Complete Solutions Manual for

SINGLE VARIABLE CALCULUS EARLY TRANSCENDENTALS SEVENTH EDITION

DANIEL ANDERSON
University of lowa
JEFFERY A. COLE
Anoka-Ramsey Community College
DANIEL DRUCKER
Wayne State University

© 2012 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be e-mailed to permissionrequest@cengage.com.

ISBN-13: 978-0-8400-4936-0
ISBN-10: 0-8400-4936-6

Brooks/Cole

20 Davis Drive
Belmont, CA 94002-3098
USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Brooks/Cole, visit www.cengage.com/brookscole

Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com

NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED,

 OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.Dear Professor or Other Supplement Recipient:

Cengage Learning has provided you with this product (the "Supplement") for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the "Course"), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.

Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute any portion of the Supplement to any third
party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.

All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an "as is" basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State's conflict of law rules.

Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.

Printed in the United States of America

PREFACE

This Complete Solutions Manual contains solutions to all exercises in the text Single Variable Calculus, Early Transcendentals, Seventh Edition, by James Stewart. A student version of this manual is also available; it contains solutions to the odd-numbered exercises in each section, the review sections, the True-False Quizzes, and the Problem Solving sections, as well as solutions to all the exercises in the Concept Checks. No solutions to the projects appear in the student version. It is our hope that by browsing through the solutions, professors will save time in determining appropriate assignments for their particular class.

We use some nonstandard notation in order to save space. If you see a symbol that you don't recognize, refer to the Table of Abbreviations and Symbols on page iv.

We appreciate feedback concerning errors, solution correctness or style, and manual style. Any comments may be sent directly to jeff.cole@anokaramsey.edu, or in care of the publisher: Brooks/Cole, Cengage Learning, 20 Davis Drive, Belmont CA 94002-3098.

We would like to thank Stephanie Kuhns and Kathi Townes, of TECHarts, for their production services; and Elizabeth Neustaetter, of Brooks/Cole, Cengage Learning, for her patience and support. All of these people have provided invaluable help in creating this manual.

Jeffery A. Cole
Anoka-Ramsey Community College
James Stewart
McMaster University and University of Toronto

Daniel Drucker
Wayne State University
Daniel Anderson
University of Iowa

ABBREVIATIONS AND SYMBOLS

CD	concave downward
CU	concave upward
D	the domain of f
FDT	First Derivative Test
HA	horizontal asymptote(s)
I	interval of convergence
IP	inflection point(s)
R	radius of convergence
VA	vertical asymptote(s)
$\stackrel{\text { CAS }}{=}$	indicates the use of a computer algebra system.
$\stackrel{\text { H }}{=}$	indicates the use of l'Hospital's Rule.
$\stackrel{j}{=}$	indicates the use of Formula j in the Table of Integrals in the back endpapers.
$\stackrel{\text { s }}{=}$	indicates the use of the substitution $\{u=\sin x, d u=\cos x d x\}$.
$\stackrel{\text { c }}{=}$	indicates the use of the substitution $\{u=\cos x, d u=-\sin x d x\}$.

DIAGNOSTIC TESTS 1
$1 \square$ FUNCTIONS AND MODELS 9
1.1 Four Ways to Represent a Function 9
1.2 Mathematical Models: A Catalog of Essential Functions 20
1.3 New Functions from Old Functions 27
1.4 Graphing Calculators and Computers 38
1.5 Exponential Functions 46
1.6 Inverse Functions and Logarithms 51
Review 61
Principles of Problem Solving 69
$2 \square$ LIMITS AND DERIVATIVES 75
2.1 The Tangent and Velocity Problems 75
2.2 The Limit of a Function 78
2.3 Calculating Limits Using the Limit Laws 87
2.4 The Precise Definition of a Limit 97
2.5 Continuity 104
2.6 Limits at Infinity; Horizontal Asymptotes 115
2.7 Derivatives and Rates of Change 129
2.8 The Derivative as a Function 140
Review 153
Problems Plus 165
3 DIFFERENTIATION RULES 169
3.1 Derivatives of Polynomials and Exponential Functions 169
Applied Project - Building a Better Roller Coaster 179
3.2 The Product and Quotient Rules 182

3.3 Derivatives of Trigonometric Functions 191
3.4 The Chain Rule 198Applied Project - Where Should a Pilot Start Descent? 210
3.5 Implicit Differentiation 210
Laboratory Project . Families of Implicit Curves 224
3.6 Derivatives of Logarithmic Functions 225
3.7 Rates of Change in the Natural and Social Sciences 231
3.8 Exponential Growth and Decay 240
3.9 Related Rates 245
3.10 Linear Approximations and Differentials 253
Laboratory Project - Taylor Polynomials 260
3.11 Hyperbolic Functions 262
Review 270
Problems Plus 285
4 $\square \quad$ APPLICATIONS OF DIFFERENTIATION297
4.1 Maximum and Minimum Values 297
Applied Project - The Calculus of Rainbows 307
4.2 The Mean Value Theorem 309
4.3 How Derivatives Affect the Shape of a Graph 314
4.4 Indeterminate Forms and l'Hospital's Rule 338
4.5 Summary of Curve Sketching 350
4.6 Graphing with Calculus and Calculators 374
4.7 Optimization Problems 394
Applied Project - The Shape of a Can 415
4.8 Newton's Method 416
4.9 Antiderivatives 427
Review 437
Problems Plus 461
5 INTEGRALS 471
5.1 Areas and Distances 471
5.2 The Definite Integral 481
Discovery Project - Area Functions 492
5.3 The Fundamental Theorem of Calculus 494
5.4 Indefinite Integrals and the Net Change Theorem 505
5.5 The Substitution Rule 511Review 521
Problems Plus 531
$6 \quad \square \quad$ APPLICATIONS OF INTEGRATION 537
6.1 Areas Between Curves 537
Applied Project - The Gini Index 549
6.2 Volumes 550
6.3 Volumes by Cylindrical Shells 566
6.4 Work 576
6.5 Average Value of a Function 582
Applied Project . Calculus and Baseball 585
Applied Project - Where To Sit at the Movies 586
Review 587
Problems Plus 595
7 \square
TECHNIQUES OF INTEGRATION 603
7.1 Integration by Parts 603
7.2 Trigonometric Integrals 615
7.3 Trigonometric Substitution 624
7.4 Integration of Rational Functions by Partial Fractions 635
7.5 Strategy for Integration 652
7.6 Integration Using Tables and Computer Algebra Systems 664
Discovery Project • Patterns in Integrals 673
7.7 Approximate Integration 675
7.8 Improper Integrals 689
Review 703
Problems Plus 719
$8 \quad \square \quad$ FURTHER APPLICATIONS OF INTEGRATION 727
8.1 Arc Length 727
Discovery Project \quad Arc Length Contest 735
8.2 Area of a Surface of Revolution 735
Discovery Project - Rotating on a Slant 743
8.3 Applications to Physics and Engineering 744
Discovery Project - Complementary Coffee Cups 757
8.4 Applications to Economics and Biology 758
8.5 Probability 761
Review 765
Problems Plus 771
$9 \square$ DIFFERENTIAL EQUATIONS 781
9.1 Modeling with Differential Equations 781
9.2 Direction Fields and Euler's Method 784
9.3 Separable Equations 792
Applied Project - How Fast Does a Tank Drain? 805
Applied Project. Which Is Faster, Going Up or Coming Down? 806
9.4 Models for Population Growth 807
9.5 Linear Equations 817
9.6 Predator-Prey Systems 824
Review 829
Problems Plus 837
$10 \quad$ PARAMETRIC EQUATIONS AND POLAR COORDINATES 843
10.1 Curves Defined by Parametric Equations 843
Laboratory Project • Running Circles Around Circles 857
10.2 Calculus with Parametric Curves 860
Laboratory Project - Bézier Curves 874
10.3 Polar Coordinates 875
Laboratory Project . Families of Polar Curves 890
10.4 Areas and Lengths in Polar Coordinates 893
10.5 Conic Sections 905
10.6 Conic Sections in Polar Coordinates 916
Review 922
Problems Plus 935

$11 \square$ INFINITE SEQUENCES AND SERIES
 939

11.1 Sequences 939
Laboratory Project - Logistic Sequences 952
11.2 Series 956
11.3 The Integral Test and Estimates of Sums 971
11.4 The Comparison Tests 980
11.5 Alternating Series 985
11.6 Absolute Convergence and the Ratio and Root Tests 991
11.7 Strategy for Testing Series 998
11.8 Power Series 1002
11.9 Representations of Functions as Power Series 1011
11.10 Taylor and Maclaurin Series 1021
Laboratory Project - An Elusive Limit 1036
11.11 Applications of Taylor Polynomials 1037
Applied Project - Radiation from the Stars 1051
Review 1052
Problems Plus 1065
APPENDIXES 1077
A Numbers, Inequalities, and Absolute Values 1077
B Coordinate Geometry and Lines 1082
C Graphs of Second-Degree Equations 1088
D Trigonometry 1092
E Sigma Notation 1100
G The Logarithm Defined as an Integral 1104
H Complex Numbers 1105

