Chemistry, 6e (McMurry/Fay)
Chapter 3 Formulas, Equations, and Moles

3.1 Multiple-Choice Questions

1) Chemical equations are balanced in order to obey the law of
A) definite proportions.
B) mass action.
C) mass conservation.
D) multiple proportions.

Answer: C
Topic: Section 3.1 Balancing Chemical Equations
2) Which one of the following statements about balanced equations is false?

In a balanced reaction
A) atoms must be balanced on both sides of the reaction arrow.
B) mass must be conserved.
C) molecules must be balanced on both sides of the reaction arrow.
D) net charge must be balanced on both sides of the reaction arrow.

Answer: C
Topic: Section 3.1 Balancing Chemical Equations
3) Which one of the following statements about balanced equations is true? A reaction is balanced by A) changing the charge on an ion.
B) changing the formula of the molecule.
C) multiplying by suitable coefficients.
D) rearranging atoms in a molecule.

Answer: C
Topic: Section 3.1 Balancing Chemical Equations
4) What is the stoichiometric coefficient for oxygen when the following equation is balanced using the lowest whole-number coefficients

$$
\ldots \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(l)+\ldots \mathrm{O}_{2}(g) \rightarrow \ldots \mathrm{CO}_{2}(g)+\ldots \mathrm{H}_{2} \mathrm{O}(l)
$$

A) 3
B) 5
C) 7
D) 9

Answer: D
Topic: Section 3.1 Balancing Chemical Equations
5) What is the sum of the coefficients when the following equation is balanced using the lowest wholenumbered coefficients?
$\mathrm{PH}_{3}(g)+$ \qquad $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ \qquad $\mathrm{P}_{4} \mathrm{O}_{10}(s)+$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A) 10
B) 12
C) 19
D) 22

Answer: C
Topic: Section 3.1 Balancing Chemical Equations
6) What is the sum of the coefficients when the following equation is balanced using the lowest wholenumbered coefficients?

$$
\ldots \mathrm{B}_{2} \mathrm{O}_{3}(s)+\ldots \ldots \mathrm{HF}(l) \rightarrow \ldots \mathrm{BF}_{3}(g)+\ldots \mathrm{H}_{2} \mathrm{O}(l)
$$

A) 8
B) 11
C) 15
D) none of these

Answer: D
Topic: Section 3.1 Balancing Chemical Equations
7) Aluminum metal reacts with iron(II) sulfide to form aluminum sulfide and iron metal. What is the stoichiometric coefficient for aluminum when the chemical equation is balanced using the lowest wholenumber stoichiometric coefficients?
A) 1
B) 2
C) 3
D) 4

Answer: B
Topic: Section 3.1 Balancing Chemical Equations
8) Calcium phosphate reacts with sulfuric acid to form calcium sulfate and phosphoric acid. What is the stoichiometric coefficient for sulfuric acid when the chemical equation is balanced using the lowest whole-number stoichiometric coefficients?
A) 1
B) 2
C) 3
D) none of these

Answer: C
Topic: Section 3.1 Balancing Chemical Equations
9) Given the chemical equation: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$. On a molecular level, what do the coefficients mean?
A) 1 atom of nitrogen reacts with 3 atoms of hydrogen to give 2 atoms of ammonia.
B) 28 g of nitrogen reacts with 6 grams of hydrogen to give 34 grams of ammonia.
C) 1 mole of nitrogen reacts with 3 moles of hydrogen to give 2 moles of ammonia.
D) 1 molecule of nitrogen reacts with 3 molecules of hydrogen to give 2 molecules of ammonia.

Answer: D
Topic: Section 3.2 Chemical Symbols on Different Levels
10) Given the chemical equation: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$. On a macroscopic level, what do the coefficients mean?
A) 1 atom of nitrogen reacts with 3 atoms of hydrogen to give 2 atoms of ammonia.
B) 1 mole of nitrogen reacts with 3 moles of hydrogen to give 2 moles of ammonia.
C) 1 molecule of nitrogen reacts with 3 molecules of hydrogen to give 2 molecules of ammonia.
D) All of these are true.

