Calculus Hybrid Early Transcendental Functions 6th Edition Larson Test Bank

1.1 Graphs and Models

1.1 Graphs and Models

Multiple Choice

b.

c.

Identify the choice that best completes the statement or answers the question.

d.

e.

5 4 3-2-1 -5 -4 -3 -2 10 2 3 Ļ Å -2--3-4 s

5 4 3 2 4 -3 -5 -4 -2 -1 0 -2--3-4 5

Visit TestBankDeal.com to get complete for all chapters

1

2 Chapter 1: Preparation of Calculus

d.

c.

a.

b.

3

b.

3.

Which of the following is the correct graph of $y = 3x - x^2$?

d.

e.

c.

Chapter 1: Preparation of Calculus

4.

Which of the following is the correct graph of $y = x - x^3$?

d.

c.

b.

4

5

5. Find all intercepts:

$$y = x^2 - x - 12$$

- a. x-intercepts: (4,0), (-3,0); y-intercepts: (0, 4), (0, 3)
- b. *x*-intercept: (12, 0); *y*-intercepts: (0, 4), (0, 3)
- c. *x*-intercepts: (4, 0), (-3,0); *y*-intercept: (0, -12)
- d. x-intercepts: (4, 0), (-3,0); y-intercepts: (0, -12), (0, 12)
- e. *x*-intercept: (-3, 0); *y*-intercept: (0, -12)

_____ 6. Find all intercepts:

 $y = 64x - x^3$

- a. x-intercepts: (-8, 0), (8, 0); no y-intercept
- b. *x*-intercept: (0, 0); *y*-intercepts: (0, 0), (0, -8), (0, 8)
- c. *x*-intercepts: (0, 0), (-8, 0), (8, 0); *y*-intercept: (0, 0)
- d. *x*-intercepts: (0, 0), (-8, 0), (8, 0); no *y*-intercept
- e. *x*-intercepts: (-8, 0), 8; *y*-intercept: (0, 0)

7. Find all intercepts:

 $y = (x+5)\sqrt{4-x^2}$

- a. x-intercepts: (-5, 0), (-2, 0), (2, 0); y-intercepts: (0, 0), (0, 10)
- b. *x*-intercepts: (-5, 0), (2, 0); *y*-intercept: (0, 10)
- c. *x*-intercepts: (-5, 0), (2, 0); *y*-intercept: (0, -10)
- d. x-intercepts: (-5, 0), (-2, 0), (2, 0); y-intercept: (0, 10)
- e. x-intercepts: (-5, 0), (-2, 0), (2, 0); y-intercept: (0, -10)

8. Test for symmetry with respect to each axis and to the origin.

$$x^2y^2 = 8$$

- a. symmetric with respect to the origin
- b. symmetric with respect to the *x*-axis
- c. symmetric with respect to the *y*-axis
- d. no symmetry
- e. A, B, and C

9. Test for symmetry with respect to each axis and to the origin.

$$y = \frac{x^2 + 2}{x}$$

- a. symmetric with respect to the origin
- b. symmetric with respect to the *y*-axis
- c. symmetric with respect to the *x*-axis
- d. both B and C
- e. no symmetry

$$x = y^3 - 9y$$

a.

b.

d.

c.

$$x = 4 - y^2$$

a.

d.

8 Chapter 1: Preparation of Calculus

$$y = |x + 2|$$

a.

b.

d.

13. Find the points of intersection of the graphs of the equations:

 $x = y^{2} - 3$ y = x + 1a. (-2, 1), (-1, 2) b. (-2, 0), (1, 2) c. (-2, -1), (1, 2) d. (2, -1), (-1, 2)

<u>14.</u> The table given below shows the Consumer Price Index (CPI) for selected years. Use the regression capabilities of a graphing utility to find a mathematical model of the form $y = at^2 + bt + c$ for the data. In the model, y represents the CPI and t represents the year, with t = 5 corresponding to 1975. Round all numerical values in your answer to three decimal places.

ear	975	980	985	990	995	000	005
PI	7.8	0.6	03.6	30.7	52.4	70.5	92.5

a. $y = -0.019t^2 + 5.268t + 30.871$ b. $y = -0.019t^2 - 5.957t + 30.871$

c. $y = -0.016t^2 - 5.957t - 30.871$

d. $y = -0.019t^2 + 5.957t + 40.871$

e. $y = -0.016t^2 + 5.268t + 40.871$

10 Chapter 1: Preparation of Calculus

15. The table given below shows the Consumer Price Index (CPI) for selected years. Use a graphing utility to plot the data and graph the model $y = -0.1476t^2 + 9.6462t + 3.8286$.

<u>16.</u> The table given below shows the Consumer Price Index (CPI) for selected years. The mathematical model for the data given below is $y = -0.031t^2 + 5.887t + 24.429$, where y represents the CPI and t represents the year, with t = 5 corresponding to 1975. Use the model to predict the CPI for the year 2010. Round your answer to the nearest integer.

ear	975	980	985	990	995	000	005
PI	2.8	0	06.6	30.7	52.4	71.2	94.3

- a. *y* = 211
- b. y = 209
- c. *y* = 192
- d. *y* = 173
- e. *y* = 210

17. Find the sales necessary to break even (R = C) if the cost C of producing x units is $C = 5.3\sqrt{x} + 40,000$ and the revenue R for selling x units is R = 3.3x. Round your answer to the nearest integer.

- a. $x \approx 6$, 244 units
- b. $x \approx 12,334$ units
- c. $x \approx 12,305$ units
- d. x ≈ 12, 299 units
- e. $x \approx 6,239$ units

18. The resistance y in ohms of 1000 feet of solid metal wire at $77^{\circ}F$ can be approximated by the model $y = \frac{10,000}{x^2} - 0.57$, $5 \le x \le 100$, where x is the diameter of the wire in mils (0.001 in). Use a graphing utility to graph the model $y = \frac{10,000}{x^2} - 0.57$, $5 \le x \le 100$.

The resistance y in ohms of 1000 feet of solid metal wire at $\mathcal{TP}F$ can be approximated by the 19. model $y = \frac{12,750}{x^2} - 0.37$, $5 \le x \le 100$, where x is the diameter of the wire in mils (0.001 in). If the diameter of the wire is doubled, the resistance is changed by approximately what factor? In determining your answer, you can ignore the constant -0.37.

3 a.

 $\frac{1}{2}$ b.

- 4 с.
- d. 1 4
- $\frac{1}{3}$ e.

1.1 Graphs and Models Answer Section

1.	ANS:	С	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Identify the gr	raph of	a linear equation	n			MSC:	Skill
2.	ANS:	E	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Identify the gr	raph of	a semicircle				MSC:	Skill
3.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Identify the gr	raph of	a quadratic equ	ation			MSC:	Skill
4.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Identify the gr	raph of	a cubic equatio	n			MSC:	Skill
5.	ANS:	С	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Calculate the	intercep	ots of an equation	on			MSC:	Skill
6.	ANS:	С	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Calculate the	intercep	ots of an equation	on			MSC:	Skill
7.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Calculate the	intercep	ots of an equation	on			MSC:	Skill
8.	ANS:	Е	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Identify the ty	pe of sy	ymmetry of the	graph	of an equation		MSC:	Skill
9.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Identify the ty	pe of sy	ymmetry of the	graph	of an equation	-	MSC:	Skill
10.	ANS:	С	PTS:	1	DIF:	Med	REF:	Section 1.1
OBJ:	Graph a cubic	equation	on in y				MSC:	Skill
11.	ANS:	B	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Graph a quada	ratic equ	uation in y			·	MSC:	Skill
12.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.1
OBJ:	Graph an abso	olute va	lue equation				MSC:	Skill
13.	ANS:	С	PTS:	1	DIF:	Med	REF:	Section 1.1
OBJ:	Calculate the	points c	of intersection of	of the g	raphs of equation	ons	MSC:	Skill
14.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Write a quadra	atic mo	del for data usi	ng the	regression capa	bilities of a gra	phing uti	ility
	_			-			MSC:	Application
15.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Plot a quadrat	ic mode	el for data using	g the re	gression capabi	lities of a graph	ning utili	ty
	•					0 1	MSC:	Application
16.	ANS:	E	PTS:	1	DIF:	Easy	REF:	Section 1.1
OBJ:	Evaluate a qua	adratic	model in applic	ations		5	MSC:	Application
17.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.1
OBJ:	Solve for the l	break-e	ven point in ap	plicatio	ons		MSC:	Application
18.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.1
OBJ:	Plot a rational	model	using the capal	oilities	of a graphing u	tility	MSC:	Application
19.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.1
OBJ:	Interpret a rati	ional m	odel				MSC:	Application
	-							. –

1.2 Linear Models and Rates of Change

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Estimate the slope of the line from the graph.

