CHAPTER 2

2-1 $\begin{gathered}\text { Present } \\ \text { current ratio }\end{gathered}=\frac{\$ 1,312,500}{\$ 525,000}=2.5 \times$
$\begin{aligned} & \text { Minimum } \\ & \text { current ratio }\end{aligned}=\frac{\$ 1,312,500+\Delta \mathrm{NP}}{\$ 525,000+\Delta \mathrm{NP}}=2.0 \times$
$\$ 1,312,500+\Delta \mathrm{NP}=\$ 1,050,000+2 \Delta \mathrm{NP}$
$\Delta \mathrm{NP}=\$ 262,500$.
Short-term debt can increase by a maximum of $\$ 262,500$ without violating a 2-to-1 current ratio, assuming that the entire increase in notes payable is used to increase current assets. Because we assumed that the additional funds would be used to increase inventory, the inventory account will increase to $\$ 637,500=\$ 375,000+\$ 262,500$, and current assets will total $\$ 1,575,000$.

Quick ratio $=(\$ 1,575,000-\$ 637,500) / \$ 787,500$

$$
\begin{aligned}
& =\$ 937,500 / \$ 787,500 \\
& =1.19 x
\end{aligned}
$$

2-2
(1) $\frac{\text { Current assets }}{\text { Currentliabilities }}=3.0 \times$

$$
\frac{\$ 810,000}{\text { Current liabilities }}=3.0 \times \quad \text { Current liabilities }=\$ 270,000
$$

(2) $\frac{\text { Current assets }- \text { Inventories }}{\text { Current liabilities }}=1.4 \times$

$$
\frac{\$ 810,000-\text { Inventories }}{\$ 270,000}=1.4 \times \quad \text { Inventories }=\$ 432,000
$$

(3) Current assets = Cash + Marketable securities + Accounts receivable + Inventories

$$
\$ 810,000=\$ 120,000+\text { Accounts receivable }+\$ 432,000
$$

Accounts receivable $=\$ 258,000$
(4) $\frac{\text { Cost of goods sold }}{\text { Inventory }}=5.0 \times$

$$
\frac{\text { CGS }}{\$ 432,000}=5.0 \times \quad \text { CGS }=\$ 2,160,000
$$

(5) $\quad \mathrm{CGS}=0.86$ (Sales)

$$
\text { Sales }=\frac{\$ 2,160,000}{0.86}=\$ 2,511,628
$$

(6) $\mathrm{DSO}=\frac{\text { Accounts receivable }}{\text { Sales } / 360}=\frac{\$ 258,000}{\$ 2,511,628 / 360}=37$ days

2-3 TIE = EBIT/INT, so find EBIT and INT
Interest $=\$ 500,000 \times 0.1=\$ 50,000$
Net income $=\$ 2,000,000 \times 0.05=\$ 100,000$
Taxable income (EBT) $=\$ 100,000 /(1-\mathrm{T})=\$ 100,000 / 0.8=\$ 125,000$
EBIT $=\$ 125,000+\$ 50,000=\$ 175,000$
TIE $=\$ 175,000 / \$ 50,000=3.5 \mathrm{x}$

2-5 Net cash flow $=\$ 180,000+\$ 50,000=\$ 230,000$

2-6 a. NI = (Sales - Operating costs - Interest expense)(1-T)

$$
\$ 650,000=(\text { Sales }-\$ 1,500,000-\$ 300,000-0)(1-0.35)
$$

$$
\text { Sales }=\frac{\$ 650,000}{0.65}+(\$ 1,500,000+\$ 300,000)=\$ 2,800,000
$$

b. Net cash flow $=\$ 650,000+\$ 300,000=\$ 950,000$
$\mathrm{TA}=\$ 500,000$
ROA $=6.0 \%$
ROE $=8.0 \%$
a. $\quad \mathrm{ROA}=\mathrm{NI} / \mathrm{TA}=\mathrm{NI} / \$ 500,000=0.06$, thus $\mathrm{NI}=0.06(\$ 500,000)=\$ 30,000$
b. $\quad \mathrm{ROE}=\mathrm{NI} / \mathrm{CE}=\$ 30,000 / \mathrm{CE}=0.08$, thus $\mathrm{CE}=\$ 30,000 / 0.08=\$ 375,000$

2-10 TA turnover $=3.0$
Net profit margin $=4.0 \%$
ROE $=15.0 \%$
a. \quad ROA $=$ NI/TA $=$ NI/Sales \times Sales/TA $=$ Net profit margin \times Total assets turnover

ROA $=4.0 \% \times 3.0=12.0 \%$
b. \quad ROE $=$ ROA \times Equity multiplier $=12.0 \% \times$ Equity multiplier $=15.0 \%$

Equity multiplier $=15.0 \% / 12.0 \%=1.25$

Equity multiplier = TA/CE, which is the inverse of the proportion of the firm that is financed with common equity. Thus, the portion of total assets that is financed with equity is $1 / 1.25=0.8=80.0 \%$

2-11 Debt ratio $=60 \%=$ TL/TA
Total assets turnover $=1.8 \mathrm{x}=$ Sales/TA
Days sales outstanding $=40$ days $=$ AR/[Sales/360]
Return on Equity $($ ROE $)=20.0 \%=\mathrm{NI} / \mathrm{CE}$
Return on Assets $(\mathrm{ROA})=8.0 \%=\mathrm{NI} / \mathrm{TA}$
$\mathrm{TL}=\$ 90,000$
Based on the information provided in the problem, we can compute the following:
(1) $\mathrm{TA}=\mathrm{TL} / 0.60=\$ 90,000 / 0.60=\$ 150,000$
(2) Common equity $=\mathrm{CE}=\mathrm{TA}-\mathrm{TL}=\$ 150,000-\$ 90,000=\$ 60,000$
(3) Sales $=1.8(\mathrm{TA})=1.8 \times \$ 150,000=\$ 270,000$
(4) Net income $=\mathrm{NI}=\mathrm{TA} \times 0.08=\$ 150,000 \times 0.08=\$ 12,000$

Alternatively, $\mathrm{NI}=\mathrm{CE} \times 0.2=\$ 60,000 \times 0.2=\$ 12,000$
(5) $40=$ AR/[Sales/360] $=$ AR/[\$270,000/360]

$$
A R=40 \times[\$ 270,000 / 360]=40 \times 750=\$ 30,000
$$

2-12 Currently, ROE is ROE $_{1}=\$ 9,200 / \$ 90,000=0.102=10.2 \%$
The current ratio will be set such that $2.0=\mathrm{CA} / \mathrm{CL}$. CL is $\$ 27,500$, and it will not change, so we can solve to find the new level of current assets: $C A=2.0(C L)=2.5(\$ 27,500)=\$ 55,000$. This is the level of current assets that will produce a current ratio of 2.0x.

At present, current assets amount to $\$ 110,000$, so they can be reduced by $\$ 55,000=$ $\$ 110,000-\$ 55,000$. The reduction in current assets will be achieved by selling $\$ 55,000$ in inventories.

If the $\$ 55,000$ generated is used to retire common equity, then the new common equity balance will be $\$ 90,000-\$ 55,000=\$ 35,000$.

Assuming that net income is unchanged, the new ROE will be $\mathrm{ROE}_{2}=\$ 9,200 / \$ 35,000=0.263$ $=26.3 \%$. Therefore, ROE will increase by $16.1 \%=26.3 \%-10.2 \%$.