Answer: B
Topic: Section 3.2 Chemical Symbols on Different Levels
11) Which conducts electricity?
A) A large collection of iron atoms
B) A single iron atom
C) Both a large collection of iron atoms and a single iron atom
D) Neither a large collection of iron atoms nor a single iron atom

Answer: A
Topic: Section 3.2 Chemical Symbols on Different Levels
12) 1.00 mole of O_{2} contains the same number of molecules as
A) 0.667 mole of O_{3}.
B) 1.00 mole of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$.
C) 2.00 mole of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$.
D) All of these

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
13) 1.00 mole of O_{2} contains the same number of oxygen atoms as
A) 0.667 mole of O_{3}.
B) 1.00 mole of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$.
C) 2.00 mole of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$.
D) All of the above

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
14) Which represents one formula unit?
A) One H
B) One H_{2}
C) One NaH
D) All of these

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
15) Which is a formula mass?
A) 1.0 amu of H
B) 2.0 amu of H_{2}
C) 24.0 amu of NaH
D) All of these

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
16) Which contains Avogadro's number of formula units?
A) 36.5 g of Cl
B) $36.5 \mathrm{~g} \mathrm{of} \mathrm{Cl}_{2}$
C) 36.5 g of HCl
D) All of these

Answer: C
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
17) What is the molar mass of aspartic acid, $\mathrm{C}_{4} \mathrm{O}_{4} \mathrm{H} 7 \mathrm{~N}$?
A) $43 \mathrm{~g} / \mathrm{mol}$
B) $70 \mathrm{~g} / \mathrm{mol}$
C) $133 \mathrm{~g} / \mathrm{mol}$
D) $197 \mathrm{~g} / \mathrm{mol}$

Answer: C
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
18) What is the molar mass of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$?
A) $90 \mathrm{~g} / \mathrm{mol}$
B) $121 \mathrm{~g} / \mathrm{mol}$
C) $152 \mathrm{~g} / \mathrm{mol}$
D) $183 \mathrm{~g} / \mathrm{mol}$

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
19) What is the molar mass of calcium permanganate?
A) $159 \mathrm{~g} / \mathrm{mol}$
B) $199 \mathrm{~g} / \mathrm{mol}$
C) $216 \mathrm{~g} / \mathrm{mol}$
D) $278 \mathrm{~g} / \mathrm{mol}$

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
20) What is the molar mass of hydrogen gas?
A) $1.00 \mathrm{~g} / \mathrm{mol}$
B) $2.00 \mathrm{~g} / \mathrm{mol}$
C) $6.02 \times 1023 \mathrm{~g} / \mathrm{mol}$
D) $1.20 \times 10^{23} \mathrm{~g} / \mathrm{mol}$

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
21) What is the mass of a single chlorine molecule, Cl_{2} ?
A) $5.887 \times 10-23 \mathrm{~g}$
B) $1.177 \times 10-22 \mathrm{~g}$
C) 35.45 g
D) 70.90 g

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
22) What is the mass of 0.500 mol of dichlorodifluoromethane, $\mathrm{CF}_{2} \mathrm{Cl}_{2}$?
A) $4.14 \times 10^{-3} \mathrm{~g}$
B) 60.5 g
C) 121 g
D) 242 g

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
23) How many moles are in 1.50 g of ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$?
A) 0.0145 mol
B) 0.0326 mol
C) 30.7 mol
D) 69.0 mol

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
24) How many iron(II) ions, Fe^{2+} are there in 5.00 g of FeSO 4 ?
A) $5.46 \times 10-26$ iron (II) ions
B) 1.98×1022 iron (II) ions
C) 1.83×1025 iron (II) ions
D) 4.58×1026 iron (II) ions

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
25) What is the mass of 8.50×1022 molecules of NH_{3} ?
A) 0.00830 g
B) 0.417 g
C) 2.40 g
D) 120 g

Answer: C
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
26) How many oxygen atoms are in 3.00 g of sodium dichromate, $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$?
A) 0.0801 oxygen atoms
B) 9.85×10^{20} oxygen atoms
C) 6.90×10^{21} oxygen atoms
D) 4.83×10^{22} oxygen atoms