2. Sketch the line passing through the point (3, 4) with the slope $-\frac{3}{2}$.

Find the slope of the line passing through the pair of points. 3. (-3, -6), (0, -11)

- a. $\frac{3}{5}$ b. $\frac{5}{3}$ c. $\frac{5}{3}$ d. 0 e. $\frac{3}{5}$

4. Find the slope of the line passing through the points
$$\left(-\frac{1}{8}, \frac{8}{3}\right)$$
 and $\left(-\frac{3}{16}, \frac{1}{24}\right)$.

a. 63

- b. -21
- c. 42
- d. 21
- e. -42

If a line has slope m = -4 and passes through the point (4, 8), through which of the 5. following points does the line also pass?

- a. (1, 20)
- b. (1, 12)
- c. (1, 0)
- d. (8, -16)
- e. (8, -24)

A moving conveyor is built to rise 5 meters for every 7 meters of horizontal change. 6. Find the slope of the conveyor.

- a. 0
- b.
- c.
- d.
- e.

7. A moving conveyor is built to rise 1 meter for every 5 meters of horizontal change. Suppose the conveyor runs between two floors in a factory. Find the length of the conveyor if the vertical distance between floors is 10 meters. Round your answer to the nearest meter.

- a. 61 meters
- b. 39 meters
- c. 51 meters
- d. 50 meters
- e. 41 meters

	8.	Find the slope of the line $x + 3y = 15$.
a.	$\frac{1}{3}$	
b.	$-\frac{1}{5}$	
c.	$\frac{1}{5}$	
d.	$-\frac{1}{15}$	
e.	$-\frac{1}{3}$	
	9.	Find the <i>y</i> -intercept of the line $x + 4y = 8$.
a.	(0, 2)	
b.	(0, 4)	
c.	(0, 8)	
d.	(4, 0)	

e. (2, 0)

Find an equation of the line that passes through the point (7, 2) and has the slope m 10. that is undefined.

- a. y = 7
- b. x = 7c. y = 2
- d. x = 2e. y = 7x

12. Find an equation of the line that passes through the points (18, -7) and (-18, 23).

a. $y = -\frac{5}{6}x - 8$ b. $y = \frac{5}{6}x - 8$ c. $y = \frac{5}{6}x + 8$ d. $y = -\frac{5}{6}x + 8$ e. $y = -\frac{5}{6}x$

14. Use the result, "the line with intercepts (a, 0) and (0, b) has the equation $\frac{x}{a} + \frac{y}{b} = 1, a \neq 0, b \neq 0$ ", to write an equation of the line with *x*-intercept: (8, 0) and *y*-intercept: (0, 7).

a. 8x - 7y - 8 = 0b. 7x - 8y + 7 = 0c. 8x + 7y + 8 = 0d. 7x + 8y + 56 = 0e. 7x + 8y - 56 = 0

Sketch a graph of the equation y - 8 = 2(x + 4). 15.

x

c.

<u>16.</u> Write an equation of the line that passes through the given point and is perpendicular to the given line.

Point Line (-1, -7) x = 6a. y = 7b. y = -7c. y = -1d. x = -1e. x = 1

_____ 17. Write an equation of the line that passes through the given point and is parallel to the given line.

Point Line (3, -4) -2x - 5y = 9a. -2x - 5y = 14b. -2x - 5y = 23c. 2x - 5y = 14d. -2x + 5y = -26e. 2x - 5y = 23

18. Write an equation of the line that passes through the point (-6, 4) and is perpendicular to the line x + y = 5.

- a. x y + 10 = 0
- b. x y + 2 = 0
- c. x + y 2 = 0
- $d. \quad x + y + 10 = 0$
- e. x + y 5 = 0

19. Write an equation of the line that passes through the point $\left(\frac{5}{4}, \frac{5}{8}\right)$ and is parallel to the line 7x - 3y = 0. a. 56x - 24y - 55 = 0b. 56x + 12y - 55 = 0

- $0. \quad 50x + 12y 55 = 0$
- c. 56x 8y + 55 = 0d. 56x + 6y + 55 = 0
- e. 56x + 4y 55 = 0

22 Chapter 1: Preparation for Calculus

20. Suppose that the dollar value of a product in 2008 is \$174 and the rate at which the value of the product is expected to increase per year during the next 5 years is \$7.50. Write a linear equation that gives the dollar value V of the product in terms of the year t. (Let t = 0 represent 2000.) Round the numerical values in your answer to one decimal place, where applicable.

- a. V = 7.5t 159b. V = -7.5t - 114c. V = -7.5t + 174
- d. V = 7.5t + 114
- e. V = 7.5t 144

21. Find an equation of the line through the points of intersection of $y = x^2$ and $y = 6x - x^2$. a. y = x - 6b. y = 6xc. y = -6xd. y = 3xe. y = x + 3

<u>22.</u> A company reimburses its sales representatives \$ 175 per day for lodging and meals plus 45¢ per mile driven. Write a linear equation giving the daily cost C to the company in terms of x, the number of miles driven. Round the numerical values in your answer to two decimal places, where applicable.

- a. C = -1.75x + 45
- b. C = 0.45x + 175
- c. C = -0.45x 175
- d. C = 0.45x 175
- e. C = 1.75x 45

23. A company reimburses its sales representatives 160 per day for lodging and meals plus 42ϕ per mile driven. How much does it cost the company if a sales representative drives 135 miles on a given day? Round your answer to the nearest cent.

- a. 227.20
- b. 216.70
- c. 136.35
- d. 161.35
- e. 191.70

24. A real estate office handles an apartment complex with 50 units. When the rent is \$800 per month, all 50 units are occupied. However, when the rent is \$845, the average number of occupied units drops to 47. Assume that the relationship between the monthly rent p and the demand x is linear. Write a linear equation giving the demand x in terms of the rent p.

a.
$$x = \frac{1}{15} (1595 - p)$$

b. $x = \frac{1}{15} (1505 + p)$
c. $x = \frac{1}{45} (1550 + p)$
d. $x = \frac{1}{15} (1550 - p)$
e. $x = \frac{1}{45} (1595 - p)$

25. A real estate office handles an apartment complex with 50 units. When the rent is \$600 per month, all 50 units are occupied. However, when the rent is \$645, the average number of occupied units drops to 47. Assume that the relationship between the monthly rent p and the demand x is linear. Predict the number of units occupied if the rent is raised to \$660.

