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Chapter 1

1. a. nominal, b. ordinal, c. interval, d. nominal, e. ordinal, f. nominal, g. ordinal.

2. a. Binomial, n = 100, » = .25.

b. The mean is nm = 25 and the standard deviation is \/nw(1 — ) = 4.33. Yes, 50 correct responses
would be surprising, since 50 is z = {50 — 25)/4.33 = 5.8 standard deviations above the mean of a
distribution that is approximately normal.

¢. Multinomial, n = 100, m =+-- = mq = 0.25.

d. E(n;) = nm; = 25, Var(n;) = nm;{l — m;) = 100{.25)(.75) = 18.75, Cov(nj,ng) = —NTT =
~100(.25)(.25) = —6.25, Corr(n;, ni) = —6.25/+/(18.75)(18.75) = —.333.

3. m varies from batch to batch, so the counts come from a mixture of binomials rather than a single
bin(n, ). Var(Y) = E[Var(Y | m)] + Var[E(Y | )] > E[Var(Y | )] = E[nx(1 —)).

4. a. The geometric probability, (5/6)°.

b. Note that ¥ = y when there are y —1 successes and then a failure. The probability of a sequence of in-
dependent events is the product of the probabilities of the separate events. Thus, p(y) = (5/6)¥~1(1/6),
y=12,...

5. # = 842/1824 = 462, s0 z = (462 — .5)/+/-5(.5)/1824 = —3.28, for which P = .001 for H,: 7 # .5.

The 95% Wald CI is .462 & 1.96+/.462(.538)/1824 = .462 & .023, or (.439, .485). The 95% score CI is
also (.439, .485).

6.a. Expected frequency = 12.5 for each category. For the count of 0, 0log(0/12.5) = 0, so result follows.
b. Score statistic z = (0 — .5)/+/.5(.5)/25 = —5.0, s0 z° = 25.0.

c. z=(0~.5)/+/0(1.0)/25 = —co.

7. a &m) =72, 50 7 =1.0.

b. Wald statistic z = (1.0 —.5)/4/1.0{0)/20 = co. Wald CI is 1.0 +1.96+/1.0(0}/20 = 1.0 £ 0.0, or (1.0,
1.0).

¢. z=(1.0—.5)/+/.5(.5)/20 = 4.47, P < .0001. Score CI is (0.839, 1.000).

d. Test statistic 2(20)log(20/10) = 27.7,df = 1. From problem 1.25a, the CI is (exp(1.96%/40),1) =
(0.908,1.0).

e. P-value = 2(.5)?° = .00000191. Clopper-Pearson CI is (0.832, 1.000). CI using Blaker method is
{0.840, 1.000).
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f. n = 1.962(.9)(.1)/(.05)% = 138.

8. The chi-squared goodness-of-fit test of the null hypothesis that the binomial proportions equal (.75,
.25) has expected frequencies (827.25, 275.75), and X2 = 3.46 based on df = 1. The P-value is 0.063,
giving moderate evidence against the null.

9. The sample mean is 0.61. Fitted probabilities for the truncated distribution are 0.543, 0.332, 0.102,
0.021, 0.003. The estimated expected frequencies are 108.5, 66.4, 20.3, 4.1, and 0.6, and the Pearson X2
= 0.7 with df = 3 (0.3 with df = 2 if one truncates at 3 and above).

11. Var(#) = m(1 — w)/n decreases as 7 moves toward 0 or 1 from 0.5.

12. a. Var(Y) = nn(1 — x), binomial.

b. Var(Y) = 3. Var(¥;) + 235, ; Cov(Y:, Y;) = nw(1l ~ 7) + 2om(1 — ) ( g ) > nw(l — 7).

¢. Var(Y) = E[Var(Y|r)] + Var[E(Y |7)] = E[nw(1 —7)]+ Var(nm) = n® —nE(x?) + [n*E(x?) —n?7?] =
np+ (n? —n)[E(r) — p*] — np® = np(1 — p) + (n? —~n)Var(r) > np(1 - p).

d. Conditionally, Y is the sum of non-identical Bernoulli trials, so is not binomial. Conditionally, the
probability of a particular sequence is []#¥*(1 — m;)1¥:. Since the responses are independent, the un-

conditional probability of that sequence is [J(Em;)¥* (1 — E(w;))* =¥, which corresponds to a sequence of
identical, independent trials.

