 0.34? How do you know?

4, Find an equation of the line tangent to the curve at x = 0.36. Does the minimum value of g (x) lie to the
left or to the right of x = 0.36?

5. Estimate the location of the minimum value of g (x). Then use technology to see how close your estimate
is to the actual location.
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GROUP WORK 4, SECTION 2.6
A Walk in the Park

The following is a contour map of a region in Orange Rock National Park.

— D —
\_\_’/ 39 -

4

]20

50

1. Suppose you start a little to the west of point A. Draw the path of steepest descent from this point to the
edge of the map.

2. (a) Now start a little bit southwest of point A, and trace the path of steepest descent.
(b) Repeat this starting at a point a little east of point A.
3. What assumptions are you making in drawing your paths?

4, Are there any paths starting near point A that do not fall into one of the three valleys that are in the park?
Explain your reasoning.
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LABORATORY PROJECT ~ Families of Implicit Curves

This exciting project puts the abilities of a CAs to use quite nicely. Students should be encouraged to take
the last part of Problem 1(b) seriously by exploring many values of ¢, not just the ones explicitly mentioned.
With a cAs, this takes only a few keystrokes. In Problem 2, students should be encouraged to play with the

equation by putting constants in front of other terms and noting what effect this has on the graph.
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2.7  Ratesof Change in the Natural and Social Sciences
SUGGESTED TIME AND EMPHASIS

1 class Essential material

POINTS TO STRESS

1. The concepts of average and instantaneous rate of change.
2. Some uses of derivatives in physics and in other disciplines.

QUIZ QUESTIONS

o TEXT QUESTION This section discusses many different kinds of examples. What is the main idea underlying
them all?
ANSWER All of them involve expressing quantities as an average rate of change, and then using the idea of
the derivative to compute an instantaneous rate of change.

o DRILL QUESTION The magnitude F of the force exerted by the Earth on an object is inversely proportional to
the square of the distance r from that body to the center of the Earth.

(a) Write an equation expressing F as a function of r.
(b) Write an equation expressing d F/dr as a function of r.
(c) What is the physical meaning of d F/dr?

ANSWER
k dF 2k
a) F=—= b) — =——
@) r2 (b) dr r3
(c) dF/dr tells how fast the force changes as a result of a slight change in the object’s distance from the

center of the Earth.

MATERIALS FOR LECTURE

e Bring in a taut string, rubber band, violin, or guitar. Illustrate that when the string is plucked, the pitch
depends on the length. Discuss Exercise 28, solving it as a class.

e Go over Examples 6 and 7 in detail (or different examples, based on the makeup of the student population).

e Foreshadow Exercise 35 by defining “stable population” and discussing some of the underlying concepts.
WORKSHOP/DISCUSSION

e Discuss some of the issues involved in using a continuous function to model discrete data. For example,
ask if taking the derivative of a step function like “cost” is a valid thing to do.

e Do a velocity/distance linear motion problem, such as the one below:
Lets (t) = t* — 8t3 + 18t2 be the distance function for a particle.

1. Find the positionatt =1,t =2,t =3,andt = 6.

2, Find the velocity att =2 and t = 4.

3. Determine when the particle is at rest. When is the acceleration zero?

4, Find the total distance traveled on the intervals [0, 1], [0, 2], [0, 3], and [0, 6].

5. When is the particle speeding up? Slowing down? This motion can be visualized and analyzed graph-
ically.

140



SECTION 2.7 || RATES OF.CHANGEIN THENATURAL AND SOCIAL SCIENCES

GROUP WORK 1: FOLLOW THAT PARTICLE!

Students are asked to analyze the motion of a typical particle.

ANSWERS
1.0,3,22,~ 11

.o (t) = —4t3 + 15t — 1, —1, 10, 27, ~ —118.6
. Atrest: att ~ 3.7. Moving forward: 0 <t < 3.7

2
3
4. flz | f (x)|dx is larger
5. a(t) = —12t2 + 30t
6

. Speeding up: 0 <t < 2.5. Slowing down: 2.5 <t < 5.