- a. 43 units
- b. 54 units
- c. 57 units
- d. 49 units
- e. 46 units

26. Find the distance between the point (-4, 7) and line x - y - 2 = 0 using the formula, Distance = $\frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$ for the distance between the point (x_1, y_1) and the line Ax + By + C = 0.

a. $\frac{11\sqrt{2}}{2}$ b. $\frac{4\sqrt{3}}{3}$ c. $\frac{13\sqrt{2}}{2}$ d. $\frac{9\sqrt{2}}{2}$ e. $\frac{6\sqrt{3}}{3}$

1.2 Linear Models and Rates of Change Answer Section

1.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Estimate the s	slope of	a line from its	graph			MSC:	Skill
2.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Sketch the lin	e passin	ig through a poi	int with	specified slop	e	MSC:	Skill
3.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Calculate the	slope of	f a line passing	through	n two points		MSC:	Skill
4.	ANS:	С	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Calculate the	slope of	f a line passing	through	n two points		MSC:	Skill
5.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Identify a poi	nt on a l	ine with specif	ied proj	perties		MSC:	Skill
6.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Calculate slop	pes in ap	oplications				MSC:	Application
7.	ANS:	C	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Calculate slop	bes in ap	oplications				MSC:	Application
8.	ANS:	E	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Manipulate a	linear e	quation to deter	rmine it	s slope		MSC:	Skill
9	ANS:	A	PTS.	1	DIF	Med	REF	Section 1.2
OBI [,]	Manipulate a	linear e	quation to deter	rmine it	s v-intercept	Med	MSC [.]	Skill
10	ANS:	R	PTS.	1	DIF	Fasy	RFF.	Section 1.2
OBI-	Write an equa	ntion of	a line given a n	oint on	the line and its	slope	MSC [•]	Skill
11		D	DTC.	1		Easy	DEE.	Section 1.2
OBI	Write on equi	D otion of	FIS. a lina giyan a n	I oint on	DIF. the line and its	Easy	NEF. MSC·	Section 1.2
0DJ.			DTC.			Easy	DEE.	Santion 1.2
12.	AINS: Write on equa	D tion of	PIS: a lina giyan tuy	1 nointe	DIF:	Easy	KEF: MSC:	Section 1.2
UDJ.	ANG.	E E	DTC.			Mad	MSC.	Skill Section 1.2
IS.	AINS: Write on equa	E tion of	PIS: a lina giyan tuy	1 nointe	DIF:	Med	KEF: MSC:	Section 1.2
UDJ.	A NG.		DTC.	5 points		F	MSC.	Skill
14. ODJ.	AINS:	E	PIS:	1 	DIF:	Easy	KEF:	Section 1.2
UBJ:	write an equa	uion oi a	a fine given its	x- and	y-intercepts	N 1	MSC:	SKIII
15. ODL	ANS:	B	PIS:	1	DIF:	Med	KEF:	Section 1.2
OBJ:	Sketch the gra	apn of a	linear equation	1	DIE		MSC:	SKIII
16. ODI	ANS:	C	PIS:	1	DIF:	Med	. KEF:	Section 1.2
OBJ:	Write an equa	ation of	a line given a p	oint on	the line and a	ine to which it	1S	01.11
paralle	el/perpendicula	ır					MSC:	SK111
17.	ANS:	A	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Write an equa	ation of	a line given a p	oint on	the line and a	ine to which it	15	~
paralle	el/perpendicula	r					MSC:	Skill
18.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section
1.2OB	J:Write an equ	ation of	f a line given a	point o	n the line and a	line to which i	t is perpe	endicular
							MSC:	Skill
19.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Write an equa	ation of	a line given a p	oint on	the line and a l	ine to which it	is parall	el
							MSC:	Skill
20.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Write linear e	quation	s in application	S		-	MSC:	Application

21.	ANS:	D	PTS:	1	DIF:	Med		REF:	Section	1.2
	OBJ:	Write an equa	tion of	a line through t	he poin	its of intersection	on of qu	adratic	equation	IS
									MSC:	Skill
	22.	ANS:	В	PTS:	1	DIF:	Easy		REF:	Section 1.2
	OBJ:	Write linear e	quation	s in application	S				MSC:	Application
	23.	ANS:	В	PTS:	1	DIF:	Easy		REF:	Section 1.2
	OBJ:	Evaluate linea	r equat	ions in applicat	ions				MSC:	Application
	24.	ANS:	D	PTS:	1	DIF:	Med		REF:	Section 1.2
	OBJ:	Write linear e	quation	s in application	S				MSC:	Application
	25.	ANS:	Е	PTS:	1	DIF:	Easy		REF:	Section 1.2
	OBJ:	Evaluate linea	r equat	ions in applicat	ions				MSC:	Application
	26.	ANS:	С	PTS:	1	DIF:	Med		REF:	Section 1.2
	OBJ:	Calculate the	distance	e between a poi	nt and a	a line			MSC:	Skill

1.3 Functions and Their Graphs

Multiple Choice

Identify the choice that best completes the statement or answers the question.

		1.	Evaluate (if possible) the function $f(x) = -6x - 5$ at $x = -2$. Simplify the result.
a. b. c. d. e.	-7 17 3 7 uno	defined	
		2.	Evaluate (if possible) the function $f(x) = \sqrt{x-5}$ at $x = 9$. Simplify the result.
a. b. c. d. e.	3 2 -2 4 uno	defined	
		3.	Evaluate (if possible) the function $g(x) = x^2(x+2)$ at $x = t - 6$. Simplify the result.
a. b.	t^{3} . t^{3} .	$-4t^2 + 1$ $-4t^2 + 8$	2t - 144 4t - 144

- c. $t^3 16t^2 + 84t 144$ d. $t^3 16t^2 + 12t 144$ e. none of the above

4. Let
$$f(x) = 14x + 8$$
. Then simplify the expression $\frac{f(x) - f(9)}{x - 9}$.

- a. 15
- b. 14
- c. 19
- d. 11
- e. undefined

____ 5. Let
$$g(x) = \frac{1}{\sqrt{x+15}}$$
. Evaluate the expression $\frac{g(x) - g(-11)}{x+11}$ and then simplify the

result.

$$g(x) = \frac{1}{\sqrt{x+15}}, \frac{g(x) - g(-11)}{x+11}$$

a.
$$\frac{2\sqrt{x+15} - x - 15}{2(x+11)(x+15)}$$

b.
$$\frac{2\sqrt{x+15} + x - 15}{2(x-11)(x+15)}$$

c.
$$\frac{2\sqrt{x+15} + x - 15}{2(x+11)(x+15)}$$

d.
$$\frac{2\sqrt{x+15} - x - 15}{2(x-11)(x+15)}$$

e. undefined

6. Find the domain and range of the function $f(x) = x^2 - 6$.

- a. domain: [-6, ∞) range: [-6, ∞)
- b. domain: [−6, ∞) range: (−6, ∞)
- c. domain: (-∞, ∞) range: (-6, ∞)
- d. domain: (-∞, ∞) range: [6, ∞)
- e. domain: (-∞, ∞) range: [-6, ∞)

Find the domain and range of the function $g(t) = \sqrt{t-10}$.

a. domain: [10, ∞) range: (0, ∞)

7.

- b. domain: (10, ∞) range: [0, ∞)
- c. domain: [10, ∞) range: (−∞, ∞)
- d. domain: [0, ∞) range: [10, ∞)
- e. none of the above

8. Find the domain and range of the function $h(x) = \frac{11}{x+6}$.

- a. domain: $(-\infty, -6) \cup (-6, \infty)$ range: $(-\infty, \infty)$
- b. domain: $(-\infty, -6) \cup (-6, \infty)$ range: $(-\infty, 0) \cup (0, \infty)$
- c. domain: $(-\infty, -6] \cup [-6, \infty)$ range: $(-\infty, 0) \cup (0, \infty)$
- d. domain: (-∞, 6)
 range: (0, ∞)
- e. domain: (-6, ∞) range: (0, ∞)

9. Evaluate the function
$$f(x) = \begin{cases} 2x+1, x < 0 \\ 2x+2, x \ge 0 \end{cases}$$
 at $f(5)$.

- a. f(5) = 6
- b. f(5) = 5
- c. f(5) = 13
- d. f(5) = 11
- e. f(5) = 12

10. Determine the domain and range of the function $f(x) = \begin{cases} 3x + 2, x < 0 \\ 3x + 6, x \ge 0 \end{cases}$.

- a. domain: $(-\infty, 2)$ range: $(-\infty, 2) \cap [6, \infty]$
- b. domain: $(-\infty, \infty)$ range: $(-\infty, 2) \cup [6, \infty)$
- c. domain: (-∞, ∞) range: (-∞, 2) ∪ (∞, 6]
 d. domain: (-∞, ∞)
- range: $(\infty, 2) \cup (6, -\infty)$
- e. domain: $(-\infty, 3)$ range: $(-\infty, 2) \cap [6, \infty)$

_ 11. Determine whether *y* is a function of *x*.