INSTRUCTOR USE ONLY

DIAGNOSTIC TESTS

Test A Algebra

1. (a) $(-3)^{4}=(-3)(-3)(-3)(-3)=81$
(b) $-3^{4}=-(3)(3)(3)(3)=-81$
(c) $3^{-4}=\frac{1}{3^{4}}=\frac{1}{81}$
(d) $\frac{5^{23}}{5^{21}}=5^{23-21}=5^{2}=25$
(e) $\left(\frac{2}{3}\right)^{-2}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$
(f) $16^{-3 / 4}=\frac{1}{16^{3 / 4}}=\frac{1}{(\sqrt[4]{16})^{3}}=\frac{1}{2^{3}}=\frac{1}{8}$
2. (a) Note that $\sqrt{200}=\sqrt{100 \cdot 2}=10 \sqrt{2}$ and $\sqrt{32}=\sqrt{16 \cdot 2}=4 \sqrt{2}$. Thus $\sqrt{200}-\sqrt{32}=10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}$.
(b) $\left(3 a^{3} b^{3}\right)\left(4 a b^{2}\right)^{2}=3 a^{3} b^{3} 16 a^{2} b^{4}=48 a^{5} b^{7}$
(c) $\left(\frac{3 x^{3 / 2} y^{3}}{x^{2} y^{-1 / 2}}\right)^{-2}=\left(\frac{x^{2} y^{-1 / 2}}{3 x^{3 / 2} y^{3}}\right)^{2}=\frac{\left(x^{2} y^{-1 / 2}\right)^{2}}{\left(3 x^{3 / 2} y^{3}\right)^{2}}=\frac{x^{4} y^{-1}}{9 x^{3} y^{6}}=\frac{x^{4}}{9 x^{3} y^{6} y}=\frac{x}{9 y^{7}}$
3. (a) $3(x+6)+4(2 x-5)=3 x+18+8 x-20=11 x-2$
(b) $(x+3)(4 x-5)=4 x^{2}-5 x+12 x-15=4 x^{2}+7 x-15$
(c) $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=(\sqrt{a})^{2}-\sqrt{a} \sqrt{b}+\sqrt{a} \sqrt{b}-(\sqrt{b})^{2}=a-b$

Or: Use the formula for the difference of two squares to see that $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=(\sqrt{a})^{2}-(\sqrt{b})^{2}=a-b$.
(d) $(2 x+3)^{2}=(2 x+3)(2 x+3)=4 x^{2}+6 x+6 x+9=4 x^{2}+12 x+9$.

Note: A quicker way to expand this binomial is to use the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$ with $a=2 x$ and $b=3$: $(2 x+3)^{2}=(2 x)^{2}+2(2 x)(3)+3^{2}=4 x^{2}+12 x+9$
(e) See Reference Page 1 for the binomial formula $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$. Using it, we get $(x+2)^{3}=x^{3}+3 x^{2}(2)+3 x\left(2^{2}\right)+2^{3}=x^{3}+6 x^{2}+12 x+8$.
4. (a) Using the difference of two squares formula, $a^{2}-b^{2}=(a+b)(a-b)$, we have
$4 x^{2}-25=(2 x)^{2}-5^{2}=(2 x+5)(2 x-5)$.
(b) Factoring by trial and error, we get $2 x^{2}+5 x-12=(2 x-3)(x+4)$.
(c) Using factoring by grouping and the difference of two squares formula, we have
$x^{3}-3 x^{2}-4 x+12=x^{2}(x-3)-4(x-3)=\left(x^{2}-4\right)(x-3)=(x-2)(x+2)(x-3)$.
(d) $x^{4}+27 x=x\left(x^{3}+27\right)=x(x+3)\left(x^{2}-3 x+9\right)$

This last expression was obtained using the sum of two cubes formula, $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ with $a=x$ and $b=3$. [See Reference Page 1 in the textbook.]
(e) The smallest exponent on x is $-\frac{1}{2}$, so we will factor out $x^{-1 / 2}$.
$3 x^{3 / 2}-9 x^{1 / 2}+6 x^{-1 / 2}=3 x^{-1 / 2}\left(x^{2}-3 x+2\right)=3 x^{-1 / 2}(x-1)(x-2)$
(f) $x^{3} y-4 x y=x y\left(x^{2}-4\right)=x y(x-2)(x+2)$
5. (a) $\frac{x^{2}+3 x+2}{x^{2}-x-2}=\frac{(x+1)(x+2)}{(x+1)(x-2)}=\frac{x+2}{x-2}$
(b) $\frac{2 x^{2}-x-1}{x^{2}-9} \cdot \frac{x+3}{2 x+1}=\frac{(2 x+1)(x-1)}{(x-3)(x+3)} \cdot \frac{x+3}{2 x+1}=\frac{x-1}{x-3}$
(c) $\frac{x^{2}}{x^{2}-4}-\frac{x+1}{x+2}=\frac{x^{2}}{(x-2)(x+2)}-\frac{x+1}{x+2}=\frac{x^{2}}{(x-2)(x+2)}-\frac{x+1}{x+2} \cdot \frac{x-2}{x-2}=\frac{x^{2}-(x+1)(x-2)}{(x-2)(x+2)}$ $=\frac{x^{2}-\left(x^{2}-x-2\right)}{(x+2)(x-2)}=\frac{x+2}{(x+2)(x-2)}=\frac{1}{x-2}$
(d) $\frac{\frac{y}{x}-\frac{x}{y}}{\frac{1}{y}-\frac{1}{x}}=\frac{\frac{y}{x}-\frac{x}{y}}{\frac{1}{y}-\frac{1}{x}} \cdot \frac{x y}{x y}=\frac{y^{2}-x^{2}}{x-y}=\frac{(y-x)(y+x)}{-(y-x)}=\frac{y+x}{-1}=-(x+y)$
6. (a) $\frac{\sqrt{10}}{\sqrt{5}-2}=\frac{\sqrt{10}}{\sqrt{5}-2} \cdot \frac{\sqrt{5}+2}{\sqrt{5}+2}=\frac{\sqrt{50}+2 \sqrt{10}}{(\sqrt{5})^{2}-2^{2}}=\frac{5 \sqrt{2}+2 \sqrt{10}}{5-4}=5 \sqrt{2}+2 \sqrt{10}$
(b) $\frac{\sqrt{4+h}-2}{h}=\frac{\sqrt{4+h}-2}{h} \cdot \frac{\sqrt{4+h}+2}{\sqrt{4+h}+2}=\frac{4+h-4}{h(\sqrt{4+h}+2)}=\frac{h}{h(\sqrt{4+h}+2)}=\frac{1}{\sqrt{4+h}+2}$
7. (a) $x^{2}+x+1=\left(x^{2}+x+\frac{1}{4}\right)+1-\frac{1}{4}=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$
(b) $2 x^{2}-12 x+11=2\left(x^{2}-6 x\right)+11=2\left(x^{2}-6 x+9-9\right)+11=2\left(x^{2}-6 x+9\right)-18+11=2(x-3)^{2}-7$
8. (a) $x+5=14-\frac{1}{2} x \quad \Leftrightarrow \quad x+\frac{1}{2} x=14-5 \quad \Leftrightarrow \quad \frac{3}{2} x=9 \quad \Leftrightarrow \quad x=\frac{2}{3} \cdot 9 \quad \Leftrightarrow \quad x=6$
(b) $\frac{2 x}{x+1}=\frac{2 x-1}{x} \Rightarrow 2 x^{2}=(2 x-1)(x+1) \quad \Leftrightarrow \quad 2 x^{2}=2 x^{2}+x-1 \quad \Leftrightarrow \quad x=1$
(c) $x^{2}-x-12=0 \Leftrightarrow(x+3)(x-4)=0 \quad \Leftrightarrow \quad x+3=0$ or $x-4=0 \quad \Leftrightarrow \quad x=-3$ or $x=4$
(d) By the quadratic formula, $2 x^{2}+4 x+1=0 \Leftrightarrow$

$$
x=\frac{-4 \pm \sqrt{4^{2}-4(2)(1)}}{2(2)}=\frac{-4 \pm \sqrt{8}}{4}=\frac{-4 \pm 2 \sqrt{2}}{4}=\frac{2(-2 \pm \sqrt{2})}{4}=\frac{-2 \pm \sqrt{2}}{2}=-1 \pm \frac{1}{2} \sqrt{2} .
$$

(e) $x^{4}-3 x^{2}+2=0 \Leftrightarrow\left(x^{2}-1\right)\left(x^{2}-2\right)=0 \quad \Leftrightarrow \quad x^{2}-1=0$ or $x^{2}-2=0 \quad \Leftrightarrow \quad x^{2}=1$ or $x^{2}=2 \quad \Leftrightarrow$ $x= \pm 1$ or $x= \pm \sqrt{2}$
(f) $3|x-4|=10 \quad \Leftrightarrow|x-4|=\frac{10}{3} \quad \Leftrightarrow \quad x-4=-\frac{10}{3}$ or $x-4=\frac{10}{3} \quad \Leftrightarrow \quad x=\frac{2}{3}$ or $x=\frac{22}{3}$
(g) Multiplying through $2 x(4-x)^{-1 / 2}-3 \sqrt{4-x}=0$ by $(4-x)^{1 / 2}$ gives $2 x-3(4-x)=0 \Leftrightarrow$ $2 x-12+3 x=0 \Leftrightarrow 5 x-12=0 \quad \Leftrightarrow \quad 5 x=12 \quad \Leftrightarrow \quad x=\frac{12}{5}$.
9. (a) $-4<5-3 x \leq 17 \Leftrightarrow-9<-3 x \leq 12 \Leftrightarrow 3>x \geq-4$ or $-4 \leq x<3$.