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
27) What is the identity of substance X if 0.380 mol of X weighs 17.5 g ?
A) NO_{2}
B) NO_{3}
C) $\mathrm{N}_{2} \mathrm{O}$
D) $\mathrm{N}_{2} \mathrm{O}_{4}$

Answer: A
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
28) What is the molar mass of butane if 5.19×1016 molecules of butane weigh $5.00 \mu \mathrm{~g}$?
A) $58.0 \mathrm{~g} / \mathrm{mol}$
B) $172 \mathrm{~g} / \mathrm{mol}$
C) $232 \mathrm{~g} / \mathrm{mol}$
D) $431 \mathrm{~g} / \mathrm{mol}$

Answer: A
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
29) What mass of dinitrogen monoxide, $\mathrm{N}_{2} \mathrm{O}$, contains the same number of molecules as 3.00 g of trichlorofluoromethane, $\mathrm{CCl}_{3} \mathrm{~F}$?
A) 0.106 g
B) 0.961 g
C) 1.04 g
D) 9.37 g

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
30) What mass of sulfur hexafluoride, SF_{6}, has the same number of fluorine atoms as 25.0 g of oxygen difluoride, OF_{2} ?
A) 0.901 g
B) 8.33 g
C) 22.5 g
D) 203 g

Answer: C
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
31) How many chloride ions are in 1.50 mol of aluminum chloride?
A) 3.00 chloride ions
B) 4.50 chloride ions
C) 9.03×1023 chloride ions
D) 2.71×10^{24} chloride ions

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
32) How many anions are in 0.500 g of MgBr_{2} ?
A) 1.64×10^{21} anions
B) 3.27×10^{21} anions
C) 2.22×1026 anions
D) 4.43×1026 anions

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
33) How many cations are in 10.0 g of sodium phosphate?
A) 3.67×1022 cations
B) 1.10×10^{23} cations
C) 9.87×10^{24} cations
D) 2.96×10^{25} cations

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
34) Which of the following has the greatest mass?
A) 6.0×10^{23} atoms of O
B) 3.0×10^{23} molecules of O_{2}
C) 2.0×1023 molecules of O_{3}
D) All have the same mass.

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
35) Which of the following has the greatest mass?
A) 6.02×1023 molecules of O_{2}
B) 16.0 g of O_{2}
C) 0.500 mol of O_{2}
D) All of these have the same mass.

Answer: A
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
36) Which of the following has the smallest mass?
A) 3.50×10^{23} molecules of I_{2}
B) 85.0 g of Cl_{2}
C) 2.50 mol of F_{2}
D) 0.050 kg of Br_{2}

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
37) How many moles of CuO can be produced from 0.450 mol of $\mathrm{Cu}_{2} \mathrm{O}$ in the following reaction?

$$
2 \mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{O}_{2}(g) \rightarrow 4 \mathrm{CuO}(s)
$$

A) 0.225 mol
B) 0.450 mol
C) 0.900 mol
D) 1.80 mol

Answer: C
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
38) How many moles of BCl_{3} are needed to produce 25.0 g of $\mathrm{HCl}(a q)$ in the following reaction?

$$
\mathrm{BCl}_{3}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 3 \mathrm{HCl}(\mathrm{aq})+\mathrm{B}(\mathrm{OH})_{3}(a q)
$$

A) 0.229 mol
B) 0.686 mol
C) 2.06 mol
D) 4.38 mol

Answer: A
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
39) How many grams of calcium chloride are needed to produce 10.0 g of potassium chloride?

$$
\mathrm{CaCl}_{2}(a q)+\mathrm{K}_{2} \mathrm{CO}_{3}(a q) \rightarrow 2 \mathrm{KCl}(a q)+\mathrm{CaCO}_{3}(a q)
$$

A) 0.134 g
B) 7.44 g
C) 14.9 g
D) 29.8 g

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
40) Balance the chemical equation given below, and determine the number of moles of iodine that reacts with 10.0 g of aluminum.
\qquad $\mathrm{Al}(s)+\ldots \mathrm{I}_{2}(s) \rightarrow \ldots \mathrm{Al}_{2} \mathrm{I}_{6}(s)$
A) 0.247 mol
B) 0.556 mol
C) 0.741 mol
D) 1.11 mol

