
Chapter 2

Differentiation

2.1 Tangent Line and
Velocity

1. Slope is

lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

(1 + h)
2 − 2− (−1)

h

= lim
h→0

h2 + 2h

h
= lim
h→0

(h+ 2) = 2.

Tangent line is y = 2(x−1)−1 or y = 2x−3.
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2. Slope is

lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

h2

h
= 0.

Tangent line is y = −2.
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3. Slope is

lim
h→0

f(−2 + h)− f(−2)

h

= lim
h→0

(−2 + h)
2 − 3(−2 + h)− (10)

h

= lim
h→0

−7h+ h2

h
= −7.

Tangent line is y = −7(x+ 2) + 10

−2

20

40

−4 6 10

−60

8

−40

2−6 4

60

0

−10

x

80

−8

100

0
−20

120

4. Slope is

lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

(1 + 3h+ 3h2 + h3) + (1 + h)− 2

h

= lim
h→0

4h+ 3h2 + h3

h
= lim
h→0

4 + 3h+ h2 = 4.

Tangent line is y = 4(x− 1) + 2.
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2.1. TANGENT LINE AND VELOCITY 79

lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

2
(1+h)+1 −

2
1+1

h

= lim
h→0

2
2+h − 1

h
= lim
h→0

(
2−(2+h)

2+h

)
h

= lim
h→0

(
−h
2+h

)
h

= lim
h→0

−1

2 + h
= −1

2
.

Tangent line is y = −1

2
(x− 1) + 1 or

y = −x
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6. Slope is

lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

h
h−1 − 0

h

= lim
h→0

1

h− 1
= −1

Tangent line is y = −x.
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7. Slope is

lim
h→0

f(−2 + h)− f(−2)

h

= lim
h→0

√
(−2 + h) + 3− 1

h

= lim
h→0

√
h+ 1− 1

h

= lim
h→0

√
h+ 1− 1

h
·
√
h+ 1 + 1√
h+ 1 + 1

= lim
h→0

(h+ 1)− 1

h(
√
h+ 1 + 1)

= lim
h→0

1√
h+ 1 + 1

=
1

2
.

Tangent line is y =
1

2
(x+2)+1 or y =

1

2
x+2.
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8. Slope is

lim
h→0

f(1 + h)− f(x)

h

= lim
h→0

√
(1 + h) + 3−

√
1 + 3

h

= lim
h→0

√
h+ 4− 2

h

= lim
h→0

√
h+ 4− 2

h
·
√
h+ 4 + 2√
h+ 4 + 2

= lim
h→0

h+ 4− 4

h
· 1√
h+ 4 + 2

= lim
h→0

1√
h+ 4 + 2

=
1

4
.

Tangent line is y =
1

4
(x− 1) + 2.
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9. f (x) = x3 − x
No. Points (x, y) Slope
(a) (1,0) and (2,6) 6
(b) (2,6) and (3,24) 18
(c) (1.5,1.875) and (2,6) 8.25
(d) (2,6) and (2.5,13.125) 14.25
(e) (1.9,4.959) and (2,6) 10.41
(f) (2,6) and (2.1,7.161) 11.61

(g) Slope seems to be approximately 11.
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10. f (x) =
√
x2 + 1

No. Points (x, y) Slope
(a) (1,1.414) and (2,2.236) 0.504
(b) (2,2.236) and (3,3.162) 0.926
(c) (1.5,1.803) and (2,2.236) 0.867
(d) (2,2.236) and (2.5,2.269) 0.913
(e) (1.9,2.147) and (2,2.236) 0.89
(f) (2,2.236) and (2.1,2.325) 0.899

(g) Slope seems to be approximately 0.89.

11. f(x) =
x− 1

x+ 1
No. Points (x, y) Slope
(a) (1,0) and (2,0.33) 0.33
(b) (2,0.33) and (3,0.5) 0.17
(c) (1.5,0.2) and (2,0.33) 0.26
(d) (2,0.33) and (2.5,0.43) 0.2
(e) (1.9,0.31) and (2,0.33) 0.2
(f) (2,0.33) and (2.1,0.35) 0.2

(g) Slope seems to be approximately 0.2.

12. f(x) = ex

No. Points (x, y) Slope
(a) (1,2.718) and (2,7.389) 4.671
(b) (2,7.389) and (3,20.085) 12.696
(c) (1.5,4.481) and (2,7.389) 5.814
(d) (2,7.389) and (2.5,12.182) 9.586
(e) (1.9,6.686) and (2,7.389) 7.03
(f) (2,7.389) and (2.1,8.166) 7.77

(g) Slope seems to be approximately 7.4

13. C, B, A, D. At the point labeled C, the slope
is very steep and negative. At the point B,
the slope is zero and at the point A, the slope
is just more than zero. The slope of the line
tangent to the point D is large and positive.

14. In order of increasing slope: D (large nega-
tive), C (small negative), B (small positive),
and A (large positive).

15. (a) Velocity at time t = 1 is,

lim
h→0

s(1 + h)− s(1)

h

= lim
h→0

−4.9(1 + h)
2

+ 5− (0.1)

h

= lim
h→0

−4.9(1 + 2h+ h2) + 5− (0.1)

h

= lim
h→0

−9.8h− 4.9h2

h

= lim
h→0

h (−9.8− 4.9h)

h
= −9.8.

(b) Velocity at time t = 2 is,

lim
h→0

s(2 + h)− s(2)

h

= lim
h→0

−4.9(2 + h)
2

+ 5− (−14.6)

h

= lim
h→0

−4.9(4 + 4h+ h2) + 5− (−14.6)

h

= lim
h→0

−19.6h− 4.9h2

h

= lim
h→0

h (−19.6− 4.9h)

h
= −19.6

16. (a) Velocity at time t = 0 is,

lim
h→0

s(0 + h)− s(0)

h

= lim
h→0

4h− 4.9h2

h

= lim
h→0

h (4− 4.9h)

h
= 4− lim

h→0
4.9h = 4.

(b) Velocity at time t = 1 is,

lim
h→0

s(1 + h)− s(1)

h

= lim
h→0

4(1 + h)− 4.9(1 + h)
2 − (−0.9)

h

= lim
h→0

4 + 4h− 4.9− 9.8h− 4.9h2 + 0.9

h

= lim
h→0

−5.8h− 4.9h2

h

= lim
h→0

h (−5.8− 4.9h)

h
= −5.8

17. (a) Velocity at time t = 0 is,

lim
h→0

s(0 + h)− s(0)

h

= lim
h→0

√
h+ 16− 4

h
·
√
h+ 16 + 4√
h+ 16 + 4

= lim
h→0

(h+ 16)− 16

h(
√
h+ 16 + 4)

= lim
h→0

1√
h+ 16 + 4

=
1

8

(b) Velocity at time t = 2 is,

lim
h→0

s(2 + h)− s(2)

h

= lim
h→0

√
18 + h−

√
18

h

Multiplying by

√
h+ 18 +

√
18√

h+ 18 +
√

18
gives

= lim
h→0

(h+ 18)− 18

h(
√
h+ 18 +

√
18)

= lim
h→0

1√
h+ 18 +

√
18

=
1

2
√

18

18. (a) Velocity at time t = 2 is,

lim
h→0

s(2 + h)− s(2)

h

= lim
h→0

4
(2+h) − 2

h
= lim
h→0

4−4−2h
(2+h)

h
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= lim
h→0

−2h

h(2 + h)
= lim
h→0

−2

2 + h
= −1.

(b) Velocity at time t = 4 is,

lim
h→0

s(4 + h)− s(4)

h
= lim
h→0

4
(4+h) − 1

h

= lim
h→0

4−1(4+h)
(4+h)

h
= lim
h→0

4−4−h
(4+h)

h

= lim
h→0

−h
h(4 + h)

= lim
h→0

−1

4 + h
= −1

4

19. (a) Points: (0, 10) and (2, 74)

Average velocity:
74− 10

2
= 32

(b) Second point: (1, 26)

Average velocity:
74− 26

1
= 48

(c) Second point: (1.9, 67.76)

Average velocity:
74− 67.76

0.1
= 62.4

(d) Second point: (1.99, 73.3616)

Average velocity:
74− 73.3616

0.01
= 63.84

(e) The instantaneous velocity seems to be
64.

20. (a) Points: (0, 0) and (2, 26)

Average velocity:
26− 0

2− 0
= 13

(b) Second point: (1, 4)

Average velocity:
26− 4

2− 1
= 22

(c) Second point: (1.9, 22.477)

Average velocity:
26− 22.477

2− 1.9
= 35.23

(d) Second point: (1.99, 25.6318)
Average velocity:
26− 25.6318

2− 1.99
= 36.8203

(e) The instantaneous velocity seems to be
approaching 37.

21. (a) Points: (0, 0) and (2,
√

20)

Average velocity:

√
20− 0

2− 0
= 2.236068

(b) Second point: (1, 3)

Average velocity:

√
20− 3

2− 1
= 1.472136

(c) Second point: (1.9,
√

18.81)
Average velocity:√

20−
√

18.81

2− 1.9
= 1.3508627

(d) Second point: (1.99,
√

19.8801)
Average velocity:√

20−
√

19.88

2− 1.99
= 1.3425375

(e) One might conjecture that these num-
bers are approaching 1.34. The exact

limit is
6√
20
≈ 1.341641.

22. (a) Points: (0, −2.7279) and (2, 0)
Average velocity:
0− (−2.7279)

2− 0
= 1.3639

(b) Second point: (1, −2.5244)
Average velocity:
0− (−2.5244)

2− 1
= 2.5244

(c) Second point: (1.9, −0.2995)
Average velocity:
0− (−0.2995)

2− 1.9
= 2.995

(d) Second point: (1.99, −0.03)

Average velocity:
0− (−0.03)

2− 1.99
= 3

(e) The instantaneous velocity seems to be
3.

23. A graph makes it apparent that this function
has a corner at x = 1.
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Numerical evidence suggests that,

lim
h→0+

f(1 + h)− f(1)

h
= 1

while lim
h→0−

f(1 + h)− f(1)

h
= −1.

Since these are not equal, there is no tangent
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line.

24. Tangent line does not exist at x = 1 because
the function is not defined there.
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25. From the graph it is clear that, curve is not
continuous at x = 0 therefore tangent line
at y = f(x) at x = 0 does not exist.
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Also,

lim
h→0−

f(0 + h)− f(0)

h

= lim
h→0−

h2 − 1− (−1)

h

= lim
h→0−

h2

h
= lim
h→0−

h = 0

Similarly,

lim
h→0+

f(0 + h)− f(0)

h

= lim
h→0+

h+ 1− (1)

h
= lim
h→0+

h

h
= 1.

Numerical evidence suggest that,

lim
h→0−

f(0 + h)− f(0)

h

6= lim
h→0+

f(0 + h)− f(0)

h
.

Therefore tangent line does not exist at
x = 0.

26. From the graph it is clear that, the curve of
y = f(x) is not smooth at x = 0 therefore
tangent line at x = 0 does not exist.
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Also,

lim
h→0−

f(0 + h)− f(0)

h
= lim
h→0−

−2h

h
= −2

lim
h→0+

f(0 + h)− f(0)

h
= lim
h→0+

(h− 4) = −4.

Numerical evidence suggest that,

lim
h→0−

f(0 + h)− f(0)

h

6= lim
h→0+

f(0 + h)− f(0)

h
.

Therefore tangent line does not exist at x =
0.

27. Tangent line at x = π to y = sinx as below:
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28. Tangent line at x = 0 to y = tan−1 x as be-
low:
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29. Since the graph has a corner at x = 0, tan-
gent line does not exist.
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30. The tangent line overlays the line:
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31. (a)
f(4)− f(2)

2
= 21,034

Since f(b)−f(a)
b−a is the average rate of

change of function f between a and b.
The expression tells us that the average
rate of change of f between a = 2 to
b = 4 is 21,034. That is the average
rate of change in the bank balance be-
tween Jan. 1, 2002 and Jan. 1, 2004 was
21,034 ($ per year).

(b) 2 [f (4)− f (3.5)] = 25,036
Note that 2[f(4) − f(3.5)] = f(4) −
f(3.5)/2. The expression says that the
average rate of change in balance be-
tween July 1, 2003 and Jan. 1, 2004
was 25,036 ($ per year).

(c) lim
h→0

f(4 + h)− f(4)

h
= 30,000

The expression says that the instanta-
neous rate of change in the balance on
Jan. 1, 2004 was 30,000 ($ per year).

32. (a)
f(40)− f(38)

2
= −2103

Since f(b)−f(a)
b−a is the average rate of

change of function between a and b. The
expression tells us that the average rate
of change of f between a = 38 to b = 40
is −2103. That is the average rate of de-
preciation between 38 and 40 thousand
miles.

(b) f(40)− f(39) = −2040
The expression says that the average
rate of depreciation between 39 and 40
thousand miles is −2040.

(c) lim
h→0

f(40 + h)− f(40)

h
= −2000

The expression says that the instanta-
neous rate of depreciation in the value
of the car when it has 40 thousand miles
is −2000.

33. vavg =
f(s)− f(r)

s− r

vavg =
f(s)− f(r)

s− r

=
as2 + bs+ c− (ar2 + br + c)

s− r

=
a(s2 − r2) + b(s− r)

s− r

=
a(s+ r)(s− r) + b(s− r)

s− r
= a(s+ r) + b

Let v(r) be the velocity at t = r. We have,
v(r) =

lim
h→0

f(r + h)− f(r)

h

= lim
h→0

a(r + h)
2

+ b(r + h) + c− (ar2 + bh+ c)

h

= lim
h→0

a(r2 + 2rh+ h2) + bh− ar2

h

= lim
h→0

h(2ar + ah+ b)

h

= lim
h→0

(2ar + ah+ b) = 2ar + b

So, v(r) = 2ar + b.
The same argument shows that v(s) =
2as+ b.
Finally
v(r) + v(s)

2
=

(2ar + b) + (2as+ b)

2

=
2a(s+ r) + 2b

2
= a(s+ r) + b = vavg

34. f(t) = t3−t works with r = 0, s = 2. The av-

erage velocity between r and s is,
6− 0

2− 0
= 3.

The instantaneous velocity at r is

lim
h→0

(0 + h)
3 − (0 + h)− 0

h
= 0

and the instantaneous velocity at s is,

lim
h→0

(2 + h)
3 − (2 + h)− 6

h

= lim
h→0

8 + 12h+ 6h2 + h3 − 2− h− 6

h
= lim
h→0

11 + 6h+ h2 = 11

so, the average between the instantaneous
velocities is 5.5.

35. (a) y = x3 + 3x+ 1
y′ = 3x2 + 3
Since the slope needed to be 5, y′ = 5.
3x2 + 3 = 5
⇒ 3x2 = 5− 3
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⇒ x2 =
2

3

⇒ x = ±
√

2

3
Therefore, slope of tangent line at x =√

2

3
and x = −

√
2

3
to y = x3 + 3x + 1

equals 5.

(b) Since the slope needed to be 1, y′ = 1.
3x2 + 3 = 1 which has no real roots.
Therefore slope of tangent line to y =
x3 + 3x+ 1 cannot equals 1.

36. (a) From the graph it is clear that y = x2+1
and y = x do not intersect.
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(b) y = x2 + 1 and y = x
y = x2 + 1⇒ y′ = 2x
y = x⇒ y′ = 1
For, y = x2 + 1
y′ = 2x = 1.
2x = 1

⇒ x =
1

2

Therefore, tangent line at x =
1

2
to

y = x2+1 is parallel to the tangent lines
to y = x.

37. (a) y = x3 + 3x+ 1

lim
h→0

f(1 + h)− f(x)

h

= lim
h→0

(1 + h)3 + 3(1 + h) + 1− 5

h

= lim
h→0

(1+3h+3h2+h3)+(3+3h)+1−5
h

= lim
h→0

6h+ 3h2 + h3

h

= lim
h→0

h
(
6 + 3h+ h2

)
h

= 6

The point correponding to x = 1 is
(1, 5). So, line with slope 6 through
point (1,5) has equation y = 6 (x− 1)+5
or y = 6x− 1.

(b) From part (a) we have, equation of tan-

gent line is y = 6x− 1.
Given that y = x3 + 3x+ 1.
Therefore, we write
x3 + 3x+ 1 = 6x− 1
x3 − 3x+ 2 = 0
(x− 1)

(
x2 + x− 2

)
= 0

(x− 1)(x− 1) (x+ 2) = 0

(x− 1)
2

(x+ 2) = 0.
Therefore, tangent line intersects y =
x3 + 3x+ 1 at more then one point that
is at x = 1 and x = −2.

(c) y = x2 + 1

lim
h→0

f(c+ h)− f(c)

h

= lim
h→0

(c+ h)2 + 1−
(
c2 + 1

)
h

= lim
h→0

(c2 + 2ch+ h2) + 1−
(
c2 + 1

)
h

= lim
h→0

c2 + 2ch+ h2 + 1− c2 − 1

h

= lim
h→0

2ch+ h2

h

= lim
h→0

h (2c+ h)

h
= 2c

The point correponding to x = c is(
c, c2 + 1

)
. So, line with slope 2c

through point
(
c, c2 + 1

)
has equation

y = 2c (x− c)+c2+1 or y = 2cx−c2+1.
Given that y = x2 + 1
Therefore,
x2 + 1 = 2cx− c2 + 1
x2 − 2cx+ c2 = 0
(x− c)2 = 0.
Therefore, tangent line intersects y =
x2 +1 only at one point that is at x = c.

38. Let x = h+ a. Then h = x− a and clearly
f(a+ h)− f(a)

h
=
f(x)− f(a)

x− a
.

It is also clear that, x → a if and only if
h → 0. Therefore, if one of the two limits
exists, then so does the other and

lim
h→0

f(a+ h)− f(a)

h
= lim
x→a

f(x)− f(a)

x− a
.

39. The slope of the tangent line at p = 1 is ap-
proximately
−20− 0

2− 0
= −10

which means that at p = 1 the freezing tem-
perature of water decreases by 10 degrees
Celsius per 1 atm increase in pressure. The
slope of the tangent line at p = 3 is approx-
imately
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−11− (−20)

4− 2
= 4.5

which means that at p = 3 the freezing tem-
perature of water increases by 4.5 degrees
Celsius per 1 atm increase in pressure.

40. The slope of the tangent line at v = 50 is

approximately
47− 28

60− 40
= .95.

This means that at an initial speed of 50mph
the range of the soccer kick increases by .95
yards per 1 mph increase in initial speed.

41. The hiker reached the top at the highest
point on the graph (about1.75 hours). The
hiker was going the fastest on the way up at
about 1.5 hours. The hiker was going the
fastest on the way down at the point where
the tangent line has the least (i.e most neg-
ative) slope, at about 4 hours at the end of
the hike. Where the graph is level the hiker
was either resting or walking on flat ground.

42. The tank is the fullest at the first spike (at
around 8 A.M.). The tank is the emptiest
just before this at the lowest dip (around
7 A.M.). The tank is filling up the fastest
where the graph has the steepest positive
slope (in between 7 and 8 A.M.). The tank
is emptying the fastest just after 8 A.M.
where the graph has the steepest negative
slope. The level portions most likely repre-
sent night when waterusage is at a minimum.

43. A possible graph of the temperature with
respect to time:
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Graph of the rate of change of the tem-
perature:
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44. Possible graph of bungee-jumpers height:
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2.2 The Derivative

1. Using (2.1):

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

3(1 + h) + 1− (4)

h

= lim
h→0

3h

h
= lim
h→0

3 = 3

Using (2.2):

lim
b→1

f(b)− f(1)

b− 1

= lim
b→1

3b+ 1− (3 + 1)

b− 1
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= lim
b→1

3b− 3

b− 1

= lim
b→1

3(b− 1)

b− 1
= lim
b→1

3 = 3

2. Using (2.1):

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

3(1 + h)
2

+ 1− 4

h

= lim
h→0

6h+ 3h2

h

= lim
h→0

6 + 3h = 6

Using (2.2):

f ′(1) = lim
x→1

f(x)− f(1)

x− 1

= lim
x→1

(3x2 + 1)− 4

x− 1

= lim
x→1

3(x− 1)(x+ 1)

x− 1

= lim
x→1

3(x+ 1) = 6

3. Using (2.1): Since
f(1 + h)− f(1)

h

=

√
3(1 + h) + 1− 2

h

=

√
4 + 3h− 2

h
·
√

4 + 3h+ 2√
4 + 3h+ 2

=
4 + 3h− 4

h(
√

4 + 3h+ 2)
=

3h

h(
√

4 + 3h+ 2)

=
3√

4 + 3h+ 2
=

3√
4 + 3h+ 2

,

we have

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

3√
4 + 3h+ 2

=
3√

4 + 3(0) + 2
=

3

4

Using (2.2): Since
f(b)− f(1)

b− 1

=

√
3b+ 1− 2

b− 1

=
(
√

3b+ 1− 2)(
√

3b+ 1 + 2)

(b− 1)(
√

3b+ 1 + 2)

=
(3b+ 1)− 4

(b− 1)
√

3b+ 1 + 2

=
3(b− 1)

(b− 1)
√

3b+ 1 + 2
=

3√
3b+ 1 + 2

,

we have

f ′(1) = lim
b→1

f(b)− f(1)

b− 1

= lim
b→1

3√
3b+ 1 + 2

=
3√

4 + 2
=

3

4

4. Using (2.1):

f ′(2) = lim
h→0

f(2 + h)− f(2)

h

= lim
h→0

3
(2+h)+1 − 1

h

= lim
h→0

3
3+h −

3+h
3+h

h

= lim
h→0

−h
3+h

h

= lim
h→0

−1

3 + h
= −1

3
Using (2.2):

f ′(2) = lim
x→2

f(x)− f(2)

x− 2

= lim
x→2

3
x+1 − 1

x− 2

= lim
x→2

3
x+1 −

x+1
x+1

x− 2

= lim
x→2

−(x−2)
x+1

x− 2

= lim
x→2

−1

x+ 1
= −1

3

5. lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

3(x+ h)
2

+ 1− (3(x)
2

+ 1)

h

= lim
h→0

3x2 + 6xh+ 3h2 + 1− (3x2 + 1)

h

= lim
h→0

6xh+ 3h2

h
= lim
h→0

(6x+ 3h) = 6x

6. f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)
2 − 2(x+ h) + 1− f(x)

h

= lim
h→0

2xh+ h2 − 2h

h

= lim
h→0

h(2x+ h− 2)

h
= 2x− 2

7. lim
b→x

f (b)− f (x)

b− x

= lim
b→x

b3 + 2b− 1−
(
x3 + 2x− 1

)
b− x
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= lim
b→x

(b− x)
(
b2 + bx+ x2 + 2

)
b− x

= lim
b→x

b2 + bx+ x2 + 2

= 3x2 + 2

8. f ′ (x) =

lim
h→0

f (x+ h)− f (x)

h

= lim
h→0

(x+h)4−2(x+h)2+1−f(x)
h

= lim
h→0

[
4x3 + 6x2h+ 4xh2 + h3 − 4x− 2h

]
= 4x3 − 4x

9. lim
b→x

f(b)− f(x)

b− x

= lim
b→x

3
b+1 −

3
x+1

b− x

= lim
b→x

3(x+1)−3(b+1)
(b+1)(x+1)

b− x
= lim
b→x

−3(b− x)

(b+ 1)(x+ 1)(b− x)

= lim
b→x

−3

(b+ 1)(x+ 1)

=
−3

(x+ 1)2

10. f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

2
2(x+h)−1 −

2
2x−1

h

= lim
h→0

2(2x−1)−2(2x+2h−1)
(2x+2h−1)(2x−1)

h

= lim
h→0

−4h
(2x+2h−1)(2x−1)

h

= lim
h→0

−4

(2x+ 2h− 1)(2x− 1)

=
−4

(2x− 1)2

11. f(t) =
√

3t+ 1

f ′(t) = lim
b→t

f(b)− f(t)

(b− t)

= lim
b→t

√
3b+ 1−

√
3t+ 1

(b− t)

Multiplying by

√
3b+ 1 +

√
3t+ 1√

3b+ 1 +
√

3t+ 1
gives

f ′(t) = lim
b→t

(3b+ 1)− (3t+ 1)

(b− t)
(√

3b+ 1 +
√

3t+ 1
)

= lim
b→t

3(b− t)
(b− t)

(√
3b+ 1 +

√
3t+ 1

)
= lim
b→t

3√
3b+ 1 +

√
3t+ 1

=
3

2
√

3t+ 1

12. f(t) =
√

2t+ 4

f ′(t) = lim
b→t

f(b)− f(t)

(b− t)

= lim
b→t

√
2b+ 4−

√
2t+ 4

(b− t)

Multiplying by

√
2b+ 4 +

√
2t+ 4√

2b+ 4 +
√

2t+ 4
gives

f ′(t) = lim
b→t

(2b+ 4)− (2t+ 4)

(b− t)
(√

2b+ 4 +
√

2t+ 4
)

= lim
b→t

2(b− t)
(b− t)

(√
2b+ 4 +

√
2t+ 4

)
= lim
b→t

2√
2b+ 4 +

√
2t+ 4

=
2

2
√

2t+ 4
=

1√
2t+ 4

13. (a) The derivative should look like:
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14. (a) The derivative should look like:
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(b) The derivative should look like:
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15. (a) The derivative should look like:
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16. (a) The derivative should look like:
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(b) The derivative should look like:
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17. (a) The function should look like:
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18. (a) The function should look like:
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(b) The function should look like:
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19. The left-hand derivative is

D−f(0) = lim
h→0−

f(h)− f(0)

h

= lim
h→0−

2h+ 1− 1

h
= 2

The right-hand derivative is

D+f(0) = lim
h→0+

f(h)− f(0)

h

= lim
h→0+

3h+ 1− 1

h
= 3

Since the one-sided limits do not agree (2 6=
3), f ′(0) does not exist.

20. The left-hand derivative is

D−f(0) = lim
h→0+

f(h)− f(0)

h

= lim
h→0−

0− 0

h
= 0

The right-hand derivative is

D+f(0) = lim
h→0−

f(h)− f(0)

h

= lim
h→0+

2h

h
= 2

Since the one-sided limits do not agree (0 6=
2), f ′(0) does not exist.

21. The left-hand derivative is

D−f(0) = lim
h→0−

f(h)− f(0)

h

= lim
h→0−

h2 − 0

h
= 0

The right-hand derivative is
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D+f(0) = lim
h→0+

f(h)− f(0)

h

= lim
h→0+

h3 − 0

h
= 0

Since the one-sided limits are same (0 = 0),
f ′(0) exist.

22. The left-hand derivative is

D−f(0) = lim
h→0+

f(h)− f(0)

h

= lim
h→0−

2h

h
= 2

The right-hand derivative is

D+f(0) = lim
h→0−

f(h)− f(0)

h

= lim
h→0+

h2 + 2h

h

= lim
h→0+

h(h+ 2)

h

= lim
h→0+

h+ 2 = 2

Since the one-sided limits are same (2 = 2),
f ′(0) exist.

23. f(x) =
x√

x2 + 1

x f(x)
f(x)− f(1)

x− 1
1.1 0.7399401 0.3283329
1.01 0.7106159 0.3509150
1.001 0.7074601 0.3532884
1.0001 0.7071421 0.3535268
1.00001 0.7071103 0.3535507

The evidence of this table strongly suggests
that the difference quotients (essentially) in-
distinguishable from the values (themselves)
0.353. If true, this would mean that f ′(1)
≈ 0.353.

24. f(x) = xex
2

x f(x)
f(x)− f(2)

x− 2
1.1 172.7658734 635.6957329
1.01 114.2323717 503.6071639
1.001 109.6888867 492.5866054
1.0001 109.2454504 491.5034872
1.00001 109.201214 491.3953621
1.000001 109.1967915 491.3845515
1.0000001 109.1963492 491.3834702
1.00000001 109.1963050 491.3833622

The evidence of this table strongly suggests
that the difference quotients (essentially) in-
distinguishable from the values (themselves)
491.383. If true, this would mean that f ′(2)
≈ 491.383.

25. f(x) = cos 3x

x f(x)
f(x)− f(0)

x− 0
0.1 0.9553365 −0.4466351
0.01 0.9995500 −0.0449966
0.001 0.9999955 −0.0045000
0.0001 1.0000000 −0.0004500
0.00001 1.0000000 −0.0000450

The evidence of this table strongly suggests
that the difference quotients (essentially) in-
distinguishable from the values (themselves)
0. If true, this would mean that f ′(0) ≈ 0.