In interval notation, the answer is $[-4,3)$.
(b) $x^{2}<2 x+8 \Leftrightarrow x^{2}-2 x-8<0 \Leftrightarrow(x+2)(x-4)<0$. Now, $(x+2)(x-4)$ will change sign at the critical values $x=-2$ and $x=4$. Thus the possible intervals of solution are $(-\infty,-2),(-2,4)$, and $(4, \infty)$. By choosing a single test value from each interval, we see that $(-2,4)$ is the only interval that satisfies the inequality.
(c) The inequality $x(x-1)(x+2)>0$ has critical values of $-2,0$, and 1 . The corresponding possible intervals of solution are $(-\infty,-2),(-2,0),(0,1)$ and $(1, \infty)$. By choosing a single test value from each interval, we see that both intervals $(-2,0)$ and $(1, \infty)$ satisfy the inequality. Thus, the solution is the union of these two intervals: $(-2,0) \cup(1, \infty)$.
(d) $|x-4|<3 \Leftrightarrow-3<x-4<3 \Leftrightarrow 1<x<7$. In interval notation, the answer is $(1,7)$.
(e) $\frac{2 x-3}{x+1} \leq 1 \Leftrightarrow \frac{2 x-3}{x+1}-1 \leq 0 \Leftrightarrow \frac{2 x-3}{x+1}-\frac{x+1}{x+1} \leq 0 \quad \Leftrightarrow \quad \frac{2 x-3-x-1}{x+1} \leq 0 \quad \Leftrightarrow \quad \frac{x-4}{x+1} \leq 0$.

Now, the expression $\frac{x-4}{x+1}$ may change signs at the critical values $x=-1$ and $x=4$, so the possible intervals of solution are $(-\infty,-1),(-1,4]$, and $[4, \infty)$. By choosing a single test value from each interval, we see that $(-1,4]$ is the only interval that satisfies the inequality.
10. (a) False. In order for the statement to be true, it must hold for all real numbers, so, to show that the statement is false, pick $p=1$ and $q=2$ and observe that $(1+2)^{2} \neq 1^{2}+2^{2}$. In general, $(p+q)^{2}=p^{2}+2 p q+q^{2}$.
(b) True as long as a and b are nonnegative real numbers. To see this, think in terms of the laws of exponents: $\sqrt{a b}=(a b)^{1 / 2}=a^{1 / 2} b^{1 / 2}=\sqrt{a} \sqrt{b}$.
(c) False. To see this, let $p=1$ and $q=2$, then $\sqrt{1^{2}+2^{2}} \neq 1+2$.
(d) False. To see this, let $T=1$ and $C=2$, then $\frac{1+1(2)}{2} \neq 1+1$.
(e) False. To see this, let $x=2$ and $y=3$, then $\frac{1}{2-3} \neq \frac{1}{2}-\frac{1}{3}$.
(f) True since $\frac{1 / x}{a / x-b / x} \cdot \frac{x}{x}=\frac{1}{a-b}$, as long as $x \neq 0$ and $a-b \neq 0$.

Test B Analytic Geometry

1. (a) Using the point $(2,-5)$ and $m=-3$ in the point-slope equation of a line, $y-y_{1}=m\left(x-x_{1}\right)$, we get $y-(-5)=-3(x-2) \quad \Rightarrow \quad y+5=-3 x+6 \quad \Rightarrow \quad y=-3 x+1$.
(b) A line parallel to the x-axis must be horizontal and thus have a slope of 0 . Since the line passes through the point $(2,-5)$, the y-coordinate of every point on the line is -5 , so the equation is $y=-5$.
(c) A line parallel to the y-axis is vertical with undefined slope. So the x-coordinate of every point on the line is 2 and so the equation is $x=2$.
(d) Note that $2 x-4 y=3 \Rightarrow-4 y=-2 x+3 \Rightarrow y=\frac{1}{2} x-\frac{3}{4}$. Thus the slope of the given line is $m=\frac{1}{2}$. Hence, the slope of the line we're looking for is also $\frac{1}{2}$ (since the line we're looking for is required to be parallel to the given line). So the equation of the line is $y-(-5)=\frac{1}{2}(x-2) \Rightarrow y+5=\frac{1}{2} x-1 \quad \Rightarrow \quad y=\frac{1}{2} x-6$.
2. First we'll find the distance between the two given points in order to obtain the radius, r, of the circle: $r=\sqrt{[3-(-1)]^{2}+(-2-4)^{2}}=\sqrt{4^{2}+(-6)^{2}}=\sqrt{52}$. Next use the standard equation of a circle, $(x-h)^{2}+(y-k)^{2}=r^{2}$, where (h, k) is the center, to get $(x+1)^{2}+(y-4)^{2}=52$.
S
3. We must rewrite the equation in standard form in order to identify the center and radius. Note that $x^{2}+y^{2}-6 x+10 y+9=0 \Rightarrow x^{2}-6 x+9+y^{2}+10 y=0$. For the left-hand side of the latter equation, we factor the first three terms and complete the square on the last two terms as follows: $x^{2}-6 x+9+y^{2}+10 y=0 \Rightarrow$ $(x-3)^{2}+y^{2}+10 y+25=25 \Rightarrow(x-3)^{2}+(y+5)^{2}=25$. Thus, the center of the circle is $(3,-5)$ and the radius is 5.
4. (a) $A(-7,4)$ and $B(5,-12) \Rightarrow m_{A B}=\frac{-12-4}{5-(-7)}=\frac{-16}{12}=-\frac{4}{3}$
(b) $y-4=-\frac{4}{3}[x-(-7)] \Rightarrow y-4=-\frac{4}{3} x-\frac{28}{3} \quad \Rightarrow \quad 3 y-12=-4 x-28 \quad \Rightarrow \quad 4 x+3 y+16=0$. Putting $y=0$, we get $4 x+16=0$, so the x-intercept is -4 , and substituting 0 for x results in a y-intercept of $-\frac{16}{3}$.
(c) The midpoint is obtained by averaging the corresponding coordinates of both points: $\left(\frac{-7+5}{2}, \frac{4+(-12)}{2}\right)=(-1,-4)$.
(d) $d=\sqrt{[5-(-7)]^{2}+(-12-4)^{2}}=\sqrt{12^{2}+(-16)^{2}}=\sqrt{144+256}=\sqrt{400}=20$
(e) The perpendicular bisector is the line that intersects the line segment $\overline{A B}$ at a right angle through its midpoint. Thus the perpendicular bisector passes through $(-1,-4)$ and has slope $\frac{3}{4}$ [the slope is obtained by taking the negative reciprocal of the answer from part (a)]. So the perpendicular bisector is given by $y+4=\frac{3}{4}[x-(-1)]$ or $3 x-4 y=13$.
(f) The center of the required circle is the midpoint of $\overline{A B}$, and the radius is half the length of $\overline{A B}$, which is 10 . Thus, the equation is $(x+1)^{2}+(y+4)^{2}=100$.
5. (a) Graph the corresponding horizontal lines (given by the equations $y=-1$ and $y=3)$ as solid lines. The inequality $y \geq-1$ describes the points (x, y) that lie on or above the line $y=-1$. The inequality $y \leq 3$ describes the points (x, y) that lie on or below the line $y=3$. So the pair of inequalities $-1 \leq y \leq 3$ describes the points that lie on or between the lines $y=-1$ and $y=3$.
(b) Note that the given inequalities can be written as $-4<x<4$ and $-2<y<2$, respectively. So the region lies between the vertical lines $x=-4$ and $x=4$ and between the horizontal lines $y=-2$ and $y=2$. As shown in the graph, the region common to both graphs is a rectangle (minus its edges) centered at the origin.
(c) We first graph $y=1-\frac{1}{2} x$ as a dotted line. Since $y<1-\frac{1}{2} x$, the points in the region lie below this line.

(d) We first graph the parabola $y=x^{2}-1$ using a solid curve. Since $y \geq x^{2}-1$, the points in the region lie on or above the parabola.

(e) We graph the circle $x^{2}+y^{2}=4$ using a dotted curve. Since $\sqrt{x^{2}+y^{2}}<2$, the region consists of points whose distance from the origin is less than 2, that is, the points that lie inside the circle.

(f) The equation $9 x^{2}+16 y^{2}=144$ is an ellipse centered at $(0,0)$. We put it in standard form by dividing by 144 and get $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. The x-intercepts are located at a distance of $\sqrt{16}=4$ from the center while the y-intercepts are a distance of $\sqrt{9}=3$ from the center (see the graph).

Test C Functions

1. (a) Locate -1 on the x-axis and then go down to the point on the graph with an x-coordinate of -1 . The corresponding y-coordinate is the value of the function at $x=-1$, which is -2 . So, $f(-1)=-2$.
(b) Using the same technique as in part (a), we get $f(2) \approx 2.8$.
(c) Locate 2 on the y-axis and then go left and right to find all points on the graph with a y-coordinate of 2 . The corresponding x-coordinates are the x-values we are searching for. So $x=-3$ and $x=1$.
(d) Using the same technique as in part (c), we get $x \approx-2.5$ and $x \approx 0.3$.
(e) The domain is all the x-values for which the graph exists, and the range is all the y-values for which the graph exists.