 $y - 5x^2 = 6$

- a. no
- b. yes

12. Determine whether y is a function of x. $xy - x^2 = 3y + x$

a. no

b. Yes

13. Use the graph of y = f(x) given below to find the graph of the function y = f(x + 5).

d.

a.

14. Use the graph of y = f(x) given below to find the graph of the function y = f(x) + 4.

b.

a.

d.

c.

32 Chapter 1: Preparation for Calculus

_____ 15. Specify a sequence of transformations for the function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ that will yield the graph of *h* from the graph of the function $f(x) = \sin x$.

- a. The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a horizontal shift $\frac{\pi}{3}$ units to the right, followed by a vertical shift 7 units downwards.
- b. The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a horizontal shift $\frac{\pi}{3}$ units to the left, followed by a vertical shift 7 units upwards.
- c. The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a horizontal shift $\frac{\pi}{3}$ units to the left, followed by a horizontal shift 7 units to the right.
- d. The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a vertical shift $\frac{\pi}{3}$ units downwards, followed by a horizontal shift 7 units to the right.
- e. The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a vertical shift $\frac{\pi}{3}$ units upwards, followed by a horizontal shift 7 units to the left.

$$16. \quad \text{Given } f(x) = \cos x \text{ and } g(x) = \frac{\pi}{2} x, \text{ evaluate } f(g(2)).$$

$$a. \quad 0 \\ b. \quad \frac{1}{2} \\ c. \quad \frac{\pi}{2} \sin(2) \\ d. \quad -1 \\ e. \quad \frac{\pi}{2} \cos(2)$$

17. Determine whether the function is even, odd, or neither.

 $f(x) = x^2(3-x)^2$

- a. odd
- b. even
- c. neither

18. Determine whether the function is even, odd, or neither.

 $f(x) = x \sin 2x$

- a. even
- b. odd
- c. neither

19. Find the coordinates of a second point on the graph of a function *f* if the given point $\left(-\frac{6}{5}, 8\right)$ is on the graph and the function is even.

20. Find the coordinates of a second point on the graph of a function *f* if the given point $\left(-\frac{9}{8}, 5\right)$ is on the graph and the function is odd.

<u>21.</u> The horsepower *H* required to overcome wind drag on a certain automobile is approximated by $H(x) = 0.002x^2 + 0.005x - 0.027$, $10 \le x \le 100$ where *x* is the speed of the car in miles per hour. Find $H\left(\frac{x}{1.1}\right)$. Round the numerical values in your answer to five decimal places.

a. $H\left(\frac{x}{1.1}\right) = 0.00150x^2 + 0.00455x - 0.02700$ b. $H\left(\frac{x}{1.1}\right) = 0.00150x^2 + 0.00165x - 0.00455$ c. $H\left(\frac{x}{1.1}\right) = 0.00165x^2 + 0.00150x - 0.02700$ d. $H\left(\frac{x}{1.1}\right) = 0.00165x^2 + 0.00455x - 0.02700$ e. $H\left(\frac{x}{1.1}\right) = 0.00455x^2 + 0.00165x - 0.02700$

22. An open box of maximum volume is to be made from a square piece of material 22 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure). Write the volume *V* as a function of *x*, the length of the corner squares.

23. An open box of maximum volume is to be made from a square piece of material 30 centimeters on a side by cutting equal squares from the corners and turning up the sides(see figure). What is the domain of the function $V = x(30 - 2x)^2$.

- a. domain: $0 < x < \infty$
- b. domain: 30
- c. domain: 0 < x < 15
- d. domain: 0 < x < 30
- e. domain: 15

1.3 Functions and Their Graphs Answer Section

1	ANS	D	DTC	1	DIE	Form	DEE	Section 1.3
	Evoluoto o fu	D notion (ris.	1	DII'.	Lasy	MSC:	Section 1.5
ODJ.	ANS.		DTS.	1	DIE.	East	DEE.	Skill Section 1.2
Δ .	ANS: Evoluoto o fui	D	PIS:	1	DIF:	Easy	KEF: MSC:	
OP1:				1	DIE	F	MSC:	SKIII Saatian 1.2
3. ODI:	ANS:	C 	PIS:	1	DIF:	Easy	KEF:	Section 1.3
OBJ:	Evaluate a lui	nction a		1	DIE		MSC:	SKIII
4. ODI	ANS:	В	PIS:	1	DIF:	Med	REF:	Section 1.3
OBJ:	Simplify a dif	iterence	e quotient		DIE		MSC:	SKIII
5. ODI	ANS:	A	PIS:	1	DIF:	Med	REF:	Section 1.3
OBI:	Simplify a dif	Terence	e quotient		D I D	-	MSC:	SK1II
6.	ANS:	Е.	PTS:	1	DIF:	Easy	REF:	Section 1.3
OB1:	Identify the d	omain a	and range of	a functio	n 	_	MSC:	Skill
7.	ANS:	Е.	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Identify the d	omain a	and range of	a functio	n		MSC:	Skill
8.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Identify the d	omain a	and range of	a functio	n		MSC:	Skill
9.	ANS:	Е	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Evaluate a pie	ecewise	function				MSC:	Skill
10.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Identify the d	omain a	and range of	a functio	n		MSC:	Skill
11.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Identify equat	tions th	at are function	ons			MSC:	Skill
12.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Identify equat	tions th	at are function	ons			MSC:	Skill
13.	ANS:	Е	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Graph transfo	ormation	ns of function	ıs			MSC:	Skill
14.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.3
OBJ:	Graph transfo	ormation	ns of function	ıs			MSC:	Skill
15.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.3
OBJ:	Describe a tra	nsform	ation of an e	quation			MSC:	Skill
16.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Evaluate com	posite f	functions				MSC:	Skill
17.	ANS:	C	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Identify the ty	pe of s	ymmetry of	the graph	n of a funct	ion	MSC:	Skill
18.	ANS:	A	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Identify the ty	pe of s	ymmetry of	the graph	n of a funct	ion	MSC:	Skill
19.	ANS:	Ē	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Identify point	s on a g	graph using s	ymmetry	1	5	MSC:	Skill
20.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Identify point	s on a g	graph using s	ymmetry	1	5	MSC:	Skill
21.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.3
OBJ:	Apply compo	site fun	ctions				MSC:	Application
22.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.3
OBJ:	Create function	ons in a	pplications				MSC:	Application

23. ANS: C PTS: 1 DIF: Med OBJ: Identify domains in applications

REF: Section 1.3 MSC: Application

1.4 Fitting Models to Data

Multiple Choice

Identify the choice that best completes the statement or answers the question.

_ 1. Determine which type of function would be most appropriate to fit the given data.

- a. exponential
- b. linear
- c. quadratic
- d. no relationship
- e. trigonometric

2.

Which function below would be most appropriate model for the given data?

- a. no apparent relationship between x and y
- b. trigonometric
- c. quadratic
- d. linear

3. The following ordered pairs represent temperatures in degrees Fahrenheit taken each hour from 1:00 pm until 5:00 pm. Let T be temperature, and let t be time, where t = 1 corresponds to 1:00 pm, t = 2 corresponds to 2:00 pm, and so on. Plot the data. Visually find a linear model for the data and find its equation. From the visual linear model that you created, determine which of the models that follow appears to best approximate the data.