13. This is the binomial probability of y successes and k—1 failures in y+k— 1 trials times the probability
of a failure at the next trial.

14. Using results shown in Sec. 14.1.4, Cov{n;,ny)/+/Var(n;)Var(ng) = —nmjme//nmi (1 — m5)nme (1 — me)-
When ¢ = 2, m =1 - m; and correlation simplifies to —1.

15. For binomial, m(t) = E(e”) = 35, (7} (we")*(1 — m)"~¥ = (1 — m + met)™, so m/(0) = n7.
16. t, = —2log[(prob. under Hy)/(prob. under H,)], so (prob. under Hy)/(prob. under H,) = exp(—t,/2).

7. a(*-zf(#))/= exp(—np)po®, 50 L(s) = —np + (X 9:) log(s) and L'(k) = —n + (X )/ = O yiclds
= Yi)/ 1.

b. (i) 2w = (F —po)V/¥/n, (ii) 2 = §F — po) v/ o/, (ii1) —2[—npo + (X 9:) log (o) + 1 — (X y:) log(#)]-
c. (i) § % Zay2v/§/n, (ii) all po such that |2,| < 2,2, (iii) all po such that LR statistic < x3(a).

18. Conditional on n =y + y2, ¥ has a bin(n,7) distribution with 7 = g1 /(1 + p2), which is .5 under
Hy. The large sample score test uses 2 = (y1/n — .5)/4/.5(.5}/n. If (£,u) denotes a CI for 7 (e.g., the
score CI), then the CI for /(1 — 7) = p1/p2 is [£/(1 = &),u/(1 — u)].

19. a. No outcome can give P < .05, and hence one never rejects Hg.

b. When T' = 2, mid P-value = .04 and one rejects Hg. Thus, P(Type I error) = P(T = 2) = .08.
¢. P-values of the two tests are .04 and .02; P(Type I error) = P(T = 2) = .04 with both tests.
d. P(Type I error) = E[P(Type I error | T)] = (5/8)(.08) = .05.

20. a. all mg such that |# — mol/\/7(1 — 7)/n < 2zn 2, which yields # £ 2, /24/F(1 — #) /n.
b. all mg such that [ —mo}/\/m0(1 — ) /n < 2zase- Squaring and solving quadratic equation for g gives
result.

21. a. With the binomial test the smallest possible P-value, from y = 0 or y = 5, is 2{1/2)® = 1/16. Since
this exceeds .05, it is impossible to reject Hy, and thus P(Type I error) = 0. With the large-sample score
test, y = 0 and y = 5 are the only outcomes to give P < .05 (e.g., with y = 5, z = (1.0—.5)/4/5(.5)/5 =
2.24 and P = .025). Thus, for that test, P(Type I error) = P(Y =0) + P(Y = 5) = 1/16.

b. For every possible outcome the Clopper-Pearson CI contains .5. e.g., when y = 5, the CI is (478
1.0), since for mp = .478 the binomial probability of y = 5 is .478°% = .025.

22. P(CI contains 7) < P(1<Y <n—-1)=1-PY =n)—P(Y =0) =1 —a" — (1 —n)™. This
converges toQasw +0oras v = n.
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23. For 7 just below .18/n, P{CI contains 7) = P(Y =0) = (1—m)" = (1 —.18/n)" =~ exp(—.18) = 0.84.

24. g{n) = w(l —m)/n* is a concave function of =, so if  is random, g(Ew) > Eg(w) by Jensen’s in-
equality. Now 7 is the expected value of 7 for a distribution putting probability n/(n + 22 /2) at # and
probability 23 ,,/(n + 22 ;) at 1/2.

25. a. The likelihood-ratio (LR) CI is the set of mp for testing Hy: 7 = mp such that LR statis-
tic = —2log[(1 — me)*/(1 — #)*] < zi/z’ with # = 0.0. Solving for mp, nlog{l — mg) > —zi/2/2, or
(1 —mo) > exp(—2Z,5/2n), or mp < 1 —exp(~22 ,/2n). Using exp(z) = 1+ & + ... for small z, the upper

bound is roughly 1 — (1 — 23,5/2n) = 23,5/2n = 1.96%/2n ~ 22/2n = 2/n.
b. Solve for (0 —n)/y/n(1 —m)/n = —zq)a.

c. Upper endpoint is solution to wJ(1 —mo)™ = /2, or (1 —mg) = {@/2)/", or mp = 1— (a/2)!/*. Using
the expansion exp(z) ~ 1+ z for « close to 0, (/2)'/™ = exp{log[(a/2)'/"]} ~ 1+ log[(e/2)"/™], so the
upper endpoint is ~ 1 — {1 +log[(:/2)/"]} = —log(a/2)}/" = —log(.025)/n = 3.69/n.

d. The mid P-value when y = 0 iz half the probability of that outcome, so the upper bound for this CI
sets (1/2)73(1 — m)™ = /2, or mp =1 — o1/™.