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
41) Balance the chemical equation given below, and determine the number of grams of MgO needed to produce 15.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

$$
\mathrm{MgO}(s)+\ldots \quad \mathrm{Fe}(s) \rightarrow \ldots \quad \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+\ldots \quad \mathrm{Mg}(s)
$$

A) 0.0877 g
B) 1.26 g
C) 3.78 g
D) 11.4 g

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
42) Dinitrogen monoxide gas decomposes to form nitrogen gas and oxygen gas. How many grams of oxygen are formed when 5.00 g of dinitrogen monoxide decomposes?
A) 0.550 g
B) 1.82 g
C) 3.64 g
D) 7.27 g

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
43) The density of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, is $0.789 \mathrm{~g} / \mathrm{mL}$. How many milliliters of ethanol are needed to produce 10.0 g of CO_{2} according to the following chemical equation?

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)
$$

A) 4.12 mL
B) 6.63 mL
C) 13.2 mL
D) 26.5 mL

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
44) When 10.0 g of calcium metal is reacted with water, 5.00 g of calcium hydroxide is produced. Using the following balanced equation, calculate the percent yield for the reaction?

$$
\mathrm{Ca}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(a q)+\mathrm{H}_{2}(g)
$$

A) 13.5%
B) 27.1%
C) 50.0%
D) 92.4%

Answer: B
Topic: Section 3.4 Yields of Chemical Reactions
45) If the percent yield for the following reaction is 65.0%, how many grams of KClO_{3} are needed to produce 42.0 g of O_{2} ?

$$
2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)
$$

A) 69.7 g
B) 107 g
C) 165 g
D) 371 g

Answer: C
Topic: Section 3.4 Yields of Chemical Reactions
46) If the percent yield for the following reaction is 75.0%, and 45.0 g of NO_{2} are consumed in the reaction, how many grams of nitric acid, $\mathrm{HNO}_{3}(a q)$, are produced?

$$
3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)
$$

A) 30.8 g
B) 41.1 g
C) 54.8 g
D) 69.3 g

Answer: A
Topic: Section 3.4 Yields of Chemical Reactions
47) In the reaction between glucose and oxygen, 10.0 g of glucose reacts and 7.50 L of carbon dioxide is formed. What is the percent yield if the density of CO_{2} is $1.26 \mathrm{~g} / \mathrm{L}$?

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

A) 26.1%
B) 40.6%
C) 43.1%
D) 64.5%

Answer: D
Topic: Section 3.4 Yields of Chemical Reactions
48) When methane, CH 4 , undergoes combustion with oxygen, the usual products are carbon dioxide and water. Carbon monoxide is formed when the limiting reactant is
A) carbon dioxide.
B) methane.
C) oxygen.
D) water.

Answer: C
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
49) 10 g of nitrogen is reacted with 5.0 g of hydrogen to produce ammonia according to the chemical equation shown below. Which one of the following statements is false?

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)
$$

A) 2.8 grams of hydrogen are left over.
B) Hydrogen is the excess reactant.
C) Nitrogen is the limiting reactant.
D) The theoretical yield of ammonia is 15 g .

Answer: D
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
50) 5.0 g of iron is reacted with 5.0 g of water according to the chemical equation shown below. Which one of the following statements is false?

$$
3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+4 \mathrm{H}_{2}(g)
$$

A) 6.91 g of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ are produced.
B) 2.85 g of $\mathrm{H}_{2} \mathrm{O}$ are left over.
C) Mass is conserved in this reaction.
D) Water is the limiting reactant.

Answer: D
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
51) Which substance is the limiting reactant when 2.0 g of sulfur reacts with 3.0 g of oxygen and 4.0 g of sodium hydroxide according to the following chemical equation:

$$
2 \mathrm{~S}(s)+3 \mathrm{O}_{2}(g)+4 \mathrm{NaOH}(a q) \rightarrow 2 \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

A) $\mathrm{S}(s)$
B) $\mathrm{O}_{2}(\mathrm{~g})$
C) $\mathrm{NaOH}(a q)$
D) None of these substances is the limiting reactant.