(1:00 pm, 67.4°), (2:00 pm, 71.6°), (3:00 pm, 73.4°), (4:00 pm, 77.6°), (5:00 pm, 79.4°)

- a. T = 2t + 60
- b. T = -2t + 70
- c. T = -4t + 60
- d. T = 4t + 70
- e. T = 3t + 65

4. Each ordered pair gives the exposure index x of a carcinogenic substance and the cancer mortality y per 100,000 people in the population. Use the model y = 9.2x + 108.4 to approximate y if x = 7. Round your answer to one decimal place.

$$(3.50, 150.1), (3.58, 133.1), (4.42, 132.9), (2.26, 116.7), (2.36, 140.7), (4.85, 165.5), (12.65, 210.7), (7.42, 181.0), (9.35, 213.4)$$

- a. 168.2
- b. 163.6
- c. 182.0
- d. 172.8
- e. 177.4

5. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, F = kd where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use the regression capabilities of a graphing utility to find a linear model for the data. Round the numerical values in your answer to three decimal places.

F	20	40	60	80	100
d	1.9	3.8	5.7	7.6	9.5

- a. d = 0.675F
- b. d = 0.118F
- c. d = 0.112F
- d. d = 0.095F
- e. d = 0.905F

40 Chapter 1: Preparation for Calculus

6. Hooke's Law states that the force *F* required to compress or stretch a spring (within its elastic limits) is proportional to the distance *d* that the spring is compressed or stretched from its original length. That is, F = kd where *k* is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation *d* in centimeters of a spring when a force of *F* newtons is applied. Use a graphing utility to plot the data and graph the linear model.

d.

F	20	40	60	80	100
d	1.3	2.6	3.9	5.2	6.5

7. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, F = kd where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use the model d = 0.085 F to estimate the elongation of the spring when a force of 55 newtons is applied. Round your answer to two decimal places.

F	20	40	60	80	100
d	1.7	3.4	5.1	6.8	8.5

- a. 8.08 cm
- b. 6.38 cm
- c. 4.68 cm
- d. 2.98 cm
- e. 9.78 cm

8. In an experiment, students measured the speed *s* (in meters per second) of a falling object *t* seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place.

t	0	1	2	3	4
5	0	13.0	21.4	31.2	41.4

a. s = 10.1t + 1.2b. s = 3.0t - 1.2c. s = 1.2t + 10.1d. s = 10.1t + 3.0e. s = 1.2t - 3.0

42 Chapter 1: Preparation for Calculus

9. In an experiment, students measured the speed s (in meters per second) of a falling object t seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place.

d.

t	0	1	2	3	4
5	0	40	48.4	58.2	68.4

a.

10. In an experiment, students measured the speed s (in meters per second) of a falling object t seconds after it was released. The results are shown in the table below. Use the model s = 11.9t + 4.8 to estimate the speed of the object after 1.5 seconds. Round your answer to two decimal places.

t	0	1	2	3	4
5	0	22.0	30.4	40.2	50.4

a. 21.05 meters/second

с.

- b. 20.95 meters/second
- c. 24.25 meters/second
- d. 23.55 meters/second
- e. 22.65 meters/second

11. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use the regression capabilities of a graphing utility to fit a quadratic model to the data. Round the numerical values in your answer to two decimal places, where applicable.

x	4	б	8	10	12
S	2422	5512	10, 362	16, 302	23, 912

- a. $S = 170.89x^2 209.79x + 324$ b. $S = 180.89x^2 205.79x + 324$
- c. $S = 190.89x^2 + 201.79x + 331$
- d. $S = 170.89x^2 209.79x + 327$
- e. $S = 180.89x^2 + 203.79x 331$

12. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use a graphing utility to plot the data and graph the quadratic model.

x	4	б	8	10	12
ន	2370	4460	13, 310	19, 250	29, 860

13. Students in a lab measured the breaking strength *S* (in pounds) of wood 2 inches thick, *x* inches high, and 12 inches long. The results are shown in the table below. Use the model $S = 180.89x^2 - 205.79x + 284$ to approximate the breaking strength when x = 2. Round your answer to two decimal places.

x	4	б	8	10	12
ន	2382	5472	10, 322	16, 262	23, 872

a. 595.98 pounds

- b. 390.19 pounds
- c. 957.76 pounds
- d. 801.77 pounds
- e. 751.97 pounds

14. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use the regression capabilities of a graphing utility to find a cubic model for the data. Round the numerical values in your answer to three decimal places, where applicable.

x	1	2	3	4	5	б
У	64	109	164	224	249	269

- a. $y = -1.608x^3 14.583x^2 + 13.389x 37$
- b. $y = -1.706x^3 14.583x^2 16.389x + 34$
- c. $y = 1.806x^3 + 11.583x^2 + 16.389x 41$
- d. $y = -1.806x^3 + 14.583x^2 + 16.389x + 34$
- e. $y = 1.608x^3 + 11.583x^2 19.389x + 41$

15. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use a graphing utility to plot the data and graph the cubic model.

x	1	2	3	4	5	б
У	110	155	210	270	295	315

<u>16.</u> A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use the model $y = -1.806x^3 + 14.58x^2 + 16.4x + 30$ to approximate the horsepower when the engine is running at 5500 revolutions per minute. Round your answer to two decimal places.

