Chapter 2

1. Find the equation of the tangent line to $y = x^2 - 6x$ at x = 3.

A) y = -9 B) y = 3 C) y = -9x D) y = 3xAns: A Difficulty: Moderate Section: 2.1

2. Find an equation of the tangent line to y = f(x) at x = 3. $f(x) = x^3 + x^2 + x$

A) y = -12x - 36 B) y = 34x + 63 C) y = 12x - 36 D) y = 34x - 63Ans: D Difficulty: Moderate Section: 2.1

3. Find an equation of the tangent line to y = f(x) at x = 2. $f(x) = 2x^3 + 5$

A) y = 9x - 16 B) y = -24x - 27 C) y = 24x - 27 D) y = 24x + 27Ans: C Difficulty: Moderate Section: 2.1

4. Find the equation of the tangent line to $y = \frac{2}{x+2}$ at x = 3.

A) $y = \frac{2}{25}x + \frac{16}{25}$ B) $y = -\frac{2}{25}x - \frac{16}{25}$ C) $y = -\frac{2}{25}x + \frac{16}{25}$ D) $y = \frac{2}{25}x - \frac{16}{25}$

Ans: C Difficulty: Moderate Section: 2.1

5. Find the equation of the tangent line to $y = 6\sqrt{x-4}$ at x = 5.

A) y = 6x - 9 B) y = 3x - 9 C) y = 6x - 18 D) y = 3x - 18Ans: B Difficulty: Moderate Section: 2.1

6. Compute the slope of the secant line between the points x = -3.1 and x = -3. Round your answer to the thousandths place.
 f(x) = sin(2x)

A) -0.995 B) 1.963 C) 5.963 D) -1.991 Ans: B Difficulty: Easy Section: 2.1 7. Compute the slope of the secant line between the points x = 1 and x = 1.1. Round your answer to the thousandths place.

.691

$$f(x) = e^{0.5x}$$

A) 0.845 B) 5.529 C) 0.780 D) 1.69
Ans: A Difficulty: Easy Section: 2.1

8. List the points A, B, C, D, and E in order of increasing slope of the tangent line.

A) B, C, E, D, A B) A, E, D, C, B C) E, A, D, B, C D) A, B, C, D, E Ans: B Difficulty: Easy Section: 2.1

9. Use the position function $s(t) = -4.9t^2 + 1$ meters to find the velocity at time t = 3seconds.

A) -43.1 m/sec B) -29.4 m/sec C) -28.4 m/sec D) -44.1 m/sec Difficulty: Moderate Section: 2.1 Ans: B

10. Use the position function $s(t) = \sqrt{t+5}$ meters to find the velocity at time t = -1seconds.

A) 2 m/sec B) 4 m/sec C) $\frac{1}{2}$ m/sec D) $\frac{1}{4}$ m/sec Ans: D Difficulty: Moderate Section: 2.1

11. Find the average velocity for an object between t = 3 sec and t = 3.1 sec if $f(t) = -16t^2 + 100t + 10$ represents its position in feet.

A) 2.4 ft/s B) 4 ft/s C) 0.8 ft/s D) 166 ft/s Ans: A Difficulty: Moderate Section: 2.1

12. Find the average velocity for an object between t = 1 sec and t = 1.1 sec if $f(t) = 5\sin(t) + 5$ represents its position in feet. (Round to the nearest thousandth.)

A) 2.702 B) 2.268 C) 2.487 D) -2.487 Ans: C Difficulty: Moderate Section: 2.1

13. Estimate the slope of the tangent line to the curve at x = -2.

- A) -1 B) -2 C) 2 D) 0 Ans: B Difficulty: Easy Section: 2.1
- 14. Estimate the slope of the tangent line to the curve at x = 3.

15.	The table shows the temperature in degrees Celsius at various distances, d in feet,	from
	specified point. Estimate the slope of the tangent line at $d = 2$ and interpret the r	esult.

d	0	1	3	5	7
°C	13	20	14	7	1

- A) $m \approx 4.67$; The temperature is increasing 4.67 °C per foot at the point 2 feet from the specified point.
- B) $m \approx -0.33$; The temperature is decreasing $0.33 \,^{\circ}C$ per foot at the point 2 feet from the specified point.
- C) $m \approx -3$; The temperature is decreasing 3 °*C* per foot at the point 2 feet from the specified point.
- D) $m \approx 20$; The temperature is increasing 20 °C per foot at the point 2 feet from the specified point.
- Ans: C Difficulty: Moderate Section: 2.1
- 16. The graph below gives distance in miles from a starting point as a function of time in hours for a car on a trip. Find the fastest speed (magnitude of velocity) during the trip. Describe how the speed during the first 2 hours compares to the speed during the last 2 hours. Describe what is happening between 2 and 3 hours.

- Ans: The fastest speed occurred during the last 2 hours of the trip when the car traveled at about 70 mph. The speed during the first 2 hours is 60 mph while the speed from 8 to 10 hours is about 70 mph. Between 2 and 3 hours the car was stopped.Difficulty: Moderate Section: 2.1
- 17. Compute f'(3) for the function $f(x) = 5x^3 5x$.

A) 150 B) 130 C) 120 D) -130 Ans: B Difficulty: Moderate Section: 2.2 18. Compute f'(4) for the function $f(x) = \frac{2}{x^2 + 4}$.

A) $\frac{1}{4}$ B) $\frac{1}{25}$ C) $-\frac{2}{25}$ D) $-\frac{1}{25}$ Ans: D Difficulty: Moderate Section: 2.2

^{19.} Compute the derivative function f'(x) of $f(x) = \frac{7}{3x-1}$.

A) $f'(x) = \frac{-21}{(3x-1)^2}$ B) $f'(x) = \frac{-3}{(3x-1)^2}$ C) $f'(x) = \frac{-7}{(3x-1)^2}$ D) $f'(x) = \frac{21}{(3x-1)^2}$

Ans: A Difficulty: Moderate Section: 2.2

20. Compute the derivative function f'(x) of $f(x) = \sqrt{4x^2 + 9}$.

A) $f'(x) = \frac{-8x}{\sqrt{4x^2 + 9}}$ B) $f'(x) = \frac{4x}{\sqrt{4x^2 + 9}}$ C) $f'(x) = \frac{-4x}{\sqrt{4x^2 + 9}}$ D) $f'(x) = \frac{-4x}{\sqrt{8x + 9}}$

Ans: B Difficulty: Moderate Section: 2.2

21. Below is a graph of f'(x). Sketch a plausible graph of a continuous function f(x).

Ans: Answers may vary. Below is one possible answer.

Difficulty: Moderate Section: 2.2

22. Below is a graph of f(x). Sketch a graph of f'(x).

Ans:

23. Below is a graph of f(x). Sketch a graph of f'(x). 5**≜**f(x) 1 х -3 -2 0 -5 4 -1 2 \$ 4 -2 -3 4 -5 5**≜**f'(x) 4 3 2 1 х 3 -5 -4 -\$ -2 0 Ż 4 ¢ -1 -1 -2 -3 -4 -5 Ans:

Difficulty: Difficult Section: 2.2

įρ

3 -4 -5 3

-5-4-3

Chapter 2

24. Below is a graph of f'(x). Sketch a plausible graph of a continuous function f(x).

Ans: Answers may vary. Below is one possible answer.

Difficulty: Difficult Section: 2.2

25. Compute the right-hand derivative $D_{+}f(0) = \lim_{h \to 0^{+}} \frac{f(h) - f(0)}{h}$ and the left-hand derivative $D_{-}f(0) = \lim_{h \to 0^{-}} \frac{f(h) - f(0)}{h}$. $f(x) = \begin{cases} 4x + 8 & \text{if } x < 0 \\ -8x + 8 & \text{if } x \ge 0 \end{cases}$ A) $D_{+}f(0) = -8, D_{-}f(0) = 4$ B) $D_{+}f(0) = 4, D_{-}f(0) = -8$ C) $D_{+}f(0) = 8, D_{-}f(0) = 8$ B) $D_{+}f(0) = 4, D_{-}f(0) = -8$ Ans: A Difficulty: Moderate Section: 2.2 26. Numerically estimate the derivative f'(0) for $f(x) = 5xe^{3x}$.