26. f(x) = ln 3x

x f(x)
f(x)− f(2)

x− 2
2.1 1.8405496 0.4879016
2.01 1.7967470 0.4987542
2.001 1.7922593 0.4998757
2.0001 1.7918095 0.4999875
2.00001 1.7917645 0.4999988
2.000001 1.7917600 0.4999999
2.0000001 1.7917595 0.5000000

The evidence of this table strongly suggests
that the difference quotients (essentially) in-
distinguishable from the values (themselves)
0.5. If true, this would mean that f ′(2)
≈ 0.5.

27. Compute average velocities:
Time Interval Average Velocity

(1.7, 2.0) 9.0
(1.8, 2.0) 9.5
(1.8, 2.0) 10.0
(2.0, 2.1) 10.0
(2.0, 2.2) 9.5
(2.0, 2.3) 9.0

Our best estimate of velocity at t = 2 is 10.

28. Compute average velocities:



2.2. THE DERIVATIVE 91

Time Interval Average Velocity
(1.7, 2.0) 8
(1.8, 2.0) 8.5
(1.8, 2.0) 9.0
(2.0, 2.1) 8.0
(2.0, 2.2) 8.0
(2.0, 2.3) 7.67

A velocity of between 8 and 9 seems to be a
good guess.

29. (a) f(x) = |x|+ |x− 2|
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f(x) is not differentiable at x = 0 and
x = 2.

(b) f(x) = |x2 − 4x|

1 40
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f(x) is not differentiable at x = 0 and
x = 4.

30. (a) g(x) = e−2/x
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g(x) is not differentiable at x = 0.

(b) g(x) = e−2/(x
3−x)
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g(x) is not differentiable at x = 0 and
x = ±1.

31. lim
h→0

(0 + h)
p − 0p

h
= lim
h→0

hp

h
= lim
h→0

hp−1

The last limit does not exist when p < 1,
equals 1 when p = 1 and is 0 when p > 1.
Thus f(0) exists when p ≥ 1.

32. f (x) =

{
x2 + 2x x < 0
ax+ b x ≥ 0

For h < 0, f(h) = h2 + 2h, f(0) = b

D−f(0) = lim
h→0−

f(h)− f(0)

h

= lim
h→0−

h2 + 2h− b
h

For f to be differentiable D−f(0) must ex-
ist.
D−f(0) exists if and only if b = 0.
Substituting b = 0, we get

D−f(0) = lim
h→0−

h2 + 2h

h
= lim
h→0−

(h+ 2) = 2

For h > 0, f(h) = ah+ b, f(0) = b

D+f(0) = lim
h→0+

f(h)− f(0)

h

= lim
h→0+

ah+ b− b
h

= lim
h→0+

ah

h
= a

D+f(0) = 2 if and only if a = 2.

33. Let f(x) = −1− x2 then for all, we have
f(x) ≤ x. But at x = −1, we find f(−1) =
−2 and

f ′(−1) = lim
h→0

f(−1 + h)− f(−1)

h

= lim
h→0

−1− (−1 + h)
2 − (−2)

h

= lim
h→0

1− (1− 2h+ h2)

h

= lim
h→0

2h− h2

h
= lim
h→0

(2− h) = 2.

So, f ′(x) is not always less than 1.
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34. This is not always true. For example the
function f(x) = −x2 + x satisfies the hy-
potheses but f ′ (x) > 1 for all x < 0 as the
following graph shows.
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35. lim
x→a

[f(x)]
2 − [f(a)]

2

x2 − a2

= lim
x→a

[f(x)− f(a)] [f(x) + f(a)]

(x− a) (x+ a)

=

[
lim
x→a

[f(x)− f(a)]

(x− a)

] [
lim
x→a

[f(x) + f(a)]

(x+ a)

]
= f ′(a)

2f(a)

2a
=
f(a)f ′(a)

a

36. Let u = ch so h =
u

c
. Then we have

lim
h→0

f(a+ ch)− f(a)

h

= lim
u
c→0

f(a+ u)− f(a)
u
c

= lim
u→0

f(a+ u)− f(a)
u
c

= lim
u→0

c

(
f(a+ u)− f(a)

u

)
= c lim

u→0

f(a+ u)− f(a)

u
= cf ′(a)

37. Because the curve appears to be bending up-
ward, the slopes of thesecant lines (based
at x = 1 and with upper endpoint beyond
1) will increase with the upper endpoint.
This has also the effect that any one of
these slopes is greater than the actual deriva-

tive. Therefore f ′(1) <
f(1.5)− f(1)

0.5
<

f(2)− f(1)

1
. As to where f(1) fits in this

list it seems necessary to read the graph and
come up with estimates of f(1) about 4, and
f(2) about 7. That would put the third num-
ber in the above list at about 3, comfortably
less than f(1).

38. Note that f(0) − f(−1) is the slope of the
secant line from x = −1 to x = 0 (about),

and that
f(0)− f(−0.5)

0.5
is the slope of the

secant line from x = −0.5 to x = 0 (about-
0.5). f(0) = 3 and f ′(0) = 0. In increasing

order, we have f(0)−f(−1),
f(0)− f(−0.5)

0.5
f ′(0), and f ′(0).

39. One possible such graph:
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40. One possible such graph:
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41.
d

dx

(
x2
)

= 2x = 2x1

d

dx

(
x3
)

= 3x24

d

dx

(
x4
)

= 4x3

In general
d

dx
(xn) = nxn−1

42.
d

dx
(xn) = nxn−1

√
x = x1/2

d

dx

(√
x
)

=
d

dx

(
x1/2

)
=

1

2
x−1/2 =

1

2
√
x

1

x
= x−1

d

dx

(
1

x

)
=

d

dx

(
x−1

)
= −1x−2 =

−1

x2

43. We estimate the derivative at x = 2.5 as fol-

lows
1.62− 1.11

2.7− 2.39
=

0.51

0.31
= 1.64516.

For every increase of 1 meter in height of
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serving point, there is an increase of 1.64516◦

in margin of error.

44. We estimate the derivative at x = 2.854 as
follows
2.12− 1.62

3− 2.7
=

0.5

0.3
= 1.66666.

For every increase of 1 meter in height
of serving point, there is an increase of
1.66666◦in margin of error.

45. We compile the rate of change in ton-MPG
over each of the four two-year intervals for
which data is given:

Intervals Rate of change
(1992,1994) 0.4
(1994,1996) 0.4
(1996,1998) 0.4
(1998,2000) 0.2

These rates of change are measured in Ton-
MPG per year. Either the first or second
(they happen to agree) could used as an es-
timate for the one-year “1994”while only the
is a promising estimate for the one-year in-
terval “2000”. The mere that all these num-
bers are positive that efficiency is improving,
the last number being smaller to suggest that
the rate of improvement is slipping.

46. The average rate of change from 1992 to 1994
is 0.05, and from 1994 to 1996 is 0.1, so a
good estimate of the rate of change in 1994
is 0.75. The average rate of change from 1998
to 2000 is−0.2, and this is a good for the rate
of change in 2000. Comparing to exercise 35,
we see that the MPG per ton increased, but
the actual MPG for vehicles decreased. The
weight of vehicles must have increased, if the
weight remained then the actual MPG would
have increased.

47. (a) meters per second

(b) items per dollar

48. c′(t) will represent the rate of change in
amount of chemical and will be measured in
grams per minute. p′(x) will represent the
rate of change of mass and will be measured
in kg per meter.

49. If f ′(t) < 0, the function is negatively sloped
and decreasing, meaning the stock is losing
value with the passing of time. This may be
the basis for selling the stock if the current
trend is expected to be a long term one.

50. You should buy the stock with value g(t).
It is cheaper because f(t) > g(t), and grow-

ing faster because f ′(t) < g′(t) (or possibly
declining more slowly).

51. The following sketches are consistent with
the hypotheses of infection I ′(t) rate rising,
peaking and returning to zero. We started
with the derivative (infection rate) and had
to think backwards to construct the function
I(t). One can see in I(t) the slope increasing
up to the time of peak infection rate there-
after the slope decreasing but not the values.
They merely level off.

0.50

 

1

0.5

 

1

 

2

1.5

1

0.5

 

10.50

52. One possible graph of the population P (t):

x

14121086420

4000

3000

2000

1000
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Graph of P ′(t):

x

1412108

800

6

600

2

-200

400

4

200

0
0

53. Because the curve appears to be bending up-
ward the slopes of the secant lines (based
at x = 1 and with upper endpoint beyond
1) will increase with the upper endpoint.
This has also the effect that any one of
these slopes is greater than the actual actual
derivative. Therefore

f ′(1) <
f(1.5)− f(1)

0.5
<
f(2)− f(1)

1
.

As to where f(1) fits in this list it seems nec-
essary to read the graph and come up with
estimates of f(1) about 4, and f(2) about
7. That would put the third number in the
above list at about 3 comfortablyless than
f(1).

54. f (t) =

{
0.1t if 0 < t ≤ 2 · 104

2 · 103 + (t− 2 · 104)0.16 if t > 2 · 104

This is another example of a piecewise lin-
ear function (this one is continuous), and
although not differentiable at the income
x = 20000, elsewhere we have

f ′ (x) =

{
0.1 0 < t < 20000
0.16 t > 20000

2.3 Computation of
Derivatives: The Power Rule

1. f ′(x) =
d

dx
(x3)− d

dx
(2x) +

d

dx
(1)

= 3x2 − 2
d

dx
(x) + 0

= 3x2 − 2(1)

= 3x2 − 2

2. f ′(x) = 9x8 − 15x4 + 8x− 4

3. f ′(t) =
d

dt
(3t3)− d

dt

(
2
√
t
)

= 3
d

dt
(t3)− 2

d

dt

(
t1/2

)
= 3(3t2)− 2

(
1

2
t−1/2

)
= 9t2 − 1√

t

4. f(s) = 5s1/2 − 4s2 + 3

f ′(s) =
5

2
s−1/2 − 8s

=
5

2
√
s
− 8s

5. f ′ (w) =
d

dw

(
3

w

)
− d

dw
(8w) +

d

dw
(1)

= 3
d

dw

(
w−1

)
− 8

d

dw
(w) + 0

= 3
(
−w−2

)
− 8 (1)

= − 3

w2
− 8

6. f ′ (y) =
d

dy

(
2

y4

)
− d

dy

(
y3
)

+
d

dy
(2)

= 2
d

dy

(
y−4

)
− d

dy

(
y3
)

+ 0

= 2
(
−4y−5

)
− 3

(
y2
)

= − 8

y5
− 3y2

7. h′ (x) =
d

dx

(
10
3
√
x

)
− d

dx
(2x) +

d

dx
(π)

= 10
d

dx

(
x−1/3

)
− 2

d

dx
(x) + 0

= 10

(
−1

3
x−4/3

)
− 2

= − 10

3x 3
√
x
− 2

8. h′ (x) =
d

dx
(12x)− d

dx

(
x2
)
− d

dx

(
3

3
√
x2

)
= 12

d

dx
(x)− d

dx

(
x2
)
− 3

d

dx

(
x−2/3

)
= 12− 2x− 3

(
−2

3
x−5/3

)
= 12− 2x+

2

x
3
√
x2
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9. f ′(s) =
d

ds
2s3/2 − d

ds

(
3s−1/3

)
= 2

d

ds

(
s3/2

)
− 3

d

ds

(
s−1/3

)
= 2

(
3

2
s1/2

)
− 3

(
−1

3
s−4/3

)
= 3s1/2 + s−4/3

= 3
√
s+

1
3
√
s4

10. f ′(t) = 3πtπ−1 − 2.6t0.3

11. f(x) =
3x2 − 3x+ 1

2x

=
3x2

2x
− 3x

2x
+

1

2x

=
3

2
x− 3

2
+

1

2
x−1

f ′(x) =
d

dx

(
3

2
x

)
− d

dx

(
3

2

)
+

d

dx

(
1

2
x−1

)
=

3

2

d

dx
(x)− 0 +

1

2

d

dx
(x−1)

=
3

2
(1) +

1

2
(−1x−2)

=
3

2
− 1

2x2

12. f (x) =
4x2 − x+ 3√

x

= 4x3/2 − x1/2 + 3x−1/2

f ′ (x) = 6x1/2 − 1

2
x−1/2 − 3

2
x−3/2

13. f(x) = x(3x2 −
√
x)

= 3x3 − x3/2

f ′(x) = 3
d

dx
(x3)− d

dx

(
x3/2

)
= 3(3x2)−

(
3

2
x1/2

)
= 9x2 − 3

2

√
x

14. f(x) = 3x3 + 3x2 − 4x− 4,

f ′(x) = 9x2 + 6x− 4

15. f ′ (t) =
d

dt

(
t4 + 3t2 − 2

)
= 4t3 + 6t

f ′′ (t) =
d

dt

(
4t3 + 6t

)
= 12t2 + 6

16. f(t) = 4t2 − 12 +
4

t2
= 4t2 − 12 + 4t−2

f ′(t) =
d

dt
(4t2 − 12 + 4t−2)

= 8t2 − 0 + 4(−2t−3) = 8t2 − 8t−3

f ′′(t) =
d

dt
(8t− 8t−3) = 8− 8(−3t−4)

= 8 + 24t−4

f ′′′(t) =
d

dt
(8 + 24t−4) = 0 + 24(−4t−5)

= −96t−5 = −96

t5

17. f(x) = 2x4 − 3x−1/2

df

dx
= 8x3 +

3

2
x−3/2

d2f
dx2 = 24x2 − 9

4x
−5/2

18. f(x) = x6 −
√
x = x6 − x1/2

df

dx
=

d

dx

(
x6 − x1/2

)
= 6x5 − 1

2
x−1/2

d2f

dx2
=

d

dx

(
6x5 − 1

2
x−1/2

)
= 30x4 − 1

2

(
−1

2
x−3/2

)
= 30x4 +

1

4
x−3/2

19. f ′ (x) =
d

dx

(
x4 + 3x2 − 2√

x

)
= 4x3 + 6x+ x−3/2

f ′′ (x) =
d

dx

(
4x3 + 6x+ x−3/2

)
= 12x2 + 6− 3

2
x−5/2

f ′′′ (x) =
d

dx

(
12x2 + 6− 3

2
x−5/2

)
= 24x+

15

4
x−7/2

f4 (x) =
d

dx

(
24x+

15

4
x−7/2

)
= 24− 105

8
x−9/2

20. f ′(x) = 10x9 − 12x3 + 2
f ′′(x) = 90x8 − 36x2

f ′′′(x) = 720x7 − 72x
f (4)(x) = 5040x6 − 72
f (5)(x) = 30240x5

21. s(t) = −16t2 + 40t+ 10
v(t) = s′(t) = −32t+ 40
a(t) = v′(t) = s′′(t) = −32

22. s (t) = −4.9t2 + 12t− 3
v (t) = s′ (t) = −9.8t+ 12
a (t) = v′ (t) = s′′ (t) = −9.8
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23. s(t) =
√
t+ 2t2 = t1/2 + 2t2

v(t) = s′(t) =
1

2
t−1/2 + 4t

a(t) = v′(t) = s′′(t) = −1

4
t−3/2 + 4

24. s(t) = 10− 10t−1 v(t) = s′(t) = 10t−2

a(t) = s′′(t) = −20t−3

25. h (t) = −16t2 + 40t+ 5
v (t) = h′ (t) = −32t+ 40
a (t) = v′ (t) = h′′ (t) = −32

(a) At time t0 = 1
v (1) = 8, object is going up.
a (1) = −32, speed is decreasing.

(b) At time t0 = 2
v (2) = −24, object is going down.
a (2) = −32, speed is increasing.

26. h (t) = 10t2 − 24t
v (t) = h′ (t) = 20t− 24
a (t) = v′ (t) = h′′ (t) = 20

(a) At time t0 = 2
v (2) = 16, object is going up.
a (2) = 20, speed is increasing.

(b) At time t0 = 1
v (1) = −4, object is going down.
a (1) = 20, speed is decreasing.

27. f(x) = x2 − 2, a = 2, f(2) = 2,
f ′(x) = 2x, f ′(2) = 4
The equation of the tangent line is
y = 4(x− 2) + 2 or y = 4x− 6.

28. f(2) = 1, f ′(x) = 2x− 2, f ′(2) = 2
Line through with slope 2 is
y = 2(x− 2) + 1.

29. f(x) = 4
√
x− 2x, a = 4

f(4) = 4
√

4− 2(4) = 0.

f ′(x) =
d

dx

(
4x1/2 − 2x

)
= 2x−1/2 − 2 =

2√
x
− 2

f ′(4) = 1− 2 = −1
The equation of the tangent line is

y = −1 (x− 4) + 0 or y = −x+ 4.

30. f (x) = 3
√
x+ 4, a = 2

f (2) = 3
√

2 + 4

f ′ (x) =
d

dx

(
3x1/2 + 4

)
=

3

2
x−1/2 =

3

2
√
x

f ′ (2) =
3

2
√

2
The equation of tangent line through(
2, 3
√

2 + 4
)

with slope
3

2
√

2
is

y =
3

2
√

2
(x− 2) + 3

√
2 + 4.

31. (a) The graph of f ′ is as follows:

2.5

0

5.0

10

5

−5

0.0

−10

−2.5−5.0

The graph of f ′′ is as follows.

y

4

4

2

2

−2

−4

0

x

5

5

3

1

3

0

−1

−3

1

−5

−1−2−3−4−5

(b) The graph of f ′ is as follows.

5

0

10

10

5

−5

0

−10

−5−10
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The graph of f ′′ is as follows.

−10

50

0

−5 10

10

5

−5

−10

32. (a) The graph of f ′ is as follows.

5

0

10

10

5

−5

0

−10

−5−10

The graph of f ′′ is as follows
10

0

5

−10

5

10

−5

0−5−10

(b) The graph of f ′ is as follows.

−10

50

0

−5 10

10

5

−5

−10

The graph of f ′′ is as follows.

5

0

10

10

5

−5

0

−10

−5−10

33. (a) f(x) = x3 − 3x+ 1
f ′(x) = 3x2 − 3
The tangent line to y = f(x) is horizon-
tal when
f ′(x) = 0
⇒ 3x2 − 3 = 0
⇒ 3(x2 − 1) = 0
⇒ 3(x+ 1)(x− 1) = 0
x = −1 or x = 1.

(b) The graph shows that the first is a rel-
ative maximum, the second is a relative
minimum.

0

3210−1−2−3

10

5

−5

−10

(c) Now to determine the value(s) of x for
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which the tangent line to y = f(x) inter-
sects the axis at 45o angle that is when
f ′ (x) = 1.
3x2 − 3 = 1
(x2 − 1) = 1

3
x2 = 4

3
x = ± 2√

3

34. (a) Now to determine the value(s) of x for
which the tangent line to y = f (x) inter-
sects the axis at 45o angle that is when
f ′ (x) = 1
3x2 − 3 = 1
3
(
x2 − 1

)
= 1(

x2 − 1
)

=
1

3

x2 =
4

3

x = ± 2√
3

(b) The graph shows that the function has
global minimum at (1, −1)

5

0

10

10

5

−5

0

−10

−5−10

(c) Now to determine the value (s) of for
which the tangent line to y = f (x) inter-
sects the axis at 45o angle that is when
f ′ (x) = 1
4x3 − 4 = 1(
x3 − 1

)
=

1

4

x3 =
5

4
=

(
5

2

)1/3

35. (a) f (x) = x2/3

f ′ (x) =
2

3
x−1/3 =

2

3 3
√
x

The slope of the tangent line to y =
f (x) does not exist where the deriva-
tive is undefined, which is only when
x=0.

2.8

1.2

1

3.6

2.0

2.4

0.8

3.2

1.6

−2

0.0

0 2

0.4

y

−1

x

The graphical significance of this point
is that there is vertical tangent here.

(b) f (x) = |x− 3|

f ′(x) =

{
1 whenx > 3
−1 when x < 3

f ′ (x) is not defined at x = 3.

y

4

4

2

2

−2

−4

0

x

5

5

3

1

3

0

−1

−3

1

−5

−1−2−3−4−5

Though the graph of function is contin-
uous at x = 3 tangent line does not exist
as at this point there is sharp corner.

(c) f (x) =
∣∣x2 − 3x− 4

∣∣
f ′ (x) =

{
2x− 3 when x > 4 or x < −1
−2x+ 3 when − 1 < x < 4

f ′(x) is not defined at x = −1, 4.

y

8

8

4

4

−4

−8

0

x

10

10

6

2

6

0

−2

−6

2

−10

−2−4−6−8−10

The graph shows that the function has
global minima at (−1, 0) and(4, 0).
The function has relative maximum at
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3

2
,

25

4

)
.

36. (a) f (x) = x1/9

f ′ (x) =
1

9
x−8/9 =

1

9x8/9
The f ′ (x) is not defined at x = 0.

−1.2

−0.4

−2.0

2.0

5

0.8

0.4

3

1.6

1.2

−2 1

0.0

0

−1.6

−1−4 −3 4−5

−0.8

2

The graphical significance of this point
is that there is vertical tangent here.

(b) f (x) = |x+ 2|

f ′ (x) =

{
1 when x > −2
−1 when x < −2

The f ′ (x) is not defined at x = −2.

y

4

4

2

2

−2

−4

0

x

5

5

3

1

3

0

−1

−3

1

−5

−1−2−3−4−5

Though the graph of function is contin-
uous at x = −2, tangent line does not
exist as at this point there is sharp cor-
ner.

(c) f (x) =
∣∣x2 + 5x+ 4

∣∣ = |(x+ 4)(x+ 1)|

f ′ (x) =

{
2x+ 5 when x < −4 or x > −1
−2x− 5 when − 4 < x < −1

The f ′(x) is not defined at x = −4, −1.

x

4

2.5

0

−2

−2.5

−4

y

5

3

5.0

2

1

−1
0.0

−3

−5

−5.0−7.5−10.0

The graph shows that the function has
global minima at (−4, 0) and (−1, 0).
The function has relative maxima at
(−2.5, 2.25).

37. (a) y = x3 − 3x+ 1
y′ = 3x2 − 3 = 3

(
x2 − 1

)
The tangent line to y = f (x) intersects
the x-axis at a 45◦ angle when
f ′ (x) = 1
⇔ 3

(
x2 − 1

)
= 1

⇔ x2 = 1 +
1

3

⇔ x =
2√
3

or x = − 2√
3

(b) The tangent line to y = f (x) intersects
the x-axis at a 30◦ angle when

f ′ (x) =
1√
3

.

⇔ 3
(
x2 − 1

)
=

1√
3

⇔ x2 = 1 +
1

3
√

3

⇔ x =

(
1 +

1

3
√

3

)1/2

or

x = −
(

1 +
1

3
√

3

)1/2

38. Answers depend on CAS.

39. f(x) = ax2 + bx+ c, f(0) = c
f ′(x) = 2ax+ b, f ′(0) = b
f ′′(x) = 2a, f ′′(0) = 2a
Given f ′′(0) = 3, we learn 2a = 3, or
a = 3/2. Given f ′(0) = 2 we learn 2 = b,
and given f(0) = −2, we learn c = −2. In
the end

f(x) = ax2 + bx+ c =
3

2
x2 + 2x− 2

40. (a) f(x) =
√
x = x1/2

f ′(x) =
1

2
x−1/2

f ′′(x) =
1

2

(
−1

2

)
x−3/2



100 CHAPTER 2. DIFFERENTIATION

f ′′′(x) =

(
1

2

)(
−1

2

)(
−3

2

)
x−5/2

f (n) (x)

= (−1)
n−1 1.3.5... (2n− 3)

2n
x−(2n−1)/2

= (−1)
n−1

.
1.2.3... (2n− 2)

2n.2.4... (2n− 2)
x−(2n−1)/2

= (−1)
n−1

.
(2n− 2)!

22n−1 (n− 1)!
x−(2n−1)/2

(b) f ′(x) = −2x−3

f ′′(x) = 6x−4

f ′′′(x) = −24x−5

The pattern is
f (n)(x) = (−1)

n
(n+ 1)!x−n−2

41. For y =
1

x
, we have y′ = − 1

x2
. Thus, the

slope of the tangent line at x = a is − 1

a2
.

When a = 1, the slope of the tangent line at
(1, 1) is −1, and the equation of the tangent
line is y = −x + 2. The tangent line inter-
sects the axes at (0, 2) and (2, 0). Thus, the

area of the triangle is
1

2
(2)(2) = 2.

When a = 2, the slope of the tangent line

at

(
2,

1

2

)
is −1

4
, and the equation of the

tangent line is y = −1

4
x + 2. The tangent

line intersects the axes at (0, 1) and (4, 0).

Thus, the area of the triangle is
1

2
(4)(1) = 2.

In general, the equation of the tangent line is

y = −
(

1

a2

)
x +

2

a
. The tangent line inter-

sects the axes at (0,
2

a
) and (2a, 0). Thus,

the area of the triangle is
1

2
(2a)

(
2

a

)
= 2.

42. For y =
1

x2
= x−2, we have

f ′(x) = −2x−3 = − 2

x3
Thus, the slope of the tangent line at

x = a is − 2

a3
.

When a = 1, the slope of the tangent line at
(1, 1) is −2, and the equation of the tangent
line is y = −2x + 3. The tangent line inter-

sects the axes at (0, 3) and

(
3

2
, 0

)
. Thus

the area of the triangle is
1

2
(3)(

3

2
) =

9

4
.

When a = 2, the slope of the tangent line

at

(
2,

1

4

)
is −1

4
, and the equation of the

tangent line is

y = −1

4
x +

3

4
. The tangent line intersects

the axes at
(
0, 3

4

)
and (3, 0). Thus the area

of the triangle is
1

2
(
3

4
)(3) =

9

8
.

Since
9

4
6= 9

8
, we see that the result for exer-

cise 41 does not hold here.

43. (a) g′(x) = lim
h→0

g(x+ h)− g(x)

h

= lim
h→0

1

h

[
max

a≤t≤x+h
f(t)− max

a≤t≤x
f(t)

]
= lim
h→0

1

h
[f(x+ h)− f(x)]

= f ′(x)

(b) g′(x) = lim
h→0

g(x+ h)− g(x)

h

= lim
h→0

1

h

[
max

a≤t≤x+h
f(t)− max

a≤t≤x
f(t)

]
= lim
h→0

1

h
[f(a)− f(a)] = 0

44. (a) g′(x) = lim
h→0

g(x+ h)− g(x)

h

= lim
h→0

1

h

[
min

a≤t≤x+h
f(t)− min

a≤t≤x
f(t)

]
= lim
h→0

1

h
[f(a)− f(a)] = 0

(b) g′(x) = lim
h→0

g(x+ h)− g(x)

h

= lim
h→0

1

h

[
min

a≤t≤x+h
f(t)− min

a≤t≤x
f(t)

]
= lim
h→0

1

h
[f(x+ h)− f(x)]

= f ′(x)

45. Try f(x) = cx4 for some constant c. Then
f ′(x) = 4cx3 so c must be 1. One possible
answer is f(x) = x4.

46. Try f(x) = cx5 for some constant c. Then
f ′(x) = 5cx4 so c must be 1. One possible
answer is f(x) = x5.

47. f ′(x) =
√
x = x1/2

f(x) =
2

3
x3/2 is one possible function

48. If f ′(x) = x−2, then f(x) = −x−1 is one
possible function.

49. w(b) = cb3/2

w′(b) =
3c

2
b1/2 =

3c
√
b

2
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w′(b) > 1 when

3c
√
b

2
> 1,

√
b >

2

3c

b >
4

9c2
Since c is constant, when b is large enough

b will be greater than
4

9c2
. After this point,

when b increases by 1 unit, the leg width w
is increasing by more than 1 unit, so that leg
width is increasing faster than body length.
This puts a limitation on the size of land an-
imals since, eventually, the body will not be
long enough to accomodate the width of the
legs.

50. World Record Times Mens Track

Dist. T ime Ave. f(d)
400 43.18 9.26 9.25
800 101.11 7.91 8.17
1000 131.96 7.58 7.86
1500 206.00 7.28 9.25
2000 284.79 7.02 6.95

Here, distance is in meters, time is in seconds
and hence average in metersper second.
The function f(d) is quite close to predicting
the average speed of worldrecord pace.
v′(d) represents the rate of change in average
speed over d meters per meter. v′(d) tells us
how much v(d) would change if d changed to
d+ 1.