26. The cdf is F(y) = 1 — #¥*tl. Equating it t0 o/2 and solving for 7 yields the upper endpoint,
(1 - af2)t/+1), Setting P(Y > y) = 1 — F(y — 1) = n¥ = /2 yields the lower endpoint, (a/2)'/%.
For y = 0 the upper bound is (1 — /2), and the upper bound is larger than this for ¥ > 1. Thus, all

# between 0 and 1 — «/2 never fall above a confidence interval, and thus they can be excluded only by
falling below the interval.

28. If we form the P-value using the right tail, then mid P-value = m;/2 + w;41 + ---. Thus, E(mid
P-value) = 3, mi(m; /2 + mipa +--0) = (;75)2/2 = 1/2.

29. The right-tail mid P-value equals P(T > t,)+(1/2)p(t.) = 1— P(T < to)+(1/2)p(to) = 1— Finsalts).
30. a. The kernel of the log likelihood is L(6) = nqlog#? + na2log[29(1 — 8)] + nszlog(l — 8)2. Take
8L/00 =2n, /8 +n2/0 —na/(1 —8) — 2n3/(1 — ) = 0 and solve for 6.

b. Find the expectation using E(n;) = nf?, etc. Then, the asymptotic variance is the inverse informa-
tion = #(1 — 8}/2n, and thus the estimated SE = \/é(l — 8)/2n.

¢. The estimated expected counts are [nf?, 2n(1—8), n{1— 6)?]. Compare these to the observed counts
(n1, n2, n3) using X2 or G2, with df = (3 — 1) — 1 = 1, since 1 parameter is estimated.

31. Since 62L/37r2 = —(2’!&11/11’2) - 'l'l.]_g/‘.i'l’2 - ﬂ.]_z/(l - ‘J'I')2 - 'H:zz/(l - ’JT)2,

the information is its expected value, which is

~2nm? fn? —nw(l = w) /7 —nr(l —m)/(1 —7) = n(l - 7)/(1 —m)?,

which simplifies to —n(1 +m)/7({1 — ). The asymptotic standard error is the square root of the inverse
information, or +/w(1 — 7)/n(l + 7).

33. ¢. Let # = ny/n, and (1 — &) = na/n, and denote the null probabilities in the two categories by mg
and (1 - mg). Then, X2 = (n; — nme)?/nme + (N2 ~— n(l — m3))% /n(l — m)

= n(it — m)*(1 — m0) + ((1 — #) — (1 — mp))*me}/mo (1 — o),

which equals (# — mg)2/[mo(1 — mo)/n] = #2.

34. Let X be a random variable that equals m;p/#; with probability #;. By Jensen’s inequality, since
the negative log function is convex, E{—log X) > —log(EX). Hence, E(—log X) = }_ #; log(#; /pjo) >
—log[> A5 (mjo/75)] = —log(} ms0) = —log(l) = 0. Thus G? = 2nE(—log X) > 0.

35. i Yy is x* with df = 11 and if Y5 is independent x? with df = vs, then the mgf of Y; + V3 is the
product of the mgfs, which is m(t) = (1 — 2¢)~(“1+2)/2 which is the mgf of a x2 with df = v, + ve.

36. a. By the Bonferroni inequality, if the probability of an event (an error, the CI not containing the
difference) is /¢, then the probability of the union of the ¢ events (i.e., at least one error) is no greater
than the sum of these probabilities, or .

b. Follows again from the Bonferroni inequality.



Chapter 2

1. P(—|C) = 1/4 and P(+|C) = 2/3. Sensitivity = P(+|C) = 1 — P(—|C} = 3/4. Specificity =
P(-|C)=1-P(+|C)=1/3.

2. 6= (.8/.2)/(.2/.8) = 16.