A) 0 B) 1 C) 3 D) 5 Ans: D Difficulty: Moderate Section: 2.2

27. The table below gives the position s(t) for a car beginning at a point and returning 5 hours later. Estimate the velocity v(t) at two points around the third hour.

t (hours)	0	1	2	3	4	5
s(t) (miles)	0	15	50	80	70	0

Ans: The velocity is the change in distance traveled divided by the elapsed time. From hour 3 to 4 the average velocity is (70 - 80)/(4 - 3) = -10 mph. Likewise, the velocity between hour 2 and hour 3 is about 30 mph. Difficulty: Easy Section: 2.2

28. Use the distances f(t) to estimate the velocity at t = 2.2. (Round to 2 decimal places.)

t	1.6	1.8	2	2.2	2.4	2.6	2 8
f(t)	49	54	59.5	64	68.5	73.5	79

A) -2250.00 B) 29.09 C) 22.50 D) 25.00 Ans: C Difficulty: Easy Section: 2.2

29.

29. For $f(x) = \begin{cases} 5x^2 - 6x & \text{if } x < 0 \\ ax + b & \text{if } x \ge 0 \end{cases}$ find all real numbers *a* and *b* such that f'(0) exists.

A)	<i>a</i> =	10, <i>b</i> any real number	C)	a = -6, b any real number
B)	<i>a</i> =	4, $b = 0$	D)	$a = -6, \ b = 0$
Ans:	D	Difficulty: Moderate	Section: 2.2	

30. Sketch the graph of a function with the following properties: f(0) = 0, f(2) = 1, f(4) = -2, f'(0) = 1, f'(2) = 0, and f'(4) = -3.

Ans: B Difficulty: Moderate Section: 2.2

31. Suppose a sprinter reaches the following distances in the given times. Estimate the velocity of the sprinter at the 6 second mark. Round to the nearest integer.

t sec	5	5.5	6	6.5	7
f(t) ft	120.7	142.1	158.3	174.5	193.5

A) 32 ft/sec B) 36 ft/sec C) 26 ft/sec D) 28 ft/sec Difficulty: Moderate Section: 2.2 Ans: A

- 32. $\lim_{h \to 0} \frac{(1+h)^3 + (1+h) 2}{h}$ equals f'(a) for some function f(x) and some constant a. Determine which of the following could be the function f(x) and the constant a.
 - $f(x) = x^3 x$ and a = -1 $f(x) = x^3 + x - 20$ and a = 0C) A) C) $f(x) = x^3 + x - 20$ and a D) $f(x) = x^3 + x$ and a = 1 $f(x) = x^3 + x^2$ and a = 0B) Ans: D Difficulty: Moderate Section: 2.2

33.

1 $\lim_{h \to 0} \frac{\overline{(h+3)^2} - \overline{9}}{h}$ equals f'(a) for some function f(x) and some constant a. Determine which of the following could be the function f(x) and the constant *a*.

A) $f(x) = \frac{1}{x^2}$ and a = 3C) $f(x) = -\frac{1}{x^2}$ and a = 4B) D) $f(x) = -\frac{1}{x^2}$ and a = -3 $f(x) = \frac{3}{x^2}$ and a = 3

Ans: A Difficulty: Moderate Section: 2.2

34. Find the derivative of $f(x) = x^2 + 3x + 2$.

A) x + 3 B) $2x^2 + 2$ C) 2x + 3 D) -2x - 3Ans: C Difficulty: Easy Section: 2.3

35. Differentiate the function. $f(t) = 5t^3 - 2\sqrt{t}$

> A) $f'(t) = 15t^2 - 4\sqrt{t}$ B) $f'(t) = 15t^2 - 4$ C) $f'(t) = \frac{15t^{5/2} - 1}{\sqrt{t}}$ D) $f'(t) = \frac{15t^2 - 1}{\sqrt{t}}$

Ans: C Difficulty: Moderate Section: 2.3

36. Find the derivative of $f(x) = \frac{4}{x} + 4x - 3$.

A)
$$f'(x) = \frac{4}{x^2} + 4$$

B) $f'(x) = -\frac{4}{x^2} + 4$
Area D $f'(x) = -\frac{4}{x^2} + 4$
Area D $f'(x) = -\frac{4}{x^2} + 8x^2$

Ans: B Difficulty: Easy Section: 2.3

37. Differentiate the function. $f(s) = 5s^{3/2} - 7s^{-1/3}$

> A) $f'(s) = \frac{45s^{5/3} + 2}{6s^{2/3}}$ B) $f'(s) = \frac{45s^{1/2} + 2s^{1/3}}{6}$ C) $f'(s) = \frac{45s^{1/2} + 2s^{2/3}}{6}$ D) $f'(s) = \frac{45s^{11/6} + 14}{6s^{4/3}}$

Ans: D Difficulty: Moderate Section: 2.3

38. Find the derivative of
$$f(x) = \frac{x^2 + 5x - 2}{4x}$$

A)
$$f'(x) = \frac{2x+5}{4}$$

B) $f'(x) = -\frac{x}{2} - \frac{5}{4}$
C) $f'(x) = \frac{1}{4} + \frac{1}{2x^2}$
D) $f'(x) = \frac{x^2}{4} + \frac{5x}{4} - \frac{1}{2x}$

Ans: C Difficulty: Moderate Section: 2.3

39. Find the derivative of $f(x) = \frac{-5x^2 - 7x - 7}{\sqrt{x}}$.

A)
$$f'(x) = -\frac{15\sqrt{x}}{2} - \frac{7}{2\sqrt{x}} + \frac{7}{2\sqrt{x^3}}$$
 C)
B) $f'(x) = -\frac{20x + 14}{x}$ D)

C)
$$f'(x) = -\frac{15\sqrt{x}}{2} + \frac{7}{2\sqrt{x}} - \frac{7}{2\sqrt{x^3}}$$

C)
$$f'(x) = -15\sqrt{x} - \frac{7}{\sqrt{x}} - \frac{7}{\sqrt{x^3}}$$

Ans: A Difficulty: Moderate Section: 2.3

40. Differentiate the function.

$$f(x) = x \left(3x^2 - 6\sqrt{x} \right)$$

A)
$$f'(x) = 9x^2 - 9\sqrt{x}$$

B) $f'(x) = 6x^2 - 3\sqrt{x}$

B)
$$f'(x) = \frac{6x^{3/2} - 3}{\sqrt{x}}$$
 D) $f'(x) = 6x - 3\sqrt{x}$

Ans: A Difficulty: Moderate Section: 2.3

41. Find the third derivative of $f(x) = 2x^5 + 8x + \frac{3}{x}$.

A)
$$f'''(x) = 120x^2 + \frac{18}{x^4}$$

B) $f'''(x) = 120x^2 + 8 - \frac{18}{x^4}$
C) $f'''(x) = 40x^3 + \frac{6}{x^3}$
D) $f'''(x) = 120x^2 - \frac{18}{x^4}$

 $f'''(x) = 120x^2 + 8 - \frac{10}{x^4}$ f'''(x)Ans: D Difficulty: Moderate Section: 2.3

42. Find the second derivative of $y = -4x - \frac{6}{\sqrt{x}}$.

A)
$$\frac{d^2 y}{dx^2} = -4 - \frac{9}{2\sqrt{x^5}}$$

B) $\frac{d^2 y}{dx^2} = -\frac{9}{2\sqrt{x^5}}$
C) $\frac{d^2 y}{dx^2} = \frac{9}{2\sqrt{x^5}}$
D) $\frac{d^2 y}{dx^2} = -\frac{9}{2\sqrt{x^3}}$

Ans: B Difficulty: Moderate Section: 2.3

43. Using the position function $s(t) = 3t^4 - 4t^3 + \frac{2}{t}$, find the velocity function.

A)
$$v(t) = 12t^3 - 12t^2 - \frac{2}{t^2}$$

B) $v(t) = 9t^3 - 8t^2 - \frac{2}{t^2}$
C) $v(t) = 12t^3 - 12t^2 + \frac{2}{t^2}$
D) $v(t) = -12t^3 + 12t^2 - \frac{2}{t^2}$

Ans: A Difficulty: Moderate Section: 2.3

44. Using the position function $s(t) = -7t^3 - 6t - 8$, find the acceleration function.

A) a(t) = -21t B) a(t) = -14t C) a(t) = -42t D) a(t) = -42t - 6Ans: C Difficulty: Moderate Section: 2.3