51. We can approximate

f ′(2000) ≈ 9039.5− 8690.7

2001− 1999
= 174.4. This

is the rate of change of the GDP in billions
of dollars per year.
To approximate f ′′(2000), we first estimate

f ′(1999) ≈ 9016.8− 8347.3

2000− 1998
= 334.75

and f ′(1998) ≈ 8690.7− 8004.5

1999− 1997
= 343.1

Since these values are decreasing, f ′′(2000)
is negative. We estimate

f ′′(2000) ≈ 174.4− 334.75

2000− 1999
= −160.35

This represents the rate of change of the rate
of change of the GDP over time. In 2000, the
GDP is increasing by a rate of 174.4 billion
dollars per year, but this increase is decreas-
ing by a rate of 160.35 billion dollars-per-
year per year.

52. f ′(2000) can be approximated by the aver-
age rate of change from 1995 to 2000.

f ′(2000) ≈ 4619− 4353

2000− 1995
= 53.2

This is the rate of change of weight of SUVs
over time. In 2000the weight of SUVs is in-
creasing by 53.2 pounds per year.
Similarly approximate f ′(1995) ≈ 32.8 and
f ′(1990) ≈ 26.8 The second derivative is def-
initely positive. We can approximate

f ′′(2000) ≈ 53.2− 32.8

2000− 1995
= 4.08.

This is the rate of change in the rate of
change of the weight of SUVs. Notonly
are SUVs getting heavier at a rate of 53.2
pounds per year, this rateis itself increas-
ing at a rate of about 4 pounds-per-year per
year.

53. Newton’s Law states that force equals mass
times acceleration. That is, if F (t) is the
driving force at time t, then m · f ′′(t) =
m · a(t) = F (t) in which m is the mass, ap-
propriately unitized. The third derivative of
the distance function is then
f ′′′(t) = a′(t) = 1

mF
′(t).

It is both the derivative of the accelera-
tion and directly proportional to the rate
of change in force. Thus an abrupt change
in acceleration or “jerk”is the direct conse-
quence of an abrupt changein force.

2.4 The Product and
Quotient Rules

1. f(x) = (x2 + 3)(x3 − 3x+ 1)

f ′(x) =
d

dx
(x2 + 3) · (x3 − 3x+ 1)

+ (x2 + 3) · d
dx

(x3 − 3x+ 1)

= (2x)(x3 − 3x+ 1)

+ (x2 + 3)(3x2 − 3)

2. f(x) = (x3 − 2x2 + 5)(x4 − 3x2 + 2)

f ′(x) =
d

dx
(x3 − 2x2 + 5)(x4 − 3x2 + 2)

+ (x3 − 2x2 + 5)
d

dx
(x4 − 3x2 + 2)

= (3x2 − 4x)(x4 − 3x2 + 2)

+ (x3 − 2x2 + 5)(4x3 − 6x)

3. f(x) = (
√
x+ 3x)

(
5x2 − 3

x

)
= (x1/2 + 3x)(5x2 − 3x−1)
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f ′(x) =

(
1

2
x−1/2 + 3

)
(5x2 − 3x−1)

+ (x1/2 + 3x)(10x+ 3x−2)

4. f(x) = (x3/2 − 4x)(x4 − 3x−2 + 2)

f ′(x) =
d

dx
(x3/2 − 4x)(x4 − 3x−2 + 2)

+ (x3/2 − 4x)
d

dx
(x4 − 3x−2 + 2)

= (
3

2
x1/2 − 4)(x4 − 3x−2 + 2)

+ (x3/2 − 4x)(4x3 + 6x−3)

5. g(t) =
3t− 2

5t+ 1

g′ (t) =
((5t+1) ddt (3t−2))−((3t−2) ddt (5t+1))

(5t+1)2

=
3(5t+ 1)− 5(3t− 2)

(5t+ 1)
2

=
15t+ 3− 15t+ 10

(5t+ 1)
2 =

13

(5t+ 1)
2

6. g(t) =
t2 + 2t+ 5

t2 − 5t+ 1
g′(t) =
((t2−5t+1) ddt (t

2+2t+5))−((t2+2t+5) ddt (t
2−5t+1))

(t2−5t+1)2

=
(t2 − 5t+ 1)(2t+ 2)− (t2 + 2t+ 5)(2t− 5)

(t2 − 5t+ 1)
2

7. f(x) =
3x− 6

√
x

5x2 − 2
=

3(x− 2x1/2)

5x2 − 2
f ′(x) =

3
((5x2−2) ddx (x−2x

1/2)−(x−2x1/2) ddx (5x
2−2))

(5x2−2)2

= 3

(
(5x2 − 2)(1− x−1/2)− (x− 2x1/2)(10x)

)
(5x2 − 2)

2

8. f(x) =
6x− 2x−1

x2 + x1/2
f ′(x)

=
(x2+x1/2) ddx (6x−2x

−1)−(6x−2x−1) ddx (x
2+x1/2)

(x2+x1/2)2

=
(x2+x1/2)(6+2x−2)−(6x−2x−1)(2x+ 1

2x
−1/2)

(x2+x1/2)2

9. f(u) =
(u+ 1)(u− 2)

u2 − 5u+ 1
=

u2 − u− 2

u2 − 5u+ 1
f ′(u) =
((u2−5u+1) ddu (u

2−u−2))−((u2−u−2) ddu (u
2−5u+1))

(u2−5u+1)2

= (u2−5u+1)(2u−1)−(u2−u−2)(2u−5)
(u2−5u+1)2

= 2u3−10u2+2u−u2+5u−1−2u3+2u2+4u+5u2−5u−10
(u2−5u+1)2

=
−4u2 + 6u− 11

(u2 − 5u+ 1)
2

10. f(u) =
(2u)(u+ 3)

u2 + 1
=

2u2 + 6u

u2 + 1
f ′(u) =

((u2+1) ddu (2u
2+6u))−((2u2+6u) ddu (u

2+1))
(u2+1)2

=
(u2 + 1)(4u+ 6)− (2u2 + 6u)(2u)

(u2 + 1)
2

=
4u3 + 6u2 + 4u+ 6− 4u3 − 12u2

(u2 + 1)
2

=
−6u2 + 4u+ 6

(u2 + 1)
2

=
2(−3u2 + 2u+ 3)

(u2 + 1)
2

11. We do not recommend treating this one as a
quotient, but advise preliminary simplifica-
tion.

f(x) =
x2 + 3x− 2√

x

=
x2√
x

+
3x√
x
− 2√

x

= x3/2 + 3x1/2 − 2x−1/2

f ′(x) =
3

2
x1/2 +

3

2
x−1/2 + x−3/2

12. f(x) =
x2 − 2x

x2 + 5x
f ′(x) =
(x2 + 5x) d

dx (x2 − 2x)− (x2 − 2x) d
dx (x2 + 5x)

(x2 + 5x)
2

=
(x2 + 5x)(2x− 2)− (x2 − 2x)(2x+ 5)

(x2 + 5x)
2

13. We simplify instead of using the product
rule.
h(t) = t(

3
√
t+ 3) = t4/3 + 3t

h′(t) =
4

3
3
√
t+ 3

14. h(t) =
t2

3
+

5

t2
=

1

3
t2 + 5t−2

h′(t) =
2

3
t− 10t−3

15. f(x) = (x2 − 1)
x3 + 3x2

x2 + 2

f ′(x) =
d

dx
(x2 − 1) · (x

3 + 3x2

x2 + 2
)

+ (x2 − 1) · d
dx

(
x3 + 3x2

x2 + 2
)

We have
d

dx
(
x3 + 3x2

x2 + 2
) =

(x2 + 2) d
dx (x3 + 3x2)− (x3 + 3x2) d

dx (x2 + 2)

(x2 + 2)
2

=
(x2 + 2) · (3x2 + 6x)− (x3 + 3x2) · (2x)

(x2 + 2)
2

=
3x4 + 6x2 + 6x3 + 12x− (2x4 + 6x3)

(x2 + 2)
2
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=
x4 + 6x2 + 12x

(x2 + 2)
2

So, f ′(x) =

(2x) · (x
3 + 3x2

x2 + 2
) + (x2− 1) · x

4 + 6x2 + 12x

(x2 + 2)
2

16. f(x) =
(x+ 2)(x− 1)(x+ 1)

x(x+ 1)

=
x2 + x− 2

x

= x+ 1− 2x−1

f ′(x) = 1 + 2x−2

17. f(x) = (x2 + 2x)(x4 + x2 + 1)

f ′(x) =

[
d

dx
(x2 + 2x)

]
(x4 + x2 + 1)

+

[
d

dx
(x4 + x2 + 1)

]
(x2 + 2x)

= (2x+ 2)(x4 + x2 + 1)

+ (4x3 + 2x)(x2 + 2x)
At x = a = 0, we get:
f(0) = 0
f ′(0) = 2
Threfore, the line with slope 2 and pass-
ing through the point (0, 0) has equation
y = 2x.

18. f(x) = (x3 + x+ 1)(3x2 + 2x− 1)

f ′(x) =

[
d

dx
(x3 + x+ 1)

]
(3x2 + 2x− 1)

+

[
d

dx
(3x2 + 2x− 1)

]
(x3 + x+ 1)

= (3x2 + 1)(3x2 + 2x− 1)

+ (6x+ 2)(x3 + x+ 1)
At x = a = 1, we get:
f(1) = 12
f ′(1) = (3+1)(3+2−1)+(6+2)(1+1+1) =
40
Therfore, the line with slope 40 and pass-
ing through the point (1, 12) has equation
y = 40 (x− 1) + 12.

19. f(x) =
x+ 1

x+ 2
By The Quotient Rule, we have
f ′(x)

=

(
(x+ 2) d

dx (x+ 1)
)
−
(
(x+ 1) d

dx (x+ 2)
)

(x+ 2)
2

=
(x+ 2)− (x+ 1)

(x+ 2)
2 =

1

(x+ 2)
2 .

At x = a = 0,

f(0) =
0 + 1

0 + 2
=

1

2

f ′(0) =
1

4
.

The line with slope
1

4
and passing through

the point

(
0,

1

2

)
has equation y =

1

4
x+

1

2
.

20. f(x) =
x+ 3

x2 + 1
By The Quotient Rule, we have
f ′(x) =(

(x2 + 1) d
dx (x+ 3)

)
−
(
(x+ 3) d

dx (x2 + 1)
)

(x2 + 1)
2

=
(x2 + 1)− (x+ 3)(2x)

(x2 + 1)
2

=
(x2 + 1)− (2x2 + 6x)

(x2 + 1)
2

=
x2 + 1− 2x2 − 6x

(x2 + 1)
2

=
−x2 − 6x+ 1

(x2 + 1)
2 .

At x = a = 1,
f(1) = 1+3

12+1 = 2

f ′(1) =
−1− 6 + 1

(1 + 1)
2 = −6

4
= −3

2
.

The line with slope −3

2
and passing

through the point (1, 2) has equation y =

−3

2
(x− 1) + 2.

21. h(x) = f(x)g(x)
h′(x) = f ′(x)g(x) + g′(x)f(x)

(a) At x = a = 0,
h(0) = f(0)g(0) = (−1)(3) = −3
h′(0) = f ′(0)g(0) + g′(0)f(0)

= (−1)(3) + (−1)(−1) = −2.
So, the equation of the tangent line is
y = −2x− 3.

(b) At x = a = 1,
h(1) = f(1)g(1) = (−2)(1) = −2
h′(1) = f ′(1)g(1) + g′(1)f(1)

= (3)(1) + (−2)(−2) = 7.
So, the equation of the tangent line is
y = 7(x− 1)− 2 or y = 7x− 9.

22. h(x) =
f(x)

g(x)

h′(x) =
g(x)f ′(x)− f(x)g′(x)

(g(x))
2

(a) At x = a = 1,

h(1) =
f(1)

g(1)
= −2

1
= −2



104 CHAPTER 2. DIFFERENTIATION

h′(1) =
g(1)f ′(1)− f(1)g′(1)

(g(1))
2

=
(1)(3)− (−2)(−2)

12

=
3− 4

1
= −1.

So, the equation of the tangent line is
y = −(x− 1)− 2.

(b) At x = a = 0,

h(0) = f(0)
g(0) = − 1

3

h′(0) =
g(0)f ′(0)− f(0)g′(0)

(g(0))
2

=
(−1)(3)− (−1)(−1)

(3)
2

=
−3− 1

9

= −4

9
.

So, the equation of the tangent line is

y = −4

9
x− 1

3
.

23. h(x) = x2f(x)
h′(x) = 2xf(x) + x2f ′(x)

(a) At x = a = 1,
h(1) = 12f(1) = −2

h′(1) = 2× 1× f(1) + 12f ′(1)

= (2)(−2) + (3) = −4 + 3 = −1.
So, the equation of the tangent is y =
−1(x− 1)− 2 or y = −x− 1.

(b) At x = a = 0,
h(0) = 02f(0) = 0
h′(0) = 2× 0× f(0) + 02f ′(0) = 0.
So, the equation of the tangent is y = 0.

24. h(x) =
x2

g(x)

h′(x) =
2xg(x)− x2g′(x)

(g(x))
2

(a) At x = a = 1,

h(1) =
12

g(1)
=

1

1
= 1

h′(1) =
2× 1× g(1)− 12g′(1)

(g(1))
2

=
(2)(1)(1)− (1)(−2)

12

=
2 + 2

1
= 4.

So, the equation of tangent line is y =
4(x− 1) + 1.

(b) At x = a = 0,

h(0) =
02

g(0)
=

0

3
= 0

h′(0) =
2× 0× g(0)− 02g′(0)

(g(0))
2 = 0.

So, the equation of the tangent line is
y = 0.

25. The rate at which the quantity Q changes is
Q′. Since the amount is said to be “decreas-
ing at a rate of 4%” we have to ask “4%
of what?” The answer in this type of con-
text is usually 4% of itself. In other words,
Q′ = −0.04Q.
As for P , the 3% rate of increase would
translate as P ′ = 0.03P. By the product rule
with R = PQ, we have:
R′ = (PQ)′ = P ′Q+ PQ′

= (0.03P )Q+ P (−0.04Q)
= −(0.01)PQ = (−0.01)R.
In other words, revenue is decreasing at a
rate of 1%.

26. Revenue will be constant when the deriva-
tive is 0. Substituting, Q′ = −0.04Q and,
P ′ = aP into the expression for R′ gives,
R′ = −0.04QP + aQP
R′ = (−0.04 + a)QP.
This is zero when a = 0.04, so price must
increase by 4%.

27. R′ = Q′P +QP ′

At a certain moment of time (call it t0)
we are given P (t0) = 20 ($/item) , Q(t0) =
20, 000(items)
P ′(t0) = 1.25 ($/item/year)
Q′(t0) = 2, 000 (item/year)
R′(t0) = 2, 000(20) + (20, 000)1.25
R′(t0) = 65, 000 ( $/year) .
So, revenue is increasing by $65, 000/year at
the time t0.

28. We are given P = $14, Q = 12, 000 and
Q′ = 1, 200. We want R′ = $20, 000. Substi-
tuting these values in to the expression for
R′ (see exercise 25) yields:
20, 000 = 1200 · 14 + 12, 000 · P ′
Solve to get P ′ = 0.27 dollars per year.

29. If u(m) =
82.5m− 6.75

m+ 0.15
then using the quo-

tient rule,
du

dm
=

(m+ 0.15)(82.5)− (82.5m− 6.75)1

(m+ 0.15)
2

=
19.125

(m+ 0.15)
2
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which is clearly positive. It seems to be say-
ing that initial ball speed is an increasing
function of the mass of the bat. Meanwhile,

u′(1) =
19.125

1.152
≈ 14.46

u′(1.2) =
19.125

1.352
≈ 10.49,

which suggests that the rate at which this
speed is increasing is decreasing.

30. u′(M) =
(M + 1.05) d

dM (86.625− 45M)

(M + 1.05)
2

−
d
dM (M + 1.05)(86.625− 45M)

(M + 1.05)
2

=
(−45M − 47.25)− (86.625− 45M)

(M + 1.05)
2

=
−133.875

(M + 1.05)
2

This quantity is negative. In baseball terms,
as the mass of the baseball increases, the
initial velocity decreases.

31. If u(m) =
14.11

m+ 0.05
=

282.2

20m+ 1
, then

du

dm
=

(20m+ 1) · 0− 282.2(20)

(20m+ 1)
2

=
−5644

(20m+ 1)
2 .

This is clearly negative, which means that
impact speed of the ball is a decreasing func-
tion of the weight of the club. It appears
that the explanation may have to do with
the stated fact that the speed of the club is
inversely proportional to its mass. Although
the lesson of Example 4.6 was that a heavier
club makes for greater ball velocity, that was
assuming a fixed club speed, quite a different
assumption from this problem.

32. u′(v) =
0.2822

0.217
≈ 1.3. The initial speed of

the ball increases 1.3 times more than the
increase in club speed.

33.
d

dx
[f(x)g(x)h(x)] =

d

dx
[(f(x)g(x))h(x)]

= (f(x)g(x))h′(x) + h(x)
d

dx
(f(x)g(x))

= (f(x)g(x))h′(x)

+ h(x) (f(x)g′(x) + g(x)f ′(x))

= f ′(x)g(x)h(x) + f(x)g′(x)h(x)

+ f(x)g(x)h′(x)
In the general case of a product of n func-
tions, the derivative will have n terms to be
added, each term a product of all but one of

the functions multiplied by the derivative of
the missing function.

34. The derivative of g(x)
−1

=
1

g(x)
is

d

dx

[
g(x)

−1
]

=
g(x) d

dx (1)− (1) d
dxg(x)

g(x)
2

= − g
′(x)

g(x)
2 = −g′(x)(g(x))

−2

as claimed. The derivative of f(x)(g(x))
−1

is

then f ′(x)(g(x))
−1

+ f(x)(−g′(x)(g(x))
−2

).

35. f ′(x) =

[
d

dx
(x2/3)

]
(x2 − 2)(x3 − x+ 1)

+ x2/3
[
d

dx
(x2 − 2)

]
(x3 − x+ 1)

+ x2/3(x2 − 2)
d

dx
(x3 − x+ 1)

=
2

3
x−1/3(x2 − 2)(x3 − x+ 1)

+ x2/3(2x)(x3 − x+ 1)

+ x2/3(x2 − 2)(3x2 − 1)

36. f ′(x) = 1(x3 − 2x+ 1)(3− 2/x)

+ (x+ 4)(3x2 − 2)(3− 2/x)

+ (x+ 4)(x3 − 2x+ 1)(2/x2)

37. f ′(x) = lim
h→0

f(x+ h)− f(x)

h

f ′(0) = lim
h→0

f(h)− f(0)

h

= lim
h→0

hg(h)− 0

h

= lim
h→0

hg(h)

h
= lim
h→0

g(h) = g(0)

Since, g is continuous at x = 0. When
g(x) = |x|, g(x) is continuous but not dif-
ferentiable at x = 0. We have

f(x) = x|x| =
{
−x2 x < 0
x2 x ≥ 0

This is differentiable at x = 0.

38. f (x) = (x− a) g (x)

f ′ (x) = lim
h→0

f (a+ h)− f (a)

h

= lim
h→0

(a+ h− a) g (a+ h)

h

= lim
h→0

hg (a+ h)

h

= lim
h→0

g (a+ h)

= g (a)
As g is continuous at x = a, hence f(x) is
differentiable.
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39. f(x) =
x

x2 + 1

f ′(x) =

(
x2 + 1

)
− x (2x)

(x2 + 1)
2

=
x2 + 1− 2x2

(x2 + 1)
2 =

−x2 + 1

(x2 + 1)
2

f ′′(x)

=

(
x2 + 1

)2
(−2x)−

(
−x2 + 1

)
2
(
x2 + 1

)
(2x)

(x2 + 1)
4

=

(
x2 + 1

)
(−2x)−

(
−x2 + 1

)
(4x)

(x2 + 1)
3

=
−2x3 − 2x+ 4x3 − 4x

(x2 + 1)
3 =

2x3 − 6x

(x2 + 1)
3

At maxima or minima of f ′, we have
f ′′(x) = 0. So, 2x3 − 6x = 0

2x
(
x2 − 3

)
= 0

2x = 0 , x2 − 3 = 0

x = 0, x = ±
√

3

f ′ (0) =
−02 + 1

(02 + 1)
2 = 1

f ′
(
±
√

3
)

=
−
(
±
√

3
)2

+ 1((
±
√

3
)2

+ 1
)2

=
−3 + 1

(3 + 1)
2 = − 2

16
= −1

8

Therefore, −1

8
≤ m = f ′(x) ≤ 1.

So, the function f has maximum slopem = 1

at x = 0 and minimum slope m = −1

8
at

x = ±
√

3.
In the graph of f(x) in below, the point
B(0, 0) has maximum slope 1 and the points

A(−
√

3, −
√
3
4 ), C(

√
3,
√
3
4 ) have minimum

slope − 1
8 .

C

A

B

y

0.8

2

0.0

−0.4

0

−0.8

1.0

0.6

3

0.4

0.2

−0.2
1

−0.6

−1.0

−1−2−3

x

40. f(x) =
x√

x2 + 1

f ′(x) =

(√
x2 + 1

)
− x

(
1

2
√
x2+1

× 2x
)

(x2 + 1)

=

(√
x2 + 1

)
− x2
√
x2+1

(x2 + 1)

=
x2 + 1− x2

(x2 + 1)
3
2

=
(
x2 + 1

)− 3
2

Since x2 + 1 > 0, m > 0.

f ′′(x) = −3

2

(
x2 + 1

)− 5
2 (2x)

= −3x
(
x2 + 1

)− 5
2 = −3x

For maxima or minima of f ′′(x), we have
f ′′(x) = 0. So, x = 0

f ′ (0) =
(
02 + 1

)− 3
2 = 1

Therefore 0 < m = f ′(x) ≤ 1
In the graph of f(x) in below, the point
A(0, 0) has maximum slope 1.

A

−0.6

1

y

0.0

x

−1 2

1.0

0.6

0

0.4

−0.8

−0.2
−2

−1.0

−3

0.2

−0.4

3

0.8

41. Answers depend on CAS.

42. For any constant k, the derivative of
sin kx is k cos kx.
Graph of d

dx sinx :

1

0

0.5

6

-0.5

-1

-2 2

x

-4 0 4-6

Graph of d
dx sin 2x
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2

0

1

6

-1

-2

-2 2

x

-4 0 4-6

Graph of d
dx sin 3x

3

1

-3

2

0

-2

0-4 2-6 4-2

x
-1

6

43. CAS answers may vary.

44. The function f(x) simplifies to f(x) = 2x,
so f ′(x) = 2. CAS answers vary, but should
simplify to 2.

45. If F (x) = f(x)g(x), then
F ′(x) = f ′(x)g(x) + f(x)g′(x) and
F ′′(x) = f ′′(x)g(x) + f ′(x)g′(x)

+ f ′(x)g′(x) + f(x)g′′(x)

= f ′′(x)g(x) + 2f ′(x)g′(x) + f(x)g′′(x)

F ′′′(x) = f ′′′(x)g(x) + f ′′(x)g′(x)

+ 2f ′′(x)g′(x) + 2f ′(x)g′′(x)

+ f ′(x)g′′(x) + f(x)g′′′(x)

= f ′′′(x)g(x) + 3f ′′(x)g′(x)

+ 3f ′(x)g′′(x) + f(x)g′′′(x).
One can see obvious parallels to the bino-
mial coefficients as they come from Pascal’s
Triangle:
(a+ b)

2
= a2 + 2ab+ b2

(a+ b)
3

= a3 + 3a2b+ 3ab2 + b3.
On this basis, one could correctly predict the
pattern of the fourth or any higher deriva-
tive.

46. F (4)(x) = f (4)g + 4f ′′′g′ + 6f ′′g′′ + 4f ′g′′′ +
fg(4)

47. If g(x) = [f(x)]
2

= f(x)f(x), then
g′(x) = f ′(x)f(x) + f(x)f ′(x) = 2f(x)f ′(x).

48. g(x) = f(x)[f(x)]
2
, so

g′(x) = f ′(x)[f(x)]
2

+ f(x)(2f(x)f ′(x))

= 3[f(x)]
2
f ′(x)

The derivative of [f(x)]
n

is n[f(x)]
n−1

f ′(x).

49. lim
x→0

f(x) = 0 and lim
x→∞

f(x) = 1 . Without

any activator there is no enzyme. With un-
limited amount of activator, the amount of
enzyme approaches 1.

f(x) =
x2.7

1 + x2.7

f ′(x) =

(
1 + x2.7

)
(2.7)x1.7 − (2.7)x2.7x1.7

(1 + x2.7)
2

=
2.7x1.7

(1 + x2.7)
2

The fact that 0 < f(x) < 1 when x > 0
suggest to us that f may be a kind of con-
centration ratio or percentage of presence of
the allosteric enzymes in some systems. If so,
the derivetive would be interpreted as rate of
change of concentration per unit activator.

50. lim
x→0

f(x) = 1 and lim
x→∞

f(x) = 0. With-

out any inhibitor the amount of enzyme ap-
proaches 1. With unlimited amount of in-
hibitor, the amount of enzyme approaches

0. f ′(x) = − 2.7x1.7

(1 + x2.7)
2

For positive x, f ′ is negative. Increase in
the amount of inhibitor leads to a decrease
in the amount of enzyme.

51. (a) r =
1

0.55

c
+

0.45

h

=

[
0.55

c
+

0.45

h

]−1
d

dc
(r) =

d

dc

[
0.55

c
+

0.45

h

]−1
=

−1[
0.55
c + 0.45

h

]2 d

dc

[
0.55

c
+

0.45

h

]
=

0.55

c2
[
0.55
c + 0.45

h

]2
Therefore, from the above equation we

can say that
dr

dc
> 0, for every c.

(b) Similarly,
dr

dh
=

0.45

h2
[
0.55
c + 0.45

h

]2 .

Hence, from the above equation we can

say that
dr

dh
> 0, for every h.

(c) r =
1

0.55
c + 0.45

h
When c = h, we get
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r =
1

0.55
h + 0.45

h

= h = c.

(d) If c < h

r =
ch

0.55h+ 0.45c
r

c
=

h

0.55h+ 0.45c
>

h

0.55h+ 0.45h
= 1

So, r > c. And

r =
ch

0.55h+ 0.45c
r

h
=

c

0.55h+ 0.45c
<

c

0.55c+ 0.45c
= 1

So, r < h and hence c < r < h.
Now, r is an increasing function and
h = c , we have r = f(h) = c. Hence for
any value of h greater than c, we have
the corresponding value of r greater
than c.

dr

dh
=

0.55

c2
[
0.55
c + 0.45

h

]2
=

0.45c2

(0.55h+ 0.45c)
2 <

0.45c2

c2
= 0.45

Also, from part (b),
dr

dh
=

0.45c2

(0.55h+ 0.45c)
2

and from part (d),
r

h
=

c

0.55h+ 0.45c

⇒ 0.45
( r
h

)2
< 0.45

⇒ r < h

Graph of r with respect to h when c = 20:

30

70

50

10

30

10

100908070605040

80

60

20

40

20

0

0

When c is constant, r remain stable for large
h.