Thus, the domain is $[-3,3]$, and the range is $[-2,3]$.
2. Note that $f(2+h)=(2+h)^{3}$ and $f(2)=2^{3}=8$. So the difference quotient becomes $\frac{f(2+h)-f(2)}{h}=\frac{(2+h)^{3}-8}{h}=\frac{8+12 h+6 h^{2}+h^{3}-8}{h}=\frac{12 h+6 h^{2}+h^{3}}{h}=\frac{h\left(12+6 h+h^{2}\right)}{h}=12+6 h+h^{2}$.
3. (a) Set the denominator equal to 0 and solve to find restrictions on the domain: $x^{2}+x-2=0 \Rightarrow$ $(x-1)(x+2)=0 \Rightarrow x=1$ or $x=-2$. Thus, the domain is all real numbers except 1 or -2 or, in interval notation, $(-\infty,-2) \cup(-2,1) \cup(1, \infty)$.
(b) Note that the denominator is always greater than or equal to 1 , and the numerator is defined for all real numbers. Thus, the domain is $(-\infty, \infty)$.
(c) Note that the function h is the sum of two root functions. So h is defined on the intersection of the domains of these two root functions. The domain of a square root function is found by setting its radicand greater than or equal to 0 . Now,
$4-x \geq 0 \Rightarrow x \leq 4$ and $x^{2}-1 \geq 0 \Rightarrow(x-1)(x+1) \geq 0 \Rightarrow x \leq-1$ or $x \geq 1$. Thus, the domain of h is $(-\infty,-1] \cup[1,4]$.
4. (a) Reflect the graph of f about the x-axis.
(b) Stretch the graph of f vertically by a factor of 2 , then shift 1 unit downward.
(c) Shift the graph of f right 3 units, then up 2 units.
5. (a) Make a table and then connect the points with a smooth curve:

x	-2	-1	0	1	2
y	-8	-1	0	1	8

(b) Shift the graph from part (a) left 1 unit.

(c) Shift the graph from part (a) right 2 units and up 3 units.

(d) First plot $y=x^{2}$. Next, to get the graph of $f(x)=4-x^{2}$, reflect f about the x-axis and then shift it upward 4 units.

(e) Make a table and then connect the points with a smooth curve:

x	0	1	4	9
y	0	1	2	3

(f) Stretch the graph from part (e) vertically by a factor of two.

(g) First plot $y=2^{x}$. Next, get the graph of $y=-2^{x}$ by reflecting the graph of $y=2^{x}$ about the x-axis.

(h) Note that $y=1+x^{-1}=1+1 / x$. So first plot $y=1 / x$ and then shift it upward 1 unit.

6. (a) $f(-2)=1-(-2)^{2}=-3$ and $f(1)=2(1)+1=3$
(b) For $x \leq 0$ plot $f(x)=1-x^{2}$ and, on the same plane, for $x>0$ plot the graph of $f(x)=2 x+1$.

7. (a) $(f \circ g)(x)=f(g(x))=f(2 x-3)=(2 x-3)^{2}+2(2 x-3)-1=4 x^{2}-12 x+9+4 x-6-1=4 x^{2}-8 x+2$
(b) $(g \circ f)(x)=g(f(x))=g\left(x^{2}+2 x-1\right)=2\left(x^{2}+2 x-1\right)-3=2 x^{2}+4 x-2-3=2 x^{2}+4 x-5$
(c) $(g \circ g \circ g)(x)=g(g(g(x)))=g(g(2 x-3))=g(2(2 x-3)-3)=g(4 x-9)=2(4 x-9)-3$

$$
=8 x-18-3=8 x-21
$$

Test D Trigonometry

1. (a) $300^{\circ}=300^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{300 \pi}{180}=\frac{5 \pi}{3}$
(b) $-18^{\circ}=-18^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=-\frac{18 \pi}{180}=-\frac{\pi}{10}$
2. (a) $\frac{5 \pi}{6}=\frac{5 \pi}{6}\left(\frac{180^{\circ}}{\pi}\right)=150^{\circ}$
(b) $2=2\left(\frac{180^{\circ}}{\pi}\right)=\frac{360^{\circ}}{\pi} \approx 114.6^{\circ}$
3. We will use the arc length formula, $s=r \theta$, where s is arc length, r is the radius of the circle, and θ is the measure of the central angle in radians. First, note that $30^{\circ}=30^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{\pi}{6}$. So $s=(12)\left(\frac{\pi}{6}\right)=2 \pi \mathrm{~cm}$.
4. (a) $\tan (\pi / 3)=\sqrt{3} \quad$ [You can read the value from a right triangle with sides 1,2 , and $\sqrt{3}$.]
(b) Note that $7 \pi / 6$ can be thought of as an angle in the third quadrant with reference angle $\pi / 6$. Thus, $\sin (7 \pi / 6)=-\frac{1}{2}$, since the sine function is negative in the third quadrant.
(c) Note that $5 \pi / 3$ can be thought of as an angle in the fourth quadrant with reference angle $\pi / 3$. Thus, $\sec (5 \pi / 3)=\frac{1}{\cos (5 \pi / 3)}=\frac{1}{1 / 2}=2$, since the cosine function is positive in the fourth quadrant.

8 \qquad DIAGNOSTIC TESTS
5. $\sin \theta=a / 24 \Rightarrow a=24 \sin \theta$ and $\cos \theta=b / 24 \Rightarrow b=24 \cos \theta$
6. $\sin x=\frac{1}{3}$ and $\sin ^{2} x+\cos ^{2} x=1 \Rightarrow \cos x=\sqrt{1-\frac{1}{9}}=\frac{2 \sqrt{2}}{3}$. Also, $\cos y=\frac{4}{5} \quad \Rightarrow \quad \sin y=\sqrt{1-\frac{16}{25}}=\frac{3}{5}$.

So, using the sum identity for the sine, we have

$$
\sin (x+y)=\sin x \cos y+\cos x \sin y=\frac{1}{3} \cdot \frac{4}{5}+\frac{2 \sqrt{2}}{3} \cdot \frac{3}{5}=\frac{4+6 \sqrt{2}}{15}=\frac{1}{15}(4+6 \sqrt{2})
$$

7. (a) $\tan \theta \sin \theta+\cos \theta=\frac{\sin \theta}{\cos \theta} \sin \theta+\cos \theta=\frac{\sin ^{2} \theta}{\cos \theta}+\frac{\cos ^{2} \theta}{\cos \theta}=\frac{1}{\cos \theta}=\sec \theta$
(b) $\frac{2 \tan x}{1+\tan ^{2} x}=\frac{2 \sin x /(\cos x)}{\sec ^{2} x}=2 \frac{\sin x}{\cos x} \cos ^{2} x=2 \sin x \cos x=\sin 2 x$
8. $\sin 2 x=\sin x \Leftrightarrow 2 \sin x \cos x=\sin x \quad \Leftrightarrow \quad 2 \sin x \cos x-\sin x=0 \quad \Leftrightarrow \sin x(2 \cos x-1)=0 \Leftrightarrow$ $\sin x=0$ or $\cos x=\frac{1}{2} \quad \Rightarrow \quad x=0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}, 2 \pi$.
9. We first graph $y=\sin 2 x$ (by compressing the graph of $\sin x$ by a factor of 2) and then shift it upward 1 unit.

$1 \square$ FUNCTIONS AND MODELS

1.1 Four Ways to Represent a Function

1. The functions $f(x)=x+\sqrt{2-x}$ and $g(u)=u+\sqrt{2-u}$ give exactly the same output values for every input value, so f and g are equal.
2. $f(x)=\frac{x^{2}-x}{x-1}=\frac{x(x-1)}{x-1}=x$ for $x-1 \neq 0$, so f and $g[$ where $g(x)=x]$ are not equal because $f(1)$ is undefined and $g(1)=1$.
3. (a) The point $(1,3)$ is on the graph of f, so $f(1)=3$.
(b) When $x=-1, y$ is about -0.2 , so $f(-1) \approx-0.2$.
(c) $f(x)=1$ is equivalent to $y=1$. When $y=1$, we have $x=0$ and $x=3$.
(d) A reasonable estimate for x when $y=0$ is $x=-0.8$.
(e) The domain of f consists of all x-values on the graph of f. For this function, the domain is $-2 \leq x \leq 4$, or $[-2,4]$.

The range of f consists of all y-values on the graph of f. For this function, the range is $-1 \leq y \leq 3$, or $[-1,3]$.
(f) As x increases from -2 to $1, y$ increases from -1 to 3 . Thus, f is increasing on the interval $[-2,1]$.
4. (a) The point $(-4,-2)$ is on the graph of f, so $f(-4)=-2$. The point $(3,4)$ is on the graph of g, so $g(3)=4$.
(b) We are looking for the values of x for which the y-values are equal. The y-values for f and g are equal at the points $(-2,1)$ and $(2,2)$, so the desired values of x are -2 and 2 .
(c) $f(x)=-1$ is equivalent to $y=-1$. When $y=-1$, we have $x=-3$ and $x=4$.
(d) As x increases from 0 to $4, y$ decreases from 3 to -1 . Thus, f is decreasing on the interval $[0,4]$.
(e) The domain of f consists of all x-values on the graph of f. For this function, the domain is $-4 \leq x \leq 4$, or $[-4,4]$.

The range of f consists of all y-values on the graph of f. For this function, the range is $-2 \leq y \leq 3$, or $[-2,3]$.
(f) The domain of g is $[-4,3]$ and the range is $[0.5,4]$.
5. From Figure 1 in the text, the lowest point occurs at about $(t, a)=(12,-85)$. The highest point occurs at about $(17,115)$.

Thus, the range of the vertical ground acceleration is $-85 \leq a \leq 115$. Written in interval notation, we get $[-85,115]$.
6. Example 1: A car is driven at $60 \mathrm{mi} / \mathrm{h}$ for 2 hours. The distance d traveled by the car is a function of the time t. The domain of the function is $\{t \mid 0 \leq t \leq 2\}$, where t is measured in hours. The range of the function is $\{d \mid 0 \leq d \leq 120\}$, where d is measured in miles.

Example 2: At a certain university, the number of students N on campus at any time on a particular day is a function of the time t after midnight. The domain of the function is $\{t \mid 0 \leq t \leq 24\}$, where t is measured in hours. The range of the function is $\{N \mid 0 \leq N \leq k\}$, where N is an integer and k is the largest number of students on campus at once.