45. Using the position function $s(t) = -\sqrt{t} + \frac{3}{t}$, find the velocity function.

A) $v(t) = \frac{1}{2\sqrt{t}} + \frac{3}{t^2}$ B) $v(t) = -\frac{1}{2\sqrt{t}} - \frac{3}{t^2}$ C) $v(t) = \frac{1}{2\sqrt{t}} - \frac{3}{t^2}$ D) $v(t) = -\frac{1}{2\sqrt{t}} - \frac{6}{t^2}$

Ans: B Difficulty: Moderate Section: 2.3

46. Using the position function $s(t) = -\frac{8}{\sqrt{t}} + 1$, find the acceleration function.

A)
$$a(t) = \frac{6}{\sqrt{t^5}}$$
 B) $a(t) = -\frac{2}{\sqrt{t^5}}$ C) $a(t) = \frac{4}{\sqrt{t^3}}$ D) $a(t) = -\frac{6}{\sqrt{t^5}}$
Ans: D Difficulty: Moderate Section: 2.3

47. The height of an object at time *t* is given by $h(t) = -16t^2 + 4t - 1$. Determine the object's velocity at t = 2.

A) 60 B) -59 C) -60 D) -28 Ans: C Difficulty: Easy Section: 2.3

48. The height of an object at time t is given by $h(t) = 8t^2 - 4t$. Determine the object's acceleration at t = 3.

A) 60 B) 16 C) 44 D) -16 Ans: B Difficulty: Easy Section: 2.3 49. Find an equation of the line tangent to $f(x) = x^2 + 5x - 8$ at x = 2.

A) g(x) = 9x - 12C) g(x) = 9x - 10B) g(x) = 4x - 12D) g(x) = 4x - 10Ans: A Difficulty: Easy Section: 2.3

50. Find an equation of the line tangent to $f(x) = 7\sqrt{x} - 2x - 4$ at x = 3.

A)
$$g(x) = \left(\frac{-7\sqrt{3}+12}{6}\right)x - \frac{7}{2}\sqrt{3} + 4$$

B) $g(x) = \left(\frac{7\sqrt{3}-6}{6}\right)x + \frac{7}{2}\sqrt{3}$
D) $g(x) = \left(\frac{7\sqrt{3}-6}{6}\right)x + \frac{7}{2}\sqrt{3}$

B) $g(x) = \left(\frac{7\sqrt{3}-4}{3}\right)x + \frac{7}{2}\sqrt{3} + 4$ D) $g(x) = \left(\frac{7\sqrt{3}-12}{6}\right)x + \frac{7}{2}\sqrt{3} - 4$

Ans: D Difficulty: Moderate Section: 2.3

51. Use the graph of f(x) below to sketch the graph of f''(x) on the same axes. (Hint: sketch f'(x) first.)

Ans: A Difficulty: Difficult Section: 2.3

52. Determine the real value(s) of x for which the line tangent to $f(x) = 7x^2 + 9x - 4$ is horizontal.

A)
$$x = -\frac{9}{14}, x = 0$$
 B) $x = \frac{-9 \pm \sqrt{193}}{14}$ C) $x = -\frac{9}{14}$ D) $x = 0$
Ans: C Difficulty: Easy Section: 2.3

53. Determine the real value(s) of x for which the line tangent to $f(x) = 2x^4 - 4x^2 - 1$ is horizontal.

A) x = -1, x = 1 B) x = 0, x = -1, x = 1 C) x = 0 D) x = 0, x = 1Ans: B Difficulty: Easy Section: 2.3

- 54. Determine the value(s) of x, if there are any, for which the slope of the tangent line to $f(x) = |x^2 + 3x 54|$ does not exist.
 - A) x = -1.5C) x = -9, x = 6B) x = -6, x = 9D)Ans: C Difficulty: Moderate Section: 2.3

Chapter 2

55. Find the second-degree polynomial (of the form $ax^2 + bx + c$) such that f(0) = 0, f'(0) = 5, and f''(0) = 1.

A)
$$\frac{x^2}{2} + 5x$$
 B) $-\frac{x^2}{2} + 5x$ C) $\frac{x^2}{2} - 5x + 1$ D) $-\frac{x^2}{2} + 5x + 1$
Ans: A Difficulty: Moderate Section: 2.3

56. Find a formula for the *n*th derivative $f^{(n)}(x)$ of $f(x) = \frac{4}{x+8}$.

A)
$$f^{(n)}(x) = (-1)^{n+1} \frac{32n!}{(x+8)^{n+1}}$$

B) $f^{(n)}(x) = (-1)^{n+1} \frac{4n!}{(x+8)^n}$
C) $f^{(n)}(x) = (-1)^n \frac{32n!}{(x+8)^n}$
D) $f^{(n)}(x) = (-1)^n \frac{4n!}{(x+8)^{n+1}}$

Ans: D Difficulty: Difficult Section: 2.3

57. Find a function with the given derivative. $f'(x) = 20x^4$

A)
$$f(x) = 20x^5$$
 B) $f(x) = 4x^5$ C) $f(x) = 20x^3$ D) $f(x) = 80x^3$
Ans: B Difficulty: Moderate Section: 2.3

58. Let f(t) equal the average monthly salary of families in a certain city in year t. Several values are given in the table below. Estimate and interpret f''(2010).

t	1995	2000	2005	2010
f(t)	\$1700	\$2000	\$2100	\$2250

- A) $f''(2010) \approx 2$; The rate at which the average monthly salary is increasing each year in 2010 is increasing by \$2 per year.
- B) $f''(2010) \approx 2$; The average monthly salary is increasing by \$2 per year in 2010.
- C) $f''(2010) \approx 30$; The rate at which the average monthly salary is increasing each year in 2010 is increasing by \$30 per year.
- D) $f''(2010) \approx 30$; The average monthly salary is increasing by \$30 per year in 2010.
- Ans: A Difficulty: Moderate Section: 2.3

Chapter 2

59. Find the derivative of $f(x) = \left(9\sqrt{x} + 5x\right)\left(-3x^2 - \frac{1}{x}\right)$.

A)
$$f'(x) = -45x^2 + \frac{135}{2}x^{3/2} + \frac{9}{2x^{3/2}}$$

B) $f'(x) = -45x^2 - \frac{135}{2}x^{3/2} + \frac{9}{2x^{3/2}}$

C)
$$f'(x) = 45x^{2} - \frac{135}{2}x^{3/2} - \frac{9}{2x^{3/2}}$$

D)
$$f'(x) = -45x^2 - \frac{135}{2}x^{3/2} - \frac{10}{x} + \frac{9}{2x^{3/2}}$$

60. Find the derivative of
$$f(x) = \frac{2x+2}{-3x+2}$$
.

A)
$$\frac{-10}{(-3x+2)^2}$$
 B) $-\frac{2}{3}$ C) $\frac{2}{3}$ D) $\frac{10}{(-3x+2)^2}$
Ans: D Difficulty: Moderate Section: 2.4

61. Find the derivative of
$$f(x) = \frac{4x}{-8x^2 - 3}$$
.

A)
$$\frac{32x^2 - 12}{(-8x^2 - 3)^2}$$
 B) $\frac{1}{2x^2}$ C) $\frac{-32x^2 + 12}{(-8x^2 - 3)^2}$ D) $-\frac{1}{2x^2}$
Ans: A Difficulty: Moderate Section: 2.4

62. Find the derivative of $f(x) = (-5\sqrt[3]{x} + 6)x$.

A) $f'(x) = \frac{20}{3}\sqrt[3]{x} + 6$ B) $f'(x) = -\frac{5}{3}\sqrt[3]{x} - 6$ C) $f'(x) = -\frac{20}{3}\sqrt[3]{x} + 6$ D) $f'(x) = -\frac{10}{3}\sqrt[3]{x} + 12$

Ans: C Difficulty: Moderate Section: 2.4

63. Find an equation of the line tangent to h(x) = f(x)g(x) at x = -3 if f(-3) = 2, f'(-3) = 1, g(-3) = 3, and g'(-3) = 3.

A)
$$y = 3x - 3$$
 B) $y = 3x + 33$ C) $y = 9x + 33$ D) $y = 9x - 21$
Ans: C Difficulty: Moderate Section: 2.4

64. Find an equation of the line tangent to $h(x) = \frac{f(x)}{g(x)}$ at x = 3 if f(3) = 1, f'(3) = -1, g(3) = 1, and g'(3) = -2.