GROUP WORK 2

To help with the homework assignment, put the students into groups, ideally grouping similar majors together,

and have each group work on a different problem from the upcoming assignment. After finishing their work,

each group should present their solution to the class. Each student will then have a start on several of the

problems from the assignment.
HOMEWORK PROBLEMS
CORE EXERCISES 3, 5, 14, 20, 28
SAMPLE ASSIGNMENT 3, 5, 14, 20, 28, 29, 42, 49

| EXERQISE |

D Aa[N]c]

3

X X

5

X

14

20

28

29

42

49

X[X[X|X]|X|X]|X
X|X[X|X[X]|X
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GROUP WORK 1, SECTION 2.7
Follow That Particle!

For 4.95 seconds, a particle moves in a straight line according to the position function
f(t) = (t3+1) 5-1t)—5

where t is measured in seconds and f in feet.

Answer the following questions. You can visualize this motion and verify many of your answers using a

graph. First attempt all the problems by hand, and then graph the position function to verify your answers.
1. What is the position of the particleatt =0,t =1,t =2, t = 4.95?

2. Find the velocity of the particle at time t. What is the velocity of the particleatt = 0,t = 1,t = 2,
t =4.95?

3. When is the particle at rest? When is the particle moving forward?

4. Find the total distance traveled by the particle on the intervals [0, 1] and [1, 2]. Which is larger and why?

5. Find the acceleration of the particle at time t.

6. When was the particle speeding up? Slowing down?
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2.8 Related Rates
SUGGESTED TIME AND EMPHASIS

1 class Recommended material

POINTS TO STRESS
1. The concept of related rates (first two paragraphs of the text).
2. The classic procedure for handling related rates, including the warning to the side of the procedure in the
text.
3. The value of careful diagrams and good notation.

QUIZ QUESTIONS

o TEXT QUESTION In Example 2 in the text, what is the physical meaning of the negative sign in the expression
dy _ _xdx,
dt ydt’

ANSWER The value of y is getting smaller, because the ladder is moving downward.

o DRILL QUESTION If one side of a rectangle, a, is increasing at a rate of 3 inches per minute while the other
side, b, is decreasing at a rate of 3 inches per minute, which of the following must be true about the area
A of the rectangle?

(A) A is always increasing

(B) A is always decreasing

(c) Ais decreasing only whena < b
(D) A is decreasing only whena > b
() Ais constant.

ANSWER (D)

MATERIALS FOR LECTURE

e Begin with a quick review of implicit differentiation, particularly when an implicit function in x and y
is differentiated with respect to time or some other third variable. Have the students read the first two
paragraphs of the section, and try to see why implicit differentiation is going to be useful in solving related
rates problems. Then present a sample problem such as Exercise 14, using the strategy outlined in the text.
Deliberately start to make the error referred to, to see if the students catch it.

e Bring balloons into class, and show the students (or have them discover for themselves) how the radius
naturally grows more slowly as time goes on, assuming air comes in at a constant rate (for example, one
breath every 30 seconds).

e Revisit Example 2 in the text. Compute the velocity of the ladder when it is Wloo inch off the ground
(y = 0.001). Show how that at some point, the tip of the ladder will exceed the speed of light. Have the
students discuss what they think the problem is. (This can be done even with a large class; give them a few
minutes.) Since the conclusion that “the tip really does exceed the speed of light” is impossible, the only
possible conclusion to draw is that the model is faulty. Take a yardstick and actually do the experiment.
(The tip of the yardstick does not stay in contact with the wall.) If the room is such that the students cannot
all see the result of the experiment, have a few volunteers come up to watch and describe what happens,
and encourage the students to try the experiment at home with a ruler or other similar object.
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CHAPTER2 DERIVATIVES

WORKSHOP/DISCUSSION

e Work this problem with the class: You are blowing a bubble with bubble gum and can blow air into the
bubble at a rate of 3 in3/s.

(a) At what rate is the volume V increasing with respect to the radius when the radius r is 1 inch? When
the radius is 3 inches?

(b) How fast is the radius increasing with respect to time when r = 1 inch? When r = 3 inches?
(c) Suppose you increase your effort when r = 3 inches and begin to blow in air at a rate of 4 in/s. How
fast is the radius increasing now?
e Do some challenging related rates problems, such as the ones in the later exercises.

e Many children notice that when they eat a spherical lollipop (as opposed to the disk-shaped kind) it seems
like at first they can lick and lick and lick without it seeming to get smaller, and then toward the end it
disappears quickly. If they tell an adult, it is usually attributed to imagination or the subjectivity of passing
time. Have the students try to come up with a mathematical explanation.