Example 3: A certain employee is paid $\$ 8.00$ per hour and works a maximum of 30 hours per week. The number of hours worked is rounded down to the nearest quarter of an hour. This employee's gross weekly pay P is a function of the number of hours worked h. The domain of the function is $[0,30]$ and the range of the function is $\{0,2.00,4.00, \ldots, 238.00,240.00\}$.

7. No, the curve is not the graph of a function because a vertical line intersects the curve more than once. Hence, the curve fails the Vertical Line Test.
8. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is $[-2,2]$ and the range is $[-1,2]$.
9. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is $[-3,2]$ and the range is $[-3,-2) \cup[-1,3]$.
10. No, the curve is not the graph of a function since for $x=0, \pm 1$, and ± 2, there are infinitely many points on the curve.
11. The person's weight increased to about 160 pounds at age 20 and stayed fairly steady for 10 years. The person's weight dropped to about 120 pounds for the next 5 years, then increased rapidly to about 170 pounds. The next 30 years saw a gradual increase to 190 pounds. Possible reasons for the drop in weight at 30 years of age: diet, exercise, health problems.
12. First, the tub was filled with water to a height of 15 in . Then a person got into the tub, raising the water level to 20 in . At around 12 minutes, the person stood up in the tub but then immediately sat down. Finally, at around 17 minutes, the person got out of the tub, and then drained the water.
13. The water will cool down almost to freezing as the ice melts. Then, when the ice has melted, the water will slowly warm up to room temperature.

14. Runner A won the race, reaching the finish line at 100 meters in about 15 seconds, followed by runner B with a time of about 19 seconds, and then by runner C who finished in around 23 seconds. B initially led the race, followed by C , and then A . C then passed B to lead for a while. Then A passed first B, and then passed C to take the lead and finish first. Finally, B passed C to finish in second place. All three runners completed the race.

Complete Solutions Manual for

MULTIVARIABLE CALCULUS SEVENTH EDITION

DAN CLEGG
Palomar College
BARBARA FRANK
Cape Fear Community College

- BROOKS/COLE
- CENGAGE Learning

© 2012 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.

For product information and technology assistance, contact us at
 Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be e-mailed to permissionrequest@cengage.com

ISBN-13: 978-0-8400-4947-6
ISBN-10: 0-8400-4947-1
Brooks/Cole
20 Davis Drive
Belmont, CA 94002-3098
USA
Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Brooks/Cole, visit
www.cengage.com/brookscole
Purchase any of our products at our preferred online store www.cengagebrain.com

NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED,

 OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.
READ IMPORTANT LICENSE INFORMATION

Dear Professor or Other Supplement Recipient:

Cengage Learning has provided you with this product (the "Supplement") for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the "Course"), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.

Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, or distributed, except that portions of the Supplement may be provided to your students in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute any portion of the Supplement to any third party. Test banks, and other testing materials may be made available in the classroom and collected at the end of each class session, or posted electronically as described herein. Any
material posted electronically must be through a passwordprotected site, with all copy and download functionality disabled, and accessible solely by your students who have purchased the associated textbook for the Course. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.

All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an "as is" basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State's conflict of law rules.

Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.

Printed in the United States of America
$\begin{array}{lllllllll}1 & 2 & 3 & 5 & 67 & 15 & 14 & 131211\end{array}$

This Complete Solutions Manual contains detailed solutions to all exercises in the text Multivariable Calculus, Seventh Edition (Chapters 10-17 of Calculus, Seventh Edition, and Calculus: Early
Transcendentals, Seventh Edition) by James Stewart. A Student Solutions Manual is also available, which contains solutions to the odd-numbered exercises in each chapter section, review section, True-False Quiz, and Problems Plus section as well as all solutions to the Concept Check questions. (It does not, however, include solutions to any of the projects.)

Because of differences between the regular version and the Early Transcendentals version of the text, some references are given in a dual format. In these cases, users of the Early Transcendentals text should use the references denoted by "ET."

While we have extended every effort to ensure the accuracy of the solutions presented, we would appreciate correspondence regarding any errors that may exist. Other suggestions or comments are also welcome, and can be sent to dan clegg at dclegg@palomar. edu or in care of the publisher: Brooks/Cole, Cengage Learning, 20 Davis Drive, Belmont CA 94002-3098.

We would like to thank James Stewart for entrusting us with the writing of this manual and offering suggestions and Kathi Townes of TECH-arts for typesetting and producing this manual as well as creating the illustrations. We also thank Richard Stratton, Liz Covello, and Elizabeth Neustaetter of Brooks/Cole, Cengage Learning, for their trust, assistance, and patience.

DAN CLEGG
Palomar College

barbara frank
Cape Fear Community College

INSTRUCTOR USE OINLY

ABBREVIATIONS AND SYMBOLS

CD	concave downward
CU	concave upward
D	the domain of f
FDT	First Derivative Test
HA	horizontal asymptote(s)
I	interval of convergence
I/D	Increasing/Decreasing Test
IP	inflection point(s)
R	radius of convergence
VA	vertical asymptote(s)
$\stackrel{\text { CAS }}{=}$	indicates the use of a computer algebra system.
$\stackrel{\text { H }}{=}$	indicates the use of l'Hospital's Rule.
$\stackrel{j}{=}$	indicates the use of Formula j in the Table of Integrals in the back endpapers.
$\stackrel{\text { s }}{=}$	indicates the use of the substitution $\{u=\sin x, d u=\cos x d x\}$.
$\stackrel{\text { c }}{=}$	indicates the use of the substitution $\{u=\cos x, d u=-\sin x d x\}$.

10 PARAMETRIC EQUATIONS AND POLAR COORDINATES
10.1 Curves Defined by Parametric Equations 1
Laboratory Project - Running Circles Around Circles 15
10.2 Calculus with Parametric Curves 18
Laboratory Project a Bézier Curves 32
10.3 Polar Coordinates 33
Laboratory Project - Families of Polar Curves 48
10.4 Areas and Lengths in Polar Coordinates 51
10.5 Conic Sections 63
10.6 Conic Sections in Polar Coordinates 74
Review 80
Problems Plus 93
11 INFINITE SEQUENCES AND SERIES 97
11.1 Sequences 97
Laboratory Project - Logistic Sequences 110
11.2 Series 114
11.3 The Integral Test and Estimates of Sums 129
11.4 The Comparison Tests 138
11.5 Alternating Series 143
11.6 Absolute Convergence and the Ratio and Root Tests 149
11.7 Strategy for Testing Series 156
11.8 Power Series 160
11.9 Representations of Functions as Power Series 169
11.10 Taylor and Maclaurin Series 179
Laboratory Project - An Elusive Limit 194
11.11 Applications of Taylor Polynomials 195
Applied Project - Radiation from the Stars 209
Review 210
Problems Plus 2231
12 VECTORS AND THE GEOMETRY OF SPACE 235
12.1 Three-Dimensional Coordinate Systems 235
12.2 Vectors 242
12.3 The Dot Product 251
12.4 The Cross Product 260
Discovery Project - The Geometry of a Tetrahedron 271
12.5 Equations of Lines and Planes 273
Laboratory Project - Putting 3D in Perspective 285
12.6 Cylinders and Quadric Surfaces 287
Review 297
Problems Plus 307
13 VECTOR FUNCTIONS 313
13.1 Vector Functions and Space Curves 313
13.2 Derivatives and Integrals of Vector Functions 324
13.3 Arc Length and Curvature 333
13.4 Motion in Space: Velocity and Acceleration 348
Applied Project - Kepler's Laws 359
Review 360
Problems Plus 367
14 PARTIAL DERIVATIVES 373
14.1 Functions of Several Variables 373
14.2 Limits and Continuity 391
14.3 Partial Derivatives 398
14.4 Tangent Planes and Linear Approximations 416
14.5 The Chain Rule 425
14.6 Directional Derivatives and the Gradient Vector 437
14.7 Maximum and Minimum Values 449
Applied Project - Designing a Dumpster 469
Discovery Project - Quadratic Approximations and Critical Points 471
14.8 Lagrange Multipliers 474
Applied Project - Rocket Science 485
Applied Project - Hydro-Turbine Optimization 488
Review 490
Problems Plus 505
15 MULTIPLE INTEGRALS 511
15.1 Double Integrals over Rectangles 511
15.2 Iterated Integrals 516
15.3 Double Integrals over General Regions 521
15.4 Double Integrals in Polar Coordinates 534
15.5 Applications of Double Integrals 542
15.6 Surface Area 553
15.7 Triple Integrals 557
Discovery Project . Volumes of Hyperspheres 574
15.8 Triple Integrals in Cylindrical Coordinates 575
Discovery Project - The Intersection of Three Cylinders 582
15.9 Triple Integrals in Spherical Coordinates 584
Applied Project - Roller Derby 594
15.10 Change of Variables in Multiple Integrals 595Review 601
Problems Plus 615
16 VECTOR CALCULUS 623
16.1 Vector Fields 623
16.2 Line Integrals 628
16.3 The Fundamental Theorem for Line Integrals 637
16.4 Green's Theorem 643
16.5 Curl and Divergence 650
16.6 Parametric Surfaces and Their Areas 659
16.7 Surface Integrals 673
16.8 Stokes' Theorem 684
16.9 The Divergence Theorem 689
Review 694
Problems Plus 705
17 SECOND-ORDER DIFFERENTIAL EQUATIONS 711
17.1 Second-Order Linear Equations 711
17.2 Nonhomogeneous Linear Equations 715
17.3 Applications of Second-Order Differential Equations 720
17.4 Series Solutions 725
Review 729
APPENDIX 735
H Complex Numbers 735