A)
$$y = -3x - 2$$
 B) $y = x - 2$ C) $y = -3x + 10$ D) $y = x + 4$
Ans: B Difficulty: Moderate Section: 2.4

65. A small company sold 1500 widgets this year at a price of \$12 each. If the price increases at rate of \$1.75 per year and the quantity sold increases at a rate of 200 widgets per year, at what rate will revenue increase?

A) \$350/year B) \$5025/year C) \$225/year D) \$5375/year Ans: B Difficulty: Moderate Section: 2.4

66. The Dieterici equation of state, $Pe^{an/VRT}(V-nb) = nRT$, gives the relationship between pressure P, volume V, and temperature T for a liquid or gas. At the critical point, P'(V) = 0 and P''(V) = 0 with T constant. Using the result of the first derivative and substituting it into the second derivative, find the critical volume $V_{\rm c}$ in terms of the constants n, a, b, and R.

Ans:

$$P'(V) = \left(\frac{an^2}{V^2} - \frac{nRT}{(V - nb)}\right) \left(\frac{1}{V - nb}\right) e^{-an/VRT} = 0 \text{ gives the result that}$$

$$RT = \frac{an(V - nb)}{V^2}.$$

$$P''(V) = \left(\frac{-2an^2}{V^3(V - nb)} + \frac{2nRT}{(V - nb)^3} - \frac{2an^2}{V^2(V - nb)^2} + \frac{a^2n^3}{V^4(V - nb)^2RT}\right) e^{-an/VRT} = 0.$$

When the result of the first derivative is substituted for RT in the parentheses, the result is that $V_c = 2nb$.

Difficulty: Difficult Section: 2.4

67. Find the derivative of $f(x) = \frac{(x^2 + 2)^4}{6}$.

C) $f'(x) = \frac{4}{x(x^2+2)^3}$ A) $f'(x) = \frac{2}{3}x(x^2 + 2)^3$ B) $f'(x) = \frac{1}{3}x(x^2 + 2)^3$ $(x) - \frac{1}{x}(x^2 + 2)^3$ D) 3

B)
$$f'(x) = \frac{1}{3}x(x)$$

$$f'(x) = \frac{1}{3}x(x^2 + 2)^{2}$$
$$f'(x) = \frac{1}{6}x(x^2 + 2)^{2}$$

Ans: C Difficulty: Moderate Section: 2.5

68. Find the derivative of $f(x) = \sqrt{x^2 - 2}$.

A)
$$f'(x) = \frac{2x}{\sqrt{x^2 - 2}}$$

B) $f'(x) = \frac{4x}{\sqrt{x^2 - 2}}$
C) $f'(x) = \frac{-x}{\sqrt{x^2 - 2}}$
D) $f'(x) = \frac{x}{\sqrt{x^2 - 2}}$

Ans: D Difficulty: Moderate Section: 2.5

69. Differentiate the function.

A)

B)

$$f(t) = t^6 \sqrt{t^3 - 5}$$

A)
$$f'(t) = \frac{13t^6 - 60t^5}{2\sqrt{t^3 - 5}}$$

B) $f'(t) = \frac{6t^5}{2\sqrt{t^3 - 5}}$
Answ C Difficulty Difficult Section 2.5

Ans: C Difficulty: Difficult Section: 2.5

70. Find the derivative of $f(x) = \sqrt{\frac{x}{x^2 + 9}}$.

 $\frac{1}{2} \left[\frac{1}{\sqrt{x(x^2+9)}} - \sqrt{\frac{x}{(x^2+9)^3}} \right]$

 $\frac{1}{2\sqrt{x(x^2+9)}} - \sqrt{\left(\frac{x}{x^2+9}\right)^3}$

C)
$$\frac{1}{2} \left[\frac{1}{\sqrt{x(x^2+9)}} - \sqrt{x(x^2+9)} \right]$$

D)
$$\sqrt{\frac{1}{x^2+9}} - \frac{2x^2}{(x^2+9)^2}$$

Ans: B Difficulty: Moderate Section: 2.5

71. Find the derivative of $f(x) = \frac{-3}{\sqrt{8x^2 - 9}}$.

A)
$$f'(x) = \frac{24x}{\sqrt{(8x^2 - 9)^3}}$$
 C) $f'(x) = \frac{-24x}{\sqrt{(8x^2 - 9)^3}}$

B)
$$f'(x) = \frac{-48x}{\sqrt{(8x^2 - 9)^3}}$$
 D) $f'(x) = \frac{-48x}{\sqrt{(8x^2 - 9)^3}}$

$$f'(x) = \frac{-24x}{\sqrt{(8x^2 - 9)^3}}$$
$$f'(x) = \frac{-6x}{\sqrt{(8x^2 - 9)^3}}$$

Ans: A Difficulty: Moderate Section: 2.5

72. Differentiate the function.

$$f(x) = \left(\sqrt{x^3 - 4} + 3x\right)^{-2}$$

A)
$$f'(x) = -\frac{6\sqrt{x^3 - 4} + 3x^2}{\left(\sqrt{x^3 - 4}\right)\left(\sqrt{x^3 - 4} + 3x\right)^3}$$
B)
$$f'(x) = -\frac{12\sqrt{x^3 - 4} + 3x^2}{\left(2\sqrt{x^3 - 4}\right)\left(\sqrt{x^3 - 4} + 3x\right)^2}$$
C)
$$f'(x) = -\frac{2\sqrt{x^3 - 4} + 6}{\left(\sqrt{x^3 - 4} + 3x\right)^3}$$
D)
$$f'(x) = -\frac{2\sqrt{x^3 - 4} + 6}{\left(\sqrt{x^3 - 4} + 3x\right)^2}$$

Ans: A Difficulty: Difficult Section: 2.5

73. $f(x) = -5x^3 - 6x + 6$ has an inverse g(x). Compute g'(17).

A)
$$g'(17) = \frac{1}{21}$$
 B) $g'(17) = -\frac{1}{9}$ C) $g'(17) = -\frac{1}{21}$ D) $g'(17) = \frac{1}{9}$
Ans: C Difficulty: Moderate Section: 2.5

74. $f(x) = 2x^5 + 3x^3 + 2x$ has an inverse g(x). Compute g'(7).

A)
$$g'(7) = \frac{1}{24453}$$
 B) $g'(7) = \frac{1}{21}$ C) $g'(7) = -\frac{1}{7}$ D) $g'(7) = \frac{1}{7}$
Ans: B Difficulty: Moderate Section: 2.5

75. The function $f(x) = \sqrt{x^3 + 5x + 36}$ has an inverse g(x). Find g'(6).

A)
$$g'(6) = \frac{12}{5}$$
 B) $g'(6) = \frac{5}{12}$ C) $g'(6) = 6$ D) $g'(6) = \frac{1}{6}$
Ans: A Difficulty: Moderate Section: 2.5

76. Find an equation of the line tangent to $f(x) = \frac{1}{\sqrt{x^2 - 24}}$ at x = 5.

A) y = -5x + 24 B) y = -5x C) y = 5x + 6 D) y = -5x + 26Ans: D Difficulty: Moderate Section: 2.5 77. Use the position function $s(t) = \sqrt{t^2 + 48}$ meters to find the velocity at t = 4 seconds.

A) 8 m/s B) $\frac{1}{2}$ m/s C) $\frac{1}{8}$ m/s D) $\frac{1}{4}$ m/s Ans: B Difficulty: Moderate Section: 2.5

78. Compute the derivative of
$$h(x) = f(g(x))$$
 at $x = 9$ where $f(9) = -5$, $g(9) = -8$, $f'(9) = -2$, $f'(-8) = -4$, $g'(9) = 6$, and $g'(-8) = -7$.