2.5 The Chain Rule

1. f(x) = (x3 − 1)2

Using the chain rule:
f ′(x) = 2(x3 − 1)(3x2) = 6x2(x3 − 1)

Using the product rule:
f(x) = (x3 − 1)(x3 − 1)
f ′(x) = (3x2)(x3 − 1) + (x3 − 1)(3x2)

= 2(3x2)(x3 − 1)

= 6x2(x3 − 1)
Using preliminary multiplication:
f(x) = x6 − 2x3 + 1
f ′(x) = 6x5 − 6x2

= 6x2(x3 − 1)

2. f(x) = (x2 + 2x+ 1)(x2 + 2x+ 1)
Using the product rule:
f ′(x) = (2x+ 2)(x2 + 2x+ 1)

+ (x2 + 2x+ 1)(2x+ 2)
Using the chain rule:
f ′(x) = 2(x2 + 2x+ 1)(2x+ 2)

3. f(x) = (x2 + 1)
3

Using the chain rule:

f ′(x) = 3(x2 + 1)
2 · 2x

Using preliminary multiplication:
f(x) = x6 + 3x4 + 3x2 + 1
f ′(x) = 6x5 + 12x3 + 6x

4. f(x) = (2x+ 1)
4

Using preliminary multiplication:
f(x) = 16x4 + 32x3 + 24x2 + 8x+ 1
f ′(x) = 64x3 + 96x2 + 48x+ 8.
Using the chain rule:
f ′(x) = 4(2x+ 1)3(2) = 8(2x+ 1)3

5. (a) By the chain rule:

f ′(x) = 3
(
x3 − x

)2 d
dx

(
x3 − x

)
= 3
(
x3 − x

)2 (
3x2 − 1

)
(b) By the chain rule:

f ′(x) =
1

2
√
x2 + 4

d

dx

(
x2 + 4

)
=

1

2
√
x2 + 4

· 2x =
x√

x2 + 4

6. (a) By the chain rule:

f ′(x) = 4
(
x3 + x− 1

)3 d
dx

(
x3 + x− 1

)
= 4
(
x3 + x− 1

)3 (
3x2 + 1

)
(b) By the chain rule:
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f ′(x) =
1

2

√
4x− 1

x

d

dx

(
4x− 1

x

)

=
1

2

√
4x− 1

x

(
4 +

1

x2

)

=
4 +

1

x2

2

√
4x− 1

x

7. (a) f(t) = t5
√
t3 + 2

By the product rule:

f ′ (t) = 5t4
√
t3 + 2 + t5

d

dt

(√
t3 + 2

)
By the chain rule:

f ′ (t) = 5t4
√
t3 + 2 + t5

1

2
√
t3 + 2

d

dt

(
t3 + 2

)
= 5t4

√
t3 + 2 + t5

1

2
√
t3 + 2

3t2

=

(
5t4
√
t3 + 2

) (
2
√
t3 + 2

)
+ 3t7

2
√
t3 + 2

=
10t4

(
t3 + 2

)
+ 3t7

2
√
t3 + 2

=
10t7 + 20t4 + 3t7

2
√
t3 + 2

=
13t7 + 20t4

2
√
t3 + 2

(b) f(t) =
(
t3 + 2

)√
t

By the product rule:

f ′(t) = 3t2
√
x+

(
t3 + 2

) 1

2
√
t

=
6t3 + t3 + 2

2
√
t

=
7t3 + 2

2
√
t

8. (a) f(t) =
(
t4 + 2

)√
t2 + 1

By the product rule:

f ′(t) =4t3
√
t2 + 1

+
(
t4 + 2

) d
dt

(√
t2 + 1

)
By the chain rule:

f ′(t) = 4t3
√
t2 + 1

+
(
t4 + 2

) 1

2
√
t2 + 1

(2t)

= 4t3
√
t2 + 1 +

t
(
t4 + 2

)
√
t2 + 1

=
4t3
(
t2 + 1

)
+ t
(
t4 + 2

)
√
t2 + 1

=
4t5 + 4t3 + t5 + 2t√

t2 + 1

=
5t5 + 4t3 + 2t√

t2 + 1

(b) f(t) =
√
t
(
t4/3 + 3

)
By the product rule:

f ′(t) =
1

2
√
t

(
t4/3 + 3

)
+

4

3
t1/3
√
t

=
1

2
√
t

(
t4/3 + 3

)
+

4

3
t1/3t1/2

=
1

2
√
t

(
t4/3 + 3

)
+

4

3
t5/6

9. (a) f(u) =
u2 + 1

u+ 4
By the quotient rule:

f ′(u) =
(u+ 4) (2u)−

(
u2 + 1

)
(u+ 4)

2

=
2u2 + 8u− u2 − 1

(u+ 4)
2

=
u2 + 8u− 1

(u+ 4)
2

(b) f(u) =
u3

(u2 + 4)
2

By the quotient rule:

f ′(u) =
(u2+4)

2
(3u2)−(u3) d

du (u2+4)
2

(u2+4)4

By the chain rule:

f ′(u) =

(
u2 + 4

)2 (
3u2
)
− 2u3

(
u2 + 4

)
(2u)

(u2 + 4)
4

=

(
u2 + 4

) [
3u2

(
u2 + 4

)
− 4u4

]
(u2 + 4)

4

=
3u2

(
u2 + 4

)
− 4u4

(u2 + 4)
3

=
3u4 + 12u2 − 4u4

(u2 + 4)
3

=
12u2 − u4

(u2 + 4)
3 =

u2
(
12− u2

)
(u2 + 4)

3

10. (a) f(x) =
x2 − 1

x2 + 1
By the quotient rule:

f ′(x) =

(
x2 + 1

)
(2x)−

(
x2 − 1

)
(2x)

(x2 + 1)
2

=
(2x)

(
x2 + 1− x2 + 1

)
(x2 + 1)

2

=
4x

(x2 + 1)
2
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(b) f(x) =
x2 + 4

(x3)
2

By the quotient rule:

f ′(x) =
x6 (2x)−

(
x2 + 4

) (
6x5
)

(x6)
2

=
2x7 − 6x7 − 24x5

x12

=
−4x7 − 24x5

x12

= −
4x5

(
x2 + 6

)
x12

= −
4
(
x2 + 6

)
x7

11. (a) g(x) =
x√

x2 + 1
By the quotient rule:

g′(x) =

√
x2 + 1− (x) d

dx

(√
x2 + 1

)
(x2 + 1)

By the chain rule:

g′(x) =

√
x2 + 1 − (x)

(
1

2
√
x2+1

)
(2x)

(x2 + 1)

=

√
x2 + 1 − x2

√
x2+1

(x2 + 1)

=
x2 + 1 − x2√
x2 + 1 (x2 + 1)

=
1√

x2 + 1 (x2 + 1)

=
1

(x2 + 1)
3/2

(b) g(x) =

√
x

x2 + 1
By the chain rule:

g′(x) =
1

2

√
x

x2 + 1

d

dx

(
x

x2 + 1

)
By the quotient rule:

g′(x) =
1

2

√
x

x2 + 1

((
x2 + 1

)
− x(2x)

(x2 + 1)
2

)

=
1

2

√
x

x2 + 1

(
x2 + 1− 2x2

(x2 + 1)
2

)

=
1

2
√
x

(
1− x2

(x2 + 1)
3/2

)

=
1− x2

2
√
x(x2 + 1)

3/2

12. (a) g(x) = x2
√
x+ 1

By the product rule:

g′(x) = 2x
√
x+ 1 +

(
x2
) d

dx

(√
x+ 1

)
By the chain rule:

g′(x) = 2x
√
x+ 1 +

(
x2
) 1

2
√
x+ 1

= 2x
√
x+ 1 +

x2

2
√
x+ 1

=
4x (x+ 1) + x2

2
√
x+ 1

=
4x2 + 4x+ x2

2
√
x+ 1

=
5x2 + 4x

2
√
x+ 1

(b) g(x) =

√
(x2 + 1)

(√
x+ 1

)3
By the chain rule:

g′(x) =

d
dx

[(
x2 + 1

)
(
√
x+ 1)

3
]

2

√
(x2 + 1) (

√
x+ 1)

3

By the product rule:

g′(x) =

(
2x(
√
x+1)

3
)
+(x2+1) d

dx (
√
x+1)

3

2
√

(x2+1)(
√
x+1)

3
.

By the chain rule:

g′(x) =
1

2

√
(x2 + 1) (

√
x+ 1)

3

(
2x
(√
x+ 1

)3
+3
(
x2 + 1

) (√
x+ 1

)2 1

2
√
x

)

13. (a) h(x) = 6
(
x2 + 4

)−1/2
By the chain rule:

h′(x) = 6×
(
−1

2

)(
x2 + 4

)−3/2
(2x)

=
−6x

(x2 + 4)
3/2

(b) h(x) =

√
x2 + 4

6
By the chain rule:

h′(x) =
1

6
· 1

2
√
x2 + 4

d

dx

(
x2 + 4

)
=

1

6
· 1

2
√
x2 + 4

(2x)

=
x

6
√
x2 + 4

14. (a) h(t) =

(
t3 + 4

)5
8

By the chain rule:
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h′(t) =
5

8

(
t3 + 4

)4 d
dt

(
t3 + 4

)
=

5

8

(
t3 + 4

)4 (
3t2
)

=
15t2

8

(
t3 + 4

)4
(b) h(t) = 8

(
t3 + 4

)−5
By the chain rule:

h′(t) = 8× (−5)
(
t3 + 4

)−6 d
dt

(
t3 + 4

)
= −40

(
t3 + 4

)−6 (
3t2
)

= −120t2
(
t3 + 4

)−6
15. (a) f(x) =

(√
x3 + 2 + 2x

)−2
By the chain rule:
f ′(x)

= −2
(√
x3 + 2 + 2x

)−3 d
dx

(√
x3 + 2 + 2x

)
= −2

(√
x3 + 2 + 2x

)−3 ( 3x2

2
√
x3+2

+ 2
)

= −2
(
√
x3+2+2x)

3

(
3x2+4

√
x3+2

2
√
x3+2

)
= − 3x2+4(

√
x3+2)

(
√
x3+2+2x)

3√
x3+2

(b) f(x) =
√
x3 + 2 + 2x−2

By the chain rule:
f ′(x) =

1

2
√
x3 + 2 + 2x−2

d

dx

(
x3 + 2 + 2x−2

)
=

1

2
√
x3 + 2 + 2x−2

(
3x2 − 4x−3

)
=

3x2 − 4x−3

2
√
x3 + 2 + 2x−2

16. (a) f(x) =

√
4x2 + (8− x2)

2

By the chain rule:

f ′(x) =
8x− 4x

(
8− x2

)
2

√
4x2 + (8− x2)

2

=
8x− 32x+ 4x3

2

√
4x2 + (8− x2)

2

=
−24x+ 4x3

2

√
4x2 + (8− x2)

2

=
2x3 − 12x√

4x2 + (8− x2)
2

(b) f(x) =
(√

4x2 + 8− x2
)2

By the chain rule:
f ′(x) =
2
(√

4x2 + 8− x2
)
d
dx

(√
4x2 + 8− x2

)
= 2

(√
4x2 + 8− x2

) (
4x√

4x2+8
− 2x

)

= 2
(√

4x2 + 8− x2
) (

4x−2x
√
4x2+8√

4x2+8

)
= 4

(√
4x2 + 8− x2

) (
2x−x

√
4x2+8√

4x2+8

)
17. f(x) = x3 + 4x − 1 is a one-to-one function

with f(0) = −1 and f ′(0) = 4. Therefore
g(−1) = 0 and

g′(−1) =
1

f ′(g(−1))
=

1

f ′(0)
=

1

4
.

18. f(x) = x5 + 4x − 2 is a one-to-one function
with f(0) = −2 and f ′(0) = 4. Therefore
g(−2) = 0 and

g′(−2) =
1

f ′(g(−2))
=

1

f ′(0)
=

1

4

.

19. f(x) = x5 + 3x3 + x is a one-to-one function
with f(1) = 5 and f ′(1) = 5 + 9 + 1 = 15.
Therefore g(5) = 1 and

g′(5) =
1

f ′(g(5))
=

1

f ′(1)
=

1

15
.

20. f(x) = x3 + 2x + 1 is a one-to-one function
with f(−1) = −2 and f ′(−1) = 5. Therefore
g(−2) = −1 and

g′(−2) =
1

f ′(g(−2))
=

1

f ′(−1)
=

1

5
.

21. f(x) =
√
x3 + 2x+ 4 is a one-to-one func-

tion and f(0) = 2 so g(2) = 0. Meanwhile,

f ′(x) =
1

2
√
x3 + 2x+ 4

(3x2 + 2)

f ′(0) = 1/2

g′(2) =
1

f ′(g(2))
=

1

f ′(0)
= 2.

22. f(x) =
√
x5 + 4x3 + 3x+ 1 is a one-to-one

function and f(1) = 3 so g(3) = 1. Mean-
while,

f ′(x) =
5x4 + 12x2 + 3

2
√
x5 + 4x3 + 3x+ 1

f ′(1) =
20

6
=

10

3

g′(3) =
1

f ′(g(3))
=

1

f ′(1)
=

3

10
.

23. f(x) =
3

√√√√
x

√
x4 + 2x 4

√
8

x+ 2

Use Chain rule to find the derivative of the
function. We can also use Product rule.
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24. f(x) =
3x2 + 2

√
x3 + 4

x4

(x3 − 4)
√
x+ 2

Use Quotient rule to find the derivative of
the function. We can also use Chain rule
and Product rule.

25. f(t) =

√
t2 +

4

t3

(
8t+ 5

2t− 1

)3

Use product rule to find the derivative of the
function. We can also use chain rule and
Quotient rule.

26. f(t) =

(
3t+

4
√
t2 + 1

t− 5

)3

Use Chain rule to find the derivative of the
function. We can also use Quotient rule.

27. f(x) =
√
x2 + 16, a = 3, f(3) = 5

f ′(x) =
1

2
√
x2 + 16

(2x) =
x√

x2 + 16

f ′(3) =
3√

32 + 16
=

3

5

So, the tangent line is y =
3

5
(x− 3) + 5 or

y =
3

5
x+

16

5
.

28. f(−2) =
3

4

f ′(x) =
−12x

(x2 + 4)
2

f ′(−2) =
24

64
=

3

8
The equation of the tangent line is

y =
3

8
(x+ 2) +

3

4
.

29. s(t) =
√
t2 + 8

v(t) = s′(t) =
2t

2
√
t2 + 8

=
t√

t2 + 8
m/s

v(2) =
2√
12

=
1√
3

=

√
3

3
m/s

30. s(t) =
60t√
t2 + 1

v(t) =

√
t2 + 1(60)− 60t 1

2
√
t2+1

2t

t2 + 1
m/s

v(2) =
60
√

5− 240√
5

5
=

12
√

5

5
m/s

31. h′(x) = f ′(g(x))g′(x)
h′(1) = f ′(g(1))g′(1) = f ′(2) · (−2) = −6

32. h′(x) = f ′(g(x))g′(x)
h′(2) = f ′(g(2))g′(2) = f ′(3) · (4) = −12

33. As a temporary device given any f , set
g(x) = f(−x). Then by the chain rule,

g′(x) = f ′(−x)(−1) = −f ′(−x).

In the even case (g = f) this reads f ′(−x) =
−f ′(x) and shows f ′ is odd.
In the odd case (g = −f and therefore
g′ = −f ′), this reads −f ′(x) = −f ′(−x) or
f ′(x) = f ′(−x) and shows f ′ is even.

34. To say that f(x) is symmetric about the line
x = a is the same as saying that f(a+ x) =
f(a−x). Taking derivatives (using the chain
rule), we have
d

dx
f(a+ x) = f ′(a+ x)

d

dx
f(a− x) = f ′(a− x)(−1) = −f ′(a− x).

Thus, f ′(a+x) = −f ′(a−x) and the graph of
f ′(x) is symmetric through the point (a, 0).

35. (a) Chain rule gives,
d

dx
f
(
x2
)

= f ′
(
x2
) d

dx

(
x2
)

= f ′
(
x2
)

(2x)

= 2xf ′
(
x2
)
.

(b) Chain rule gives,
d

dx
[f(x)]

2
= 2f(x)

d

dx
f(x)

= 2f(x)f ′(x).

(c) Chain rule gives,
d

dx
f (f(x)) = f ′ (f(x))

d

dx
f(x)

= f ′ (f(x)) f ′(x).

36. (a) Chain rule gives,
d

dx
f
(√
x
)

= f ′
(√
x
) d

dx

(√
x
)

= f ′
(√
x
) 1

2
√
x
.

(b) Chain rule gives,
d

dx

(√
f (x)

)
=

1

2
√
f (x)

d

dx
f (x)

=
1

2
√
f (x)

f ′ (x) .

(c) Chain rule gives,
d

dx
[f (xf(x))]

= f ′ (xf(x))
d

dx
(xf(x))

and product rule gives

= f ′ (xf(x))

(
f(x) + x

d

dx
f(x)

)
= f ′ (xf(x)) (f(x) + xf ′(x)) .
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37. (a) Chain rule gives,
d

dx

[
f

(
1

x

)]
= f ′

(
1

x

)
.
d

dx

(
1

x

)
= f ′

(
1

x

)
.

(
− 1

x2

)
= −

(
1

x2

)
.f ′
(

1

x

)
.

(b) Chain rule gives,

d

dx

(
1

f (x)

)
=

(
− 1

f(x)
2

)
.
d

dx
f (x)

=

(
− 1

f(x)
2

)
.f ′ (x) .

(c) Chain rule gives,
d

dx

[
f

(
x

f (x)

)]
= f ′

(
x

f (x)

)
d

dx

(
x

f (x)

)
and quotient rule gives,

= f ′
(

x

f (x)

)(
f (x)− xf ′ (x)

[f (x)]
2

)
.

38. (a) Chain rule gives,
d

dx

(
1 + f(x2)

)
= f ′

(
x2
) d

dx

(
x2
)

= f ′
(
x2
)

(2x) = 2xf ′
(
x2
)
.

(b) Chain rule gives,
d

dx
[1 + f(x)]

2

= 2 [1 + f(x)]
d

dx
(1 + f(x))

= 2 [1 + f(x)] f ′ (x) = 2f ′ (x) [1 + f(x)] .

(c) Chain rule gives,
d

dx
[f (1 + f(x))]

= f ′ (1 + f(x)) .
d

dx
(1 + f(x))

= f ′ (1 + f(x) ) f ′(x)
= f ′ (x) f ′ (1 + f(x)) .

39.
d

dx
f (g (x)) = f ′ (g (x)) g′ (x)

(a) At x = 0 : g′(0) = 1, g(0) = 1,
d

dx
f (g (0)) = f ′ (g (0)) g′ (0)

= f ′(1) · g′(0) = 3× 1 = 3

(b) At x = 1 : g′(1) does not exist.

So
d

dx
f (g (1)) does not exist.

(c) At x = 3 :
g′(3) = 3, g(3) = 1
d

dx
f (g (3)) = f ′ (g (3)) g′ (3)

= f ′(1) · g′(3) = 3× 3 = 9

40.
d

dx
g (f (x)) = g′ (f (x)) f ′ (x)

(a) At x = 0 :

f ′(0) does not exist. So
d

dx
g (f (0)) does

not exist.

(b) At x = 1 :
f ′(1) = 3, f(1) = 0,
d

dx
g (f (1)) = g′ (f (1)) f ′ (1)

= g′(0) · f ′(1) = 1× 3 = 3

(c) At x = 3 :
f ′(3) = 0, f(3) = 3,
d

dx
g (f (3)) = g′ (f (3)) f ′ (3)

= g′(3) · f ′(3) = 3× 0 = 0

41. (a) f (x) =
√
x2 + 4

By the chain rule:

f ′ (x) =
1

2
√
x2 + 4

d

dx

(
x2 + 4

)
=

2x

2
√
x2 + 4

=
x√

x2 + 4

By the

quotient rule:

f ′′ (x) =

√
x2 + 4− x d

dx

(√
x2 + 4

)
(x2 + 4)

=

√
x2 + 4− x 2x

2
√
x2+4

(x2 + 4)

=

√
x2 + 4− x2

√
x2+4

(x2 + 4)

=
x2 + 4− x2√
x2 + 4 (x2 + 4)

=
4

(x2 + 4)
3/2

(b) f (t) = 2
(
t2 + 4

)−1/2
By the chain rule:

f ′ (t) = 2 · −1

2

(
t2 + 4

)−3/2 d
dt

(
t2 + 4

)
=

−1

(t2 + 4)
3/2

(2t)

=
−2t

(t2 + 4)
3/2
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By the quotient rule:

f ′′ (t) =

−2

[(
t2 + 4

)3/2 − t ddt(t2 + 4
)3/2

(t2 + 4)
3

]
= −2

[
(t2+4)

3/2−t( 3
2 )(t2+4)

1/2 d
dt (t

2+4)
(t2+4)3

]
= −2

[
(t2+4)

3/2−t( 3
2 )(t2+4)

1/2
2t

(t2+4)3

]
= −2

[(
t2 + 4

)3/2 − 3t2
(
t2 + 4

)1/2
(t2 + 4)

3

]

=

[
−2
(
t2 + 4

)3/2
+ 6t2

(
t2 + 4

)1/2
(t2 + 4)

3

]

=

[(
t2 + 4

)1/2 [−2
(
t2 + 4

)
+ 6t2

]
(t2 + 4)

3

]

=

[
−2t2 − 8 + 6t2

(t2 + 4)
5/2

]
=

4t2 − 8

(t2 + 4)
5/2

=
4
(
t2 − 2

)
(t2 + 4)

5/2

42. (a) By the chain rule:

h′ (t) = 2
(
t3 + 3

) d
dt

(
t3 + 3

)
= 2

(
t3 + 3

) (
3t2
)

= 6t5 + 18t2

h′′ (t) = 30t4 + 36t

(b) g(s) = 3
(
s2 + 1

)−2
By the chain rule:

g′(s) = 3 (−2)
(
s2 + 1

)−3 d
ds

(
s2 + 1

)
= −6

(
s2 + 1

)−3
(2s)

=
−12s

(s2 + 1)
3

By the product and chain rule:

g′′ (s) =
d

dx

(
−12s(s2 + 1)−3

)
= −12

((
s2 + 1

)−3 − 6s2
(
s2 + 1

)−4)
= −12(s2 + 1)−4

(
s2 + 1− 6s2

)
= −12(1− 5s2)

(s2 + 1)4

43. (a) f(x) = (x3 − 3x2 + 2x)
1/3

f ′ (x) =
d
dx

(
x3 − 3x2 + 2x

)
3(x3 − 3x2 + 2x)

2/3

=
3x2 − 6x+ 2

3(x3 − 3x2 + 2x)
2/3

The derivetive of f does not exist at val-
ues of x for which

x3 − 3x2 + 2x = 0

x(x2 − 3x+ 2) = 0

x(x− 1)(x− 2) = 0.
Thus, the derivative of f does not exist
for x = 0, 1, and 2. The derivative fails
to exist at these points because the tan-
gent lines at these points are vertical.

(b) f(x) =
√
x4 − 3x3 + 3x2 − x

f ′(x) =
d
dx

(
x4 − 3x3 + 3x2 − x

)
2
√
x4 − 3x3 + 3x2 − x

=
4x3 − 9x2 + 6x− 1

2
√
x4 − 3x3 + 3x2 − x

The derivative of f does not exist at val-
ues of x for which
x4 − 3x3 + 3x2 − x = 0

x
(
x3 − 3x2 + 3x− 1

)
= 0

x(x− 1)
3

= 0.
Thus, the derivative of x does not exist
for x = 0 and 1. The derivative fails to
exist at these points because the tangent
lines at these points are vertical.

44. Multiply numerator and denominator by
g (x+ h)− g (x).

lim
h→0

(
f(g(x+h))−f(g(x))

h

)(
g(x+h)−g(x)
g(x+h)−g(x)

)
The above step is not well documented and
in this step we use the assumption that
g′ (x) 6= 0. Since g′(x) 6= 0 implies that
g(x+ h)− g(x) 6= 0 for h 6= 0.

45. f(x) = (x2 + 3)2 · 2x
Recognizing the “2x” as the derivative of
x2 + 3, we guess g(x) = c(x2 + 3)3 where
c is some constant.
g′(x) = 3c(x2 + 3)2 · 2x
which will be f(x) only if 3c = 1, so c = 1/3,
and

g(x) =
(x2 + 3)3

3
.

46. A good initial guess is (x3 + 4)5/3, then ad-
just the constant to get

g(x) =
1

5
(x3 + 4)5/3.

47. f(x) =
x√

x2 + 1
.

Recognizing the “x” as half the derivative
of x2 + 1, and knowing that differentiation
throws the square root into the denomina-
tor, we guess g(x) = c

√
x2 + 1 where c is

some constant and find that

g′(x) =
c

2
√
x2 + 1

(2x)
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will match f(x) if c = 1, so

g(x) =
√
x2 + 1.

48. A good initial guess is (x2+1)−1, then adjust
the constant to get

g(x) = −1

2
(x2 + 1)−1.

2.6 Derivatives of
Trigonometric Functions

1. f (x) = 4 sin 3x− x
f ′ (x) = 4 (cos 3x) (3)− 1

= 12 cos 3x− 1

2. f (x) = 4x2 − 3 tan 2x
f ′ (x) = 4 (2x)− 3 sec2(2x) (2)

= 8x− 6 sec2(2x)

3. f (t) = tan32t− csc43t
f ′ (t) = 3tan2 (2t) sec2 (2t) (2)

− 4csc3 (3t) [− csc (3t) cot (3t)] (3)

= 6tan2 (2t) sec2 (2t)

+ 12csc4 (3t) cot (3t)

4. f (t) = t2 + 2cos24t
f ′ (t) = 2t+ 4 cos (4t) [− sin (4t)] (4)

= 2t− 16 sin (4t) cos (4t)

5. f(x) = x cos 5x2

f ′(x) = (1) cos 5x2 + x(− sin 5x2) · 10x

= cos 5x2 − 10x2 sin 5x2

6. f (x) = x2 sec 4x
f ′ (x) = x2 (sec 4x tan 4x) 4 + (sec 4x) 2x

= 4x2 (sec 4x tan 4x) + 2x sec (4x)

7. f(x) =
sin(x2)

x2

f ′(x) =
x2 cos(x2) · 2x− sin(x2) · 2x

x4

=
2x[x2 cos(x2)− sin(x2)]

x4

=
2[x2 cos(x2)− sin(x2)]

x3

8. f (x) =
x2

csc4 (2x)
f ′ (x) =

2x[csc4(2x)]−4x2[csc3(2x)][− csc(2x) cot(2x)](2)

[csc4(2x)]2

=
2x

csc4 (2x)
+

8x2
[
csc4 (2x) cot (2x)

]
[csc4 (2x)]

2

=
2x

csc4 (2x)
+

8x2 cot (2x)

csc4 (2x)

=
2x+ 8x2 cot (2x)

csc4 (2x)

9. f (t) = sin 3t sec 3t = tan 3t

f ′ (t) =
d

dt
[tan (3t)] = sec2 (3t) (3)

= 3sec2 (3t)

10. f (t) =
√

cos 5t sec 5t

=

√
cos 5t · 1

(cos 5t)
= 1

f ′ (t) =
d

dt
(1) = 0

11. f (w) =
1

sin 4w

f ′ (w) =
−1

(sin 4w)
2 cos 4w (4)

=
−4 cos 4w

sin24w

12. f (w) = w2sec23w
f ′ (w) = w2 (2 sec 3w) (sec 3w tan 3w) (3)

+ sec2 (3w) (2w)

= 6w2sec23x tan 3w + 2w sec23w

13. f (x) = 2 sin (2x) cos (2x)
f ′ (x) = 2 {sin (2x) [− sin (2x)] (2)

+ cos (2x) [cos (2x)] (2)}
= −4sin2 (2x) + 4cos2 (2x)

= 4cos2 (2x)− 4sin2 (2x)

14. f (x) = 4sin2 (3x) + 4cos2 (3x)

= 4
[
sin2 (3x) + cos2 (3x)

]
= 4

f ′ (x) =
d

dx
(4) = 0

15. f(x) = tan
√
x2 + 1

f ′(x) = (sec2
√
x2 + 1)

·
(

1

2

)
(x2 + 1)

−1/2
(2x)

=
x√

x2 + 1
sec2

√
x2 + 1

16. f(x) = 4x2 sinx sec 3x
f ′(x) = 8x sinx sec 3x+ 4x2[cosx sec 3x

+ sinx sec 3x tan 3x(3)]
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17. f (x) = sin3
(

cos
√
x3 + 2x2

)
f ′ (x) = 3sin2

(
cos
√
x3 + 2x2

)
· cos

(
cos
√
x3 + 2x2

)
·
(
− sin

√
x3 + 2x2

)
· 1

2

(
x3 + 2x2

)−1/2 (
3x2 + 4x

)
=

3

2

(
3x2 + 4x

) (
x3 + 2x2

)−1/2
· sin2

(
cos
√
x3 + 2x2

)
· cos

(
cos
√
x3 + 2x2

)
·
(
− sin

√
x3 + 2x2

)
18. f (x) = tan4

[
sin2

(
x3 + 2x

)]
f ′ (x) = 4

[
tan3

(
sin2

(
x3 + 2x

))]
·
[
sec2

(
sin2

(
x3 + 2x

))]
·
[
2 sin

(
x3 + 2x

)]
·
[
cos
(
x3 + 2x

)]
·
(
3x2 + 2

)
19. (a) f (x) = sinx2

f ′ (x) = cos
(
x2
)
· (2x) = 2x cos

(
x2
)

(b) f (x) = sin2x
f ′ (x) = 2 sinx cosx

(c) f (x) = sin 2x
f ′ (x) = cos 2x (2) = 2 cos 2x

20. (a) f (x) = cos
√
x

f ′ (x) =
(
− sin

√
x
)
.
1

2
(x)
−1/2

= −1

2
(x)
−1/2

sin
√
x

(b) f (x) =
√

cosx

f ′ (x) =
1

2
(cosx)

−1/2
. (− sinx)

= −1

2
sinx(cosx)

−1/2

(c) f (x) = cos

(
1

2
x

)
f ′ (x) = − sin

(
1

2
x

)
.