Answer: C
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
52) When 5.00×1022 molecules of ammonia react with 4.00×1022 molecules of oxygen according to the chemical equation shown below, how many grams of nitrogen gas are produced?

$$
4 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) 1.16 g
B) 1.24 g
C) 2.79 g
D) 4.65 g

Answer: A
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
53) How many grams of the excess reagent are left over when 6.00 g of CS_{2} gas react with 10.0 g of Cl 2 gas in the following reaction:

$$
\mathrm{CS}_{2}(g)+3 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{CCl}_{4}(l)+\mathrm{S}_{2} \mathrm{Cl}_{2}(l)
$$

A) 2.42 g
B) 2.77 g
C) 3.58 g
D) 4.00 g

Answer: A
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
54) When silver nitrate reacts with barium chloride, silver chloride and barium nitrate are formed. How many grams of silver chloride are formed when 10.0 g of silver nitrate reacts with 15.0 g of barium chloride?
A) 8.44 g
B) 9.40 g
C) 11.9 g
D) 18.8 g

Answer: A
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
55) When iron(III) oxide reacts with hydrochloric acid, iron(III) chloride and water are formed. How many grams of iron(III) chloride are formed from 10.0 g of iron(III) oxide and 10.0 g of hydrochloric acid?
A) 11.1 g
B) 14.8 g
C) 20.3 g
D) 35.1 g

Answer: B
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
56) Balance the chemical equation given below, and calculate the volume of nitrogen monoxide gas produced when 8.00 g of ammonia is reacted with 12.0 g of oxygen at $25^{\circ} \mathrm{C}$? The density of nitrogen monoxide at $25^{\circ} \mathrm{C}$ is $1.23 \mathrm{~g} / \mathrm{L}$.
\qquad $\mathrm{NH}_{3}(g)+$ \qquad $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ \qquad $\mathrm{NO}(g)+$ \qquad $\mathrm{H}_{2} \mathrm{O}(l)$
A) 7.32 L
B) 11.1 L
C) 11.5 L
D) 18.8 L

Answer: A
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
57) Molarity is defined as
A) moles of solute per liter of solution.
B) moles of solute per liter of solvent.
C) moles of solvent per liter of solution.
D) moles of solvent per liter of solvent.

Answer: A
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
58) What is the concentration of FeCl_{3} in a solution prepared by dissolving 10.0 g of FeCl_{3} in enough water to make 275 mL of solution?
A) $2.24 \times 10-4 \mathrm{M}$
B) 0.224 M
C) 4.46 M
D) $4.46 \times 10^{3} \mathrm{M}$

Answer: B
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
59) How many grams of AgNO_{3} are needed to make 250 . mL of a solution that is 0.135 M ?
A) 0.0917 g
B) 0.174 g
C) 5.73 g
D) 9.17 g

Answer: C
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
60) What volume of a 0.540 M NaOH solution contains 15.5 g of NaOH ?
A) 0.209 L
B) 0.718 L
C) 1.39 L
D) 4.78 L

Answer: B
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
61) What is the concentration of $\mathrm{NO}_{3}-$ ions in a solution prepared by dissolving $15.0 \mathrm{~g} \mathrm{of} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in enough water to produce $300 . \mathrm{mL}$ of solution?
A) 0.152 M
B) 0.305 M
C) 0.403 M
D) 0.609 M

Answer: D
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
62) If the reaction of phosphate ion with water is ignored, what is the total concentration of ions in a solution prepared by dissolving 3.00 g of $\mathrm{K}_{3} \mathrm{PO}_{4}$ in enough water to make 350 mL of solution?
A) 0.0101 M
B) 0.0404 M
C) 0.162 M
D) 0.323 M

Answer: B
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
63) What is the concentration of an AlCl_{3} solution if $150 . \mathrm{mL}$ of the solution contains $250 . \mathrm{mg}^{\text {of Cl}}{ }^{-}$ ion?
A) $1.57 \times 10-2 \mathrm{M}$
B) $3.75 \times 10^{-2} \mathrm{M}$
C) $4.70 \times 10^{-2} \mathrm{M}$
D) $1.41 \times 10^{-1} \mathrm{M}$

Answer: A
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
64) Which contains the greatest number of chloride ions?
A) 25 mL of 2.0 M NaCl
B) 50 mL of $1.0 \mathrm{M} \mathrm{CaCl}_{2}$
C) 10 mL of $2.5 \mathrm{M} \mathrm{FeCl}_{3}$
D) All contain the same number of chloride ions.