A)
$$h'(9) = -12$$
 B) $h'(9) = -30$ C) $h'(9) = -24$ D) $h'(9) = 40$
Ans: C Difficulty: Moderate Section: 2.5

79. Find the derivative where *f* is an unspecified differentiable function. $f(3x^7)$

A) $21x^6f'(3x^7)$ B) $(21x^6+3x^7)f'(3x^7)$ C) $f'(21x^6)$ D) $f'(21x^6+3x^7)$ Ans: A Difficulty: Moderate Section: 2.5

80. Find the second derivative of the function.

$$f(x) = \sqrt{9 - x^2}$$

A) $f''(x) = \frac{9x}{(9-x^2)^{3/2}}$ B) $f''(x) = \frac{x^2+9}{(9-x^2)^{3/2}}$ C) $f''(x) = -\frac{9}{(9-x^2)^{3/2}}$ D) $f''(x) = -\frac{9x}{(9-x^2)^{3/2}}$

Ans: C Difficulty: Moderate Section: 2.5

- 81. Find a function g(x) such that g'(x) = f(x). $f(x) = (x^2 - 9)^8 (2x)$
 - A) $\left(\frac{x^3}{3} 9x\right)^9 \frac{x^2}{9}$ C) $g(x) = (x^2 9)^9$

B)
$$g(x) = (x^2 - 9)^7 (32x)$$
 D) $g(x) = \frac{(x^2 - 9)^9}{9}$

Ans: D Difficulty: Moderate Section: 2.5

Chapter 2

3 -5

4

4

-6

6

5

-5

4

7

-1

1

6

-3

2

	A) $h'(6) \approx 2$ B) $h'(6) \approx -3$ C) $h'(6) \approx$	–2 D	b) $h'(6) \approx 3$
	Ans: A Difficulty: Moderate Section:	2.5	
83.	Find the derivative of $f(x) = -4\sin(x) + 9\cos(x)$	os(3x)-	- x .
	A) $f'(x) = -4\cos x - 27\sin 3x - 1$ B) $f'(x) = -4\cos x - 9\sin 3x - 1$ Ans: A Difficulty: Easy Section: 2.6	C) D)	$f'(x) = 4\cos x + 27\sin 3x - 1$ $f'(x) = \cos x - 3\sin 3x - 1$
84.	Find the derivative of $f(x) = 4\sin^2 x - 3x^2$.		
	A) $f'(x) = -8 \sin x \cos x - 6x$ B) $f'(x) = 8 \sin x \cos x - 3x$ Ans: D Difficulty: Easy Section: 2.6	C) D)	$f'(x) = 8\sin x - 6x$ $f'(x) = 8\sin x \cos x - 6x$
85.	Find the derivative of $f(x) = \frac{-6\cos x^2}{x^2}$.		
	A) $f'(x) = \frac{-12(x^2 \sin x^2 + \cos x^2)}{x^3}$	C)	$f'(x) = \frac{12(x^2 \sin x^2 + \cos x^2)}{x^3}$
	B) $f'(x) = \frac{12(x \sin x^2 + \cos x^2)}{x^3}$	D)	$f'(x) = \frac{12(x^2 \sin x^2 + \cos x^2)}{x^4}$
	Ans: C Difficulty: Moderate Section:	2.6	
86.	Find the derivative of $f(x) = \sqrt{-\sin x \sec x}$.		
	A) $f'(x) = -\frac{\sec x}{2\sqrt{-\tan x}}$	C)	$f'(x) = -\frac{\sec^2 x}{\sqrt{-\tan x}}$
	B) $f'(x) = -\frac{\sec^2 x}{2\sqrt{-\tan x}}$	D)	$f'(x) = -\frac{\sec x \tan x}{2\sqrt{-\tan x}}$
	Ans: B Difficulty: Moderate Section:	2.6	

82. Use the table of values to estimate the derivative of h(x) = f(g(x)) at x = 6.

2

-4

2

1

-3

2

-1

-5

6

 $\frac{x}{f(x)}$

g(x)

0

-4

4

87. Find the derivative of the function.

 $f(w) = w^2 \sec^2 10w$

- A) $f'(w) = 20w \sec^2(10w) \tan(10w)$
- B) $f'(w) = 2w \sec^2(10w) + 20w^2 \sec^2(10w) \tan(10w)$
- C) $f'(w) = 2w \sec^2(10w) + 20w^2 \sec(10w)$
- D) $f'(w) = 2w \sec^2(10w) + 20w^2 \sec^2(10w) \tan^2(10w)$
- Ans: B Difficulty: Moderate Section: 2.6

88. Find the derivative of the function.

$$f(x) = \cos^3\left(\sin\left(\left(x^5 + 7x^4\right)^2\right)\right)$$

Ans:
$$f'(x) = -6\cos^{2}\left(\sin\left(\left(x^{5} + 7x^{4}\right)^{2}\right)\right) \cdot \sin\left(\sin\left(\left(x^{5} + 7x^{4}\right)^{2}\right)\right) \cdot \cos\left(\left(x^{5} + 7x^{4}\right)^{2}\right) \cdot \left(x^{5} + 7x^{4}\right) \cdot \left(5x^{4} + 28x^{4}\right)^{2}\right)$$

Difficulty: Difficult Section: 2.6

- 89. Find an equation of the line tangent to $f(x) = x \sin 10x$ at $x = \pi$.
 - A) $y = -10(x \pi)$ B) $y = 10(x - \pi)$ Ans: D Difficulty: Moderate Section: 2.6 C) $y = -10\pi(x - \pi)$ D) $y = 10\pi(x - \pi)$
- 90. Find an equation of the line tangent to $f(x) = \tan 4x$ at x = -1. (Round coefficients to 3 decimal places.)

A)	y = -6.12x + 8.204	C)	y = 9.362x + 8.204
B)	y = -9.362x - 13.993	D)	y = 9.362x - 10.751
Ans:	C Difficulty: Moderate	Section: 2.6	

91. Find an equation of the line tangent to $f(x) = x \cos x$ at x = -4. (Round coefficients to 3 decimal places.)

A)	<i>y</i> =	= 3.681x + 12.109	C)	y = 2.374x - 12.109
B)	<i>y</i> =	= 2.374x + 12.109	D)	y = 3.681x - 12.109
Ans:	В	Difficulty: Moderate	Section: 2.6	

92. Use the position function $s(t) = \cos 2t - t^2$ feet to find the velocity at t = 3 seconds. (Round answer to 2 decimal places.)

A)	v(3)	= -5.44 ft/s	C)	v(3) = 6.56 ft/s
B)	v(3)) = -6.56 ft/s	D)	v(3) = -7.92 ft/s
Ans:	А	Difficulty: Moderate	Section: 2.6	

93. Use the position function $s(t) = 7\sin(2t) + 6$ meters to find the velocity at t = 4 seconds. (Round answer to 2 decimal places.)

A)	v(4)	= 13.85 m/s	C)	v(4) = -1.02 m/s
B)	v(4)	=-9.15 m/s	D)	v(4) = -2.04 m/s
Ans:	D	Difficulty: Moderate	Section: 2.6	

94. Use the position function to find the velocity at time $t = t_0$. Assume units of feet and seconds.

$$s(t) = \frac{\sin 10t}{t}, \ t = \pi$$

- A) $v(\pi) = 0$ ft/sec B) $v(\pi) = -\frac{10}{\pi^2}$ ft/sec Ans: C Difficulty: Moderate Section: 2.6 C) $v(\pi) = \frac{10}{\pi}$ ft/sec
- 95. A weight hanging by a spring from the ceiling vibrates up and down. Its vertical position is given by $s(t) = 9\sin(7t)$. Find the maximum speed of the weight and its position when it reaches maximum speed.