ANSWER If a student is licking at a constant rate, dV /dt is constant. However, the perceived change in size
of the lollipop is based on the diameter of the sphere, which decreases more quickly near the end.

GROUP WORK 1: FIND THE ERROR

This activity illustrates a common error that many students make. You may want to project the problem on an

overhead, and give the class a few minutes to discuss it. The activity can stand alone, or be handed out as a
warm-up.

GROUP WORK 2: NOBODY ESCAPES THE CUBE
This is a good introduction to related rates problems, requiring the students to express the volume of a cube
in terms of its surface area.

ANSWERS 1.21in?/s 2.3 1in%/s

GROUP WORK 3: THE SWIMMING POOL

The students shouldn’t work on this activity until they’ve had a chance to see or try some basic related rates

problems. Be prepared to give plenty of guidance to the students.

ANSWERS

Ly [B00h+1Bh2 ifo<h<16 _ dV _ [ 500+i2h if0<h <16
" | 1500h — 12,000 if 16 < h <20 dt 1500% if16 <h <20
2. You would need dV /dt, the rate at which the pool is being filled. Note that you would not need h; if you
knew dV /dt and the pool was empty att = 0, you could calculate V and then compute h.,
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SECTION2.8| RELATED RATES

HOMEWORK PROBLEMS
CORE EXERCISES 1, 4, 7, 13, 17, 19, 31, 39, 42, 49
SAMPLE ASSIGNMENT 1, 4, 7, 13, 17, 19, 23, 31, 39, 41, 42, 49

| Exerase | p |

1

4

7

13
17
19
23
31 X
39 X
41 X
42
49 X

(N6

XXX |X[|X|X|[X]|X]|>

X
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GROUP WORK 1, SECTION 2.8
Find the Error

It is a beautiful Spring evening. You and your wild-eyed, hungry-looking friends are sitting around, reading
your Calculus books. You arrive at the following:

EXAMPLE2 A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder
slides away from the wall at a rate of 1 ft/s, how fast is the top of the ladder sliding down
the wall when the bottom of the ladder is 6 ft from the wall?

Your enthused roommates don’t read the rest of the example, preferring to do the problem on their own. This
is how they proceed:

wall

10

X ground

“We want to find dy/dt. So we set up
x% + y? = 100

Now, we want dy/dt when dx /dt = 1 and x = 6. Substituting X = 6 gives us
36+ y%> =100 or y? = 64

Now we take derivatives:

dy
2y— =0
Yt

giving dy/dt = 0."
The problem is, of course, that this answer doesn’t make any sense.
1. Why does their answer not make any sense?

2. What error did they make? How could they correct it?
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GROUP WORK 2, SECTION 2.8
Nobody Escapes the Cube

We are designing a computer graphic in which we zoom in on a cube. The volume V, surface area S, and
side length x of the cube are all varying with respect to time. With this information, compute the following

quantities, using the steps described in the text:
1. dS/dt when x = 2 inches and dV /dt = 1 in3/s.

2. dV/dt when x = 2 inches and dS/dt = 1 in?/s.
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GROUP WORK 3, SECTION 2.8
The Swimming Pool

We wish to find the change in volume of a 20-foot-wide pool as it fills up with water. A cross-section of the

4 ft
25 ft >l
20 ft I

25 ft l 25 ft

pool is shown below.

v _ _ _ _ _

1. Express dV /dt in terms of h, V, and dh/dt.

2. What additional information would you need to find dh/dt at t = 10 minutes?
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2.9  Linear Approximations and Differentials

SUGGESTED TIME AND EMPHASIS
1 class Essential material (linear approximation) and optional material (differentials)

POINTS TO STRESS

1. The general equation of a line tangent to the graph of a function, and its use in approximating that function
near a point.
2. The differential as the difference between the linearization of a function and the function itself.

QUIZ QUESTIONS

o TEXT QUESTION What is the difference between the function L (x) defined in the text and the equation of the
tangent liney = f (a) + f’ (@) (x — a)?
ANSWER None

o DRILL QUESTION Write the equation of the straight line that best approximates the graph of y = x + cosx at
the point (0, 1).
ANSWERY = x + 1

MATERIALS FOR LECTURE
e Discuss the motivation for studying linear approximations. Ask, “Why use an approximation to a function
when a computer can find the answer precisely?”
ANSWERS
1. A common modeling technique is to assume a function is locally linear, and then use the linear equation
in calculations, since it is easier to manipulate.