(
1

2

)
= −1

2
sin

(
1

2
x

)
21. (a) f (x) = sinx2 tanx

f ′ (x) = sinx2
(
sec2x

)
+ 2x cosx2 tanx

(b) f (x) = sin2 (tanx)
f ′ (x) = 2 sin (tanx) · cos (tanx) · sec2x

(c) f (x) = sin
(
tan2x

)

f ′ (x) =
[
cos
(
tan2x

)]
(2 tanx)

(
sec2x

)
= (2 tanx)

(
sec2x

) [
cos
(
tan2x

)]
22. (a) f (x) = secx2 tanx2

f ′ (x) = sec3
(
x2
)

(2x)

+ tan2
(
x2
)

sec
(
x2
)

(2x)

= 2x sec x2
[
sec2 x2 + tan2 x2

]
(b) f (x) = sec2 (tanx)

f ′ (x) = 2 sec (tanx) [sec (tanx)

. tan (tanx)]
(
sec2x

)
(c) f (x) = sec

(
tan2x

)
f ′ (x) =

[
sec
(
tan2x

)
tan

(
tan2x

)]
· (2 tanx)

(
sec2x

)
=
(
2 tanxsec2x

)
·
[
sec
(
tan2x

)
tan

(
tan2x

)]
23. f

(π
8

)
= sin

π

2
= 1

f ′(x) = 4 cos 4x

f ′
(π

8

)
= 4 cos

π

2
= 0

So, the equation of the tangent line is

y = 0
(
x− π

8

)
+ 1 i.e. y = 1.

24. f(0) = 0
f ′(x) = 3sec23x,
f ′(0) = 3.
So, the equation of tangent line is y = 3x.

25. f
(π

2

)
=
(π

2

)2
cos
(π

2

)
= 0

f ′ (x) = x2 (− sinx) + cosx (2x)

= −x2 (sinx) + (2x) cosx

f ′
(π

2

)
= − π2

4
sin

π

2
+ 2 · π

2
cos

π

2
= − π2

4
So, the equation of the tangent line is

y = − π2

4

(
x− π

2

)
.

26. f
(π

2

)
=
π

2

f ′(x) = sinx+ x cosx, so f ′
(π

2

)
= 1.

So, the equation of the tangent line is y = x.

27. s(t) = t2 − sin(2t), t0 = 0
v(t) = s′(t) = 2t− 2 cos(2t)
v(0) = 0− 2 cos(0) = 0− 2 = −2 ft/s

28. s(t) = 4 + 3 sin t, t0 = π
v(t) = s′(t) = 3 cos t
v(π) = −3 ft/s
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29. s(t) =
cos t

t
, t0 = π

v(t) = s′(t) = −1
t2 cos t+ 1

t (− sin t)

v(π) = −cosπ

π2
− sinπ

π

=
1

π2
− 1

π
(0) =

1

π2
ft/s

30. s(t) = t cos(t2 + π), t0 = 0

v(t) = s′(t) = cos(t2 + π)− 2t2 sin(t2 + π)

v(0) = cosπ − 0 = −1 ft/s.

31. (a) f(t) = 4 sin 3t. The velocity at time t is
f ′(t) = 12 cos 3t.

(b) The maximum speed is 12.

(c) The maximum speed of 12 occurs when
the vertical position is zero.

32. (a) The velocity is f ′(t) = 12 cos 3t which is
0 when 3t = kπ

2 or t = kπ
6 for any odd

integer k.

(b) The location of the spring at these times
is given (for any odd integer k) by
f
(
k π6
)

= 4 sin
(
3k π6

)
= 4 sin

(
k π2
)

=
±4.

(c) The spring changes directions at the top
and bottom.

33. (a) lim
x→0

sin 3x

x
= lim
x→0

3 sin 3x

3x

= 3 · lim
x→0

sin(3x)

(3x)

= 3 · 1 = 3

(b) lim
t→0

sin t

4t
=

1

4
lim
t→0

sin t

t
=

1

4
· 1 =

1

4

(c) lim
x→0

cosx− 1

5x
=

1

5
lim
x→0

cosx− 1

x
= 0

(d) Let u = x2: then u→ 0 as x→ 0, and

lim
x→0

sinx2

x2
= lim
u→0

sinu

u
= 1

34. (a) lim
t→0

2t

sin t
= lim
t→0

2
sin t
t

= 2

(b) Let u = x2 : then u→ 0 as x→ 0, and

lim
x→0

cosx2 − 1

x2
= lim
u→0

cosu− 1

u
= 0

(c) lim
x→0

sin 6x

sin 5x
= lim
x→0

6 sin 6x
6x

5 sin 5x
5x

=
6

5

(d) lim
x→0

tan 2x

x
= lim
x→0

sin 2x
cos 2x

x

= lim
x→0

2 sin 2x

2x

1

cos 2x
= 2

35. f (x) = sin (2x) = 20 sin (2x)
f ′ (x) = 2 cos 2x = 21 cos (2x)

f ′′ (x) = −4 sin 2x = −22 sin (2x)
f ′′′ (x) = −8 cos 2x = −23 cos (2x)
f (4) (x) = 16 sin 2x = 24 sin (2x)

f (75) (x) =
(
f (72)

)(3)
(x)

=
(
f (18·4)

)(3)
(x)

= 272f ′′′ (x)

= 272
[
−23 cos (2x)

]
= −275 cos (2x)

f (150) (x) =
(
f (148)

)(2)
(x)

=
(
f (37·4)

)(2)
(x)

= 2148f ′′ (x)

= 2148
[
−22 sin (2x)

]
= −2150 sin (2x)

36. f (x) = cos (3x) = 30 cos (3x)
f ′ (x) = −3 sin 3x = −31 sin (3x)
f ′′ (x) = −9 cos 3x = −32 cos (3x)
f ′′′ (x) = 27 sin 3x = 33 sin (3x)
f (4) (x) = 81 cos 3x = 34 cos (3x)

f (77) (x) =
(
f (76)

)(1)
(x)

=
(
f (19·4)

)(1)
(x)

= 376f ′ (x)

= 376
[
−31 sin (3x)

]
= −377 sin (3x)

f (120) (x) =
(
f (120)

)
(x)

=
(
f (30·4)

)
(x)

= 3120 cos (3x)

37. Since, 0 ≤ sin θ ≤ θ, we have
−θ ≤ − sin θ ≤ 0 which implies
−θ ≤ sin(−θ) ≤ 0,

so for −π
2
≤ θ ≤ 0

we have θ ≤ sin θ ≤ 0.
We also know that
lim
θ→0−

θ = 0 = lim
θ→0−

0,

so the Squeeze Theorem implies that
lim
θ→0−

sin θ = 0.

38. Since cos2θ + sin2θ = 1, we have

cos θ =
√

1− sin2θ. Then

lim
θ→0

cos θ = lim
θ→0

√
1− sin2θ = ±1.

Since cos θ is a continuous function and
cos 0 = 1, we conclude that lim

θ→0
cos θ = 1
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39. If f(x) = cos(x), then
f(x+ h)− f(x)

h

=
cos(x+ h)− cos(x)

h

=
cosx cosh− sinx sinh− cosx

h

= (cosx)
(cosh− 1)

h
− (sinx)

(
sinh

h

)
.

Taking the limit according to lemma 6.1

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= (cosx) · lim
h→0

cosh− 1

h

− (sinx) · lim
h→0

sinh

h

= cosx · 0− sinx · 1 = − sinx

40.
d

dx
cotx =

d

dx

(cosx

sinx

)
=

sinx(− sinx)− cosx cosx

sin2x

= − 1

sin2x
= −csc2x

d

dx
secx =

d

dx

(
1

cosx

)
=

cosx · 0− 1(− sinx)

cos2x

=
sinx

cosx

(
1

cosx

)
= secx tanx.

d

dx
cscx =

d

dx

(
1

sinx

)
=

sinx · 0− 1 cosx

sin2x

= − 1

sinx

(cosx

sinx

)
= − cscx cotx.

41. Answers depend on CAS.

42. Answers depend on CAS.

43. Answers depend on CAS.

44. Answers depend on CAS.

45. (a) If x 6= 0, then f is continuous by The-
orem 4.2 in Section 1.4, and f is differ-
entiable by the Quotient rule ( Theorem
4.2 in Section 2.4) Thus, we only need to
check x = 0. To see that f is continuous
at x = 0.

lim
x→0

f(x) = lim
x→0

sinx

x
= 1

(By Lemma 6.3)
Since lim

x→0
f(x) = f(0), f is continuous

at x = 0.

To see that f is differentiable at x = 0.

f ′ (a) = lim
x→a

f(x)− f(a)

x− a

f ′ (0) = lim
x→a

f(x)− f(0)

x− 0

f ′ (0) = lim
x→a

sin x
x − 1

x

In the proof of Lemma 6.3, equation 6.8
was derived:

1 >
sinx

x
> cosx.

Thus, 0 >
sinx

x
− 1 > cosx− 1 and

therefore if x > 0,

0 >
sin x
x − 1

x
>

cosx− 1

x
and if x < 0,

0 <
sin x
x − 1

x
<

cosx− 1

x

By lemma 6.4, lim
x→0

cosx− 1

x
= 1.

By applyings squeeze theorem to previ-
ous two inequalities, we obtain

lim
x→0

sin x
x − 1

x
= 1 so, f ′ (0) = 0.

(b) From part(a) and quotient rule we have,

f ′ (x) =

{
0 x = 0

x cos x−sin x
x2 x 6= 0

Thus to show that f ′ (x) is continous,
we need only to show that

lim
x→0

f ′ (x) = f ′ (0) = 0.

lim
x→0

f ′ (x) = lim
x→0

x cosx− sinx

x2

= lim
x→0

x
(
cosx− sin x

x

)
x2

= lim
x→0

(
cosx− sin x

x

)
x

= 0

Since, lim
x→0

sinx

x
= 1.

46. We use the assumption that x is in radians
in Lemma 6.3. The derivative of sinx

◦
=

sin(
π

180
◦ x) is

π

180
◦ cos(x

◦
). The factor of

π

180
◦ comes from applying the chain rule.

47. The Sketch: y = x and y = sinx
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y

2

1

0

-1

-2

x

3210-1-2-3

It is not possible visually to either detect or
rule out intersections near x = 0 (other than
zero itself).

We have that f ′(x) = cosx, which is less
than 1 for 0 < x < 1. If sinx ≥ x for some
x in the interval (0, 1), then there would be
a point on the graph of y = sinx which lies
above the line y = x, but then (since sinx is
continuous) the slope of the tangent line of
sinx would have to be greater than 1 or equal
to at some point in that interval, contradict-
ing f ′(x) < 1. Since sinx < x for 0 < x < 1,
we have for − sinx > −x for 0 < x < 1.
Then − sinx = sin(−x) so sin(−x) > −x
for 0 < x < 1, which is the same as saying
sinx > x for −1 < x < 0.

Since −1 ≤ sinx ≤ 1, the only interval on
which y = sinx might intersect y = x is [-1,
1]. We know they intersect at x = 0 and we
just showed that they do not intersect on the
intervals (-1, 0) and (0, 1). So the only other
points they might intersect are x = ±1, but
we know that sin(±1) 6= ±1, so these graphs
intersect only at x = 0.

48. 0 < k ≤ 1 produces one intersection. For
1 < k < 7.8 (roughly) there are exactly
three intersections. For k ≈ 7.8 there are
5 intersections. For k > 7.8 there are 7 or
more intersections.

2.7 Derivatives of
Exponential and Logarithmic
Functions

1. f ′(x) = 3x2.ex + x3.ex = x2ex(x+ 3)

2. f ′(x) = 2e2x cos 4x+ e2x(− sin 4x)4

3. f(t) = t+ 2t

f ′(t) = 1 + 2t log 2

4. f(t) = t43t

f ′(t) = 43t + t43t (ln 4) 3 = 43t (1 + 3t ln 4)

5. f ′(x) = 2e4x+1(4) = 8e4x+1

6. f ′(x) = e−x, so f ′(x) = −e−x.

7. h(x) = (1
3 )
x2

h
′
(x) = ln( 1

3 ) · 2x · ( 1
3 )
x2

= 2x · ln( 1
3 ) · ( 1

3 )
x2

= −2x · ln(3) · ( 1
3 )
x2

8. h(x) = 4−x
2

h′(x) = 4−x
2

· ln(4) · (−2x)

= −2x · 4−x
2

· ln(4)

9. f(u) = eu
2+4u

f ′(u) = eu
2+4u · d

du
(u2 + 4u)

= eu
2+4u

· (2u+ 4)

10. f(x) = 3etan x

f ′(x) = 3etan x · d
dx

(tanx)

= 3etan xsec2x

11. f(w) =
e4w

w

f ′(w) =
w · 4e4w − e4w · 1

w2

=
e4w(4w − 1)

w2

12. f(w) =
w

e6w

f ′(w) =
1 · e6w − w · e6w · 6

(e6w)
2

=
e6w − 6we6w

(e6w)
2 =

(1− 6w)

e6w

13. f ′(x) =
1

2x
.(2) =

1

x

14. f(x) =
1

2
ln 8 +

1

2
lnx

f ′(x) =
1

2x

15. f(t) = ln(t3 + 3t)

f ′(t) =
1

t3 + 3t
· (3t+ 3)

=
3t2 + 3

t3 + 3t
=

3
(
t2 + 1

)
t (t2 + 3)
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16. f(t) = t3 ln(t)

f ′(t) = 3t2 · ln (t) + t3 · 1

t

= 3t2 ln (t) + t2

17. g(x) = ln(cosx)

g′(x) =
1

cosx
(− sinx) = − tanx

18. g(x) = cosx ln(x2 + 1)

g′(x) = ln(x2 + 1) · (− sinx) +
2x cosx

x2 + 1

=
2x cosx

x2 + 1
− sinx · ln(x2 + 1)

19. (a) f(x) = sin(lnx2)

f ′(x) = cos(lnx2) · 2x

x2

=
2 cos(lnx2)

x

(b) g(t) = ln(sin t2)

g′(t) =
1

sin t2
· cos t2 · 2t

=
cos t2 · 2t

sin t2
= 2t cot(t2)

20. (a) f (x) =

√
ln x

x

f ′(x) =
x · 12 (lnx)

− 1
2 · 1x − (lnx)

1
2 · 1

x2

=

1
2
√
ln x
−
√

ln x

x2

=
1− 2 lnx

2x2
√

ln x

(b) g(t) =
ln
√
t

t

g′(t) =
t · 1

2
√
t
· t− 1

2 − ln
√
t

t2

=
1
2 − ln

√
t

t2

=
1− 2 · ln

√
t

2t2

21. (a) h(x) = ex · lnx
h′(x) = ex · 1

x
+ ln x · ex

(b) f(x) = eln x

f ′(x) = eln x · 1

x

22. (a) h(x) = 2e
x

h′(x) = 2e
x

· ex · ln 2

(b) f(x) =
ex

2x

f ′(x) =
2x · ex − ex · 2x · ln 2

(2x)
2

=
ex(1− ln 2)

2x

23. (a) f(x) = ln (sinx)

f ′ (x) =
1

sinx
· cosx = cotx

(b) f (t) = ln (sec t+ tan t)

f ′ (t) =
sec t tan t+ sec2t

sec t+ tan t
= sec t

24. (a) f (x) =
3
√
e2x · x3

f ′(x) =
1

3

(
e2x · x3

)− 2
3 ·
(
3x2e2x + 2x3e2x

)
=
x2 · e2x · (3 + 2x)

3(e2x · x3)
2
3

(b) f(w) = 3
√
e2w + w3

f ′(w) =
1

3
(e2w + w3)

− 2
3 · (2e2w + 3w2)

25. f (x) = 3ex
2

f (1) = 3e1
2

= 3e

f ′ (x) = 3ex
2

2x

f ′ (1) = 3e1
2

2 (1) = 6e
So, the equation of the tangent line is,
y = 6e (x− 1) + 3e.

26. f (x) = 3x
e

f (1) = 31
e

= 3
f ′ (x) = 3x

e

ln 3 · ex(e−1)
f ′ (1) = 3 ln 3 · e
So, the equation of the tangent line is,
y = 3 ln 3 · e (x− 1) + 3.

27. f (1) = 0

f ′ (x) = 2x lnx+ x2.
1

x
= 2x lnx+ x

f ′ (1) = 2 · 1 ln 1 + 1 = 2 · 0 + 1 = 1
So the equation of tangent line is
y = 1 (x− 1) + 0 or y = x− 1.

28. f(x) = 2 ln x3

f ′(x) =
2

x3
· 3x2 =

6

x
Slope = f ′(x) at x = 1.

Slope m =
6

1
= 6.

Equation of the line passing through (x1 , y1)
with slope m is y − y1 = m(x− x1).
At x1 = 1, y

1
= f(1) = 2. ln 13 = 0.

Therefore equation is y − 0 = 6 · (x − 1) or
y = 6x− 6.

29. (a) f (x) = xe−2x

Given that, the tangent line to f(x)
is horizontal. Therefore slope is zero.
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Hence,
f ′ (x) = e−2x − 2xe−2x = 0
e−2x(1− 2x) = 0

x =
1

2
.

(b) f(x) = x · e−3x
Given that, the tangent line to f(x)
is horizontal. Therefore slope is zero.
Hence,
f ′(x) = x · (−3e−3x) + e−3x = 0.

⇒ e−3x (−3x+ 1) = 0

⇒ 3x− 1 = 0

⇒ x =
1

3

30. (a) f(x) = x2 · e−2x
Given that, the tangent line to f(x)
is horizontal. Therefore slope is zero.
Hence,
f ′(x) = x2 · (−2e−2x) + 2x · e−2x = 0

⇒ −x+ 1 = 0

⇒ x = 1

(b) f(x) = x2 · e−3x
Given that, the tangent line to f(x)
is horizontal. Therefore slope is zero.
Hence,
f ′(x) = x2 · (−3e−3x) + 2x · e−3x = 0

⇒ −3x+ 2 = 0

⇒ x =
2

3
.

31. v′ (t) = 100.3t ln 3
v′ (t)

v (t)
=

100.3t ln 3

100.3t
= ln 3 ≈ 1.10

So, the percentage change is about 110%

32. v′ (t) = 1004t (ln 4)
v′ (t)

v (t)
= ln 4 ≈ 1.3863

The instantaneous percentage rate of change
is 138.6%

33. v (t) = 40e0.4t

v′ (t) = 40e0.4t (0.4) = 16e0.4t

v′ (t)

v (t)
=

16e0.4t

40e0.4t
= 0.4

The instantaneous percentage rate of change
is 40%.

34. v (t) = 60e−0.2t

v′ (t) = 60e−0.2t (−0.2) = −12e−0.2t

v′(t)
v(t) = − 12e−0.2t

60e−0.2t = −0.2

The instantaneous percentage rate of change
is −20%.

35. p (t) = 200.3t

ln (p (t)) = ln (200) + t ln (3)
p′(t)
p(t) = d

dt [ln (p (t))] = ln 3 ≈ 1.099,

so the rate of change of population is about
110% per unit of time.

36. The population after t days will be p (t) =
500.2t/4. The rate of change is p′ (t) =
500.2t/4 (ln 2) (1/4). So the relative rate of

change is
ln 2

4
≈ 0.1733. Therefore the per-

centage rate of change is about 17.3%.

37. c (t) =
6

2e−8t + 1
= 6
(
2e−8t + 1

)−1
c′ (t) = −6

(
2e−8t + 1

)−2
.
(
−16e−8t

)
=

96e−8t

(2e−8t + 1)
2

Since e−8t > 0 for any t both numerator and
denominator are positive,so that c′ (t) > 0.
Then, since c (t) is an increasing function
with a limiting value of 6 (as t goes to infin-
ity) the concentration never exceeds (indeed,
never reaches) the value of 6.

38. c′ (t) = −10
(
9e−10t + 2

)−2 (−90e−10t
)

=
900e−10t

(9e−10t + 2)
2

Since e−10t > 0 for all t, c′ (t) > 0 for all t,
and c(t) is increasing for all t. This forces,
c (t) < lim

t→∞
c (t) = 5

39. f (x) = xsin x

ln f (x) = sinx. lnx
f ′ (x)

f (x)
=

d

dx
(sinx. lnx)

= cosx. lnx+
sinx

x

f ′ (x) = xsin x
(
x cosx. lnx+ sinx

x

)
40. f (x) = x4−x

2

ln f (x) =
(
4− x2

)
lnx

f ′ (x)

f (x)
= −2x lnx+

(
4− x2

) 1

x

f ′ (x) = x4−x
2

(
−2x lnx+

(
4− x2

) 1

x

)
41. f (x) = (sinx)

x

ln f (x) = x. ln (sinx)
f ′ (x)

f (x)
=

d

dx
(x. ln (sinx))

=
x cosx

sinx
+ ln (sinx)

= x cotx+ ln (sinx)
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f ′ (x) = (sinx)
x
. (x cotx+ ln (sinx))

42. f (x) =
(
x2
)4x

ln f (x) = 8x lnx
f ′ (x)

f (x)
= 8 lnx+ 8x

1

x

f ′ (x) =
(
x2
)4x

(8 lnx+ 8)

43. f (x) = xln x

ln f (x) = lnx. lnx = ln2x
f ′ (x)

f (x)
=

d

dx

(
ln2x

)
=

2 lnx

x

f ′ (x) = xln x
[

2 lnx

x

]
= 2x[(ln x)−1] ln x

44. f (x) = x
√
x

ln f (x) =
√
x lnx

f ′ (x)

f (x)
=

1

2
√
x

lnx+
√
x

1

x

f ′ (x) = x
√
x

(
1

2
√
x

lnx+
1√
x

)
45. Let (a, ln a) be the point of intersection of

the tangent line and the graph of y = f(x).
f(x) = lnx

f ′(x) =
1

x

m = f ′ (a) =
1

a
Since the tangent line passes through the ori-
gin,the equation of the tangent line is

y = mx =
1

a
x.

Since (a, ln a) is a point on the tangent line

ln a =
1

a
a = 1 so, a = e.

Second part: Let (a, ea) be the point of in-
tersection of the tangent line and the graph
of y = f (x) .
f (x) = ex

f ′ (x) = ex

m = f ′ (a) = ea

Since the tangent passes through the origin,
the equation of the tangent line is

y = mx = eax.

Since (a, ea) is a point on the tangent line,

ea = eaa

so, a = 1. The slope of the tangent line in
y = lnx is 1/e while the slope of the tangent
line in y = ex is e.

46. We approximate lim
h→0

ah − 1

h
for a = 3.

h
ah − 1

h
0.01 1.10466919
0.001 1.09921598
0.0001 1.09867264
0.00001 1.09861832

-0.01 1.09259958
-0.001 1.09800903
-0.0001 1.09855194

The limit seems to be approaching approxi-
mately 1.0986, which is very close to ln 3 ≈
1.09861

Second part: We approximate lim
h→0

ah − 1

h

for a =
1

3
.

h
ah − 1

h
0.01 -1.09259958
0.001 -1.09800904
0.0001 -1.09855194
0.00001 -1.09860625
−0.01 −1.10466919
−0.001 −1.09921598
−0.0001 −1.09867264

The limit seems to be approaching approx-
imately, −1.0986, which is very close to

ln
1

3
≈ 1.09861228867

47. Answers depend on CAS.

48. Answers depend on CAS.

49. f (x) =
a+ bx

1 + cx
f (0) = a

f ′ (x) =
b (1 + cx)− (a+ bx) c

(1 + cx)
2 =

b− ac
(1 + cx)

2

f ′ (0) = b− ac

f ′′ (x) =
−2c (b− ac)

(1 + cx)
3

f ′′ (0) = −2c (b− ac)
Now,
f (0) = 1⇒ a = 1.
f ′ (0) = 1⇒ b− ac = 1⇒ b− c = 1
f ′′ (0) = 1⇒ −2c (b− ac) = 1

⇒ 2c (b− c) = −1

⇒ 2c = −1

⇒ c = −1

2

So, a = 1, b = 1 + c =
1

2
, c = −1

2
and
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f(x) =
2 + x

2− x
.

The graphs of ex and
2 + x

2− x
are as follows:

y

16

8

8

4

−8

−16

−4 0

x

20

10

12

4

6

0

−4

−12

2

−20

−2−8 −6−10

50. If g (x) = ex, then
g′ (x) = ex and g′′ (x) = ex so

g (0) = g′ (0) = g′′ (0) = 1

If f (x) = a+ bx+ cx2, then f (0) = a,

f ′ (x) = b+ 2cx

f ′ (0) = b

f ′′ (x) = 2c

f ′′ (0) = 2c

1 = g (0) = f (0) = a so, a = 1

1 = g′ (0) = f ′ (0) = b so, b = 1

1 = g′′ (0) = f ′′ (0) = 2c so, c =
1

2

In summary,a = 1, b = 1, c =
1

2
and

g (x) = 1 + x +
1

2
x2. The graphs of the

functions ex,1 + x +
1

2
x2 and the Pade ap-

proximation of ex, which is
2 + x

2− x
are as

follows:

10

10

5

−10

50

0

−5

−5

−10

51. f (x) = e−x
2/2

f ′ (x) = e−x
2/2 . (−2x/2 )

= −xe−x
2/2

f ′′ (x) = −
[
x
(
−xe−x

2/2
)

+ 1.e−x
2/2
]

= xe−x
2/2

(
x2 − 1

)
This will be zero only when x = ±1

52. f (x) = e−x
2/8 , f ′ (x) = (−x/4) e−x

2/8

and
f ′′ (x) = (−1/4 ) e−x

2/8 +
(
x2/16

)
e−x

2/8

= e−x
2/8

(
(−1/4 ) + x2/16

)
.

This is zero when x = ±2. The graph is flat-
ter in the middle, but the tails are thicker.

53. It helps immensely to leave the name f as
it was in #51 and give a new name g to the
new function here, so that

g (x) = e−(x−m)2/2c2 = f(u)

in which u =
x−m
c

. Then

g′ (x) = f ′ (u)
du

dx
=
f ′ (u)

c
=
−uf (u)

c

=
− (x−m) e−(x−m)2/2c2

c2

g′′ (x) =
d

dx

(
f ′ (u)

c

)
=
f ′′ (u) dudx

c

=
f ′′ (u)

c2
=

(
u2 − 1

)
f (u)

c2

=

(
(x−m)

2 − c2
)
e−(x−m)2/2c2

c4
This will be zero only when, x = m± c.

54. f (x) = e−(x−m)2/2c2

f ′ (x) =
− (x−m)

c2
e−(x−m)2/2c2 ,

and this is equal to zero when x = m.

55. f (t) = e−t cos t
v (t) = f ′ (t) = −e−t cos t+ e−t (− sin t)

= −e−t (cos t+ sin t)
If the velocity is zero, it is because
cos t = − sin t, so

t =
3π

4
,

7π

4
, · · · , (3 + 4n)π

4
, · · ·

Position when velocity is zero:
f (3π/4 ) = e−3π/4 cos (3π/4 )

= e−3π/4
(
−1/
√

2
)
≈ −.067020

f (7π/4 ) = e−7π/4 cos (7π/4 )

= e−7π/4
(
−1/
√

2
)
≈ .002896
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Graph of the velocity function:

0

-0.4

-0.2

-0.6

-1

-0.8

32 51 60

t

4

56. f ′ (t) = −2e−2t sin 3t+ 3e−2t cos 3t
= e−2t (−2 sin 3t+ 3 cos 3t)

3

2

0

2.5

1.5

0.5

1.50

-0.5

2.52

t

1 3

1

0.5

The velocity of the spring is zero when
it is changing direction at the top and
bottom of the motion.This occurs when
3 cos 3t = 2 sin 3t or tan 3t = 3/2 ,

i.e., at t =
1

3
tan−1 (3/2 ) ≈ 0.3276

The

position of the spring at this time is ap-
proximate.

57. Graphically the maximum velocity seems to
occur at,t = π .

58. Graphically,the maximum velocity seems to
occur at t = 0; the maximum velocity is not
reached on t � 0.

59. Consider f (x) = Axn

θn+xn for A,n,θ > 0

f (x) =
A(

θ
x

)n
+ 1

ln f (x) = lnA− ln

[(
θ

x

)n
+ 1

]
On diffrentiating with respect to x
1

f(x)f
′ (x) = − 1

[( θx )
n
+1]

.n
(
θ
x

)n−1
.
(
− θ
x2

)
f ′ (x) =

An[(
θ
x

)n
+ 1
]2
(
θ
x

)n
x

f ′ (x) > 0 if and only if x > 0 (A,n, θ > 0)

Also, lim
x→0

f(x) = lim
x→0

[
A

( θx )
n
+1

]
= A

u = ln

(
f(x)/A

1− f(x)/A

)

= ln

 1

( θx )
n
+1

1− 1

( θx )
n
+1


= ln

(
1(
θ
x

)n
)

= −n ln

(
θ

x

)
= −n (ln θ − lnx)

= −n ln θ + n lnx

= nv − n ln θ
Therefore, u is a linear function of v.