3. The odds ratio is § = 7.965; the relative risk of fatality for ‘none’ is 7.897 times that for ‘seat belt’;
difference of proportions = .0085. The proportion of fatal injuries is close to zero for each row, so the
odds ratio is similar to the relative rigk.

4. a. Relative risk.
b. (i) m = .55, so m fme = .55.
(i) 1/.55 = 1.82.

5. Relative risks are 3.3, 5.4, 11.5, 34.7; e.g., 1994 probability of gun-related death in U.S. was 34.7
times that in England and Wales.

6. Prob. of winning = odds/{odds+1), which equals 11/21 for Italy and 3/13 for Bulgaria. These
probabilities do not sum to 1.

7. a. .0012, 10.78; relative risk, since difference of proportions makes it appear there is no association.
b. {.001304/.998696)/(.000121/.999879) = 10.79; this happens when the praportion in the first category
ig close to zero.

8. a. The quoted interpretation is that of the relative risk. Should substitute odds for probability.
b. For females, probability = 2.9/(1 + 2.9) = .744. Odds for males = 2.9/11.4 = .25, s0 probability =
25/(1 + .25) = .20.

9. X given Y. Applying Bayes theorem, P(V = w|M = w) = P(M = w|V = w)P(V = w)/[P(M =
w|V =w)P(V =w)+P(M =w|V =b)P(V =b) = .83 P(V=w)/[.83 P(V=w) + .06 P(V=Db)]. We need
to know the relative numbers of victims who were white and black. Odds ratio = (.94/.06)/(.17/.83) =
76.5.

10. a. (.847/.153)/(.906/.094) = .574.
b. This is interpretation for relative risk, not the odds ratio. The actual relative risk = .847/.906 =
.935; i.e., 60% should have been 93.5%.

11. a. Relative risk: Lung cancer, 14.00; Heart disease, 1.62. (Cigarette smoking seems more highly
associated with lung cancer)

Difference of proportions: Lung cancer, .00130; Heart disease, .00256. (Cigarette smoking seems more
highly associated with heart disease)

Odds ratio: Lung cancer, 14.02; Heart disease, 1.682. e.g., the odds of dying from lung cancer for smokers
are estimated to be 14.02 times those for nonsmokers. (Note similarity to relative risks.)

b. Difference of proportions describes excess deaths due to smoking. That is, if N = no. smokers in
population, we predict there would be .00130N fewer deaths per year from lung cancer if they had never
smoked, and .00256 N fewer deaths per year from heart disease. Thus elimination of cigarette smoking
would have biggest impact on deaths due to heart disease.

12. Marginal odds ratio = 1.84, but most conditional odds ratios are close to 1.0 except in Department
A where odds ratio = .35. Note that males tend to apply in greater numbers to Departments A and B, in
which admissions rates are relatively high, and females tend to aply in greater numbers to Departments
C,D, E, F, in which admissions rates are relatively low. This results in the marginal asgociation whereby
the odds of admission for males are 84% higher than those for females.

14. a. 0.18 for males and 0.32 for females; e.g., for male children, the odds that a white was a murder
victim were (.18 times the odds that a nonwhite was a murder victim.
b. 0.21.



15. The age distribution is relatively higher in Maine.

16. Kentucky: Counts are (31, 360 / 7, 50) when victim wasg white and (0, 18 / 2, 106) when victim was
black. Conditional odds ratios are 0.62 and 0.0, whereas marginal odds ratio is 1.42. Simpson’s paradox
occurs. Whites tend to kill whites and blacks tend to kill blacks, and killing a white is more likely to
result in the death penalty.

17. The odds of carcinoma for the various smoking levels satisfy:

(Oggs for high smokers)/(Odds for low smokers) = ((%‘ﬁq for Iﬂﬂ' :::1?5)/(%)::: ff;’: rf:::n';’:li‘:::)) =26.1/11.7

19. gamma = .360 (C = 1508, D = 709); of the untied pairs, the difference between the proportion
of concordant pairs and the proportion of discordant pairs equals .360. There is a tendency for wife’s
rating to be higher when husband’s rating is higher.

21. a. Let “pos” denote positive diagnosis, “dis” denote subject has disease.

P(pos|dis)P(dis)
P(pos|dis)P(dis) + P(pos|no dis)P(no dis)

P(disipos) =

b. .95(.005)/[.95(.005) + .05(.995)] = .087.
Test,

+ —  Total
Reality + .00475 .00025 .005
—  .04975 94525 995

Nearly all (99.5%) subjects do not have AIDS. The 5% errors for them swamp (in frequency) the 95%
correct cases for subjects truly having AIDS. The odds ratic = 361; i.e., the odds of a positive test result
are 361 times higher for those having AIDS than for those not having ATDS.