x	1	2	3	4	5	б
у	60	105	160	220	245	265

a. 260.77 hp

b. 262.73 hp

c. 262.36 hp

d. 261.38 hp

e. 261.91 hp

1.4 Fitting Models to Data Answer Section

OBJ:Identify the most appropriate function for a scatter plotMSC:Skill2.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Identify the most appropriate function for a scatter plotMSC:SkillSkill3.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Identify the best linear model for given dataMSC:Applicatio4.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicatioMSC:Applicatio5.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear model for data using the regression capabilities of a graphing utilityMSC:Applicatio6.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Applicatio7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicatioMSC:Applicatio8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear model for data using the regression capabilities of a graphing utilityMSC:Applicatio9.ANS:CPTS:1DIF:EasyREF: <th>1.</th> <th>ANS:</th> <th>А</th> <th>PTS:</th> <th>1</th> <th>DIF:</th> <th>Easy</th> <th>REF:</th> <th>Section 1.4</th>	1.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 1.4
2.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Identify the most appropriate function for a scatter plotMSC:Skill3.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Identify the best linear model for given dataMSC:Applicatio4.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:Applicatio5.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Applicatio6.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicatioMSC:Applicatio7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicatioMSC:Applicatio8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear model for data using the regression capabilities of a graphing utilityMSC:Applicatio9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:App	OBJ:	Identify the m	ost app	ropriate function	on for a	scatter plot		MSC:	Skill
OBJ:Identify the most appropriate function for a scatter plotMSC:Skill3.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Identify the best linear model for given dataMSC:Application4.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:Application5.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Application6.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationMSC:Application7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationMSC:Application8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear model for data using the regression capabilities of a graphing utilityMSC:Application9.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Application9.ANS:CPTS:1DIF:EasyREF: <td>2.</td> <td>ANS:</td> <td>D</td> <td>PTS:</td> <td>1</td> <td>DIF:</td> <td>Easy</td> <td>REF:</td> <td>Section 1.4</td>	2.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.4
3. ANS: E PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Identify the best linear model for given data MSC: Application 4. ANS: D PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Evaluate linear models in applications MSC: Application 5. ANS: D PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Write a linear model for data using the regression capabilities of a graphing utility MSC: Application 6. ANS: D PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Plot data points and the graph of a linear model MSC: Application MSC: Application 7. ANS: C PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Evaluate linear models in applications MSC: Application 8. ANS: A PTS: 1 DIF: Easy REF: Section 1.4 OBJ:	OBJ:	Identify the m	ost app	ropriate function	on for a	scatter plot		MSC:	Skill
OBJ:Identify the best linear model for given dataMSC:Application4.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application5.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Application6.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationMSC:Application7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear model for data using the regression capabilities of a graphing utilityMSC:Application9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationMSC:Application9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationApplication10.ANS:EPTS:1<	3.	ANS:	E	PTS:	1	DIF:	Easy	REF:	Section 1.4
4.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:Application5.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Application6.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationApplication7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Application9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Application9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationMSC:Application10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC: <td>OBJ:</td> <td>Identify the be</td> <td>est linea</td> <td>ar model for giv</td> <td>ven data</td> <td>ı</td> <td></td> <td>MSC:</td> <td>Application</td>	OBJ:	Identify the be	est linea	ar model for giv	ven data	ı		MSC:	Application
OBJ:Evaluate linear models in applicationsMSC:Application5.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Application6.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:Application7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationApplication8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear model for data using the regression capabilities of a graphing utilityMSC:Application9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationMSC:Application9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationMSC:Application10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application11.ANS:BPTS:1DIF:MedREF: <t< td=""><td>4.</td><td>ANS:</td><td>D</td><td>PTS:</td><td>1</td><td>DIF:</td><td>Easy</td><td>REF:</td><td>Section 1.4</td></t<>	4.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.4
5.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Applicatio6.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:Applicatio7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:Applicatio8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Applicatio9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicatioMSC:Applicatio9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicatioMSC:Applicatio10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicatioMSC:Applicatio11.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utility<	OBJ:	Evaluate linea	r mode	ls in application	ns			MSC:	Application
OBJ:Write a linear model for data using the regression capabilities of a graphing utility MSC:Applicatio6.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:Applicatio7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:Applicatio8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utility MSC:MSC:Applicatio9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicatioMSC:Applicatio9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicatioMSC:Applicatio10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicatioMSC:Applicatio11.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utility MSC:MSC:Applicatio12.ANS:BPTS:1DIF:	5.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.4
MSC:Application6.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationMSC:Application7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Application9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationMSC:Application10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationApplication10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application11.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utilityMSC:Application12.ANS:BPTS:1DIF:MedREF:Section 1.4<	OBJ:	Write a linear	model	for data using t	he regr	ession capabilit	ies of a graphir	ng utility	
6.ANS:DPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:Application7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:Application8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Application9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:Application10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application11.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utilityMSC:Application12.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utilityMSC:Applicat								MSC:	Application
OBJ:Plot data points and the graph of a linear modelMSC:Application7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Application9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationMSC:Application10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application11.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utilityMSC:Application11.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utilityMSC:Application	6.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.4
7.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:Applicatio8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Applicatio9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicatioMSC:Applicatio10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicatioMSC:Applicatio11.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utilityMSC:Applicatio	OBJ:	Plot data point	ts and t	he graph of a li	near mo	odel		MSC:	Application
OBJ:Evaluate linear models in applicationsMSC:Application8.ANS:APTS:1DIF:EasyREF:Section 1.4OBJ:Write a linear model for data using the regression capabilities of a graphing utilityMSC:Application9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:ApplicationMSC:Application10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application11.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utility MSC:MSC:Application	7.	ANS:	С	PTS:	1	DIF:	Easy	REF:	Section 1.4
8. ANS: A PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Write a linear model for data using the regression capabilities of a graphing utility MSC: Applicatio 9. ANS: C PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Plot data points and the graph of a linear model MSC: Applicatio 10. ANS: E PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Plot data points and the graph of a linear model MSC: Applicatio 10. ANS: E PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Evaluate linear models in applications MSC: Applicatio 11. ANS: B PTS: 1 DIF: Med REF: Section 1.4 OBJ: Write a quadratic model for data using the regression capabilities of a graphing utility MSC: Applicatio	OBJ:	Evaluate linea	r mode	ls in application	ns			MSC:	Application
OBJ: Write a linear model for data using the regression capabilities of a graphing utility MSC: Applicatio 9. ANS: C PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Plot data points and the graph of a linear model MSC: Applicatio 10. ANS: E PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Evaluate linear models in applications MSC: Applicatio 11. ANS: B PTS: 1 DIF: Med REF: Section 1.4 OBJ: Write a quadratic model for data using the regression capabilities of a graphing utility MSC: Applicatio	8.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 1.4
9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:Applicatio10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:Applicatio11.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utility MSC:MSC:Applicatio	OBJ:	Write a linear	model	for data using t	he regr	ession capabilit	ies of a graphir	ng utility	
9.ANS:CPTS:1DIF:EasyREF:Section 1.4OBJ:Plot data points and the graph of a linear modelMSC:Applicatio10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:Applicatio11.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utility MSC:MSC:Applicatio								MSC:	Application
OBJ:Plot data points and the graph of a linear modelMSC:Application10.ANS:EPTS:1DIF:EasyREF:Section 1.4OBJ:Evaluate linear models in applicationsMSC:ApplicationMSC:Application11.ANS:BPTS:1DIF:MedREF:Section 1.4OBJ:Write a quadratic model for data using the regression capabilities of a graphing utility MSC:MSC:Application	9.	ANS:	С	PTS:	1	DIF:	Easy	REF:	Section 1.4
10. ANS: E PTS: 1 DIF: Easy REF: Section 1.4 OBJ: Evaluate linear models in applications MSC: Applicatio 11. ANS: B PTS: 1 DIF: Med REF: Section 1.4 OBJ: Write a quadratic model for data using the regression capabilities of a graphing utility MSC: Application	OBJ:	Plot data point	ts and t	he graph of a li	near mo	odel		MSC:	Application
OBJ: Evaluate linear models in applications MSC: Application 11. ANS: B PTS: 1 DIF: Med REF: Section 1.4 OBJ: Write a quadratic model for data using the regression capabilities of a graphing utility MSC: Application	10.	ANS:	Е	PTS:	1	DIF:	Easy	REF:	Section 1.4
11. ANS: B PTS: 1 DIF: Med REF: Section 1.4 OBJ: Write a quadratic model for data using the regression capabilities of a graphing utility MSC: Application	OBJ:	Evaluate linea	r mode	ls in application	ns			MSC:	Application
OBJ: Write a quadratic model for data using the regression capabilities of a graphing utility MSC: Applicatio	11.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.4
MSC: Applicatio	OBJ:	Write a quadra	atic mo	del for data usin	ng the r	regression capal	bilities of a grap	phing uti	ility
								MSC:	Application
12. ANS: B PTS: 1 DIF: Med REF: Section 1.4	12.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.4
OBJ: Plot data points and the graph of a quadratic model MSC: Applicatio	OBJ:	Plot data point	ts and t	he graph of a qu	uadratio	e model		MSC:	Application
13. ANS: A PTS: 1 DIF: Med REF: Section 1.4	13.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.4
OBJ: Evaluate quadratic models in applications MSC: Applicatio	OBJ:	Evaluate quad	ratic m	odels in applica	ations			MSC:	Application
14. ANS: D PTS: 1 DIF: Med REF: Section 1.4	14.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.4
OBJ: Evaluate cubic models in applications MSC: Applicatio	OBJ:	Evaluate cubic	c model	ls in application	ıs			MSC:	Application
15. ANS: D PTS: 1 DIF: Med REF: Section 1.4	15.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.4
OBJ: Plot data points and the graph of a cubic model MSC: Applicatio	OBJ:	Plot data point	ts and t	he graph of a cu	ubic mo	odel		MSC:	Application
16. ANS: A PTS: 1 DIF: Med REF: Section 1.4	16.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.4
OBJ: Write a cubic model for data using the regression capabilities of a graphing utility	OBJ:	Write a cubic	model	for data using tl	he regre	ession capabilit	ies of a graphin	g utility	

MSC: Application

1.5 Inverse Functions

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Match the graph of the function given below with the graph of its inverse function.

d.

e.

b.

2. Match the graph of the function given below with the graph of its inverse function.

d.

c.

 $\underline{}$ 3. Use the Horizontal Line Test to determine whether the following statement is true or false.