Graph of (x, y) in below:

x

10986 7

25

3 4

100

0

y
50

50 1

75

2

From the graph, we can see that y = f(x)→
100 as x→∞.

The table gives (u, v) values as follows:

x y u = ln
y

100− y
v = lnx

1 2 -3.8918 0
2 13 -1.9009 0.6931
3 32 -.75377 1.098
4 52 .80012 1.3863
5 67 .70818 1.6094
6 77 1.2083 1.7918
7 84 1.6582 1.9459
8 88 1.9924 2.0794
9 91 2.3136 2.1972

The graph of (u, v) points are as below
which are almost linear.
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2.0

1.6

0.0

−4

x

0

1.2

−0.4
−2 543

2.8

−1 1

2.4

0.4

0.8

−3−5 2

3.2

Comparing the line passing through the
points (u, v) with v = 1

nu+ lnθ, we get 1
n =

0.3679, ln θ = 1.3458 and hence n = 2.7174,
θ = 3.8413.

60. Answers very depending on source.Linear
growth corrseponds to constant slope. In
other words the population changes by the
same fixed amount per year. In exponen-
tial growth, the size of the change depends
on the sizeof the population. The percent-
age change is the same though from year to
year.

2.8 Implicit Differentiation
and Inverse Trignometric
Fuction

1. Explicitly:
4y2 = 8− x2

y2 =
8− x2

4

y = ±
√

8− x2
2

(choose plus to fit(2,1))

For y =

√
8− x2

2
,

y′ =
1

2

(−2x)

2
√

8− x2
=

−x
2
√

8− x2
,

y′(2) =
−1

2
.

Implicitly:
d

dx
(x2 + 4y2) =

d

dx
(8)

2x+ 8y · y′ = 0

y′ = −2x

8y
= − x

4y

At (2, 1) : y′ = −2

4
= −1

2

2. Explicitly:

y =
4
√
x

x3 − x2

y′ =

(
x3 − x2

)
2√
x
− 4
√
x
(
3x2 − 2x

)
(x3 − x2)

2

Implicitly differentiating:

3x2y + x3y′ − 2√
x

= 2xy + x2y′,

And we solve for y′ to get

y′ =
2xy + 2√

x
− 3x2y

x3 − x2
.

Substitute x = 2 into the first expression,

and (x, y) =
(

2,
√

2
)

, into the second to

get y′ = −7
√

2

4
.

3. Explicitly:
y(1− 3x2) = cosx

y =
cosx

1− 3x2

y′(x) =
(1− 3x2)(− sinx)− cosx(−6x)

(1− 3x2)
2

=
− sinx+ 3x2 sinx+ 6x cosx

(1− 3x2)
2

y′(0) = 0.
Implicitly:
d

dx
(y − 3x2y) =

d

dx
(cosx)

y′ − 3x2y′ − 6xy = − sinx
y′(1− 3x2) = 6xy − sinx

y′ =
6xy − sinx

1− 3x2
At (0, 1) : y′ = 0(again)

4. Explicitly:

y = −x±
√
x2 − 4

At the point (−2, 2), the sign is irrelevant,
so we choose
y = −x+

√
x2 − 4

y′ = −1 +
2x

2
√
x2 − 4

= −1 +
x√

x2 − 4
Implicitly differentiating:
y′ + 2y + 2xy′ = 0,
and we solve for y′ :

y′ =
−2y

2x+ 2y
Substitute x = −2 in the first expression and
(x, y) = (−2, 2) in to the second expression
to see that y′ is undefined. There is a vertical
tangent at this point.

5.
d

dx
(x2y2 + 3y) =

d

dx
(4x)

2xy2 + x22yy′ + 3y′ = 4
y′(2x2y + 3) = 4− 2xy2

y′ =
4− 2xy2

2x2y + 3

6. 3y3 + 3x(3y2)y′ − 4 = 20yy′
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(9xy2 − 20y)y′ = 4− 3y3

y′ =
3y3 − 4

20y − 9xy2

7.
d

dx
(
√
xy − 4y2) =

d

dx
(12)

1

2
√
xy
· d
dx

(xy)− 8y · y′ = 0

1

2
√
xy
.(xy′ + y)− 8y · y′ = 0

(xy′ + y)− 16y · y′√xy = 0
y′(x− 16y

√
xy) = −y

y′ =
−y

(x− 16y
√
xy)

=
y

16y
√
xy − x

8. cos(xy)(y + xy′) = 2x

y′ =
2x− y cos(xy)

x cos(xy)

9. x+ 3 = 4xy + y3

1 =
d

dx
(4xy + y3) = 4(xy′ + y) + 3y2y′

1− 4y = (4x+ 3y2)y′

y′ =
1− 4y

3y2 + 4x

10. 3x+ y3 − 4y

x+ 2
= 10x2

Diffrentiating with respect to x,
d

dx

(
3x+ y3 − 4y

x+ 2

)
=

d

dx

(
10x2

)
By the Chain rule and Product rule,

3 + 3y2y′ −

[
(x+ 2) 4y′ − 4y

(x+ 2)
2

]
= 20x

3(x+ 2)
2

+ 3y2y′(x+ 2)
2

−4y′ (x+ 2) + 4y = 20x(x+ 2)
2

3y2y′(x+ 2)
2 − 4y′ (x+ 2)

= 20x(x+ 2)
2 − 3(x+ 2)

2 − 4y

y′ (x+ 2)
[
3y2 (x+ 2)− 4

]
= (x+ 2)

2
(20x− 3)− 4y

y′ =
(x+ 2)

2
(20x− 3)− 4y

(x+ 2) [3y2 (x+ 2)− 4]

11.
d

dx
(ex

2y − ey)) =
d

dx
(x)

ex
2y d

dx
(ex

2y)− eyy′ = 1

ex
2y(2xy + x2y′)− eyy′ = 1

y′(x2ex
2y − ey) = 1− 2xyex

2y

y′ =
1− 2xyex

2

(x2ex2y − ey)

12. ey + xeyy′ − 3y′ sinx− 3y cosx = 0

y′ =
3y cosx− ey

xey − 3 sinx

13. y2
√
x+ y − 4x2 = y

Diffrentiating with respect to x,
d

dx

(
y2
√
x+ y − 4x2

)
=

d

dx
(y)

By the Chain rule and Product rule,
d

dx

(
y2
√
x+ y

)
− 4

d

dx

(
x2
)

=
d

dx
(y)[

y2
(

1

2
√
x+ y

)
(1 + y′)

]
+ 2yy′

√
x+ y − 8x = y′

y2 + y2y′ + 4yy′(x+ y)− 16x
√
x+ y

= 2y′
√
x+ y

y2y′ + 4yy′(x+ y)− 2y′
√
x+ y

= 16x
√
x+ y − y2

y′
[
y2 + 4y(x+ y)− 2

√
x+ y

]
= 16x

√
x+ y − y2

y′ =
16x
√
x+ y − y2

y2 + 4y(x+ y)− 2
√
x+ y

14. x cos (x+ y)− y2 = 8
Diffrentiating with respect to x,
d

dx

(
x cos (x+ y)− y2

)
=

d

dx
(8)

By the Chain rule and Product rule,
d

dx
(x cos (x+ y))− d

dx

(
y2
)

=
d

dx
(8)

cos (x+ y)−x sin (x+ y) (1 + y′)− 2yy′ = 0
cos (x+ y)− x sin (x+ y)− x sin (x+ y) y′

−2yy′ = 0
y′ (−x sin (x+ y)− 2y)

= x sin (x+ y)− cos (x+ y)

y′ =
x sin (x+ y)− cos (x+ y)

−x sin (x+ y)− 2y

y′ =
cos (x+ y)− x sin (x+ y)

x sin (x+ y) + 2y

15. e4y − ln
(
y2 + 3

)
= 2x

Diffrentiating with respect to x,
d

dx

(
e4y − ln

(
y2 + 3

))
=

d

dx
(2x)

By the Chain rule and Product rule,
d

dx

(
e4y
)
− d

dx

(
ln
(
y2 + 3

))
=

d

dx
(2x)

e4y (4y′)− 2yy′

y2 + 3
= 2

4e4y
(
y2 + 3

)
y′ − 2yy′ = 2

(
y2 + 3

)
y′
(
4e4y

(
y2 + 3

)
− 2y

)
= 2

(
y2 + 3

)
y′ =

2
(
y2 + 3

)
4e4y (y2 + 3)− 2y

16. ex
2

y − 3
√
y2 + 2 = x2 + 1

Diffrentiating with respect to x,
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d

dx

(
ex

2

y − 3
√
y2 + 2

)
=

d

dx

(
x2 + 1

)
By the Chain rule and Produt rule,
d

dx

(
ex

2

y
)
− 3

d

dx

(√
y2 + 2

)
= 2x

ex
2

(2x) y + ex
2

y′ − 3 · 2yy′

2
√
y2 + 2

= 2x

2xyex
2

+ ex
2

y′ − 3yy′√
y2 + 2

= 2x

2xyex
2√

y2 + 2 + ex
2

y′
√
y2 + 2− 3yy′

= 2x
√
y2 + 2

y′
(
ex

2√
y2 + 2− 3y

)
= 2x

√
y2 + 2

−2xyex
2√

y2 + 2

y′ =
2x
√
y2 + 2

(
1− yex2

)
ex2
√
y2 + 2− 3y

17. Rewrite: x2 = 4y3

Differentiate by x : 2x = 12y2y′

y′ =
2x

12y2

At (2, 1) : y′ = 2
6·12 = 1

3
The equation of the tangent line is

y − 1 =
1

3
(x− 2) or y =

1

3
(x+ 1).

1.25

1.5

1.0

0.25

0.0

4

0.75

2

0.5

0

x

31

18. 2xy2 + x22y.y′ = 4, so y′ =
4− 2xy2

2x2y
.

y′ at (1, 2) is −1, and the equation of the
line is y = −1(x− 1) + 2.

0

2

y

−2

10

−1

−4

−3

−8

31

−10

−5

8

54

4

−6

−4 0

6

2

x
−2

19. x2y2 = 3y + 1
Diffrentiating with respect to x,
d

dx

(
x2y2

)
=

d

dx
(3y + 1)

By using the Product Rule we have,
2xy2 + 2yy′x2 = 3y′

y′ =
2xy2

3− 2yx2

At (2, 1), y′ = −4

5
.

The equation of the tangent line is given by

y − 1 = −4

5
(x− 2) .

y

0.5

4

1.0

2.0

0.0

x

31

3.0

0 2

1.5

2.5

20. x3y2 = −2xy − 3
Diffrentiating with respect to x,
d

dx

(
x3y2

)
=

d

dx
(−2xy − 3)

By using Product Rule,
3x2y2 + 2yy′x3 = −2y − 2y′

y′
(
2x3y + 2x

)
= −2y − 3x2y2

y′ = −2y + 3x2y2

2x3y + 2x
Substituting x = −1 and y = −3,

y′ (−1) = −2 (−3) + 3(−1)
2
(−3)

2

2(−1)
3

(−3) + 2 (−1)

= −−6 + 27

6− 2
= −21

4
The equation of the tangent line is

(y + 3) = −21

4
(x+ 1) .
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−5.0

x

−2

10.0

−2.5

0.0

2.5

5.0

−4 −1−3

y

7.5

−5

21. 4y2 = 4x2 − x4
8yy′ = 8x− 4x3

y′ =
x(2− x2)

2y
.

The slope of the tangent line at (1,
√
3
2 ) is

m =
1(2− 12)

2.(
√
3
2 )

=
1√
3

=

√
3

3
.

The equation of the tangent line is

y −
√

3

2
=

√
3

3
(x− 1)

y ==

√
3

3
x+

√
3

6
.

−1

1

y

3

−3

0

−3

−2 20

x

−1

2

3

−2

1

22. x4 − 8x2 = −8y2

4x3 − 16x = −16yy′

y′ =
−(4x3 − 16x)

16y
=

4x(4− x2)

16y

The slope of the tangent line at (2, −
√

2) is

m =
2(4− 22)

4(−
√

2)
= 0.

The equation of the tangent line is y = −
√

2.

y

0.0

1.0

x

3.02.52.01.5

0.5

0.5

−0.5

0.0

1.0

−1.0

23.
d

dx
(x2y2 + 3x− 4y) =

d

dx
(5)

x22yy′ + 2xy2 + 3− 4y′ = 0
Differentiate both sides of this with respect
to x :
d

dx
(x22yy′ + 2xy2 + 3− 4y′) =

d

dx
(0)

2(2xyy′ + x2(y′)
2

+ x2yy′′) + 2(2xyy′ + y2)

− 4y′′ = 0.

y′ + x2(y′)
2

+ x2yy′′ + 2xyy′ + y2 − 2y′′ = 0.

y′ + x2(y′)
2

+ y2 = y′′(2− x2y)

y′′ =
4xyy′ + x2(y′)

2
+ y2

2− x2y

24.
d

dx
(x2/3 + y2/3) =

d

dx
(4)

2

3
x−1/3 +

2

3
y−1/3y′ = 0

Multiply by 3
2 and implicitly differentiate

again:

−1

3
x−4/3 − 1

3
y−4/3y′y′ + y−1/3y′′ = 0

so

y′′ =
x−4/3 + y−4/3(y′)

2

3y−1/3

25.
d

dx
(y2) =

d

dx
(x3 − 6x+ 4 cos y)

2yy′ = 3x2 − 6− 4 sin y.y′.
Differentiating again with respect to x :

2yy′′+2(y′)
2

= 6x−4
[
sin y.y′′ + cos y.(y′)

2
]

yy′′ + (y′)
2

= 3x− 2 sin y.y′′ − 2 cos y.(y′)
2

y′′(y + 2 sin y) = 3x− (2 cos y + 1) (y′)
2

y′′ =
3x− (2 cos y + 1) (y′)

2

y + 2 sin y

26.
d

dx
(exy + 2y − 3x) =

d

dx
(sin y)

exy(y + xy′) + 2y′ − 3 = cos y.y′

Differentiating again with respect to x :

exy(y + xy′)
2

+ exy(y′ + y′ + xy′′) + 2y′′

= − sin y(y′)
2

+ cos y.y′′

and
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y′′ =
exy(y + xy′)

2
+ 2exyy′ + sin y(y′)

2

cos y − xexy − 2

27. (y − 1)
2

= 3xy + e4y

Diffrentiating with respect to x,
d

dx
(y − 1)

2
=

d

dx

(
3xy + e4y

)
By the Chain and Product rule,
2 (y − 1) y′ = 3y + 3xy′ + 4e4yy′

Diffrentiating with respect to x,
d

dx
[2 (y − 1) y′] =

d

dx

[
3y + 3xy′ + 4e4yy′

]
By the Chain and Product rule,

2 (y − 1) y′′ + 2(y′)
2

= 3y′ + 3xy′′ + 3y′ + 4e4yy′′ + 16e4y(y′)
2

2 (y − 1) y′′ − 3xy′′ − 4e4yy′′

= 6y′(x) + 16e4y(y′)
2 − 2(y′)

2

y′′
[
2 (y − 1)− 3x− 4e4y

]
= 2y′

(
3 + 8e4yy′ − y′

)
y′′ =

2y′
(
3 + 8e4yy′ − y′

)
2 (y − 1)− 3x− 4e4y

28. (x+ y)
2 − ey+1 = 3x

Diffrentiating with respect to x,
d

dx

[
(x+ y)

2 − ey+1
]

=
d

dx
(3x)

By the Chain rule,
2 (x+ y) (1 + y′)− ey+1y′ = 3
Diffrentiating with respect to x,
d

dx

[
2 (x+ y) (1 + y′)− ey+1y′

]
= 0

By the Chain and Product rule,

2 (x+ y) y′′ + 2(1 + y′)
2 − ey+1y′′

− ey+1(y′)
2

= 0

y′′
[
2 (x+ y)− ey+1

]
= ey+1(y′)

2 − 2(1 + y′)
2

y′′ =
ey+1(y′)

2 − 2(1 + y′)
2

2 (x+ y)− ey+1

29. (a) f(x) = sin−1
(
x3 + 1

)
Diffrentiating with respect to x,

f ′ (x) =
d

dx

[
sin−1

(
x3 + 1

)]
.

By the Chain rule we get,

f ′ (x) =
1√

1− (x3 + 1)
2

d

dx

(
x3 + 1

)
=

1√
1-(x3+1)

2

(
3x2
)

=
3x2√

1− (x3 + 1)
2
.

(b) f(x) = sin−1
(√
x
)

Diffrentiating with respect to x,

f ′(x) =
d

dx

[
sin−1

(√
x
)]
.

By the Chain rule, we get

f ′(x) =
1√

1− (
√
x)

2

d

dx

(√
x
)

=
1√

1− x

(
1

2
√
x

)
=

1

2
√
x (1− x)

30. (a) f (x) = cos−1
(
x2 + x

)
Diffrentiating with respect to x,

f ′ (x) =
d

dx

[
cos−1

(
x2 + x

)]
.

By using Chain rule,

f ′ (x) =
−1√

1− (x2 + x)
2

d

dx

(
x2 + x

)
=

− (2x+ 1)√
1− (x2 + x)

2

(b) f (x) = cos−1
(

2

x

)
Diffrentiating with respect to x,

f ′ (x) =
d

dx

[
cos−1

(
2

x

)]
By using Chain rule,

f ′ (x) =
−1√

1−
(
2
x

)2 d

dx

(
2

x

)

=
−1√

1−
(

4
x2

) (−2

x2

)

=
2

x
√
x2 − 4

31. (a) f (x) = tan−1
(√
x
)

Diffrentiating with respect to x,

f ′ (x) =
d

dx

[
tan−1

(√
x
)]
.

By the Chain rule,

f ′ (x) =
1

1 + (
√
x)

2

d

dx

(√
x
)

=
1

(1 + x)

(
1

2
√
x

)
=

1

2
√
x (1 + x)

(b) f (x) = tan−1
(

1

x

)
Diffrentiating with respect to x,

f ′ (x) =
d

dx

[
tan−1

(
1

x

)]
.

By the Chain rule,
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f ′ (x) =
1

1 +
(
1
x

)2 d

dx

(
1

x

)
=

1(
1 + 1

x2

) (−1

x2

)
=

−1

(x2 + 1)

32. (a) f (x) =
√

2 + tan−1x
Diffrentiating with respect to x,

f ′ (x) =
d

dx

(√
2 + tan−1x

)
.

By the Chain rule,

f ′ (x) =
1

2
√

2 + tan−1x

d

dx

(
2 + tan−1x

)
=

1

2
√

2 + tan−1x

(
1

1 + x2

)
=

1

2 (1 + x2)
√

2 + tan−1x

(b) f (x) = etan
−1x

Diffrentiating with respect to x,

f ′ (x) =
d

dx

(
etan

−1x
)
.

By the Chain rule,

f ′ (x) =
(
etan

−1x
)( 1

1 + x2

)
=
etan

−1x

1 + x2

33. (a) f (x) = 4 sec
(
x4
)

Diffrentiating with respect to x,

f ′ (x) =
d

dx

(
4 sec

(
x4
))

By Chain rule,

f ′ (x) = 4 sec
(
x4
)

tan
(
x4
) d

dx

(
x4
)

= 4 sec
(
x4
)

tan
(
x4
) (

4x3
)

= 16x3 sec
(
x4
)

tan
(
x4
)

(b) f (x) = 4sec−1
(
x4
)

Diffrentiating with respect to x,

f ′ (x) =
d

dx

(
4sec−1

(
x4
))
.

By Chain rule,

f ′ (x) = 4
1

x4
√

(x4)
2 − 1

d

dx

(
x4
)

= 4
1

x4
√
x8 − 1

(
4x3
)

=
16

x
√
x8 − 1

34. (a) f (x) = sin−1
(

1

x

)
Diffrentiating with respect to x,

f ′ (x) =
d

dx

(
sin−1

(
1

x

))
.

By the Chain rule,

f ′ (x) =
1√

1−
(
1
x

)2 d

dx

(
1

x

)

=
x√

x2 − 1

(
−1

x2

)
= − 1

x
√
x2 − 1

(b) f (x) = c sc−1 (x)
Diffrentiating with respect to x,

f ′ (x) =
d

dx
c sc−1 (x) .

By the Chain rule,

f ′ (x) = − 1

x
√
x2 − 1

.

35. In example 8.6,we are given

θ′(d) =
2(−130)

4 + d2
Setting this equal to -3 and solving for d
gives d2 = 82 ⇒ d = 9 feet. The better can
track the ball after they would have to start
swinging(when the ball is 30 feet away),but
not all the way to home plate.

36. From example 8.6, the rate of angle is

θ′(t) =
1

1 + [d(t)2 ]
2

(
d′(t)

2

)
Given a maximum rotational rate of θ′(t) =
−3 (radians/second), the distance from the
plate at which a player can track the ball can
be obtained by solving the equation

−3 =
2d′(t)

4 + [d(t)]
2

for d(t) in terms of d′(t) This leads to

d(t) =

√
−6.d′(t)− 36

3
if d′(t) ≤ −6 which may be reasonable since
the distance is decreasing as the ball ap-
proaches the plate. We get d (t) = 4 for
d′ (t) = −30 ft/sec and d (t) = 9.45 for
d′(t) = −140 ft/sec. This would mean a
player can track the ball to within 4 feet from
the plate in slowpitch, but only to within
9.45 feet from the plate in the major leagues.

37. Suppose that d is the distance from ball
to home plate and θ is the angle of gaze
Since distance is changing with time, there-
fore d = d (t). The velocity 130 ft/sec means
that d′ (t) = −130

θ (t) = tan−1
[
d (t)

3

]
The rate of change of angle is then
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θ′ (t) =
1

1 +
(
d(t)
3

)2 d′ (t)3

=
3d′ (t)

9 + [d (t)]
2 radians/second

when d′′ (t) = 0.
The rate of the change is then

θ′ (t) =
3 (−130)

9
= −43.33 radians/sec.

38. Let d is the distance from ball to home plate
and θ is the angle of gaze, Since distance is
changing with time therefore d = d (t) . The
velocity 130 ft/sec means that d′ (t) = −130,

θ (t) = tan−1
[
d (t)

x

]
The rate of change of angle is then

θ′ (t) =
1

1 +
(
d(t)
x

)2 d′ (t)x

=
xd′ (t)

x2 + [d (t)]
2 radians/second

when d (t) = 0,
The rate of the change is then

θ′ (t) =
x (−130)

x2
radians/second

=
−130

x
= −3 radians/second

Therefore, x = −130
−3 = 43.33

39.
d

dx
(x2 + y2 − 3y) =

d

dx
(0)

2x+ 2y.y′ − 3y′ = 0
y′(2y − 3) = −2x

y′ =
2x

3− 2y

Horizontal tangents:
From the formula, y′ = 0 only when x = 0.
When x = 0 we have 0+y2−3y = 0. There-
fore y = 0 and y = 3 are the horizontal tan-
gents.
Vertical tangents:
The denominator in y′ must be zero.
3− 2y = 0
y = 1.5
When y = 1.5,
x2 + (1.5)

2 − 3(1.5) = 0
x2 = 2.25
x = ±1.5
x = ±1.5 are the vertical tangents.

1

3

2

5

−5

−3

−2 5

2

−2

−1

4

0

4−3−5

1

−1
0−4 3

−4

40.
d

dx
(x2 + y2 − 2y) =

d

dx
(3)

2x+ 2yy′ − 2y′ = 0
x+ y′(y − 1) = 0
y′(y − 1) = −x
y′ =

x

1− y
Horizontal tangents:
The curve has horizontal tangents when y′ =
0 i.e. when x = 0.

At x = 0, y =
2±

√
4− 4(−3)

2
=

2± 4

2
which gives y = 3 or y = −1. Therefore
y = 3 and y = −1 are the horizontal tan-
gents to the curve.
Vertical tangents:
The curve has vertical tangents when the de-
nominator in y′ is 0 which gives y = 1.
At y = 1, x = ±2
Therefore, x = ±2 are the vertical tangents
to curve.

5

−3

4

1

−5

−2 5

2

−2

−1

3

−1
−4 3−3−5 10 4

0

2

−4

41. (a) x2y2 + 3y = 4x
To find the derivative of y, we use Im-
plicit differentiation.

(b) x2y + 3y = 4x
The derivative of y can be found directly
and implicitly.

(c) 3xy + 6x2 cosx = y sinx
The derivative of y can be found directly
and implicitly.

(d) 3xy + 6x2 cos y = y sinx
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By using Implicit differentiation we can
find the derivative of y.

42. f (x) = sin−1 (sinx)

= sin−1 (sin [2nπ − (2nπ − x)])

= sin−1 (− sin (2nπ − x))

= −sin−1 [sin (2nπ − x)]

In the interval
(

2nπ − π

2
, 2nπ +

π

2

)
,

−π
2
≤ 2nπ − x ≤ π

2
.

So, f (x) = − (2nπ − x) = x− 2nπ.
Again,
f (x) = sin−1 (sinx)

= sin−1 (sin [(2nπ + π)− (2nπ + π − x)])

= sin−1 (sin (2nπ + π − x))

= sin−1 [sin (2nπ + π − x)]

In the interval
[
2nπ + π − π

2
, 2nπ + π +

π

2

]
,

−π2 ≤ 2nπ + π − x ≤ π
2 .

So, f (x) = (2n+ 1)π − x.
Therefore f ′ (x) = 1 for all x ∈(
2nπ − π

2 , 2nπ + π
2

)
and f ′ (x) = −1 for

all x ∈
(
2nπ + π − π

2 , 2nπ + π + π
2

)
. At

the points x = nπ ± π
2 , f ′ (x) is not defined.

Here n is any integer.
From the graph of f(x) in below, we can
check the above values of f ′(x).

1.6

4

0.4

0

−1.2

x

−8 106

0.0

0.8

1.2

2
−0.4

−2

−0.8

−4

−2.0

−1.6

−6−10

2.0

8

43. Let y = sin−1x+ cos−1x
dy

dx
=

1√
1− x2

+
−1√

1− x2
= 0

Therefore, y = c, where c is a constant. To
determine c, substitute any convenient value
of x, such as x = 0
sin−1x+ cos−1x = c

sin−10 + cos−10 = c, so c =
π

2
Thus sin−1x+ cos−1x =

π

2

44. Let y = sin−1
(

x√
x2 + 1

)

dy

dx
=

1√
1−

(
x√
x2+1

)2 · ddx
(

x√
x2 + 1

)

=

(
1√

1− x2

x2+1

)
.

(√
x2+1−x(1/2)(x2+1)

− 1
2 (2x)

x2+1

)
=

1− x2

x2+1√
1− x2

x2+1

.

√
x2 + 1

x2 + 1

=

√
1− x2

x2+1√
x2 + 1

.

(√
x2 + 1√
x2 + 1

)

=
1

1 + x2

Thus sin−1
(

x√
x2 + 1

)
= y =

∫
1

1 + x2
dx

= tan−1(x) + c for some constant c.
Substitute x = 0 in to the above expression
to find c = 0 and so

sin−1
(

x√
x2 + 1

)
= tan−1x

45.
d

dx
(x2y − 2y) =

d

dx
(4)

2xy + x2y′ − 2y′ = 0
y′(x2 − 2) = −2xy

y′ =
2xy

(2− x2)

The derivative is undefined at x = ±
√

2, sug-
gesting that there might be vertical tangent
lines at these points. Similarly, y′ = 0 at
y = 0 suggesting that there might be a hor-
izontal tangent line at this point. However,
plugging x = ±

√
2 into the original equa-

tion gives 0 = 4, a contradiction which shows
that there are no points on the curve with x
value ±

√
2. Likewise, plugging y = 0 in the

original equation gives 0 = 4. Again,this is
a contradiction which shows that there are
no points on the graph with y value of 4.
Sketching the graph, we see that there is a
horizontal asymptote at y = 0 and vertical
asymptote at x = ±

√
2

−10

y −5

0−2

x

5

−4

0

10

2 4
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46. For the first type of curve, y + xy′ = 0 and

y′ =
−y
x

.

For the second type of curve, 2x− 2yy′ = 0

and y′ =
x

y
.

At any point of intersection, the tangent line
to the first curve is perpendicular to the tan-
gent line to the second curve.

47. If y1 =
c

x
then y1

′ = − c

x2
= −y1

x
.