A)	speed $=$ 9, posit	tion = 63	C)	speed = 7, position = 9
B)	speed = 63 , pos	ition $= 0$	D)	speed = 63 , position = 7
Ans:	B Difficulty:	Moderate	Section: 2.6	

96. Given that
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
, find $\lim_{t\to 0} \frac{\sin(7t)}{-8t}$.

A)
$$-\frac{1}{8}$$
 B) -56 C) $-\frac{7}{8}$ D) $\frac{1}{7}$
Ans: C Difficulty: Easy Section: 2.6

97. Given that $\lim_{x\to 0} \frac{\cos x - 1}{x} = 0$, find $\lim_{t\to 0} \frac{\cos t - 1}{2t}$. A) 0 B) $\frac{1}{2}$ C) 2 D) $\frac{1}{2}$ Ans: A Difficulty: Easy Section: 2.6 98. Given that $\lim_{x\to 0} \frac{\sin x}{x} = 1$, find $\lim_{t\to 0} \frac{6t}{\sin(7t)}$. A) 42 B) $\frac{1}{6}$ C) $\frac{7}{6}$ D) $\frac{6}{7}$ Ans: D Difficulty: Easy Section: 2.6 99. Given that $\lim_{x\to 0} \frac{\sin x}{x} = 1$, find $\lim_{t\to 0} \frac{\tan(7t)}{8t}$. A) $\frac{1}{7}$ B) $\frac{7}{8}$ C) $\frac{8}{7}$ D) $\frac{1}{8}$ Ans: B Difficulty: Moderate Section: 2.6 100. For $f(x) = \sin x$, find $f^{(22)}(x)$. A) $\cos x$ B) $-\cos x$ C) $\sin x$ D) $-\sin x$ Ans: D Difficulty: Easy Section: 2.6

101. The total charge in an electrical circuit is given by $Q(t) = 3\sin(3t) + t + 2$. The current is the rate of change of the charge, $i(t) = \frac{dQ}{dt}$. Determine the current at t = 0 (Round answer to 2 decimal places.)

A) i(0) = 4 B) i(0) = 10 C) i(0) = 12 D) i(0) = 1Ans: B Difficulty: Moderate Section: 2.6

102. Find the derivative of $f(x) = x^{-9}e^{-2x}$.

A)
$$f'(x) = (-9x^{-8} + 2x^{-9})e^{-2x}$$

B) $f'(x) = -9x^{-10}e^{-2} - 2x^{-9}e^{-2x-1}$
Ans: C Difficulty: Easy Section: 2.7
C) $f'(x) = (-9x^{-10} - 2x^{-9})e^{-2x}$
C) $f'(x) = -9x^{-10} - 2e^{-2x}$

103. Differentiate the function.

 $f(x) = e^{3x} \cos 4x$

A)
$$f'(x) = -12e^{3x} \sin 4x$$

B) $f'(x) = 3e^{3x} \cos 4x + 4e^{3x} \sin 4x$
Ans: D Difficulty: Moderate Section: 2.7
C) $f'(x) = 12e^{3x} \sin 4x$
D) $f'(x) = 3e^{3x} \cos 4x - 4e^{3x} \sin 4x$

104. Find the derivative of $f(x) = 9^{3x+8}$.

- A) $f'(x) = 9^{3x+8}(3\ln 9)$ C) $f'(x) = 9^{3x+8}\ln 9$
- B) $f'(x) = (3)9^{3x+8}$ D) $f'(x) = 9^{3x+8}(3x+8)\ln 9$

Ans: A Difficulty: Easy Section: 2.7

105. Differentiate the function.

$$f(w) = \frac{w}{e^{3w}}$$

A)
$$f'(w) = \frac{1-3w}{e^{3w}}$$
 B) $f'(w) = \frac{1}{3e^{3w}}$ C) $f'(w) = \frac{3}{e^{3w}}$ D) $f'(w) = \frac{3w-1}{e^{3w}}$
Ans: A Difficulty: Moderate Section: 2.7

106. Find the derivative of $f(x) = \ln(2x)$.

A)
$$f'(x) = \frac{1}{x} + \frac{1}{2}$$
 B) $f'(x) = \frac{2}{x}$ C) $f'(x) = \frac{1}{2x}$ D) $f'(x) = \frac{1}{x}$
Ans: D Difficulty: Easy Section: 2.7

107. Find the derivative of $f(x) = \ln(\sqrt{3x})$.

A)
$$f'(x) = \frac{1}{6x}$$
 B) $f'(x) = \frac{2}{3x}$ C) $f'(x) = \frac{1}{2x}$ D) $f'(x) = \frac{1}{2} \left[\frac{1}{x} + \frac{1}{3} \right]$
Ans: C Difficulty: Easy Section: 2.7

108. Differentiate the function.

 $f(t) = \ln(t^5 + 8t)$

A)
$$f'(t) = \frac{1}{t^5 + 8t}$$

B) $f'(t) = \frac{1}{5t^4 + 8}$
C) $f'(t) = (5t^4 + 8)\ln(t^5 + 8t)$
D) $f'(t) = \frac{5t^4 + 8}{t^5 + 8t}$

Ans: D Difficulty: Moderate Section: 2.7

109. Differentiate the function. $q(x) = \sin x \ln(x^5 + 3)$

$$g(x) = \sin x \, \ln(x^3 + 3)$$

A)
$$g'(x) = \cos x \ln(x^5 + 3) + \frac{5x^4 \sin x}{x^5 + 3}$$
 C) $g'(x) = \frac{5x^4 \cos x}{x^5 + 3}$
B) $g'(x) = -\cos x \ln(x^5 + 3) + \frac{\sin x}{x^5 + 3}$ D) $g'(x) = \frac{\cos x}{x^5 + 3}$
Ans: A Difficulty: Moderate Section: 2.7

110. Differentiate the function.

$$h(x) = 7^{e^x}$$

A) $h'(x) = 7^{e^x}$ B) $h'(x) = 7^{e^x} \ln 7$ C) $h'(x) = e^x 7^{e^x} \ln 7$ D) $h'(x) = e^x 7^{e^x}$ Ans: C Difficulty: Moderate Section: 2.7

111. Find an equation of the line tangent to $f(x) = 3^x$ at x = 3.

A)	<i>y</i> =	$= 27(x \ln 3 - (1 + 3 \ln 3))$	C)	$y = 27(x\ln 3 + (1 - 3\ln 3))$
B)	<i>y</i> =	$x \ln 3 + (1 - 3 \ln 3)$	D)	$y = x \ln 3 + (3 \ln 3 - 1)$
Ans:	С	Difficulty: Moderate	Section: 2.7	

112. Find an equation of the line tangent to $f(x) = 3\ln(x^4)$ at x = 2.

A)
$$y = \frac{x}{2} + (\ln 2 - 1)$$

B) $y = 12\left(\frac{x}{2} + (\ln 2 - 1)\right)$
C) $y = 12\left(\frac{x}{2} + (1 - \ln 2)\right)$
D) $y = \frac{x}{2} + (1 - \ln 2)$

Ans: B Difficulty: Moderate Section: 2.7

113. Find all values of x for which the tangent line to $f(x) = x^2 e^{-4x}$ is horizontal.

A) x=0 B) x=0, x=-4 C) x=0, x=8 D) x=0, $x=\frac{1}{2}$ Ans: D Difficulty: Moderate Section: 2.7

114. The value of an investment is given by $v(t) = (600)4^t$. Find the instantaneous percentage rate of change. (Round to 2 decimal places.)

A)	1.39 % per year	C)	138.63 % per year
B)	33.27 % per year	D)	17.31 % per year
Ans:	C Difficulty: Moderate	Section: 2.7	

115. A bacterial population starts at 300 and quadruples every day. Calculate the percent rate of change rounded to 2 decimal places.

A) 160.94 % B) 138.63 % C) 1.39 % D) 88.63 % Ans: B Difficulty: Moderate Section: 2.7

116. Use logarithmic differentiation to find the derivative of $f(x) = x^{\cos 2x}$.

- A) $f'(x) = x^{\cos 2x} \left[\frac{\cos 2x}{x} - 2(\sin 2x) \ln x \right]$ B) $f'(x) = (-2\sin 2x)x^{\cos 2x}$ C) $f'(x) = (\cos 2x)x^{\cos 2x-1}$ D) $f'(x) = x^{\cos 2x} (\ln x - 2\sin 2x)$ Ans: A Difficulty: Moderate Section: 2.7
- -
- 117. Find the derivative of $f(x) = (x^3)^{3x}$.

A)
$$f'(x) = x^{9x}(\ln x + 9)$$
 C) $f'(x) = 9x^{9x}$

B)
$$f'(x) = 9x^{9x-1}$$
 D) $f'(x) = 9x^{9x}(\ln x + 1)$

Ans: D Difficulty: Easy Section: 2.7

118. The position of a weight attached to a spring is described by $s(t) = e^{-2t} \sin 3t$. Determine and graph the velocity function for positive values of *t* and find the approximate first time when the velocity is zero. Find the approximate position of the weight the first time the velocity is zero. Round answers to tenths.

Ans: $v(t) = e^{-2t} (3\cos 3t - 2\sin 3t)$. The velocity is first zero at about 0.3 and its position is about 0.4.