2. It is often easier physically to measure the derivative of a function than the function itself. Then the
derivative measurements can be used to obtain an approximation of the function.

3. When measuring a real phenomenon, there is often no easy-to-understand function that can be written
in a line or two, and the best that can be obtained is a set of sample data points. The “underlying”
function must be approximated.

4, In the real world, the input to functions can be noisy or wiggly. It is easier to handle small input
fluctuations if we assume that the output varies linearly.

5. When a function is called thousands of times by a computer program, as occurs in computer graphics
applications, the small time savings from using a linear function can result in savings of hours or even
days.

e Discuss the meaning of the phrase “approximating along the tangent line” and its connections to linear
approximation. Then present examples of linear approximation, such as sinx = x for x near 1 and
X 4+ cosX ~ X + 1 for x near 0.

e Raise the question, “What if we want a more accurate model of a function?” Foreshadow the quadratic
approximation (Taylor polynomial of order two) as an extension of the linear approximation. (The linear
approximation matches the function in the first derivative, so how can you make a function match the
second derivative as well?)
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CHAPTER2 DERIVATIVES

e Graph y = sinx with its approximations at x = 0 and x = 7. Discuss which is “better”.

o To illustrate how controversial differentials once were, cite the quotation from Bishop Berkeley (1734) on
differentials: “And what are these evanescent increments? They are neither finite quantities, nor quantities
infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities?”

e Bring in a carpenter’s level. Show how, when the level is held perfectly straight, it can be used to measure
acceleration. (The bubble moves when the level is accelerated, and returns to center at constant velocity).
This can be done on an overhead projector, if the floor is flat. This is the principle used to make a simple
accelerometer. Then discuss how, given acceleration measurements, it is possible to approximate velocity
using the technique of linear approximation.

WORKSHOP/DISCUSSION

o Let f (x) = x1857, Find the linear approximation of f (x) ata = 1 and use it to approximate f atx = 1.1,
x = 1.01, and x = 1.001. Compare the approximations to the actual values the calculator gives for f at
these points.

e In Example 1, discuss why we base our linear approximation at x = 1 rather than at x = 0.99 or 1.01.

e Practice using linear approximations with y = \/_Y at x = 4, and use differentials to approximate Ay for

AX =—=1and Ax = 1.

e Have the students try to find a linear approximation for |x| near x = 0, and explain why it is impossible.

GROUP WORK 1: FOUR VARIATIONS ON A THEME
This activity explores four different functions that have identical linear approximations near x = 0.
ANSWERS

1. y = x in all cases.

2.
Function | Function Value at x = 0.1 | Approximation at x = 0.1
f 0.09545 0.1
g 0.101 0.1
h 0.11007 0.1
i 0.09983 0.1

3. If the students need to, they can check the approximations for x = 0.2 or x = 0.3. The best approximation
is the one to j (x), and the worst is the one to h (x). This is immediate from looking at the graphs. Notice
that_j_and g have inflection points at X = 0.
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SECTION2.9  LINEAR.APPROXIMATIONS AND DIFFERENTIALS

GROUP WORK 2: LINEAR APPROXIMATION
Some students may try to find approximations of the derivative functions. They should be reminded that we

are approximating f, using the graph of f’ as an aid.

ANSWERS
1. (X))~ 175(x —2)+4,s0 f(1.98) ~ 3.965 and f(2.02) ~ 4.035.
2. The graph of f lies below its tangent line, so the approximations are overestimates.
3. The estimates are both 7, because the function is horizontal when x = 3.

HOMEWORK PROBLEMS
CORE EXERCISES 3, 13, 17, 25, 33, 39
SAMPLE ASSIGNMENT 3, 5, 10, 13, 17, 25, 33, 38, 39, 41

| Exerase | p |

3
5
10
13
17
25
33 X
38 X
39
41

(N6

XX [ X|X[IX|X[X]|X|X]|X]|>=
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GROUP WORK 1, SECTION 2.9
Four Variations on a Theme

Consider the following four functions:

f(x)=—-14++/2x+1 g(x)=x3+x h (x) = tan® X + X j (X) =sinx
1. Find the linearizations of f, g, h,and j ata = 0.