23. a. The numerator is the extra proportion that got the disease above and beyond what the proportion
would be if no one had been exposed (which is P(D | E)).
b. Use Bayes Theorem and result that RR = P(D | E)/P(D | E).

24. a. For instance, if first row becomes first column and second row becomes second colummn, the table
entries become

11 N2
T2 Taz

The odds ratio is the same as before. The difference of proportions and relative risk are only invariant
to multiplication of cell counts within rows by a constant.

25. Suppose m > mp. Then, 1 —m < 1—my, and & = [m /(1 — w1)]/[ma/(1 — m2)] > mfma > 1. If
m < mwg,then 1 —m; > 1 —my, and 8 = [7r1/(1—1r1)]/[1rg/(1 —1!'2)] <'rr1/'rr2 < 1.

26. Let B, = classification in level 1 of ¥ (column var.), E» = clagsification in level 1 of X (row 1),
E; = classification in stratum 1 of Z. Then P(E;|E;) > P(E|E,) is equivalent to w1 > mp in the
XY marginal table, or § > 1. The other two orderings given in the problem refer to corresponding
conditional probabilities in the partial tables relating X and Y at the two levels of Z. The orderings
imply the odds ratio is less than 1 in each partial table. It follows that Simpson’s paradox says that the
marginal XY odds ratio can exceed 1 even if both the conditional XY odds ratios at the two levels of
Z are less than 1.

27. This simply states that ordinary independence for a two-way table holds in each partial table.

2. (#111#222)/(#121#211)] _ [(#111#212)/(#211#112)]

(Br1zpzaz)/ (i22p212)]  [(t121 pa2e) [ (201 p122)]

6’11(1)/911(2) = { = 6'1(1)1/91(2)1-



Hence, 6111y = b1¢) iff 8111 = 1(2), and equality of the XY conditional odds ratios is equivalent to
equality of the XZ conditional odds ratios, and likewise equality of the YZ conditional odds ratios. An
argument for defining “no three-factor interaction” in three-way tables as equality of conditional odds
ratios is that the odds ratio exhibits this symmetry, unlike measures of association that are not functions
of the odds ratio.

29. Yes, this would be an occurrence of Simpson’s paradox. One could display the data asa 2 x 2 x K
table, where rows = (Smith, Jones), columns = (hit, out) response for each time at bat, layers = (year
1,..., year K). This could happen if Jones tends to have relatively more observations (i.e., “at bats”)
for vears in which his average is high.

30. a.
05 10| .20 .15
A5 .20 .10 .05
Z=1 Z=2
b.

15 .10 .10 .15
10 15| .15 .10

Z=1 Z=2

33. This condition is equivalent to the conditional distributions of ¥ in the first I —1 rows being identical
to the one in row I. Equality of the I conditional distributions is equivalent to independence.

34. a. logf; > 0 is equivalent to Fj; < Fy);.

35. Use an argument similar to that in Sec. 1.2.5. Since Yi, is sum of independent Poigsons, it is
Poisson. In the denominator for the calculation of the conditional probability, the distribution of {¥;4}
is a product of Poissons with means {g;4}. The multinomial distributions are obtained by identifying
wis with g /gy

36. a. This follows since I, = 2my1722, g = 212721 -

b. This follows since it is a difference of proportions.

c. @ = 1iff mome =0, so if either ma =0 or w23 = 0.

d. Divide numerator and denominator of Q by mama; .

37. a. Note that ties on X and ¥ are counted both in Tx and Ty, and so Txy must be subtracted.

Tx =3 nit(niy —1)/2, Ty = 32 n45(ngi — 1)/2, Ty = 32, 57 mai(nsj — 1)/2.
¢. The denominator is the number of pairs that are untied on X.

39. If in each row the maximum probability falls in the same column, say column 1, then E[V (Y | X)] =
> mip (1 =) =1 =74 =1 —max{m;}, s0 A = 0. Since the maximum being the same in each row
does not imply independence, A = 0 can occur even when the variables are not independent.

Chapter 3

4, a. G2 =90.3, df = 2; very strong evidence of association (P < .0001).