Difficulty: Moderate Section: 2.7

119. An investment compounded continuously will be worth $f(t) = Ae^{rt}$, where A is the investment in dollars, r is the annual interest rate, and t is the time in years. APY can be defined as (f(1) - A)/A, the relative increase of worth in one year. Find the APY for an interest rate of 5%. Express the APY as a percent rounded to 2 decimal places.

A)	AP	Y = 105.13%		C)	APY = 5.13%
B)	AP	Y = 4.13%		D)	APY = 6.13%
Ans:	С	Difficulty: Moderate	Section:	2.7	

120. Compute the slope of the line tangent to $3x^2 + 3xy + 7y^2 = 34$ at (2, -1).

- A) slope = $\frac{15}{8}$ B) slope = $\frac{9}{8}$ C) slope = $\frac{8}{9}$ D) slope = $\frac{15}{14}$ Ans: B Difficulty: Moderate Section: 2.8
- 121. Find the derivative y'(x) implicitly. $x^2y^2 - 7y = 5x$

A)
$$y'(x) = \frac{5}{4xy+7}$$

B) $y'(x) = \frac{5-2xy^2}{2x^2y-7}$
C) $y'(x) = -\frac{4xy-5}{7}$
D) $y'(x) = \frac{2xy^2+12}{2x^2y}$

Ans: B Difficulty: Moderate Section: 2.8

122. Find the derivative y'(x) implicitly if $2y^2 - \sqrt{xy} = -6$.

A)
$$y'(x) = -\frac{y}{4y\sqrt{xy + x}}$$

B) $y'(x) = \frac{y\sqrt{xy}}{8y - x}$
Area C. Differentiate Medante Section 2.8

Ans: C Difficulty: Moderate Section: 2.8

123. Find the derivative y'(x) implicitly if $4\sin xy + 5x = -5$.

A)
$$y'(x) = \frac{5}{4x \cos xy} + \frac{y}{x}$$
 C) $y'(x) = -\frac{5 \cos xy}{4x} - \frac{y}{x}$

B)
$$y'(x) = -\frac{5}{4x} - \frac{y}{x\cos xy}$$
 D) $y'(x) = -\frac{5}{4x\cos xy} - \frac{y}{x}$

Ans: D Difficulty: Moderate Section: 2.8

124. Find the derivative y'(x) implicitly.

$$xe^{y} - 9y\cos x = 2$$

A)
$$y'(x) = -\frac{e^{y}}{9\sin x + xe^{y}}$$

B) $y'(x) = -\frac{e^{y}}{9\sin x}$
Ans: D Difficulty: Difficult Section: 2.8
C) $y'(x) = -\frac{9\sin x}{e^{y}}$
D) $y'(x) = \frac{e^{y} + 9y\sin x}{9\cos x - xe^{y}}$

125. Find the derivative y'(x) implicitly. $e^{5y} - \ln(y^2 - 1) = 3x$

A)
$$y'(x) = \frac{3(y^2 - 1)}{5(y^2 - 1)e^{5y} - 2y}$$

B) $y'(x) = \frac{(3 - 5e^{5x})(y^2 - 1)}{2y}$
b) $y'(x) = \frac{3(y^2 - 1)}{5(y^2 - 1)e^{5y} - 1}$
C) $y'(x) = \frac{3(y^2 - 1)e^{5y} - 1}{5(y^2 - 1)e^{5y}}$

- Ans: A Difficulty: Difficult Section: 2.8
- 126. Find an equation of the tangent line at the given point. $x^2 - 16y^3 = 0$ at (4, 1)

A)
$$y = -\frac{1}{6}x + \frac{4}{3}$$
 B) $y = -\frac{1}{12}x + \frac{4}{3}$ C) $y = \frac{1}{6}x + \frac{1}{3}$ D) $y = \frac{1}{12}x + \frac{1}{3}$
Ans: C Difficulty: Moderate Section: 2.8

- 127. Find an equation of the tangent line at the given point. $x^2y^2 = 3y+1$ at (2, 1)
 - Ans: $y = -\frac{4}{5}x + \frac{13}{5}$ Difficulty: Moderate Section: 2.8

128. Find the second derivative, y''(x), of $-2\sqrt{x^3} + 4\sqrt{y^3} = -3$.

A)
$$y''(x) = \frac{1}{4\sqrt{xy}} - \frac{y'}{2y}$$

B) $y''(x) = \frac{1}{4\sqrt{xy}} - \frac{(y')^2}{2y}$
C) $y''(x) = -\frac{1}{2\sqrt{xy}} - \frac{(y')^2}{2y}$
D) $y''(x) = -\frac{1}{4\sqrt{xy}} + \frac{(y')^2}{2y}$

Ans: B Difficulty: Moderate Section: 2.8

Chapter 2

129. Find the second derivative, y''(x), of $-3y^2 = -2x^3 + x - \cos y$.

A)

$$y''(x) = \frac{-4x + (-\cos y - 3)(y')^{2}}{-3y + \sin y}$$
B)

$$y''(x) = \frac{-2x + (\cos y - 6)y'}{-6y - \cos y}$$
D)

$$y''(x) = \frac{-12x + (\cos y - 3)y^{2}}{-6y^{2} - \sin y}$$
D)

$$y''(x) = \frac{-12x + (\cos y - 6)(y')^{2}}{-6y - \sin y}$$

Ans: D Difficulty: Moderate Section: 2.8

130. Find the derivative of $f(x) = \cos^{-1}(x^5 - 2)$.

A)
$$f'(x) = \frac{5x^4 \sin(x^5 - 2)}{\cos^2(x^5 - 2)}$$

B) $f'(x) = \frac{5x^4}{\cos^2(x^5 - 2)}$
C) $f'(x) = \frac{5x^4}{\sqrt{1 - (x^5 - 2)^2}}$
D) $f'(x) = -\frac{5x^4}{\sqrt{1 - (x^5 - 2)^2}}$

Ans: D Difficulty: Moderate Section: 2.8

131. Find the derivative of $f(x) = \tan^{-1}(3/x)$.

A)
$$f'(x) = -\frac{3}{9+x^2}$$

B) $f'(x) = -\frac{3}{3+x^2}$
A real A Difficultur Mederate Section 2.8
C) $f'(x) = -\frac{3}{1+9x^2}$
D) $f'(x) = -\frac{3}{1+3x^2}$

Ans: A Difficulty: Moderate Section: 2.8

132. Find the derivative of $f(x) = 5e^{3\tan^{-1}x}$.

A)
$$f'(x) = \frac{30}{1 - x^2} e^{3\tan^{-1}x}$$

B) $f'(x) = \frac{5}{1 + x^2} e^{3\tan^{-1}x}$
C) $f'(x) = \frac{15}{1 + x^2} e^{3\tan^{-1}x}$
D) $f'(x) = \frac{3}{1 - x^2} e^{3\tan^{-1}x}$

Ans: C Difficulty: Moderate Section: 2.8

133. Find the derivative of $f(x) = 4 \sec^{-1}(x^5)$.

A)
$$f'(x) = \frac{20x^4}{|x^5|\sqrt{x^{10}-1}}$$

B) $f'(x) = \frac{-20x^5}{|x|\sqrt{x^2-1}}$
C) $f'(x) = \frac{4x^4}{|x|\sqrt{x^2+1}}$
D) $f'(x) = \frac{5x^4}{|x^4|\sqrt{x^8-1}}$

Ans: A Difficulty: Moderate Section: 2.8

134. Find the location of all horizontal and vertical tangents for $x^2 - xy^2 = 49$.

A) horizontal: none; vertical: (-7, 0), (7, 0)
B) horizontal: (7, 0); vertical: (-7, 0), (7, 0)
C) horizontal: (-7, 0), (7, 0); vertical: none
D) horizontal: none; vertical: (7, 0)
Ans: A Difficulty: Moderate Section: 2.8

135. Find the location of all horizontal and vertical tangents for $x^2 + xy^2 + 81 = 0$.

- A) horizontal: $(-9, -3\sqrt{2}), (-9, 3\sqrt{2});$ vertical: (-81, 0)
- B) horizontal: $(-9, -3\sqrt{2}), (-9, 3\sqrt{2});$ vertical: (0, 0)
- C) horizontal: $(-9, -3\sqrt{2}), (-9, 3\sqrt{2})$; vertical: none
- D) horizontal: $(9, -3\sqrt{2}), (9, 3\sqrt{2})$; vertical: (-81, 0)
- Ans: C Difficulty: Moderate Section: 2.8