$10 \square$ PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1. $x=t^{2}+t, \quad y=t^{2}-t, \quad-2 \leq t \leq 2$

t	-2	-1	0	1	2
x	2	0	0	2	6
y	6	2	0	0	2

2. $x=t^{2}, \quad y=t^{3}-4 t, \quad-3 \leq t \leq 3$

t	± 3	± 2	± 1	0
x	9	4	1	0
y	± 15	0	∓ 3	0

3. $x=\cos ^{2} t, \quad y=1-\sin t, \quad 0 \leq t \leq \pi / 2$

t	0	$\pi / 6$	$\pi / 3$	$\pi / 2$
x	1	$3 / 4$	$1 / 4$	0
y	1	$1 / 2$	$1-\frac{\sqrt{3}}{2} \approx 0.13$	0

4. $x=e^{-t}+t, \quad y=e^{t}-t, \quad-2 \leq t \leq 2$

t	-2	-1	0	1	2
x	$e^{2}-2$	$e-1$	1	$e^{-1}+1$	$e^{-2}+2$
	5.39	1.72		1.37	2.14
y	$e^{-2}+2$	$e^{-1}+1$	1	$e-1$	$e^{2}-2$
	2.14	1.37		1.72	5.39

2 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES
5. $x=3-4 t, y=2-3 t$
(a)

t	-1	0	1	2
x	7	3	-1	-5
y	5	2	-1	-4

(b) $x=3-4 t \quad \Rightarrow \quad 4 t=-x+3 \quad \Rightarrow \quad t=-\frac{1}{4} x+\frac{3}{4}$, so

$$
y=2-3 t=2-3\left(-\frac{1}{4} x+\frac{3}{4}\right)=2+\frac{3}{4} x-\frac{9}{4} \quad \Rightarrow \quad y=\frac{3}{4} x-\frac{1}{4}
$$

6. $x=1-2 t, y=\frac{1}{2} t-1,-2 \leq t \leq 4$
(a)

t	-2	0	2	4
x	5	1	-3	-7
y	-2	-1	0	1

(b) $x=1-2 t \quad \Rightarrow \quad 2 t=-x+1 \quad \Rightarrow \quad t=-\frac{1}{2} x+\frac{1}{2}$, so
$y=\frac{1}{2} t-1=\frac{1}{2}\left(-\frac{1}{2} x+\frac{1}{2}\right)-1=-\frac{1}{4} x+\frac{1}{4}-1 \quad \Rightarrow \quad y=-\frac{1}{4} x-\frac{3}{4}$,
with $-7 \leq x \leq 5$
7. $x=1-t^{2}, y=t-2,-2 \leq t \leq 2$
(a)

t	-2	-1	0	1	2
x	-3	0	1	0	-3
y	-4	-3	-2	-1	0

(b) $y=t-2 \Rightarrow t=y+2$, so $x=1-t^{2}=1-(y+2)^{2} \quad \Rightarrow$ $x=-(y+2)^{2}+1$, or $x=-y^{2}-4 y-3$, with $-4 \leq y \leq 0$
8. $x=t-1, y=t^{3}+1,-2 \leq t \leq 2$
(a)

t	-2	-1	0	1	2
x	-3	-2	-1	0	1
y	-7	0	1	2	9

(b) $x=t-1 \Rightarrow t=x+1$, so $y=t^{3}+1 \quad \Rightarrow \quad y=(x+1)^{3}+1$, or $y=x^{3}+3 x^{2}+3 x+2$, with $-3 \leq x \leq 1$

9. $x=\sqrt{t}, y=1-t$
(a)

t	0	1	2	3	4
x	0	1	1.414	1.732	2
y	1	0	-1	-2	-3

(b) $x=\sqrt{t} \Rightarrow t=x^{2} \Rightarrow y=1-t=1-x^{2}$. Since $t \geq 0, x \geq 0$. So the curve is the right half of the parabola $y=1-x^{2}$.

11. (a) $x=\sin \frac{1}{2} \theta, y=\cos \frac{1}{2} \theta,-\pi \leq \theta \leq \pi$.
$x^{2}+y^{2}=\sin ^{2} \frac{1}{2} \theta+\cos ^{2} \frac{1}{2} \theta=1$. For $-\pi \leq \theta \leq 0$, we have
$-1 \leq x \leq 0$ and $0 \leq y \leq 1$. For $0<\theta \leq \pi$, we have $0<x \leq 1$
and $1>y \geq 0$. The graph is a semicircle.
(b)

12. (a) $x=\frac{1}{2} \cos \theta, y=2 \sin \theta, 0 \leq \theta \leq \pi$.
$(2 x)^{2}+\left(\frac{1}{2} y\right)^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1 \quad \Rightarrow \quad 4 x^{2}+\frac{1}{4} y^{2}=1 \quad \Rightarrow$
$\frac{x^{2}}{(1 / 2)^{2}}+\frac{y^{2}}{2^{2}}=1$, which is an equation of an ellipse with
x-intercepts $\pm \frac{1}{2}$ and y-intercepts ± 2. For $0 \leq \theta \leq \pi / 2$, we have
$\frac{1}{2} \geq x \geq 0$ and $0 \leq y \leq 2$. For $\pi / 2<\theta \leq \pi$, we have $0>x \geq-\frac{1}{2}$ and $2>y \geq 0$. So the graph is the top half of the ellipse.
(b)

13. (a) $x=\sin t, y=\csc t, 0<t<\frac{\pi}{2} . y=\csc t=\frac{1}{\sin t}=\frac{1}{x}$.

For $0<t<\frac{\pi}{2}$, we have $0<x<1$ and $y>1$. Thus, the curve is the portion of the hyperbola $y=1 / x$ with $y>1$.
(b)

14. (a) $x=e^{t}-1, y=e^{2 t}$.
$y=\left(e^{t}\right)^{2}=(x+1)^{2}$ and since $x>-1$, we have the right side of the parabola $y=(x+1)^{2}$.
(b)

15. (a) $x=e^{2 t} \Rightarrow 2 t=\ln x \Rightarrow t=\frac{1}{2} \ln x$.
$y=t+1=\frac{1}{2} \ln x+1$.
16. (a) $x=\sqrt{t+1} \Rightarrow x^{2}=t+1 \Rightarrow t=x^{2}-1$.
$y=\sqrt{t-1}=\sqrt{\left(x^{2}-1\right)-1}=\sqrt{x^{2}-2}$. The curve is the part of the hyperbola $x^{2}-y^{2}=2$ with $x \geq \sqrt{2}$ and $y \geq 0$.
(b)

17. (a) $x=\sinh t, y=\cosh t \Rightarrow y^{2}-x^{2}=\cosh ^{2} t-\sinh ^{2} t=1$. Since $y=\cosh t \geq 1$, we have the upper branch of the hyperbola $y^{2}-x^{2}=1$.
(b)

18. (a) $x=\tan ^{2} \theta, y=\sec \theta,-\pi / 2<\theta<\pi / 2$.
$1+\tan ^{2} \theta=\sec ^{2} \theta \quad \Rightarrow \quad 1+x=y^{2} \quad \Rightarrow \quad x=y^{2}-1$. For $-\pi / 2<\theta \leq 0$, we have $x \geq 0$ and $y \geq 1$. For $0<\theta<\pi / 2$, we have $0<x$ and $1<y$. Thus, the curve is the portion of the parabola $x=y^{2}-1$ in the first quadrant. As θ increases from $-\pi / 2$ to 0 , the point (x, y)
(b)
 approaches $(0,1)$ along the parabola. As θ increases from 0 to $\pi / 2$, the point (x, y) retreats from $(0,1)$ along the parabola.
19. $x=3+2 \cos t, y=1+2 \sin t, \pi / 2 \leq t \leq 3 \pi / 2$. By Example 4 with $r=2, h=3$, and $k=1$, the motion of the particle takes place on a circle centered at $(3,1)$ with a radius of 2 . As t goes from $\frac{\pi}{2}$ to $\frac{3 \pi}{2}$, the particle starts at the point $(3,3)$ and moves counterclockwise along the circle $(x-3)^{2}+(y-1)^{2}=4$ to $(3,-1)$ [one-half of a circle].
20. $x=2 \sin t, y=4+\cos t \Rightarrow \sin t=\frac{x}{2}, \cos t=y-4 . \quad \sin ^{2} t+\cos ^{2} t=1 \quad \Rightarrow \quad\left(\frac{x}{2}\right)^{2}+(y-4)^{2}=1$. The motion of the particle takes place on an ellipse centered at $(0,4)$. As t goes from 0 to $\frac{3 \pi}{2}$, the particle starts at the point $(0,5)$ and moves clockwise to $(-2,4)$ [three-quarters of an ellipse].
21. $x=5 \sin t, y=2 \cos t \Rightarrow \sin t=\frac{x}{5}, \cos t=\frac{y}{2} \cdot \quad \sin ^{2} t+\cos ^{2} t=1 \quad \Rightarrow \quad\left(\frac{x}{5}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1$. The motion of the particle takes place on an ellipse centered at $(0,0)$. As t goes from $-\pi$ to 5π, the particle starts at the point $(0,-2)$ and moves clockwise around the ellipse 3 times.
22. $y=\cos ^{2} t=1-\sin ^{2} t=1-x^{2}$. The motion of the particle takes place on the parabola $y=1-x^{2}$. As t goes from -2π to $-\pi$, the particle starts at the point $(0,1)$, moves to $(1,0)$, and goes back to $(0,1)$. As t goes from $-\pi$ to 0 , the particle moves to $(-1,0)$ and goes back to $(0,1)$. The particle repeats this motion as t goes from 0 to 2π.
23. We must have $1 \leq x \leq 4$ and $2 \leq y \leq 3$. So the graph of the curve must be contained in the rectangle $[1,4]$ by $[2,3]$.
24. (a) From the first graph, we have $1 \leq x \leq 2$. From the second graph, we have $-1 \leq y \leq 1$. The only choice that satisfies either of those conditions is III.
(b) From the first graph, the values of x cycle through the values from -2 to 2 four times. From the second graph, the values of y cycle through the values from -2 to 2 six times. Choice I satisfies these conditions.
(c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \leq y \leq 2$. Choice IV satisfies these conditions.
(d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
25. When $t=-1,(x, y)=(0,-1)$. As t increases to $0, x$ decreases to -1 and y increases to 0 . As t increases from 0 to $1, x$ increases to 0 and y increases to 1 . As t increases beyond 1 , both x and y increase. For $t<-1, x$ is positive and decreasing and y is negative and increasing. We could achieve greater accuracy by estimating x - and y-values for selected values of t from the given graphs and plotting the corresponding points.