¢. G? = 7.2 for comparing races on (Democrat, Independent) choice, and G? = 83.2 for comparing races
on (Dem. + Indep., Republican) choice; extremely strong evidence that whites are more likely than
blacks to be Republicans. (To get independent components, combine the two groups compared in the
first analysis and compare them to the other group in the second analysis.)

5. The values X2 = 7.01 and G? = 7.00 (df = 2) show considerable evidence against the hypothesis
of independence (P-value = .03). The standardized Pearson residuals show that the number of female
Democrats and Male Republicans is significantly greater than expected under independence, and the
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number of female Republicans and Male Demcerats is significantly less than expected under indepen-
dence. e.g., there were 279 female Democrats, the estimated expected frequency under independence is
261.4, and the difference between the observed count and fitted value is 2.23 standard errors.

6. Use the percentages to reconstruct frequencies in the 3x2 contingency table, and compute X2 (df =
2) and find the P-value.

7. G = 2759, df = 2, s0 P < .001. For first two columns, G2 = 2.22 (df = 1), for those columns
cormbined and compared to column three, G* = 25.37 (df = 1). The main evidence of association relates
to whether one suffered a heart attack.

8. It is not necessary for each row to have the same number of observations. This adjustment procedure
is improper, and the test should have been conducted on the original observations. 9. b. Compare rows
1 and 2 (G? = .76, df = 1, no evidence of difference), rows 3 and 4 (G* = .02, df = 1, no evidence of
difference), and the 3 x 2 table consisting of rows 1 and 2 combined, rows 3 and 4 combined, and row 5
(G? = 95.74, df = 2, strong evidences of differences).

10. The X? statistic has df = 9 and is designed for the general alternative, ignoring the ordering of
rows and columns. The M? statistic uses the ordering through the scores and has df = 1. It focuses the
statistic on a narrower alternative and yields a smaller P-value.

11.a. X% = 8.9, df = 6, P = (.18; test treats variables as nominal and ignores the information on the
ordering.

b. Residuals suggest tendency for aspirations to be higher when family income is higher.

c. Ordinal test gives M2 = 4.75, df = 1, P = .03, and much stronger evidence of an association.

13. a. It is plausible that control of cancer is independent of treatment used. (i) P-value is hyperge-
ometric probability P{nyy = 21 or 22 or 23) = 3808, (ii) P-value is sum of probabilities that are no
greater than the probability (.2755) of the observed table.

b. The asymptotic CI (.31, 14.15) uses the delta method formula (3.1) for the SE. The ‘exact’ CI (.21,
27.55) is the Cornfield tail-method interval that guarantees a coverage probability of at least .95.

c. .3808 - .5{.2755) = .243. With this type of P-value, the actual error probability tends to be closer to
the nominal value, but it does not guarantee that it is no greater than the nominal value.

7 0 7
.003; strong evidence of better results for treatment than control.

15. a. entire real line, b. (.618, oo),

14. Table has entries (7,8) in row 1 and (0,15) in row 2. P = ( 15 ) ( 15 ) / ( 30 ) = 151231/8130! =

17. P = 0.164, P = 0.0035 takes into account the positive linear trend information in the sample.

18. a. No. P-value is .22 for Pearson test and .208 for the one-sided Fisher’s exact test P-value, and
.245 for the two-sided Fisher’s exact test P-value based on summing all probabilities no greater than
observed.

b. Large-sample CT for odds ratio is (.51, 15.37), and exact based on Cornfield approach is (.39, 31.04).

20. No. Since convergence to normality is faster on the log scale, large-sample intervals use it. The CI
for the log odds ratio is centered at the sample log odds ratio. After exponentiating, the odds ratio is
not at the center of the resulting CI, since the exponential function is nonlinear.

21. For proportions « and 1 — in the two categories for a given sample, the contribution to the asymp-
totic variance is [1/nm 4+ 1/n(1 — m)]. The derivative of this with respect to # is 1/n(1 — 7)% — 1/nx?,
which is less than 0 for 7 < 0.5 and greater than 0 for 7 > 0.5. Thus, the minimum is with proportions
(.5, .5) in the two categories.

22. Note the delta method was used to derive the standard error of the sample logit in Sec. 3.1.6. If
the endpoints of the CI for the logit are (£,u), then the corresponding endpoints of the CI for 7 are its
inverse, [e?/(1 +ef),e*/(1 +e%)].
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