If y2
2 = x2 + k then 2y2y2

′ = 2x and

y2
′ =

x

y2
. If we are at a particular point

(x0, y0) on both graphs, this means y1(x0) =
y0 = y2(x0) and

y1
′.y2
′ =

(
−y0
x0

)
.

(
x0
y0

)
= −1.

This means that the slopes are negative re-
ciprocals and the curves are orthogonal.

48. For the first type of curve, 2x+2yy′ = c and

y′ =
c− 2x

2y
.

For the second type of curve, 2x+2yy′ = ky′

and y′ =
2x

k − 2y
.

Multiply the first x/x and the second by y/y.

This gives y′ =
cx− 2x2

2xy
=

y2 − x2

2xy
, and

y′ =
2xy

ky − y2
=

2xy

x2 − y2
.

These are negative reciprocals of each other,
so the families of the curve are orthogonal.

49. For the first type of curve, y′ = 3cx2.
For the second type of curve, 2x+ 6yy′ = 0,

y′ = −2x

6y
= − x

3y
= − x

3cx3
= − 1

3cx2
.

These are negative reciprocals of each other,
so the families of the curve are orthogonal.

50. For the first type of curve, y′ = 4cx3.
For the second type of curve, 2x+ 8yy′ = 0.

y′ =
−2x

8y
=
−x
4y

=
−x

4cx4
=
−1

4cx3
.

These are negative reciprocals of each other,
so the families of the curve orthogonal.

51. Conjecture: The family of functions
{y1 = cxn} is orthogonal to the family of
functions

{
x2 + ny2 = k

}
wherever n 6= 0.

If y1 = cxn, then y1
′ = ncxn−1 =

ny1
x

.

If ny2
2 = −x2 + k, then 2ny2. (y2

′) = −2x
and y2

′ = −x
ny2

.

If we are at a particular point (x0, y0) on
both graphs, this means y1(x0) = y0 =
y2(x0) and

y1
′.y2
′ =

(
ny0
x0

)
.

(
− x0
ny0

)
= −1.

This means that the slopes are negative re-
ciprocals and the curves are orthogonal.

52. The domain of the function sin−1x is
[−1, 1] and the domain of the function
sec−1x is (−∞,−1)∪ (1,∞). Therefore, the
function sin−1x+ sec−1x is not defined.

53. (a) Both of the points(−3, 0) and (0, 3) are
on the curve:
02 = (−3)

3 − 6(−3) + 9

32 = 03 − 6(0) + 9
The equation of the line through these

points has slope=
0− 3

−3− 0
= 1 and y-

intercept 3, so y = x+ 3.
This line intersects the curve at:
y2 = x3 − 6x+ 9
(x+ 3)

2
= x3 − 6x+ 9

x2 + 6x+ 9 = x3 − 6x+ 9
x3 − 12x− x2 = 0
x
(
x2 − x− 12

)
= 0

Therefore x = 0,−3 or 4 and so third
point is (4, 7).

5

x
−5

4−2

y

10

0

0

−10

2

(b) 32 = (−1)
3 − 6(−1) + 4 is true.

2yy′ = 3x2 − 6, so y′ =
3x2 − 6

2y
and

at (−1, 3) the slope is -
1

2
. The line is

y = − 1
2 (x+ 1) + 3.

To find the other point of intersection,
substitute the equation of the line in to
the equation for the elliptic curve and
simplify:(
−1

2
x+

5

2

)2

= x3 − 6x+ 4

x2 − 10x+ 25 = 4x3 − 24x+ 16
4x3 − x2 − 14x− 9 = 0.
We know already that x = −1 is a so-
lution(actually a double solution) so we
can factor out (x + 1). Long division
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yields (x+ 1)
2
(4x2 − 9).

The second point has x-coordinate 9
4 ,

which can be substituted into the equa-

tion for the line to get y =
11

8
.

54. The equation of the circle is x2 + (y − c)2 =
r2. Differentiating implicitly gives

2x+ 2(y − c).y′ = 0 so y′ =
x

(c− y)
.

At the point of tangency, the derivatives
must be the same. Since the derivative
of y = x2 is 2x, we must solve the equa-

tion 2x =
x

(c− y)
. This gives y = c − 1

2
,

as desired. Since y = x2, plugging, y =

c − 1

2
into the equation of the circle gives(

c− 1

2

)2

+

(
c− 1

2
− c
)2

= r2

c− 1

2
+

1

4
= r2

c = r2 +
1

4

55. The viewing angle is given by the formula

θ (x) = tan−1
(

3

x

)
− tan−1

(
1

x

)
.

This will be maximum where the derivative
is zero.

θ′(x) =
1

1 +
(
3
x

)2 .−3

x2
− 1

1 + x2
.
−1

x2

=
1

1 + x2
− 3

9 + x2
.

This is zero when
1

1 + x2
=

3

9 + x2
⇒ x2 =

3⇒ x =
√

3

56. If A is the viewing angle formed between
the rays from the person’s eye to the top of
the frame and to the bottom of the frame,
and if x is the distance between the person
and the wall, then since the frame extends
from 6 to 8 feet, we have tan A = 2

x , or

A = arctan

(
2

x

)
.

Then
dA

dx
=

1

1 +
(
2
x

)2 .(−2

x2

)
=
−2

x2 + 4

Since the derivative is negative, the angle
is decreasing function of x. Strictly speak-

ing arctan

(
2

x

)
is undefined at x = 0 but

arctan

(
2

x

)
→ π

2
as x → 0. The angle a

continues to enlarge(upto a right angle) as x
decreases to zero. In this case, the maximal
viewing angle is not a feasible one.

57. x2 + y2 = 9
Differentiating the above equation implic-
itly, we get 2x+ 2yy′ = 0

x+ yy′ = 0⇒ y′ = −x
y

At (2.9, 0.77), y′ gives slope of the tangent.

y′|(2.9,0.77) =
−2.9

0.77
= −3.77

Therefore the equation of the tangent line is
y − 0.77 = −3.77(x − 2.9) ⇒ y = −3.77x +
11.7
Let (x1,y1) be any point on the line such
that the distance is 300 feet. Therefore
(x1 − 2.9)

2
+ (y1 − 0.77)

2
= 3002. Sub-

stitute the value of x as x1 and y1 , as
y1 = −3.77x1 + 11.7 into the above equation
we get,
(x1 − 2.9)

2
+ (−3.77x1 + 11.7− 0.77)

2
=

90000
(x1 − 2.9)

2
+ (−3.77x1 + 10.93)

2
= 90000

15.21x1
2 − 88.41x1 − 89872.13 = 0

Solving the above quadratic equation, we
get x1 = 79.83, x1 = −74.02

Since the sling shot is rotating in the counter
clockwise direction, we have to consider the
negative value of x1. Therefore substituting
the negative value of x1 into the equation,
y1= − 3.77x+ 11.70

we get y1 = −3.77(−74.02) + 11.7 = 290.75
Therefore (−74.02, 290.75) is the required
point.
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2.9 The Hyperbolic
Functions

1. Graph of f(x) = cosh(2x) is:

y

2

0

5

4

3

1

−1x

210−1−2

2. Graph of f(x) = cosh(3x) is:

5

3

−1

y

4

2

1

0

x

10−1

3. Graph of f(x) = tanh(4x) is:

−2

x

10−1

−1y

2

1

0

4. Graph of f(x) = sinh(3x) is:

−1

2.5

−2.5

x

210

y

5.0

0.0

−2

−5.0

5. (a) f ′(x) =
d

dx
(cosh 4x)

= sinh 4x
d

dx
(4x)

= 4 sinh 4x

(b) f ′(x) =
d

dx
cosh4x

=
d

dx
(coshx)

4

= 4(coshx)
3

(sinhx)

= 4 sinhx · cosh3x

6. (a) f ′(x) =
d

dx

(
sinh

(√
x
))

= cosh
(√
x
) d

dx

(√
x
)

= cosh
(√
x
)( 1

2
√
x

)
=

cosh (
√
x)

2
√
x

(b) f ′(x) =
d

dx

(√
sinhx

)
=

1

2
√

sinhx

d

dx
(sinhx)

=
1

2
√

sinhx
(coshx)

=
coshx

2
√

sinhx

7. (a) f ′(x) =
d

dx

(
tanhx2

)
= sech2x2 · d

dx

(
x2
)

=
(
sech2x2

)
· (2x)

= 2x sech2x2

(b) f ′(x) =
d

dx
(tanhx)

2

= 2 tanhx sech2x
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8. (a) f ′(x) =
d

dx
(sech 3x)

= −sech 3x tanh 3x
d

dx
(3x)

= −3 sech 3x tanh 3x

(b) f ′(x) =
d

dx
(cschx)

3

= 3
(
csch2x

) d
dx

(csch x)

= 3
(
csch2x

)
(−csch x cothx)

= −3 csch3x cothx

9. (a) f ′(x) =
d

dx

(
x2 sinh 5x

)
= x2

d

dx
(sinh 5x) + sinh 5x

d

dx

(
x2
)

= x2 cosh 5x
d

dx
(5x) + sinh 5x (2x)

= 5x2 cosh 5x+ 2x sinh 5x

(b) f(x) =
x2 + 1

csch3x
= (x2 + 1) sinh3 x

f ′(x) = 2x sinh3 x+ (x2 + 1)
d

dx
(sinh3 x)

= 2x sinh3 x+ (x2 + 1)3 sinh2 x coshx

= 2x sinh3 x+ 3(x2 + 1) sinh2 x coshx

10. (a) f ′(x) =
d

dx

(
cosh 4x

x+ 2

)
=

(x+ 2) d
dx cosh 4x− cosh 4x d

dx (x+ 2)

(x+ 2)
2

=
(x+ 2) sinh 4x (4)− cosh 4x (1)

(x+ 2)
2

=
4 (x+ 2) sinh 4x− cosh 4x

(x+ 2)
2

(b) f ′(x) =

d

dx

(
x2 tanh

(
x3 + 4

))
= x2

d

dx
tanh

(
x3 + 4

)
+ tanh

(
x3 + 4

) d

dx

(
x2
)

= x2sech2
(
x3 + 4

) (
3x2
)

+ tanh
(
x3 + 4

)
(2x)

= 3x4sech2
(
x3 + 4

)
+ 2x tanh

(
x3 + 4

)

11. (a) f ′(x) =
d

dx

(
cosh−12x

)
=

1√
(2x)

2 − 1

d

dx
(2x)

=
2√

4x2 − 1

(b) f ′(x) =
d

dx

(
sinh−1x2

)
=

1√
1 + x4

d

dx

(
x2
)

=
2x√

1 + x4

12. (a) f ′(x) =
d

dx

(
tanh−13x

)
=

1

1− (3x)
2

d

dx
(3x)

=
3

1− 9x2

(b) f ′(x) =
d

dx

(
x2cosh−14x

)
= x2

d

dx

(
cosh−14x

)
+ cosh−14x

d

dx

(
x2
)

= x2
1√

(4x)
2 − 1

(4) + cosh−14x (2x)

=
4x2√

16x2 − 1
+ 2x cosh−14x

13.
d

dx
(coshx) =

d

dx

(
ex + e−x

2

)
=
ex − ex

2
= sinhx

d

dx
(tanhx)

=
d

dx

(
sinhx

coshx

)
=

coshx d
dx (sinhx)− sinhx d

dx (coshx)

cosh2x

=
cosh2x− sinh2x

cosh2x
=

1

cosh2x
= sech2x

14.
d

dx
[cothx] =

d

dx

[
coshx

sinhx

]
=

sinhx · sinhx− coshx · coshx

(sinhx)
2

=
sinh2x− cosh2x

sinh2x

=
−1

sinh2x

= csch2x
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d

dx
[sechx] =

d

dx

[
1

coshx

]
= − 1

cosh2x
sinhx

= − 1

coshx
· sinhx

coshx
= −sechx tanhx

d

dx
[cschx] =

d

dx

[
1

sinhx

]
= − 1

sinh2x
coshx

= − 1

sinhx
· coshx

sinhx
= −cschx cothx

15. First, ex > e−x if x > 0 and ex < e−x if

x < 0. Since sinhx =
ex − e−x

2
, we have

that ex − e−x > 0 if x > 0 and ex − e−x < 0
if x < 0. Therefore sinhx > 0 if x > 0 and
sinhx < 0 if x < 0.

16. cosh2x− sinh2x

=

(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
1

4

[(
e2x + 2 + e−2x

)
−
(
e2x − 2 + e−2x

)]
=

1

4
(4) = 1

17. If y = cosh−1x then x = cosh y and x =
ey + e−y

2
.

Also sinh y =
ey − e−y

2
. Then

ey = cosh y + sinh y

= cosh y +

√
sinh2y

= cosh y +

√
cosh2y − 1

= x+
√
x2 − 1

So, y = cosh−1x = ln
(
x+

√
x2 − 1

)

18. If y = tanh−1x then x = tanh y and

x =
ey − e−y

ey + e−y
Applying Componendo and Dividendo Rule,

1 + x

1− x
=

2ey

2e−y

1 + x

1− x
= e2y

e2y =
1 + x

1− x

y =
1

2
ln

(
1 + x

1− x

)
19. coshx+ sinhx =

ex + e−x

2
+
ex − e−x

2
= ex

20. cosh(−x) =
e−x + ex

2
= coshx

sinh(−x) =
e−x − ex

2
= − sinhx

21. Since e−x term tend to 0 as x tend to ∞.

lim
x→∞

ex − e−x

ex + e−x
= 1,

lim
x→−∞

ex − e−x

ex + e−x
= lim
x→∞

e−x − ex

e−x + ex
= −1

22. tanhx =
ex+e−x

2

ex+e−x

2

· 2ex

2ex
=
e2x − 1

e2x + 1

23. Given, y = a cosh
(
x
b

)
. The hanging cable is

as shown in the figure: From figure, a = 10
and y = 10 cosh

(
x
b

)
. The point B (20, 20) is

on the catenary.

⇒ 20 = 10 cosh

(
20

b

)
⇒ 2 = cosh

(
20

b

)
⇒ 20

b
= cosh−1(2) = ln(2 +

√
3)[

cosh−1(x) = ln
(
x+

√
x2 − 1

)]
⇒ b =

20

ln(2 +
√

3)

-
x

6
y

0

A B

20m 20m10m

40m

24. Given, y = a cosh
(x
b

)
. The hanging cable

is as shown in the figure: From figure,

a = 10 and y = 10 cosh
(x
b

)
. Let
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A ≡ (−x1, 30) and B ≡ (x2, 20) such that
AB = 40.

d(A,B) =

√
(x1 + x2)

2
+ 100

1600 = (x1 + x2)
2

+ 100

x1 + x2 =
√

1500 ...(1)
The point A (−x1, 10) is on the catenary.

30 = 10 cosh

(
−x1
b

)
3 = cosh

(x1
b

)
⇒ x1 = bcosh−1(3)

⇒ x1 = b ln(3 +
√

8)
The point A (x2, 20) is on the catenary.

20 = 10 cosh
(x2
b

)
2 = cosh

(x2
b

)
⇒ x2 = bcosh−1(2)

⇒ x2 = b ln(2 +
√

3)
By using (1),

b ln[(3 +
√

8)(2 +
√

3) =
√

1500

b =

√
1500

ln[(3 +
√

8)(2 +
√

3)]

-
x

6
y

XXXXXXXXXXXX

0

C B

A

30m 20m10m

40m

25. (a) Given that

v(t) = −
√
mg

k
tanh

{√
kg

m
t

}
Now, find terminal velocity(V )
V = lim

t→∞
v(t)

= −
√
mg

k
lim
t→∞

tanh

{√
kg

m
t

}

= −
√
mg

k
lim
t→∞

tanh {ct}

By putting

√
kg

m
= c,

V = −
√
mg

k
lim
t→∞

sinh ct

cosh ct

= −
√
mg

k
lim
t→∞

(
ect−e−ct

2

)
(
ect+e−ct

2

)

= −
√
mg

k
lim
t→∞

e2ct − 1

e2ct + 1

= −
√
mg

k
lim
t→∞

d
dt

{
e2ct − 1

}
d
dt {e2ct + 1}

By L’Hospital’s rule,

= −
√
mg

k
lim
t→∞

2ce2ct

2ce2ct

= −
√
mg

k
(1)

lim
t→∞

v(t) = −
√
mg

k

(b) From (a), we get

V = −
√
mg

k

V 2 =
mg

k

mg = kV 2

26. For the first skydiver:
Terminal velocity is -80m/s.
Distance in 2 seconds is 19.41m.
Distance in 4 second is 75.45m.
For the second skydiver:
Terminal velocity is -40m/s.
Distance in 2 seconds is 18.86m.
Distance in 4 seconds is 68.35m.

27. For an initial velocity v0 = 2000, we set the
derivative of the velocity equal to 0 and solve
the resulting equation in a CAS. The maxi-
mum acceleration of -9.797 occurs at about
206 seconds.

2.10 The Mean Value
Theorem

1. f(x) = x2 + 1 , [−2, 2]

f(−2) = 5 = f(2).
As a polynomial f(x) is continious on
[−2, 2], differentiable on (−2, 2), and the
condition’s of Roll’s Theorem hold. There
exists c ∈ (−2, 2) such that f ′(c) = 0. But
f ′(c) = 2c⇒ c = 0
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1

2

x

−1

4

2

3

−2 0

y

0

−1

1

2. f(x) = x2 + 1, [0, 2]
f(x) is continuous on [0, 2] and differen-
tiable on (0, 2), so the conditions of the
Mean Value Theorem hold. We need to find
c so that

f ′(c) =
f(2)− f(0)

2− 0
=

5− 1

2− 0
= 2.

f ′(x) = 2x = 2 when x = 1, so c = 1.

y

1

1.00.5

5

4

0

2.00.0

x

1.5

2

3

3. f(x) = x3 + x2 on [0, 1] with f(0) = 0,
f(1) = 2. As a polynomial, f(x) is contin-
uous on [0, 1] and differentiable on (0, 1).
Since the conditions of the Mean Value The-
orem hold, there exists a number c ∈ (0, 1)
such that

f ′(c) =
f(1)− f(0)

1− 0
=

2− 0

1− 0
= 2.

But f ′(c) = 3c2 + 2c.
⇒ 3c2 + 2c = 2⇒ 3c2 + 2c− 2 = 0.
By the quadratic formula,

c =
−2±

√
22 − 4(3)(−2)

2(3)

=
−2±

√
28

6

=
−2± 2

√
7

6
=
−1±

√
7

3
⇒ c ≈ −1.22 or c ≈ 0.55
But since −1.22 /∈ (0, 1), we accept only the

other alternatives: c =
−1±

√
7

3
≈ 0.55

1.00.5

0.0

x

−0.5

2.0

0.0

1.5

0.25 0.75

1.0

0.5

4. f(x) = x3 + x2 on [−1, 1]
f(x) is continuous on [−1, 1] and differen-
tiable on (−1, 1). So the conditions of the
Mean Value Theorem hold. We need to find
c so that

f ′(c) =
f(1)− f(−1)

1− (−1)
=

2− 0

2
= 1.

f ′(x) = 3x2+2x = 1 when x = −1 or x =
1

3
,

so c =
1

3

−0.4

0.8

0.4

0.2

−0.8

x

0.5−0.5 0.0

y

1.0

−0.6

0.6

−0.2

−1.0

1.0−1.0

0.0

5. f(x) = sinx, [0, π/2 ],

f(0) = 0, f(π/2 ) = 1.
As a trig function, f(x) is continuous on
[0, 2] and differintiable 0n (0, π/2 ). The
conditions of the Mean Value Theorem hold,
and there exists c ∈ (0, π/2) such that

f ′(c) =
f(π2 )− f(0)

π
2 − 0

=
1− 0
π
2 − 0

=
2

π
But f ′(c) = cos(c), and c is to be in the
first quadrant, therefore c = cos−1

(
2
π

)
≈ .88
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x

0.25

1.51.25

1.0

0.5

0.750.50.25

0.75

0.0

0.0

1.0

6. f(x) = sinx, [−π, 0]
f(x) is continuous on [−π, 0], and differen-
tiable on (−π, 0). Also, sin(−π) = 0 =
sin(0). So the conditions of Roll’s Theorem
hold. We need to find c so that f ′(c) = 0.

f ′(x) = cosx = 0, on (−π, 0) when x = −π
2

,

so c = −π
2
.

−2.5−3.0 −0.5

−0.7

−0.8

−0.5

0.0
−2.0

−0.2

−0.6

−0.9

−0.3

−1.5 −1.0

−0.4

x

0.0

−1.0

−0.1

7. Let f(x) = x3 + 5x + 1. As a polynomial,
f(x) is continuous and differentiable, for all
x, with f ′(x) = 3x2 +5, which is positive for
all x. So f(x) is strictly increasing for all x.
Therefore the equation can have at most one
solution. Since f(x) is negative at x = −1
and positive at x = 1 and f(x) is continuous,
there must be a solution to f(x) = 0.

8. The derivative is 3x2+4 > 0 for all x. There-
fore the function is strictly increasing, and so
the equation can have at most one solution.
Because the function is negative at x = 0
and positive at x = 1, and continuous, we
know the equation has exactly one solution.

9. Let f(x) = x4 + 3x2 − 2. The derivative is
f ′(x) = 4x3 + 6x. This is nagative for neg-
ative x, and positive for positive x so f(x)
strictly decreasing on (−∞, 0) and strictly
increasing on (0, ∞). Since f(0) = −2 6= 0,
f(x) can have at most one zero for x < 0

and one zero for x > 0. The function is con-
tinuous everywhere and f(−1) = 2 = f(1),
f(0) < 0. Therefore f(x) = 0 has exactly
one solution between x = −1 and x = 0, and
f(x) = 0 has exactly one solution between
x = 0 and x = 1, and no other solutions.

10. Let f(x) = x4 + 6x2 − 1. The derivative is
f ′(x) = 4x3 + 12x. This is nagative for neg-
ative x, and positive for positive x so f(x) is
strictly decreasing on (−∞, 0) and strictly
increasing on (0, ∞). Since f(0) = −1 6= 0,
f(x) can have at most one zero for x < 0
and one zero for x > 0. The function is con-
tinuous everywhere and f(−1) = 6 = f(1),
f(0) < 0. Therefore f(x) = 0 has exactly
one solution between x = −1 and x = 0, ex-
actly one solution between x = 0 and x = 1,
and no other solutions.

11. f(x) = x3+ax+b, a > 0. Any cubic(actyally
any odd degree) polynomial heads in oppo-
site directions (±∞) as x goes to the op-
positely signed infinities, and therefore by
the Intermediate Value Theorem f(x) has
atleast one root. For the uniqueness, we look
at the derivative, in this case 3x2 + a. Be-
cause a > 0 by assumption, this expression
is strictly positive. The function is strictly
increasing and can have at most one root.
Hence f(x) has exactly one root.

12. The derivative is f ′(x) = 4x3 + 2ax. This
is nagative for negative x, and positive for
positive x so f(x) is strictly decreasing on
(−∞, 0) and strictly increasing on (0,∞), So
can have at most one zero for x < 0 and
one zero for x > 0. The function is contin-
uous everywhere and f(0) = −b < 0 and

lim
x→±∞

f(x) = ∞, therefore f(x) has exactly

one solution for x < 0, and similarly exactly
one solution for x > 0, and no other solu-
tions.

13. f(x) = x5 + ax3 + bx+ c, a > 0, b > 0. Here
is another odd degree polynomial(see #11)
with atleast one root. f ′(x) = 5x4+3ax2+b
is evidently strictly positive because of our
assumption about a, b. Exactly as in #11,
f(x) has exactly one root.

14. A third degree polynomial p(x) has atleast
one zero because

lim
x→±∞

p(x) = ± lim
x→∞

p(x) = ±∞,

and it is continuous. Say this zero is at
x = c. Then we know p(x) factors into



2.10. THE MEAN VALUE THEOREM 141

p(x) = (x−c)q(x), where q(x) is a quadratic
polynomial. Quadratic polynomial have at-
most two zeros so p(x) has atmost three ze-
ros.

15. f(x) = x2.
One candidate: g0(x) = kx3.
Because we require x2 = g′0(x) = 3kx2, we
must have 3k = 1, k = 1/3.
Most general solution: g(x) = g0(x) + c =
x3/3 + c, where c is an arbitrary constant.

16. If g′(x) = 9x4, then g(x) =
9

5
x5 + c for any

constant c.

17. Although the obvious first candidate is
g0(x) = −1/x, due to disconnection of the
domain by the discontinuity at x = 0, we
could add different constants, one for nega-
tive x, another for positive x. Thus the most
general solution is:

g(x) =

{
−1/x+ a when x > 0
−1/x+ b when x < 0

18. If g′(x) =
√
x, then g(x) =

2

3
x3/2 + c for any

constant c.

19. If g′(x) = sinx, then g(x) = − cosx + c for
any constant c.

20. If g′(x) = cosx, then g(x) = sinx+c for any
constant c.

21. If g′(x) =
4

1 + x2
then g(x) = 4tan−1(x)+c.

22. If g′(x) =
2√

1− x2
then g(x) = 2sin−1(x) +

c.

23. If derivative g′(x) is positive at a single point
x = b, then g(x) is an increasing function
for x sufficiently near b, i .e., g(x) > g(b)
for x > b but sufficiently near b. In this
problem ,we will apply that remark to f ′ at
x = 0, and conclude from f ′′(0) > 0 that
f ′(x) > f ′(0) = 0 for x > 0 but sufficiently
small. This being true about the derivative
f ′, it tells us that f itself is increasing on
some interval (0, a) and in particular that
f(x) > f(0) = 0 for 0 < x < a. On the other
side(the nagative side) f ′ is negative, f is de-
creasing(to zero) and therefore likewise posi-
tive. In summary, x = 0 is a genuine relative
minimum.

24. The function cosx is continuous and differ-
entiable everywhere, so for any u and v we
can apply the Mean Value Theorem to get

cosu− cos v

u− v
= sin c for some c between u

and v. We know −1 ≤ sinx ≤ 1, so taking

absolute values, we get

∣∣∣∣cosu− cos v

u− v

∣∣∣∣ ≤ 1,

or |cosu− cos v| ≤ |u− v|.
25. Consider the function g(x) = x− sinx, obiv-

iously with g(0) = 0 and g′(x) = 1−cosx. If
there was ever point a > 0 with sin(a) ≥ a,
(g(a) ≤ 0), then by the MVT applied to go g
on the interval [0, a] , there would be a point

c (0 < c < a) with g′(c) =
g(a)− g(0)

a− 0

=
g(a)

a
≤ 0.

This would read 1 − cos c = g′(c) ≤ 0 or
cos c ≥ 1. The latter condition is possible
only if cos(c) = 1 and sin(c) = 0, in which
case c(being positive) would be at minimum
π. But even this unlikelycase we still would
have sin(a) ≤ 1 < π ≤ c < a.
Since sin a < a for all a > 0, we have
− sin a > −a for all a > 0, but − sin a =
sin(−a) so we have sin(−a) > −a for all
a > 0. This is the same as saying sin a > a
for all a < 0 so in absolute value we have
|sin a| < |a| for all a 6= 0.
Thus the only possible solution to the equa-
tion sinx = x is x = 0, which we know to be
true.

26. The function tan−1x is continuous and dif-
ferentiable everywhere, so for any a 6= 0 we
can apply the Mean Value Theorem to get
tan−1a− tan−10

a− 0
=

1

1 + c2
for some c be-

tween 0 and a. Taking absolute values, we

get

∣∣∣∣ tan−1a

a

∣∣∣∣ =
1

1 + c2
< 1, so

∣∣tan−1a
∣∣ <

|a| for a 6= 0. This means that the only so-
lution to tan−1x = x is x = 0.

27. Since the inverse sine function is increasing
on the interval [0, 1) (it has positive deriva-
tive) we start from the previously proven
inequality sinx < x for 0 < x. If indeed
0 < x < 1, we can apply the inverse sine and
conclude x = sin−1(sinx) < sin−1(x).

28. The function tanx is continuous and differ-
entiable for |x| < π/2, so for any a 6= 0 in
(−π/2, π/2), we can apply the Mean Value

Theorem to get
tan a− tan 0

a− 0
= sec 2c for

some c between 0 and a. Taking absolute

values, we get

∣∣∣∣ tan a

a

∣∣∣∣ =
∣∣sec 2c

∣∣ > 1, so
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|tan a| > |a| for a 6= 0. Of course tan 0 = 0,
so |tan a| ≥ |a| for all |a| < π/2.

29. If f ′(x) > 0 for all x then for each (a, b) with
a < b we know there exists c ∈ (a, b) such
that

f(b)− f(a)

b− a
= f ′(c) > 0.

a < b makes the denominator positive, and
so we must have the numerator also positive,
which implies f(a) < f(b).