26. For $t<-1, x$ is positive and decreasing, while y is negative and increasing (these points are in Quadrant IV). When $t=-1,(x, y)=(0,0)$ and, as t increases from -1 to $0, x$ becomes negative and y increases from 0 to 1 . At $t=0,(x, y)=(0,1)$ and, as t increases from 0 to $1, y$ decreases from 1 to 0 and x is positive. At $t=1,(x, y)=(0,0)$ again, so the loop is completed. For $t>1, x$ and y both
 become large negative. This enables us to draw a rough sketch. We could achieve greater accuracy by estimating x - and y-values for selected values of t from the given graphs and plotting the corresponding points.
27. When $t=0$ we see that $x=0$ and $y=0$, so the curve starts at the origin. As t increases from 0 to $\frac{1}{2}$, the graphs show that y increases from 0 to 1 while x increases from 0 to 1 , decreases to 0 and to -1 , then increases back to 0 , so we arrive at the point $(0,1)$. Similarly, as t increases from $\frac{1}{2}$ to $1, y$ decreases from 1
 to 0 while x repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating x - and y-values for selected values of t from the given graphs and plotting the corresponding points.
28. (a) $x=t^{4}-t+1=\left(t^{4}+1\right)-t>0$ [think of the graphs of $y=t^{4}+1$ and $\left.y=t\right]$ and $y=t^{2} \geq 0$, so these equations are matched with graph V .
(b) $y=\sqrt{t} \geq 0 . \quad x=t^{2}-2 t=t(t-2)$ is negative for $0<t<2$, so these equations are matched with graph I .
(c) $x=\sin 2 t$ has period $2 \pi / 2=\pi$. Note that $y(t+2 \pi)=\sin [t+2 \pi+\sin 2(t+2 \pi)]=\sin (t+2 \pi+\sin 2 t)=\sin (t+\sin 2 t)=y(t)$, so y has period 2π.
These equations match graph II since x cycles through the values -1 to 1 twice as y cycles through those values once.
(d) $x=\cos 5 t$ has period $2 \pi / 5$ and $y=\sin 2 t$ has period π, so x will take on the values -1 to 1 , and then 1 to -1 , before y takes on the values -1 to 1 . Note that when $t=0,(x, y)=(1,0)$. These equations are matched with graph VI.
(e) $x=t+\sin 4 t, y=t^{2}+\cos 3 t$. As t becomes large, t and t^{2} become the dominant terms in the expressions for x and y, so the graph will look like the graph of $y=x^{2}$, but with oscillations. These equations are matched with graph IV.
(f) $x=\frac{\sin 2 t}{4+t^{2}}, y=\frac{\cos 2 t}{4+t^{2}}$. As $t \rightarrow \infty, x$ and y both approach 0 . These equations are matched with graph III.
29. Use $y=t$ and $x=t-2 \sin \pi t$ with a t-interval of $[-\pi, \pi]$.

30. Use $x_{1}=t, y_{1}=t^{3}-4 t$ and $x_{2}=t^{3}-4 t, y_{2}=t$ with a t-interval of $[-3,3]$. There are 9 points of intersection; $(0,0)$ is fairly obvious. The point in quadrant I is approximately $(2.2,2.2)$, and by symmetry, the point in quadrant III is approximately $(-2.2,-2.2)$. The other six points are approximately $(\mp 1.9, \pm 0.5),(\mp 1.7, \pm 1.7)$, and $(\mp 0.5, \pm 1.9)$.

31. (a) $x=x_{1}+\left(x_{2}-x_{1}\right) t, y=y_{1}+\left(y_{2}-y_{1}\right) t, 0 \leq t \leq 1$. Clearly the curve passes through $P_{1}\left(x_{1}, y_{1}\right)$ when $t=0$ and through $P_{2}\left(x_{2}, y_{2}\right)$ when $t=1$. For $0<t<1, x$ is strictly between x_{1} and x_{2} and y is strictly between y_{1} and y_{2}. For every value of t, x and y satisfy the relation $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$, which is the equation of the line through $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$.

Finally, any point (x, y) on that line satisfies $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$; if we call that common value t, then the given parametric equations yield the point (x, y); and any (x, y) on the line between $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ yields a value of t in $[0,1]$. So the given parametric equations exactly specify the line segment from $P_{1}\left(x_{1}, y_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}\right)$.
(b) $x=-2+[3-(-2)] t=-2+5 t$ and $y=7+(-1-7) t=7-8 t$ for $0 \leq t \leq 1$.
32. For the side of the triangle from A to B, use $\left(x_{1}, y_{1}\right)=(1,1)$ and $\left(x_{2}, y_{2}\right)=(4,2)$. Hence, the equations are

$$
\begin{aligned}
& x=x_{1}+\left(x_{2}-x_{1}\right) t=1+(4-1) t=1+3 t \\
& y=y_{1}+\left(y_{2}-y_{1}\right) t=1+(2-1) t=1+t
\end{aligned}
$$

Graphing $x=1+3 t$ and $y=1+t$ with $0 \leq t \leq 1$ gives us the side of the
 triangle from A to B. Similarly, for the side $B C$ we use $x=4-3 t$ and $y=2+3 t$, and for the side $A C$ we use $x=1$ and $y=1+4 t$.
33. The circle $x^{2}+(y-1)^{2}=4$ has center $(0,1)$ and radius 2 , so by Example 4 it can be represented by $x=2 \cos t$, $y=1+2 \sin t, 0 \leq t \leq 2 \pi$. This representation gives us the circle with a counterclockwise orientation starting at $(2,1)$.
(a) To get a clockwise orientation, we could change the equations to $x=2 \cos t, y=1-2 \sin t, 0 \leq t \leq 2 \pi$.
(b) To get three times around in the counterclockwise direction, we use the original equations $x=2 \cos t, y=1+2 \sin t$ with the domain expanded to $0 \leq t \leq 6 \pi$.
(c) To start at $(0,3)$ using the original equations, we must have $x_{1}=0$; that is, $2 \cos t=0$. Hence, $t=\frac{\pi}{2}$. So we use $x=2 \cos t, y=1+2 \sin t, \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$.

Alternatively, if we want t to start at 0 , we could change the equations of the curve. For example, we could use $x=-2 \sin t, y=1+2 \cos t, 0 \leq t \leq \pi$.
34. (a) Let $x^{2} / a^{2}=\sin ^{2} t$ and $y^{2} / b^{2}=\cos ^{2} t$ to obtain $x=a \sin t$ and $y=b \cos t$ with $0 \leq t \leq 2 \pi$ as possible parametric equations for the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$.
(b) The equations are $x=3 \sin t$ and $y=b \cos t$ for $b \in\{1,2,4,8\}$.
(c) As b increases, the ellipse stretches vertically.

35. Big circle: It's centered at $(2,2)$ with a radius of 2 , so by Example 4, parametric equations are

$$
x=2+2 \cos t, \quad y=2+2 \sin t, \quad 0 \leq t \leq 2 \pi
$$

Small circles: They are centered at $(1,3)$ and $(3,3)$ with a radius of 0.1 . By Example 4 , parametric equations are

	(left)	$x=1+0.1 \cos t$,	$y=3+0.1 \sin t$,	$0 \leq t \leq 2 \pi$
and	(right)	$x=3+0.1 \cos t$,	$y=3+0.1 \sin t$,	$0 \leq t \leq 2 \pi$

Semicircle: It's the lower half of a circle centered at $(2,2)$ with radius 1 . By Example 4, parametric equations are

$$
x=2+1 \cos t, \quad y=2+1 \sin t, \quad \pi \leq t \leq 2 \pi
$$

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last t-interval to $[0,2 \pi]$ in order to match the others. We can do this by changing t to $0.5 t$. This change gives us the upper half. There are several ways to get the lower half-one is to change the " + " to a " - " in the y-assignment, giving us

$$
x=2+1 \cos (0.5 t), \quad y=2-1 \sin (0.5 t), \quad 0 \leq t \leq 2 \pi
$$

36. If you are using a calculator or computer that can overlay graphs (using multiple t-intervals), the following is appropriate.