The function $f(x) = \frac{3}{19}x + 3$ is one-to-one on its entire domain and therefore has an inverse function.

a. false

b. true

4. Use the Horizontal Line Test to determine whether the following statement is true or false.

The function f(x) = 14(x - 15) + 15 is one-to-one on its entire domain and therefore has an inverse function.

a. true

b. false

5. True or False: The function $f(x) = \frac{1}{s - 38} - 2$ is one-to-one on its entire domain.

a. false

b. true

 $-\frac{6}{-10 \le x \le 10}$. True or False: The function f(x) = |x + 10| - |x - 10| is one-to-one on the domain

a. false

b. true

$$\begin{array}{cccc} & & & \\ \hline & & \\ a. & & f^{-1}(x) = \ln(12x+10) \\ b. & & f^{-1}(x) = \frac{1}{12x-10} \\ c. & & f^{-1}(x) = \frac{1}{12}x + \frac{1}{10} \\ d. & & f^{-1}(x) = 10x - 12 \\ e. & & f^{-1}(x) = \frac{1}{12}x + \frac{5}{6} \end{array}$$

$$= 8. \quad \text{Find } f^{-1}(x) \text{ if } f(x) = x^{7}.$$
a. $f^{-1}(x) = \frac{1}{7}x^{-7}$
b. $\frac{1}{7}$
c. $f^{-1}(x) = x^{\frac{1}{7}}$
c. $f^{-1}(x) = \frac{1}{8}x^{8}$
d. $f^{-1}(x) = x^{-7}$
e. $f^{-1}(x) = 7x^{6}$

$$\begin{array}{c} ---- 9. & \text{Find } f^{-1}(x) \text{ if } f(x) = x^3 - 4. \\ \text{a.} & f^{-1}(x) = x^{\frac{1}{3}} + \frac{1}{4} \\ \text{b.} & f^{-1}(x) = \frac{1}{3}(x+4)^{-\frac{2}{3}} \\ \text{c.} & f^{-1}(x) = x^{\frac{1}{3}} + 4^{\frac{1}{3}} \\ \text{d.} & f^{-1}(x) = (x+4)^{\frac{1}{3}} \\ \text{e.} & f^{-1}(x) = \frac{1}{x^3 - 4} \end{array}$$

$$\begin{array}{c} \hline \\ 10. & \text{Find } f^{-1}(x) \text{ if } f(x) = 6x^2, x \ge 0. \\ a. & f^{-1}(x) = \sqrt{\frac{1}{6x}} \\ b. & f^{-1}(x) = \sqrt{\frac{1}{6x^2}} \\ c. & f^{-1}(x) = \sqrt{\frac{6}{x}} \\ d. & f^{-1}(x) = \frac{1}{6\sqrt{x}} \\ e. & f^{-1}(x) = \sqrt{\frac{x}{6}} \end{array}$$

$$\begin{array}{cccc} & 11. & \text{Find } f^{-1}(x) \text{ if } f(x) = \sqrt{13 - x^2}, \ 0 \le x \le \sqrt{13} \,. \\ \text{a.} & f^{-1}(x) = x + \sqrt{13}, \ 0 \le x \le \sqrt{13} \\ \text{b.} & f^{-1}(x) = \left(13 - x^2\right)^2, \ 0 \le x \le \sqrt{13} \\ \text{c.} & f^{-1}(x) = \sqrt{13 - x^2}, \ 0 \le x \le \sqrt{13} \\ \text{d.} & f^{-1}(x) = \sqrt{x^2 - 13}, \ 0 \le x \le \sqrt{13} \\ \text{e.} & f^{-1}(x) = \frac{1}{\sqrt{13 - x^2}}, \ 0 \le x \le \sqrt{13} \end{array}$$

 $\begin{array}{c} 12. \quad \text{Find } f^{-1}(x) \text{ if } f(x) = 3\sqrt[5]{8x-9} \, . \\ \text{a.} \quad f^{-1}(x) = \frac{1}{3} \left(8x-9 \right)^5 \\ \text{b.} \quad f^{-1}(x) = \frac{1}{3} \left(\left(\frac{x}{3} \right)^5 + 9 \right) \\ \text{c.} \quad f^{-1}(x) = \frac{1}{8} \left(\left(\frac{x}{3} \right)^5 + 9 \right) \\ \text{d.} \quad f^{-1}(x) = \frac{1}{8} \left(\left(\frac{x}{3} \right)^5 + 9 \right) \\ \text{e.} \quad f^{-1}(x) \text{ does not exist} \\ \end{array}$ $\begin{array}{c} 13. \quad \text{Find } f^{-1}(x) \text{ if } f(x) = x^{\frac{7}{17}} \, . \\ \text{a.} \quad f^{-1}(x) = \frac{17}{7} \, \frac{7}{17} \\ \text{b.} \quad f^{-1}(x) = x^{-\frac{17}{17}} \\ \text{c.} \quad f^{-1}(x) = x^{-\frac{119}{7}} \\ \text{d.} \quad f^{-1}(x) = x^{-\frac{17}{7}} \\ \text{e.} \quad 17 \end{array}$

 $f^{-1}(x) = x^{\frac{17}{7}}$

14. You need 50 pounds of two commodities costing \$1.80 and \$2.40 per pound. Find the inverse function of the cost function y = 1.80x + 2.40(50 - x).

a. $y = \frac{5}{3} (240 - x)$ b. $y = \frac{10}{3} (-120 + x)$ c. $y = \frac{5}{3} (-240 - x)$ d. $y = \frac{5}{3} (120 - x)$ e. $y = \frac{10}{3} (120 + x)$ 15. You need 50 pounds of two commodities costing \$1.60 and \$1.95 per pound. Determine the number of pounds of the less expensive commodity purchased if the total cost y = 1.60x + 1.95(50 - x) is \$94.

- a. 10 pounds
- b. 17 pounds
- c. 7 pounds
- d. 5 pounds
- e. 13 pounds

Use the functions f(x) = x + 2 and g(x) = 4x - 7 to find the function 16. $(g^{-1} \circ f^{-1})(x).$ a. $\frac{x-5}{7}$ b. 4x + 5c. 4x - 1d. x + 54 e. $\frac{x-1}{4}$ Use the functions f(x) = x + 2 and g(x) = 4x - 3 to find the function $(f \circ g)^{-1}(x)$. 17. a. 4x - 5b. $\frac{x-5}{4}$ c. $\frac{x+1}{4}$ d. $\frac{x-1}{3}$ e. 4x + 1Evaluate the expression $\arcsin\left(\frac{1}{2}\right)$ without using a calculator. 18. a. 0 b. $\frac{3\pi}{2}$ c. $\frac{7\pi}{2}$ d. $\frac{\pi}{6}$ e. $\frac{4\pi}{5}$

		19.	Evaluate the expression $\arccos\left(\frac{\sqrt{2}}{2}\right)$ without using a calculator.
a. b. c. d. e.	$\frac{5\pi}{4}$ $\frac{\pi}{6}$ $\frac{3\pi}{2}$ $\frac{\pi}{4}$ $\frac{2\pi}{3}$		
		20.	Evaluate the expression $\cos\left(\arcsin\frac{3}{5}\right)$ without using a calculator.
a. b. c. d. e.	$\frac{3}{5}$ $\frac{4}{5}$ 3 5 4		
		21.	Write the following expression in algebraic form.
sin	(arc	cos(2x))
a. b. c. d. e.	$\sqrt{1}$ $1 - 1 + 1 + \sqrt{1}$	$\frac{-4x^2}{2x^2}$ $\frac{2x^2}{4x^2}$ $\frac{4x^2}{-2x^2}$	
		22.	Write the following expression in algebraic form.
cos	aro	$csin(2x^2)$	
a. b.	$\sqrt{1}$	$-4x^4$ $4x^4$	

- c. $\sqrt{1-2x^2}$ d. $1+2x^2$ e. $1+2x^4$

23. Write the following expression in algebraic form.

$$\tan\left(\arccos\left(\frac{x}{8}\right)\right)$$
a. $x^2 - 64$
b. $\frac{\sqrt{x^2 - 64}}{8}$
c. $1 + 64x^2$
d. $\sqrt{x^2 - 8}$
e. $1 + 8x^2$