136. Sketch the graph of the function. $f(x) = \cosh(x/8)$

Ans: B Difficulty: Moderate Section: 2.9

137. Find the derivative of $f(x) = \cosh \sqrt{2x}$.

A)

$$f'(x) = -\frac{\sqrt{2}\cosh\sqrt{2x}}{2\sqrt{x}}$$
B)

$$f'(x) = \frac{\sqrt{2}\cosh\sqrt{2x}}{2\sqrt{x}}$$
D)

$$f'(x) = \frac{\sqrt{2}\sinh\sqrt{2x}}{2\sqrt{x}}$$
C)

$$f'(x) = -\frac{\sqrt{2}\sinh\sqrt{2x}}{2\sqrt{x}}$$
D)

$$f'(x) = \frac{\sqrt{2}\sinh\sqrt{2x}}{2\sqrt{x}}$$

Ans: D Difficulty: Moderate Section: 2.9

138. Find the derivative of $f(x) = (\tanh x)^3$.

- C) $f'(x) = \operatorname{sech}^6 x$ A) $f'(x) = 3(\tanh x)^2$
- B) $f'(x) = 3(\tanh x)^2 \operatorname{sech}^2 x$ D) $f'(x) = 3 \operatorname{sech}^5 x$

Ans: B Difficulty: Moderate Section: 2.9

139. Find the derivative of $f(x) = \operatorname{sech} 4x$.

A)	$f'(x) = -4 \operatorname{sech} 4x \tanh 4x$	C)	$f'(x) = 4 \operatorname{sech}^2 4x$
B)	$f'(x) = 4 \operatorname{sech} 4x \tanh 4x$	D)	$f'(x) = \operatorname{sech}^2 4x$
Ans:	A Difficulty: Moderate	Section: 2.9	

140. Find the derivative of $f(x) = x^4 \sinh 10x$.

- A) $f'(x) = 40x^3 \cosh 10x$ B) $f'(x) = 4x^3 \cosh 10x$ C) $f'(x) = 4x^3 \sinh 10x + 10x^4 \cosh 10x$ $f'(x) = 4x^3 \sinh 10x + x^4 \cosh 10x$ D)
- Ans: C Difficulty: Moderate Section: 2.9

141. Find the derivative of $f(x) = \frac{\cosh 4x}{x-2}$.

A)
$$f'(x) = \frac{4(x-2)\sinh 4x - \cosh 4x}{(x-2)^2}$$
 C) $f'(x) = \frac{4\sinh 4x}{x-2}$
B) $f'(x) = \frac{(x-2)\sinh 4x - 4\cosh 4x}{(x-2)^2}$ D) $f'(x) = \frac{4\sinh 4x}{(x-2)^2}$
Ans: A Difficulty: Moderate Section: 2.9

Ans: A Difficulty: Moderate Section: 2.9

142. Find the derivative of $f(x) = \cosh^{-1} 8x$.

A)
$$f'(x) = \frac{8}{\sqrt{64 - x^2}}$$

B) $f'(x) = \frac{8}{\sqrt{x^2 - 64}}$
Ans: C Difficulty: Moderate Section: 2.9
C) $f'(x) = \frac{8}{\sqrt{64x^2 - 1}}$
D) $f'(x) = \frac{8}{\sqrt{1 - 64x^2}}$

143. A general equation for a catenary is $y = a \cosh(x/b)$. Find *a* and *b* to match the following characteristics of a hanging cable. The ends are 20 m apart and have a height of y = 20 m. The height in the middle is y = 10 m.

Ans:
$$a = 10, \ b = \frac{10}{\ln(\sqrt{3}+2)}, \ y = 10\cosh\left(\frac{\ln(\sqrt{3}+2)}{10}x\right)$$

Difficulty: Moderate Section: 2.9

144. Suppose that the vertical velocity v(t) of a falling object of mass m = 30 kg subject to gravity and air drag is given by

$$v(t) = -\sqrt{\frac{9.8m}{k}} \tanh\left(\sqrt{\frac{9.8k}{m}} t\right)$$

for some positive constant *k*. Suppose k = 0.5 and find the terminal velocity v_T by computing $\lim_{t\to\infty} v(t)$.

A) $v_T \approx -96.8$ m/secC) $v_T \approx -24.2$ m/secB) $v_T \approx -48.4$ m/secD) $v_T \approx -12.1$ m/sec

Ans: C Difficulty: Moderate Section: 2.9

145. Determine if the function satisfies Rolle's Theorem on the given interval. If so, find all values of *c* that make the conclusion of the theorem true. $f(x) = 36 - x^2$, [-9, 9]

A) x = 0 B) x = 36 C) x = -6, x = 6 D) Rolle's Theorem not satisfied Ans: A Difficulty: Easy Section: 2.10

146. Using the Mean Value Theorem, find a value of *c* that makes the conclusion true for $f(x) = 4x^3 + 5x^2$, in the interval [-1,1].

A) $c \approx -1.129$ B) One or more hypotheses fail C) $c \approx 0.295$ D) c = 0Ans: C Difficulty: Easy Section: 2.10 147. Using the Mean Value Theorem, find a value of *c* that makes the conclusion true for $f(x) = \cos x$, $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

A) One or more hypotheses fail B) c = 0 C) $c = \frac{\pi}{4}$ D) $c \approx .881$ Ans: B Difficulty: Easy Section: 2.10

- 148. Prove that $9x^3 + 9x 9 = 0$ has exactly one solution.
 - Ans: Let $f(x) = 9x^3 + 9x 9$. The function f(x) is continuous and differentiable everywhere. Since f(0) < 0 and f(1) > 0, f(x) must have at least one zero. The derivative of $f(x) = 9x^3 + 9x - 9$ is $f'(x) = 27x^2 + 9$, which is always greater than zero. Therefore f(x) can only have one zero. Difficulty: Moderate Section: 2.10
- 149. Find all functions g such that g'(x) = f(x). $f(x) = 6x^4$
 - A) $g(x) = 24x^3$ B) $g(x) = \frac{6}{5}x^5$ C) $g(x) = 24x^3 + C$, for some constant C D) $g(x) = \frac{6}{5}x^5 + C$, for some constant C Ans: D Difficulty: Easy Section: 2.10

150. Find all the functions g(x) such that $g'(x) = \frac{6}{x^9}$.

A) $g(x) = -\frac{3}{4x^8}$ B) $g(x) = -\frac{3}{5x^{10}} + c$ Ans: D Difficulty: Moderate Section: 2.10 C) $g(x) = \frac{12}{25x^8}$ D) $g(x) = -\frac{3}{4x^8} + c$

151. Find all the functions g(x) such that $g'(x) = -\sin x$.

- A) $g(x) = -\cos x + c$ C) $g(x) = \cos x$
- B) $g(x) = \cos x + c$ D) $g(x) = \sin x + c$
- Ans: B Difficulty: Moderate Section: 2.10

Chapter 2

152. Determine if the function $f(x) = 4x^3 + 5x + 2$ is increasing, decreasing, or neither.

A) Increasing B) Decreasing C) Neither Ans: A Difficulty: Easy Section: 2.10

153. Determine if the function $f(x) = -5x^4 - 4x^2 + 9$ is increasing, decreasing, or neither.

A) Increasing B) Decreasing C) Neither Ans: C Difficulty: Easy Section: 2.10

154. Explain why it is not valid to use the Mean Value Theorem for the given function on the specified interval. Show that there is no value of *c* that makes the conclusion of the theorem true.

$$f(x) = \frac{1}{x-4}, [3,5]$$

Ans: The function is not continuous on the specified interval, so the Mean Value Theorem does not apply. Note that f(3) = -1 and f(5) = 1, so that

$$\frac{f(5) - f(3)}{(5) - (3)} = \frac{1 - (-1)}{2} = 1.$$

Also, $f'(x) = -\frac{1}{(x-4)^2}$.

Since f'(x) < 0 for all x in the domain of f, there is no value of c such that

f'(c) = 1. That is, there is no value of c such that $f'(c) = \frac{f(5) - f(3)}{(5) - (3)}$.

Difficulty: Moderate Section: 2.10