Left side: $x=1$ and y goes from 1.5 to 4 , so use

$$
x=1, \quad y=t, \quad 1.5 \leq t \leq 4
$$

Right side: $x=10$ and y goes from 1.5 to 4 , so use

$$
x=10, \quad y=t, \quad 1.5 \leq t \leq 4
$$

Bottom: x goes from 1 to 10 and $y=1.5$, so use

$$
x=t, \quad y=1.5, \quad 1 \leq t \leq 10
$$

Handle: It starts at $(10,4)$ and ends at $(13,7)$, so use

$$
x=10+t, \quad y=4+t, \quad 0 \leq t \leq 3
$$

Left wheel: It's centered at $(3,1)$, has a radius of 1 , and appears to go about 30° above the horizontal, so use

$$
x=3+1 \cos t, \quad y=1+1 \sin t, \quad \frac{5 \pi}{6} \leq t \leq \frac{13 \pi}{6}
$$

Right wheel: Similar to the left wheel with center $(8,1)$, so use

$$
x=8+1 \cos t, \quad y=1+1 \sin t, \quad \frac{5 \pi}{6} \leq t \leq \frac{13 \pi}{6}
$$

If you are using a calculator or computer that cannot overlay graphs (using one t-interval), the following is appropriate.
We'll start by picking the t-interval $[0,2.5]$ since it easily matches the t-values for the two sides. We now need to find parametric equations for all graphs with $0 \leq t \leq 2.5$.

Left side: $x=1$ and y goes from 1.5 to 4 , so use

$$
x=1, \quad y=1.5+t, \quad 0 \leq t \leq 2.5
$$

Right side: $x=10$ and y goes from 1.5 to 4 , so use

$$
x=10, \quad y=1.5+t, \quad 0 \leq t \leq 2.5
$$

Bottom: x goes from 1 to 10 and $y=1.5$, so use

$$
x=1+3.6 t, \quad y=1.5, \quad 0 \leq t \leq 2.5
$$

To get the x-assignment, think of creating a linear function such that when $t=0, x=1$ and when $t=2.5$, $x=10$. We can use the point-slope form of a line with $\left(t_{1}, x_{1}\right)=(0,1)$ and $\left(t_{2}, x_{2}\right)=(2.5,10)$.
$x-1=\frac{10-1}{2.5-0}(t-0) \Rightarrow x=1+3.6 t$.
Handle: It starts at $(10,4)$ and ends at $(13,7)$, so use

$$
x=10+1.2 t, \quad y=4+1.2 t, \quad 0 \leq t \leq 2.5
$$

$\left(t_{1}, x_{1}\right)=(0,10)$ and $\left(t_{2}, x_{2}\right)=(2.5,13)$ gives us $x-10=\frac{13-10}{2.5-0}(t-0) \Rightarrow x=10+1.2 t$.
$\left(t_{1}, y_{1}\right)=(0,4)$ and $\left(t_{2}, y_{2}\right)=(2.5,7)$ gives us $y-4=\frac{7-4}{2.5-0}(t-0) \quad \Rightarrow \quad y=4+1.2 t$.

Left wheel: It's centered at $(3,1)$, has a radius of 1 , and appears to go about 30° above the horizontal, so use

$$
\begin{gathered}
x=3+1 \cos \left(\frac{8 \pi}{15} t+\frac{5 \pi}{6}\right), \quad y=1+1 \sin \left(\frac{8 \pi}{15} t+\frac{5 \pi}{6}\right), \quad 0 \leq t \leq 2.5 \\
\left(t_{1}, \theta_{1}\right)=\left(0, \frac{5 \pi}{6}\right) \text { and }\left(t_{2}, \theta_{2}\right)=\left(\frac{5}{2}, \frac{13 \pi}{6}\right) \text { gives us } \theta-\frac{5 \pi}{6}=\frac{\frac{13 \pi}{6}-\frac{5 \pi}{6}}{\frac{5}{2}-0}(t-0) \Rightarrow \theta=\frac{5 \pi}{6}+\frac{8 \pi}{15} t .
\end{gathered}
$$

Right wheel: Similar to the left wheel with center $(8,1)$, so use

$$
x=8+1 \cos \left(\frac{8 \pi}{15} t+\frac{5 \pi}{6}\right), \quad y=1+1 \sin \left(\frac{8 \pi}{15} t+\frac{5 \pi}{6}\right), \quad 0 \leq t \leq 2.5
$$

37. (a) $x=t^{3} \Rightarrow t=x^{1 / 3}$, so $y=t^{2}=x^{2 / 3}$.

We get the entire curve $y=x^{2 / 3}$ traversed in a left to right direction.

(b) $x=t^{6} \quad \Rightarrow \quad t=x^{1 / 6}$, so $y=t^{4}=x^{4 / 6}=x^{2 / 3}$.

Since $x=t^{6} \geq 0$, we only get the right half of the curve $y=x^{2 / 3}$.

(c) $x=e^{-3 t}=\left(e^{-t}\right)^{3} \quad\left[\right.$ so $\left.e^{-t}=x^{1 / 3}\right]$,
$y=e^{-2 t}=\left(e^{-t}\right)^{2}=\left(x^{1 / 3}\right)^{2}=x^{2 / 3}$.
If $t<0$, then x and y are both larger than 1 . If $t>0$, then x and y are between 0 and 1 . Since $x>0$ and $y>0$, the curve never quite reaches the origin.

38. (a) $x=t$, so $y=t^{-2}=x^{-2}$. We get the entire curve $y=1 / x^{2}$ traversed in a left-to-right direction.

(b) $x=\cos t, y=\sec ^{2} t=\frac{1}{\cos ^{2} t}=\frac{1}{x^{2}}$. Since sec $t \geq 1$, we only get the parts of the curve $y=1 / x^{2}$ with $y \geq 1$. We get the first quadrant portion of the curve when $x>0$, that is, $\cos t>0$, and we get the second quadrant portion of the curve when $x<0$, that is, $\cos t<0$.

(c) $x=e^{t}, y=e^{-2 t}=\left(e^{t}\right)^{-2}=x^{-2}$. Since e^{t} and $e^{-2 t}$ are both positive, we only get the first quadrant portion of the curve $y=1 / x^{2}$.

39. The case $\frac{\pi}{2}<\theta<\pi$ is illustrated. C has coordinates $(r \theta, r)$ as in Example 7, and Q has coordinates $(r \theta, r+r \cos (\pi-\theta))=(r \theta, r(1-\cos \theta))$ [since $\cos (\pi-\alpha)=\cos \pi \cos \alpha+\sin \pi \sin \alpha=-\cos \alpha]$, so P has coordinates $(r \theta-r \sin (\pi-\theta), r(1-\cos \theta))=(r(\theta-\sin \theta), r(1-\cos \theta))$ [since $\sin (\pi-\alpha)=\sin \pi \cos \alpha-\cos \pi \sin \alpha=\sin \alpha$]. Again we have the
 parametric equations $x=r(\theta-\sin \theta), y=r(1-\cos \theta)$.
40. The first two diagrams depict the case $\pi<\theta<\frac{3 \pi}{2}, d<r$. As in Example 7, C has coordinates $(r \theta, r)$. Now Q (in the second diagram) has coordinates $(r \theta, r+d \cos (\theta-\pi))=(r \theta, r-d \cos \theta)$, so a typical point P of the trochoid has coordinates $(r \theta+d \sin (\theta-\pi), r-d \cos \theta)$. That is, P has coordinates (x, y), where $x=r \theta-d \sin \theta$ and $y=r-d \cos \theta$. When $d=r$, these equations agree with those of the cycloid.

41. It is apparent that $x=|O Q|$ and $y=|Q P|=|S T|$. From the diagram, $x=|O Q|=a \cos \theta$ and $y=|S T|=b \sin \theta$. Thus, the parametric equations are $x=a \cos \theta$ and $y=b \sin \theta$. To eliminate θ we rearrange: $\sin \theta=y / b \Rightarrow$ $\sin ^{2} \theta=(y / b)^{2}$ and $\cos \theta=x / a \Rightarrow \cos ^{2} \theta=(x / a)^{2}$. Adding the two equations: $\sin ^{2} \theta+\cos ^{2} \theta=1=x^{2} / a^{2}+y^{2} / b^{2}$. Thus, we have an ellipse.

42. A has coordinates $(a \cos \theta, a \sin \theta)$. Since $O A$ is perpendicular to $A B, \triangle O A B$ is a right triangle and B has coordinates $(a \sec \theta, 0)$. It follows that P has coordinates $(a \sec \theta, b \sin \theta)$. Thus, the parametric equations are $x=a \sec \theta, y=b \sin \theta$.
43. $C=(2 a \cot \theta, 2 a)$, so the x-coordinate of P is $x=2 a \cot \theta$. Let $B=(0,2 a)$.

Then $\angle O A B$ is a right angle and $\angle O B A=\theta$, so $|O A|=2 a \sin \theta$ and $A=((2 a \sin \theta) \cos \theta,(2 a \sin \theta) \sin \theta)$. Thus, the y-coordinate of P is $y=2 a \sin ^{2} \theta$.
44. (a) Let θ be the angle of inclination of segment $O P$. Then $|O B|=\frac{2 a}{\cos \theta}$.

Let $C=(2 a, 0)$. Then by use of right triangle $O A C$ we see that $|O A|=2 a \cos \theta$.
Now

$$
\begin{aligned}
|O P| & =|A B|=|O B|-|O A| \\
& =2 a\left(\frac{1}{\cos \theta}-\cos \theta\right)=2 a \frac{1-\cos ^{2} \theta}{\cos \theta}=2 a \frac{\sin ^{2} \theta}{\cos \theta}=2 a \sin \theta \tan \theta
\end{aligned}
$$

(b)

So P has coordinates $x=2 a \sin \theta \tan \theta \cdot \cos \theta=2 a \sin ^{2} \theta$ and $y=2 a \sin \theta \tan \theta \cdot \sin \theta=2 a \sin ^{2} \theta \tan \theta$.