25. Solve the following equation for *x*.

1.5 Inverse Functions Answer Section

1.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 1.5
OBJ:	Identify the g	raph of	the inverse of	a funct	ion		MSC:	Skill
2.	ANS:	С	PTS:	1	DIF:	Easy	REF:	Section 1.5
OBJ:	Identify the g	raph of	the inverse of	a funct	tion		MSC:	Skill
3.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.5
OBJ:	Recognize inv	vertible	functions				MSC:	Application
4.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.5
OBJ:	Recognize inv	vertible	functions				MSC:	Application
5.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.5
OBJ:	Recognize inv	vertible	functions				MSC:	Application
6.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.5
OBJ:	Recognize inv	vertible	functions				MSC:	Application
7	ANS	Е	PTS∙	1	DIF	Easy	REF	Section 1.5
OBJ:	Construct the	inverse	of a function			Luby	MSC:	Skill
8	ANS:	B	PTS.	1	DIF	Easy	REF	Section 1 5
OBJ:	Construct the	inverse	of a function	1		Eusy	MSC:	Skill
9	ANS:	D	PTS.	1	DIF	Med	REF	Section 1 5
OBJ:	Construct the	inverse	of a function			1100	MSC:	Skill
10	ANS	E	PTS.	1	DIF	Med	REF	Section 1.5
OBJ:	Construct the	inverse	of a function			1100	MSC:	Skill
11	ANS	С	PTS	1	DIF	Med	REF	Section 1 5
OBJ:	Construct the	inverse	of a function			1100	MSC:	Skill
12	ANS:	D	PTS.	1	DIF	Med	REF	Section 1 5
OBJ:	Construct the	inverse	of a function	1		1010 di	MSC:	Skill
13	ANS	E	PTS	1	DIF	Med	REF	Section 1 5
OBJ:	Construct the	inverse	of a function			1100	MSC:	Skill
14	ANS:	D	PTS.	1	DIF	Easy	REF	Section 1 5
OBJ:	Construct the	inverse	of a function	in appl	ications	Luby	MSC:	Application
15	ANS	Α	PTS	1	DIF	Easy	REF	Section 1 5
OBJ:	Solve a linear	equation	on in applicati	ons		Luby	MSC:	Application
16	ANS	D	PTS	1	DIF	Easy	REF	Section 1 5
OBJ:	Construct the	inverse	of a composi	tion of	functions	Luby	MSC:	Skill
17	ANS:	С	PTS.	1	DIF	Easy	REF	Section 1 5
OBJ:	Construct the	inverse	of a composi	tion of	functions	Luby	MSC:	Skill
18	ANS	D	PTS.	1	DIF	Easy	REF	Section 1.5
OBJ:	Evaluate an ir	iverse ti	rigonometric (express	ion	Luby	MSC:	Skill
19.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.5
OBJ:	Evaluate an in	nverse t	rigonometric	express	ion	5	MSC:	Skill
20.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.5
OBJ:	Evaluate an e	xpressio	on involving a	n inver	se trigonome	etric expression	MSC:	Skill
21	ANS	A	PTS [.]	1	DIF	Med	REF	Section 1.5
OBJ:	Convert an in	verse tr	igonometric e	xpressi	on to an alge	braic expression	MSC:	Skill
22	ANS:	A	PTS:	1	DIF	Med	REF.	Section 1 5
OBI [.]	Convert an in	verse fr	igonometric e	xpressi	on to an alve	braic expression	MSC.	Skill
J. 10.		. erse u		P-0001	on to an ange	erate enpression		~

23.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.5	
OBJ:	Convert an inv	verse tri	gonometric exp	pression	n to an algebrai	c expression	MSC:	Skill	
24.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.5	
OBJ:	Solve an inver	Solve an inverse trigonometric equation							
25.	ANS:	E	PTS:	1	DIF:	Med	REF:	Section 1.5	
OBJ:	Solve an inver	Solve an inverse trigonometric equation							

1.6 Exponential and Logarithmic Functions

Multiple Choice

Identify the choice that best completes the statement or answers the question.

What is the domain of the function $f(x) = 6\ln(4x)$? 1. (0,∞) a. b. $\left(\frac{1}{4}\infty\right)$ (0,1) c. (1,e) d. e. (*e*,∞) What is the domain of the function $f(x) = 4 + \ln(x - 6)$? 2. a. (1,∞) b. (6,∞) c. (0,∞) (0,6) d. (1,6)e. 3. Write the following expression as a logarithm of a single quantity. $\ln x - 4\ln\left(x^2 + 1\right)$ a. $\ln \left| \frac{x}{\left(x^2 + 1\right)^{-4}} \right|$ $\ln\left(x-4\left(x^2+1\right)\right)$ b. c. ln d. $\ln\left(\frac{-4x}{x^2+1}\right)$ e. $\ln\left(\frac{x}{\left(x^2+1\right)^4}\right)$

4. Write the following expression as a logarithm of a single quantity.

$$13\ln x - 12\ln(x^{2} + 16)$$
a. $\ln(13x - 12(x^{2} + 16))$
b. $\ln\left(\frac{x^{13}}{(x^{2} + 16)^{12}}\right)$
c. $\ln\left(x^{13}(x^{2} + 16)^{12}\right)$
d. $\ln\left(x^{13} - (x^{2} + 16)^{12}\right)$
e. $\ln\left(\frac{x^{13}}{12(x^{2} + 16)}\right)$

	5.	Solve the following equation for x .
e^{lr}	u(13x) = 3	
a.	$x = \frac{\ln(3)}{\ln(13)}$	
b.	$x = \frac{3}{13}$	
c.	<i>x</i> = 39	
d.	$x = \frac{3}{\ln(13)}$	
e	3	

e.
$$x = \frac{3}{e\ln(13)}$$

 $- 7. ext{Solve the following equation for } x.$ $\ln x^{-10} = 6$ a. $x = \frac{10}{\sqrt{\ln(6)}}$ b. $x = \frac{6}{\ln(10)}$ c. $x = \frac{10}{\sqrt{e^{-6}}}$ d. $x = \frac{10}{\sqrt{e^{6}}}$ e. $x = \ln(10)\ln(6)$

 $\begin{array}{c} \hline 8. & 8 \\ -5 + 7e^{3x} = 10 \\ a. & x = \frac{1}{3} \ln \frac{15}{7} \\ b. & x = -\frac{1}{3} \ln \frac{15}{7} \\ c. & x = \frac{15}{7e^3} \\ d. & x = -\frac{1}{3} \ln \frac{50}{7} \\ e. & x = \frac{1}{3} \ln \frac{50}{7} \end{array}$

Solve the following equation for x.

1.6 Exponential and Logarithmic Functions Answer Section

1.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 1.6				
OBJ:	Identify the de	MSC:	Skill									
2.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.6				
OBJ:	Identify the de	MSC:	Skill									
3.	ANS:	E	PTS:	1	DIF:	Med	REF:	Section 1.6				
OBJ:	Write a logari	MSC:	Skill									
4.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.6				
OBJ:	Write a logarithmic expression as a single quantity							Skill				
5.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.6				
OBJ:	Solve an exponential equation MSC: Skill											
6.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.6				
OBJ:	Solve a logari	MSC:	Skill									
7.	ANS:	С	PTS:	1	DIF:	Med	REF:	Section 1.6				
OBJ:	Solve a logarithmic equation							Skill				
8.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.6				
OBJ:	Solve an exponential equation							Skill				

2.1 A Preview of Calculus

Multiple Choice

Identify the choice that best completes the statement or answers the question.

<u>1.</u> Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the distance traveled in 16 seconds by an object traveling at a constant velocity of 20 feet per second.

- a. calculus, 320 ft
- b. calculus, 340 ft
- c. precalculus, 320 ft
- d. calculus, 640 ft
- e. precalculus, 640 ft

2. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the distance traveled in 20 seconds by an object moving with a velocity of $v(t) = 8 + 6\cos t$ feet per second.

- a. calculus, 162.4485 ft
- b. precalculus, 163.7985 ft
- c. calculus, 165.4777 ft
- d. precalculus, 165.4777 ft
- e. precalculus, 162.4485 ft