2. Compute the values of each of these functions at x = 0.1 and the values of their linearizations.

3. For which function is the approximation best? For which is it worst? Why?
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GROUP WORK 2, SECTION 2.9
Linear Approximation

Consider this graph of f’ (x), the derivative of f (x).
y

N

N
0 \
1 \ x

1. Suppose that f (2) = 4. Approximate f (1.98) and f (2.02) as best you can. Don’t just guess. Show your

—

work.

2. Determine whether your approximations were overestimates or underestimates.

3. Suppose you also know that f (3) = 7. Can you approximate f (2.98) and f (3.02)? Explain your answer.
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LABORATORY PROJECT ~ Taylor Polynomials

This project provides a solid early introduction to Taylor polynomials as extensions of the tangent line ap-

proximation concept. A few examples involving cos x and +/x + 3 are explored in more detail. Students may
be asked to explore their own function, and see what happens. Have them go beyond just working through

the six questions, and try to demonstrate that they understand the pretty concept introduced in this project.
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2 SAMPLE EXAM

Problems marked with an asterisk (*) are particularly challenging and should be given careful consideration.
1. Consider the graph of x? 4+ xy + y? = 1.

. . dy .
(@) Find an expression for % in terms of x and y.

(b) Find all points where the tangent line is horizontal.
(c) Find all points where the tangent line is parallel to the line y = —x.

2, Let f (X) = 7sin (X 4 7r) + c0S 2X.
(a) Compute f’(x), f” (x), f3(x), and f*(x).

(b) Compute 13 (0).

3. Assume that f (x) and g (x) are differential functions that we know very little about. In fact, assume that
all we know of these function is the following table of data:

x [ f g | ') 9" X
3

-2 1 -5 8
-1 -9 7 4 1
0 5 9 9 -3
1 3 -3 2 6
2| =5 3 8 0

(@) Leth (x) =g (x)sinx. What is h’ (0)?

(b) Let j (x) = [f () + x2]°. Whatis j’ (1)?

tan X
g(x)

(c) Letl(x) = What is I’ (—1)?
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CHAPTER2 DERIVATIVES

4. Let u (x) be an always positive function such that u’ (x) < 0 for all real numbers.
(a) Let f (x) = [u (x)]?. For what values of x will f (x) be increasing?

(b) Letg (x) =u (u(x)).Forwhat values of x will g (x) be increasing?

5. Let f (x) =—x3—2x2+x+1andg(x) =sinx + 1.
(@) Find the equation of the line tangentto f (x) at x = 0.

(b) Show that g (x) has the same tangent line as f (x) atx = 0.
(c) Does this tangent line give a better approximation of f (x) or g (x) at x = 1? Give reasons for your

answer.

6. The following is a graph of f’, the derivative of some function f.

y
pl
1 f
-2 &l 1 2
-1
-2

(@) Where is f increasing?

(b) Where does f have a local minimum? Where does f have a local maximum?

(c) Where is f concave up?

(d) Assuming that f (0) = —1, sketch a possible graph of f.

7. As a spherical raindrop evaporates, its volume changes at a rate proportional to its surface area A.
(a) If the constant of proportionality is K, find the rate of change of the radius r whenr = 4.

(b) Show that the rate of change of the radius is always constant.

(c) Does part (b) mean that the rate of change of the volume is always constant? Why or why not?
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CHAPTER2 | SAMPLE EXAM

. L 1 .
8. The voltage across a resistor R is given by V (t) = Tt sint. A graph of V (t) is shown below.

v
0.4 |
0.2 |
a b
0 2 W g8 W12
~0.21

(a) How fast is the voltage changing after 2 seconds?

(b) Would you be better off using the linear approximation at x = a to estimate V (b), or using the linear
approximation at x = b to estimate V (a)? Justify your answer.

9. Let f be the function whose graph is given below.

] /
f
(@ Sketch a plausible graph of f’. (b) Sketch a plausible graph of a function F
vt such that F’ = f and F (0) = 1.
2+ 4
H |
‘ 27
0 1 2 3 X 1
1 11
27 0 2 3

10. Suppose that the line tangent to the graph of y = f (x) at x = 3 passes through the points (—2, 3) and
(@) Find f’ (3).
(b) Find f (3).