30. Let a < b. f is differentiable on (a, b) and
continuous on [a, b], since it is differentiable
for all x. This means that

f(b)− f(a)

b− a
= f ′(c)

for some c ∈ (a, b). Therefore f(b)− f(a) =
f ′(c) (b− a) is negative, and f(a) > f(b).

31. f ′(x) = 3x2 + 5. This is positive for all x, so
f(x) is increasing.

32. f ′(x) = 5x4 + 9x2 ≥ 0 for all x. f ′ = 0 only
at x = 0, so f(x) is increasing.

33. f ′(x) = −3x2 − 3. This is nagative for all x,
so f(x) is decreasing.

34. f ′(x) = 4x3 + 4x is negative for negative x,
and positive for positive x, so f(x) is nei-
ther an increasing function nor a decreasing
function.

35. f ′(x) = ex. This is positive for all x, so f(x)
is increasing.

36. f ′(x) = −e−x < 0 for all x, so f(x) is a
decreasing function.

37. f ′(x) =
1

x
f ′(x) > 0 for x > 0, that is, for all x in the
domain of f . So f(x) is increasing.

38. f ′(x) =
1

x2
.2x =

2

x
is negative for negative

x, and positive for positive x, so f(x) is nei-
ther an increasing function nor a decreasing
function.

39. The average velocity on [a, b] is
s(b)− s(a)

b− a
.

By the Mean Value Theorem, there exists a

c ∈ (a, b) such that s′(c) =
s(b)− s(a)

b− a
Thus, the instantaneous velocity at t = c is
equal to the average velocity between times
t = a and t = b.

40. Let f(t) be the distance the first runner has
gone after time t and let g(t) be the distance
the second runner has gone after time t. The
functions f(t) and g(t) will be continuous
and differentiable. Let h(t) = f(t) − g(t).
At t = 0, f(0) = 0 and g(0) = 0 so h(0) = 0.
At t = a, f(a) > g(a) so h(a) > 0. Sim-
ilarly, at t = b, f(b) < g(b) so h(b) < 0.
Thus, by the Intermideate Value Theorem,
there is time t = t0 for t0 ∈ (a, b) where
h(t0) = 0. Rolle’s Theorem then says that
there is time t = c where c ∈ (0, t0) such
that h′(c) = 0. But h′(t) = f ′(t) − g′(t),
so h′(c) = f ′(c) − g′(c) = 0 implies that
f ′(c) = g′(c), i.e., at time t = c the runners
are going exactly the same speed.

41. Define h(x) = f(x) − g(x). Then h is dif-
ferentiable because f and g are, and h(a) =
h(b) = 0. Apply Rolle’s Theorem to h on
[a, b] to conclude thet there exists c ∈ (a, b)
such that h′(c) = 0. Thus, f ′(c) = g′(c),
and so f and g have parallel tangent lines at
x = c.

42. As in #41, let h(x) = f(x) − g(x). Again,
h is continuous and differentiable on the
appropriate intervals because f and g are.
Since f(a)− f(b) = g(a)− g(b) (by assump-
tion), we have f(a) = g(a) − g(b) + f(b).
Then,

h(a) = f(a)− g(a)

= g(a)− g(b) + f(b)− g(a)

= f(b)− g(b) = h(b).
Rolle’s Theorem then tells us that there ex-
ists c ∈ (a, b) such that h′(c) = 0 or f ′(c) =
g′(c) so that f and g have parallel tangent
lines at x = c.

43. f(x) = 1/x on [−1, 1]. We easily see that
f(1) = 1, f(−1) = −1, and f ′(x) = −1/x2.
If we try to find the c in the interval (−1, 1)
for which

f ′(c) =
f(1)− f(1)

1− (−1)
=

1− (−1)

1− (−1)
= 1,

the equation would be −1/c2 = 1 or c2 =
−1. There is of course no such c, and the ex-
planation is that the function is not defined
for x = 0 ∈ (−1, 1) and so the function is
not continuous.
The hypotheses for the Mean Value Theorem
are not fulfilled.

44. f(x) is not continuous on [−1, 2], and not
differentiable on (−1, 2). Can we find
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f ′(c) =
f(2)− f(−1)

2− (−1)
=

1
4 − 1

3
= −1

4
?

f ′(x) = − 2

x3
= −1

4
when x = 2. This is not

in (−1, 2), so no c makes the conclusion of
Mean Value Theorem true.

45. f(x) = tanx on [0, π], f ′(x) = sec2x. We
know the tangent has a massive discontinu-
ity at x = π/2, so as in #44, we should not
be surprised if the Mean Value Theorem does
not apply. As applied to the interval [0, π]
it would say

sec2c = f ′(c) =
f(π)− f(0)

π − 0

=
tanπ − tan 0

π − 0
= 0.

But secant = 1/cosine is never 0 in the in-
terval (−1, 1), so no such c exists.

46. f(x) is not differentiable on (−1, 1). Can we
find c with

f ′(c) =
f(1)− f(−1)

1− (−1)
=

1− (−1)

2
= 1 ?

f ′(x) =
1

3
x−2/3 = 1 when x = ±

(
1
3

)3/2
.

These are both in (−1, 1), so we can use ei-
ther of these as c to make the conclusion of
Mean Value Theorem true.

47. f(x) =

{
2x when x ≤ 0
2x− 4 when x > 0

f(x) = 2x − 4 is continuous and differen-
tiable on (0, 2). Also, f(0) = 0 = f(2). But
f ′(x) = 2 on (0, 2), so there is no c such that
f ′(c) = 0. Rolle’s Theorem requires that
f(x) be continuous on the closed interval,
but we have a jump discontinuity at x = 0,
which is enough to preclude the applicability
of Rolle’s.

48. f(x) = x2 is counter-example. The flaw in
the proof is that we do not have f ′(c) = 0.

Ch. 2 Review Exercises

1.
3.4− 2.6

1.5− 0.5
=

0.8

1
= 0.8

2. C (large negative), B (small negative), A
(small positive), and D (large positive)

3. f ′(2) =
f(2 + h)− f(2)

h

= lim
h→0

(2 + h)2 − 2(2 + h)− (0)

h

= lim
h→0

4 + 4h+ h2 − 4− 2h

h

= lim
h→0

2h+ h2

h
= lim
h→0

2 + h = 2

4. f ′(1) = lim
x→1

f(x)− f(1)

x− 1

= lim
x→1

1 + 1
x − 2

x− 1

= lim
x→1

−(x−1)
x

x− 1

= lim
x→1

−1

x
= −1

5. f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

√
1 + h− 1

h

= lim
h→0

√
1 + h− 1

h
·
√

1 + h+ 1√
1 + h+ 1

= lim
h→0

1 + h− 1

h(
√

1 + h+ 1)

= lim
h→0

1√
1 + h+ 1

=
1

2

6. f ′(0) = lim
x→0

f(x)− f(0)

x− 0

= lim
x→0

x3 − 2x

x
= lim
x→0

x2 − 2 = −2

7. f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)3 + (x+ h)− (x3 + x)

h

= lim
h→0

3x2h+ 3xh2 + h3 + h

h
= lim
h→0

3x2 + 3xh+ h2 + 1

= 3x2 + 1

8. f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

3
x+h −

3
x

h

= lim
h→0

3x−3(x+h)
x(x+h)

h

= lim
h→0

−3h
x(x+h)

h

= lim
h→0

−3

x(x+ h)
=
−3

x2

9. The point is (1, 0). y′ = 4x3− 2 so the slope
at x = 1 is 2, and the equation of the tangent
line is y − 0 = 2(x− 1) or y = 2x− 2.
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10. The point is (0, 0). y′ = 2 cos 2x, so the slope
at x = 0 is 2, and the equation of the tangent
line is y = 2x.

11. The point is (0, 3). y′ = 6e2x, so the slope at
x = 0 is 6, and the equation of the tangent
line is y − 3 = 6(x− 0) or y = 6x+ 3.

12. The point is (0, 1). y′ =
2x

2
√
x2 + 1

, so the

slope at x = 0 is 0, and the equation of the
tangent line is y = 1.

13. Find the slope to y − x2y2 = x− 1 at (1, 1).
d

dx
(y − x2y2) =

d

dx
(x− 1)

y′ − 2xy2 − x22y · y′ = 1
y′(1− x22y) = 1 + 2xy2

y′ =
1 + 2xy2

1− 2x2y
At (1, 1):

y′ =
1 + 2(1)(1)2

1− 2(1)2(1)
=

3

−1
= −3

The equation of the tangent line is
y − 1 = −3(x− 1) or y = −3x+ 4.

14. Implicitly differentiating:
2yy′ + ey + xeyy′ = −1, and

y′ =
−1− ey

2y + xey
.

At (2, 0) the slope is −1, and the equation
of the tangent line is y = −(x− 2).

15. s(t) = −16t2 + 40t+ 10
v(t) = s′(t) = −32t+ 40
a(t) = v′(t) = −32

16. s(t) = −9.8t2 − 22t+ 6
v(t) = s′(t) = −19.6t− 22
a(t) = s′′(t) = −19.6

17. s(t) = 10e−2t sin 4t
v(t) = s′(t)

= 10
(
−2e−2t sin 4t+ 4e−2t cos 4t

)
a(t) = v′(t)

= 10 · (−2)
[
−2e−2t sin 4t+ e−2t4 cos 4t

]
+ 10(4) ·

[
−2e−2t cos 4t− e−2t4 sin 4t

]
= 160e−2t cos 4t− 120e−2t sin 4t

18. s(t) =
√

4t+ 16− 4

v(t) = s′(t) =
4

2
√

4t+ 16

=
2√

4t+ 16
a(t) = s′′(t)

=
−2 · 4

2(4t+ 16)3/2
=

−4

(4t+ 16)3/2

19. v(t) = s′(t) = −32t+ 40
v(1) = −32(1) + 40 = 8

The ball is rising.
v(2) = −32(2) + 40 = −24
The ball is falling.

20. v(t) = s′(t) = 20e−2t(2 cos 4t− sin 4t)
v(0) = 40 and v(π) = 40e−2π ≈ 0.075. The
mass attached to the spring is moving in the
same direction, much faster at t = 0.

21. (a) msec =
f(2)− f(1)

2− 1

=

√
3−
√

2

1
≈ .318

(b) msec =
f(1.5)− f(1)

1.5− 1

=

√
2.5−

√
2

.5
≈ .334

(c) msec =
f(1.1)− f(1)

1.1− 1

=

√
2.1−

√
2

.1
≈ .349

Best estimate for the slope of the tangent
line: (c) (approximately .349).

22. Point at x = 1 is (1, 7.3891).

(a) msec =
f(2)− f(1)

2− 1

=
e4 − e2

1
≈ 47.2091

(b) msec =
f(1.5)− f(1)

1.5− 1

=
e3 − e2

.5
≈ 25.3928

(c) msec =
f(1.1)− f(1)

1.1− 1

=
e2.2 − e2

.1
≈ 16.3590

Best estimate for the slope of the tangent
line: (c) (approximately 16.3590).

23. f ′(x) = 4x3 − 9x2 + 2

24. f ′(x) =
2

3
x−1/3 − 8x

25. f ′(x) = −3

2
x−3/2 − 10x−3

=
−3

2x
√
x
− 10

x3

26. f ′(x) =

√
x(−3 + 2x)

x

−
(2− 3x+ x2) 1

2
√
x

x

27. f ′(t) = 2t(t+ 2)3 + t2 · 3(t+ 2)2 · 1
= 2t(t+ 2)3 + 3t2(t+ 2)2

= t(t+ 2)2(5t+ 4)

28. f ′(t) = 2t(t3 − 3t+ 2) + (t2 + 1)(3t2 − 3)
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29. g′(x) =
(3x2 − 1) · 1− x(6x)

(3x2 − 1)2

=
3x2 − 1− 6x2

(3x2 − 1)2

= − 3x2 + 1

(3x2 − 1)2

30. g(x) = 3x− 1

x
g′(x) = 3 + 1

x2

31. f ′(x) = 2x sinx+ x2 cosx

32. f ′(x) = 2x cosx2

33. f ′(x) = sec2
√
x · 1

2
√
x

34. f ′(x) =
1

2
√

tanx
sec2 x

35. f ′(t) = csc t · 1 + t · (− csc t · cot t)
= csc t− t csc t cot t

36. f ′(t) = 3 cos 3t cos 4t− 4 sin 3t sin 4t

37. u′(x) = 2e−x
2

(−2x) = −4xe−x
2

38. u′(x) = 2(2e−x)(−2e−x) = −8e−2x

39. f ′(x) = 1 · lnx2 + x · 1
x2 · 2x

= lnx2 + 2

40. f ′(x) =
1

2
√

lnx+ 1
· 1

x

41. f ′ (x) =
1

2
· 1

sin 4x
· cos 4x · 4 = 2 cot 4x

42. f ′ (x) = etan( x2+1 ) · sec2
(
x2 + 1

)
· 2 · x

= 2xetan( x2+1 )sec2
(
x2 + 1

)
43. f ′(x) = 2

(
x+ 1

x− 1

)
d

dx

(
x+ 1

x− 1

)
= 2

(
x+ 1

x− 1

)
(x− 1)− (x+ 1)

(x− 1)2

= 2

(
x+ 1

x− 1

)
−2

(x− 1)2

=
−4(x+ 1)

(x− 1)3

44. f ′(x) =
3

2
√

3x
e
√
3x

45. f ′(t) = e4t · 1 + te4t · 4 = (1 + 4t)e4t

46. f ′(x) =
(x− 1)26− 6x · 2(x− 1)

(x− 1)4

47. The given function is well defined only for
x = 0. Hence it is not differentiable.

48. f ′ (x) = cos
(
cos−1

(
x2
))
·

 −2x√
1− (x2)

2


=
−2x3√
1− x4

49.
1

1 + (cos 2x)2
· (−2 sin 2x)

50.
1

3x2
√

(3x2)2 − 1
· 6x

51. The derivative should look roughly like:

 

10

5

-5

-10

 

321-1-2-3

52. The derivative should look roughly like:

10

5

4

-10

x

0

-5

20-2-4

53. f(x) = x4 − 3x3 + 2x2 − x− 1
f ′(x) = 4x3 − 9x2 + 4x− 1
f ′′(x) = 12x2 − 18x+ 4

54. f(x) = (x+ 1)1/2

f ′(x) =
1

2
(x+ 1)−1/2

f ′′(x) =
−1

4
(x+ 1)−3/2

f ′′′(x) =
3

8
(x+ 1)−5/2

55. f(x) = xe2x

f ′(x) = 1 · e2x + xe2x · 2 = e2x + 2xe2x

f ′′(x) = e2x · 2 + 2 ·
(
e2x + 2xe2x

)
= 4e2x + 4xe2x

f ′′′(x) = 4e2x · 2 + 4
(
e2x + 2xe2x

)
= 12e2x + 8xe2x
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56. f(x) = 4(x+ 1)−1

f ′(x) = −4(x+ 1)−2

f ′′(x) = 8(x+ 1)−3

57. f ′
′
(x) = 2 · 2 · sec (2x) · sec (2x) tan (2x) · 2x

= 8sec2 (2x) tan (2x)

58. Let f(x) = [p(x)]2, where
p(x) = x6 − 3x4 + 2x3 − 7x+ 1
p′(x) = 6x5 − 12x3 + 6x2 − 7
p′′(x) = 30x4 − 36x2 + 12x
p′′′(x) = 120x3 − 72x+ 12
p(4)(x) = 360x2 − 72
Then
f (4)(x) = 6[p′′(x)]2 + 8[p′(x)][p′′′(x)] +
2[p(x)][p(4)(x)]

59. f(x) = sin 3x
f ′(x) = cos 3x · 3 = 3 cos 3x
f ′′(x) = 3(− sin 3x · 3) = −9 sin 3x
f ′′′(x) = −9 cos 3x · 3 = −27 cos 3x
f (26)(x) = −326 sin 3x

60. For f(x) = e−2x, each derivative multiplies
by a factor of −2, so
f (31)(x) = (−2)31e−2x.

61. R(t) = P (t)Q(t)
R′(t) = Q′(t) · P (t) +Q(t) · P ′(t)
P (0) = 2.4($)
Q(0) = 12 (thousands)
Q′(t) = −1.5 (thousands per year)
P ′(t) = 0.1 ($ per year)
R′(0) = (−1.5) · (2.4) + 12 · (0.1)

= −2.4 (thousand $ per year)
Revenue is decreasing at a rate of $2400 per
year.

62. The relative rate of change is v′(t)
v(t) . v′(t) =

200( 3
2 )t ln 3

2 , so the relative rate of change is
ln 3

2 ≈ 0.4055, giving an instantaneous per-
centage rate of change of 40.55%.

63. f(t) = 4 cos 2t
v(t) = f ′(t) = 4(− sin 2t) · 2

= −8 sin 2t

(a) The velocity is zero when
v(t) = −8 sin 2t = 0, i.e., when
2t = 0, π, 2π, . . . so when
t = 0, π/2, π, 3π/2, . . .
f(t) = 4 for t = 0, π, 2π, . . .
f(t) = 4 cos 2t = −4 for
t = π/2, 3π/2, . . .
The position of the spring when the ve-
locity is zero is 4 or −4.

(b) The velocity is a maximum when
v(t) = −8 sin 2t = 8, i.e., when

2t = 3π/2, 7π/2, . . . so
t = 3π/4, 7π/4, . . .
f(t) = 4 cos 2t = 0 for
t = 3π/4, 7π/4, . . .
The position of the spring when the ve-
locity is at a maximum is zero.

(c) Velocity is at a minimum when
v(t) = −8 sin 2t = −8, i.e., when
2t = π/2, 5π/2, . . . so
t = π/4, 5π/4, . . .
f(t) = 4 cos 2t = 0 for
t = π/4, 5π/4, . . .
The position of the spring when the ve-
locity is at a minimum is also zero.

64. The velocity is given by
f ′(t) = −2e−2t sin 3t+ 3e−2t cos 3t.

65.
d

dx
(x2y − 3y3) =

d

dx
(x2 + 1)

2xy + x2y′ − 3 · 3y2 · y′ = 2x
y′(x2 − 9y2) = 2x− 2xy

y′ =
2x(1− y)

x2 − 9y2

66.
d

dx
(sin(xy) + x2) =

d

dx
(x− y)

cos(xy)(y + xy′) + 2x = 1− y′

y′ =
1− 2x− y cos(xy)

x cos(xy) + 1
.

67.
d

dx

(
y

x+ 1
− 3y

)
=

d

dx
tanx

(x+ 1)y′ − y · (1)

(x+ 1)2
− 3y′ = sec2 x

y′(x+ 1)− y = (x+ 1)2(3y′ + sec2 x)

y′ =
sec2 x(x+ 1)2 + y

(x+ 1)[1− 3(x+ 1)]

68.
d

dx
(x− 2y2) =

d

dx
(3ex/y)

1− 2yy′ = 3ex/y · y − xy
′

y2

1− 2yy′ =
3ex/y

y
− 3ex/yxy′

y2

y′ =

3ex/y

y − 1

3xex/y

y2 − 2y

69. When x = 0, −3y3 = 1, y = −1
3√3

(call this

a).

From our formula (#65), we find y′ = 0 at
this point. To find y′′, implicitly differenti-
ate the first derivative (second line in #65):

2(xy′ + y) + (2xy′ + x2y′′)
− 9

[
2y(y′)2 + y2y′′

]
= 2

At (0, a) with y′ = 0, we find
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2a− 9a2y′′ = 2,

y′′ =
−2 3
√

3

9

(
3
√

3 + 1
)

Below is a sketch of the graph of x2y−3y3 =
x2 + 1.

y

2

-6

4

0

x

-5-10

-4

-2

50 10

70. Plugging in x = 0 gives −2y = 0 so y = 0.
Plugging (0, 0) into the formula for y′ gives a
slope of −1/2. Implicitly differentiating the
third line of the solution to #37 gives

y′′(x+ 1) + y′ − y′
= 2(x+ 1)(3y′ + sec2 x)

+ (x+ 1)2(3y′′ + 2 secx · secx tanx)

Plugging in x = 0, y = 0 and y′ = −1/2
gives

y′′ = 2(−3/2 + sec2(0))
+ (1)2(3y′′ + 2 sec2(0) tan(0))

y′′ = 1 + 3y′′.
So at x = 0, y′′ = −1/2.

The graph is:

0-2-4

y

3

2

1

0

-1
x

-2

-3

42

71. y′ = 3x2 − 12x = 3x(x− 4)

(a) y′ = 0 for x = 0 (y = 1), and x = 4
(y = −31) so there are horizontal tan-
gent lines at (0, 1) and (4,−31).

(b) y′ is defined for all x, so there are no
vertical tangent lines.

72. y′ =
2

3
x−1/3

(a) The derivative is never 0, so the tangent
line is never horizontal.

(b) The derivative is undefined at x = 0 and
the tangent is vertical there.

73.
d

dx
(x2y − 4y) =

d

dx
x2

2xy + x2y′ − 4y′ = 2x
y′(x2 − 4) = 2x− 2xy

y′ =
2x− 2xy

x2 − 4
=

2x(1− y)

x2 − 4

(a) y′ = 0 when x = 0 or y = 1.
At y = 1, x2 · 1− 4 · 1 = x2

x2 − 4 = x2

This is impossible, so there is no x for
which y = 1.
At x = 0, 02 · y − 4y = 02, so y = 0.
Therefore, there is a horizontal tangent
line at (0, 0).

(b) y′ is not defined when x2 − 4 = 0, or
x = ±2. At x = ±2, 4y − 4y = 4 so
the function is not defined at x = ±2.
There are no vertical tangent lines.

74. y′ = 4x3 − 2x = 2x(2x2 − 1).

(a) The derivative is 0 at x = 0 and x =

±
√

1
2 , and the tangent line is horizontal

at those points.

(b) The tangent line is never vertical.

75. f(x) is continuous and differentiable for all
x, and f ′(x) = 3x2 + 7, which is positive
for all x. By Theorem 9.2, if the equation
f(x) = 0 has two solutions, then f ′(x) = 0
would have at least one solution, but it has
none. We discussed at length (Section 2.9)
why every odd degree polynomial has at
least one root, so in this case there is exactly
one root.

76. The derivative is 5x4 + 9x2. This is non-
negative for all x. f(x) is increasing func-
tion so can have at most one zero. Since
f(0) = −2, f(1) = 2, f(x) has exactly one
solution.

77. f(x) = x5 + 2x3 − 1 is a one-to-one function
with f(1) = 2, f ′(1) = 11. If g is the name
of the inverse, then g(2) = 1 and

g′(2) =
1

f ′(g(2))
=

1

f ′(1)
=

1

11
.
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0
y

1

-1

-10

0.5

-1.5

x

2010

1.5

-20

-0.5

0

78. Since e0
3+2·0 = 1, the derivative of the in-

verse at x = 1 will be one over the deriva-
tive of ex

3+2x at x = 0. The derivative of
ex

3+2x is (3x2 + 2)ex
3+2x and this is 2 when

x = 0. Therefore the derivative of the in-
verse to ex

3+2x at x = 1 is 1/2.

The graph is the graph of ex
3+2x reflected

across the line y = x.
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79. Let a > 0. We know that f(x) = cosx − 1
is continuous and differentiable on the inter-
val (0, a). Also f ′(x) = sinx ≤ 1 for all x.
The Mean Value Theorem implies that there
exists some c in the interval (0, a) such that
f ′(c) = sin c. But

f ′(c) =
cos a− 1− (cos 0− 1)

a− 0

=
cos a− 1

a
.

Since this is equal to sin c and sin c ≤ 1 for
any c, we get that

cos a− 1 ≤ a

as desired. This works for all positive a, but
since cosx−1 is symmetric about the y axis,
we get

| cosx− 1| ≤ |x|.

They are actually equal at x = 0.

80. This is an example of a Taylor polynomial.
Later, Taylor’s theorem will be used to prove
such inequalities. For now, one can use mul-
tiple derivatives and argue that the rate of
the rate of the rate of change (etc.) increases
as one moves left to right through the in-
equalities.

81. To show that g(x) is continuous at x = a, we
need to show that the limit as x approaches
a of g(x) exists and is equal to g(a). But

lim
x→a

g(x) = lim
x→a

f(x)− f(a)

x− a
,

which is the definition of the derivative of
f(x) at x = a. Since f(x) is differentiable
at x = a, we know this limit exists and is
equal to f ′(a), which, in turn, is equal to
g(a). Thus g(x) is continuous at x = a.

82. We have

f(x)− T (x)

= f(x)− f(a)− f ′(a)(x− a)

=

(
f(x)− f(a)

x− a
− f ′(a)

)
(x− a)

Letting e(x) =
f(x)− f(a)

x− a
− f ′(a), we ob-

tain the desired form. Since f(x) is differen-
tiable at x = a, we know that

lim
x→a

f(x)− f(a)

x− a
= f ′(a)

so

lim
x→a

e(x) = lim
x→a

f(x)− f(a)

x− a
− f ′(a)

= 0.

83. f(x) = x2 − 2x on [0, 2]
f(2) = 0 = f(0)

If f ′(c) =
f(2)− f(0)

2− 0
=

0− 0

2
= 0

then 2c− 2 = f ′(c) = 0 so c = 1.

84. f(x) is continuous on [0, 2] and differentiable
on (0, 2), so the Mean Value Theorem ap-
plies. We need to find c so that

f ′(c) =
f(2)− f(0)

2− 0
=

6− 0

2− 0
= 3.

f ′(x) = 3x2 − 1 = 3 when x =
√

4/3, so

c = 2
√

3/3.

85. f(x) = 3x2 − cosx
One trial: go(x) = kx3 − sinx
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g′o(x) = 3kx2 − cosx
Need 3k = 3, k = 1, and the general solution
is
g(x) = go(x) + c = x3 − sinx+ c
for c an arbitrary constant.

86. If g′(x) = x3 − e2x, then g(x) must be
1

4
x4 − 1

2
e2x + c,

for any constant c.

87. x = 1 is to be double root of
f(x) = (x3 + 1)− [m(x− 1) + 2]

= (x3 + 1− 2)−m(x− 1)
= (x3 − 1)−m(x− 1)
= (x− 1)

[
x2 + x+ 1−m

]
Let g(x) = x2 + x + 1 −m. Then x = 1 is
a double root of f only if (x− 1) is a factor
of g, in which case g(1) = 0. Therefore we
require 0 = g(1) = 3 − m or m = 3. Now
g(x) = x2 + x− 2 = (x− 1)(x+ 2),
f(x) = (x− 1)g(x) = (x− 1)2(x+ 2)
and x = 1 is a double root.

The line tangent to the curve y = x3 + 1 at
the point (1, 2) has slope y′ = 3x2 = 3(1) =
3(= m). The equation of the tangent line is
y−2 = 3(x−1) or y = 3x−1(= m(x−1)+2).

88. We are asked to find m so that
x3 + 2x− [m(x− 2) + 12]
= x3 + (2−m)x+ (2m− 12)
has a double root. A cubic with a double
root factors as
(x− a)2(x− b)
= x3 − (2a+ b)x2 + (2ab+ a2)x− a2b.
Equating like coefficients gives a system of
equations
2a+ b = 0,
2ab+ a2 = 2−m, and
−a2b = 2m− 12.
The first equation gives b = −2a. Substi-
tuting this into the second equation gives
m = 2 + 3a2. Substituting these results into
the third equation gives a cubic polynomial
in a with zeros a = −1 and a = 2. This gives
two solutions: m = 5 and m = 14.

f ′(x) = 3x2 + 2, so f ′(2) = 14. The tangent
line at (2, 12) is y = 14(x− 2) + 12.

The second solution corresponds to the tan-
gent line to f(x) at x = −1, which happens
to pass through the point (2, 12).

89. Given,f =
1

2L

√
T

P
⇒ df

dT
=

1

4L
√
pT

as

T is an independent variable and p , L are
constants. Tightening the string means in-
creasing the tension, resulting in decrease
in df

dT , which means there is a decrease in
the rate of change of frequency with re-
spect to the tension in the string. On the
other end, loosening the string means de-
creasing the tension, resulting in increase
in df

dT , which means there is a increase in
the rate of change of frequency with re-
spect to the tension in the string. Also,

f =
1

2L

√
T

P
⇒ df

dL
= − 1

2L2

√
T

p
.When

the guitarist plays the notes by pressing
the string against a fret; he is increasing
the length and hence decreasing the rate of
change of frequency of vibration with re-
spect to the length of the string.
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