(c) What is the equation of the line tangent to f at 3?
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11. Each of the following limits represent the derivative of a function f at some point a. State a formula for
f and the value of the point a.
3+h)?2-9

@ fin, S5

(x+1)%2 -8

® fin S5

sin(w(2+h))—0
h

© fi

12. The graph of f (x) is given below. For which value(s) of x is f (x) not differentiable? Justify your

answer(s).
v

3/@10 2 3 4 5z
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CHAPTER 2_./SAMPLE EXAM SOLUTIONS

2 SAMPLE EXAM SOLUTIONS

dy dy _dy  2x+y
1. () 2x+xd—X+y+2yd—X_0,d—X_ T2y
(b) Sety +2x =0andy = —2x. Thenx? —2x?+4x° =1 o WX =1 < x:i% =
ap— i 1 _2 _1 2
y_zpﬁ,sothepomtsare (ﬁ’ ﬁ) and( ﬁ’ﬁ)'
X4y _ _ 2 1 92 1 w2 _ ay2 _ _ . a1
(© Set—x+2y_—ltogety_x.Thenx +X+x=3=1 X—:I:% S y_:tﬁ,
; 101 1 1
so the points are (%, %) and (—%, —%).

2. (a) f/(x)=7cos(x+m)—2sin2x; f”(x) = =7sin(x +m) —4cos2x; @ (x) = —7cos (x + =) +
8sin2x; @ (x) = 7sin (x + ) + 16 cos 2x

(b) fI3 (x) =7cos(x +m) —23sin2x; 13 (0) = 7cos7m = -7
3. (@) h"(x) =g (x)sinx +g (x)cosx; h" (0) =g (0)=9
(b) j’(x):3(f(x)+x2)2(f’(x)+2x); Q) =3(fM)+1D*(f'(1)+2)=3-42-4=192

g(x)-msec?wx — g’ (x)tanmwx n—0 =
g (x)? D=

4. () f/(x) =2u(x)u’(x) < 0forall x, since u (x) > 0and u’ (x) < 0. Never increasing.

© ') = ==
0 g (x) =u"(ux))-u (x)> 0,sinceu’ (u(x))and u’ (x) < 0. Always increasing.

5.(@) f'(x)=—-3x?—4x+1; f/(0)=1, f (0)=1 Tangentlineisy=1+1-x=1+x
(b) g’ (x) =cosx; g (0)=1,9(0) =1. Tangentlineisy =1+ x

() Atx =1, f (1) =—-1,9 (1) =sinl+ 1~ 1.841. The tangent line approximationisy =1+ 1 = 2.
This is better for g (x) at x = 1.

6. (a) f isincreasing on (—1,1). (d) ¥ ¢
(b) Local minimum at x = —1; local 5 3 0 i 5
maximumatx = 1 /

(c) f is concave up where f/ (x) is ) nfection pont
increasing, that is, on (=2, 0). .

dv dv ar . dr

7.() — = KA. V = %wr3, s0 — = 4xwr2—. Since A = 4nr2, we have K4nr? = 4xr2—. Thus,
dt dt dt dt
dr
— =K.
dt

dr dv dr dv
(b) By part (a), T = K is constant. o = 47rrza = 4K7r?. So 5t depends on r? and is not

constant.
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CHAPTER2 DERIVATIVES

8.(a) V' (t) = %th cost — ﬁ sint; V/ (2) = §cost — §sin2 &~ —0.240
(b) The tangent line at x = b is horizontal. So the estimate for V (a) using this linear approximation is
V (b), which is not very good. Thus, it is better to use the linear approximation at x = a to estimate
V (b).
9. (a) Answers will vary. Look for:
(i) zeros at 1 and 2
(i) f’ positive for x € (0, 1) and (2, 4)
(iii) f’ negative for x € (1, 2)
(iv) f’ flattens out for x > 2.5
(b) Answers will vary. Look for
HFO=1
(i) F always increasing
(i) F is never perfectly flat
(iv) F is closest to being flat at x =2
(v) Fisconcave up for x € (0,1)and x € (2,4)
(vi) F is concave down for x € (1, 2)
10. (a) =P = -2
(b) The equation of the tangent lineisy —3 = —4 (x +2),s0 f 3) = -3 (3+2) +3 = —1.
(c) The equation of the tangent lineisy — 3 = —% X +2).
M@ fx)=x%a=3 b) f(x)=x+1)°%%a=3 () f (x) =sin(wx),a=2
12. f isn’t differentiable at x = 1, because it is not continuous there; at x = —2, because it has a vertical
tangent there; and at x = 4, because it has a cusp there.
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