Answer: B
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
65) When a 1.0 M solution of NaCl at $25^{\circ} \mathrm{C}$ is heated to $55^{\circ} \mathrm{C}$, the
A) density decreases and the molarity decreases.
B) density decreases and the molarity increases.
C) density increases and the molarity decreases.
D) density increases and the molarity increases.

Answer: A
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
66) Which statement about diluted solutions is false? When a solution is diluted
A) the concentration of the solution decreases.
B) the molarity of the solution decreases.
C) the number of moles of solute remains unchanged.
D) the number of moles of solvent remains unchanged.

Answer: D
Topic: Section 3.7 Diluting Concentrated Solutions
67) What is the concentration of HCl in the final solution when 65 mL of a 12 M HCl solution is diluted with pure water to a total volume of 0.15 L ?
A) $2.8 \times 10-2 \mathrm{M}$
B) 5.2 M
C) 28 M
D) $5.2 \times 10^{3} \mathrm{M}$

Answer: B
Topic: Section 3.7 Diluting Concentrated Solutions
68) How many milliliters of a $9.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution are needed to make 0.25 L of a $3.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
A) 0.097 mL
B) 0.64 mL
C) 97 mL
D) 640 mL

Answer: C
Topic: Section 3.7 Diluting Concentrated Solutions
69) How many mL of a $0.175 \mathrm{M} \mathrm{FeCl}_{3}$ solution are needed to make 250 . mL of a solution that is
0.300 M in Cl^{-}ion?
A) 0.429 mL
B) 143 mL
C) 429 mL
D) It is not possible to make a more concentrated solution from a less concentrated solution.

Answer: B
Topic: Section 3.7 Diluting Concentrated Solutions
70) A student dissolved 3.00 g of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ in enough water to make 100 mL of stock solution. He took 4.00 mL of the solution then diluted it with water to give 275 mL of a final solution. How many grams of $\mathrm{NO}_{3}{ }^{-}$ion are there in the final solution?
A) 0.0148 g
B) 0.0296 g
C) 0.0407 g
D) 0.0813 g

Answer: D
Topic: Section 3.7 Diluting Concentrated Solutions
71) A student prepared a stock solution by dissolving 20.0 g of KOH in enough water to make 150 mL of solution. She then took 15.0 mL of the stock solution and diluted it with enough water to make 65.0 mL of a final solution. What is the concentration of KOH for the final solution?
A) 0.548 M
B) 0.713 M
C) 1.40 M
D) 1.82 M

Answer: A
Topic: Section 3.7 Diluting Concentrated Solutions
72) How many milliliters of $0.260 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}$ are needed to react with 25.00 mL of 0.315 M AgNO 3 ?

$$
\mathrm{Na}_{2} \mathrm{~S}(a q)+2 \mathrm{AgNO}_{3}(a q) \rightarrow 2 \mathrm{NaNO}_{3}(a q)+\mathrm{Ag}_{2} \mathrm{~S}(s)
$$

A) 15.1 mL
B) 30.3 mL
C) 41.3 mL
D) 60.6 mL

Answer: A
Topic: Section 3.8 Solution Stoichiometry
73) How many grams of CaCl_{2} are formed when 35.00 mL of $0.00237 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ reacts with excess Cl_{2} gas?

$$
2 \mathrm{Ca}(\mathrm{OH})_{2}(a q)+2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{Ca}(\mathrm{OCl})_{2}(a q)+\mathrm{CaCl}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

A) 0.00460 g
B) 0.00921 g
C) 0.0184 g
D) 0.0217 g

Answer: A
Topic: Section 3.8 Solution Stoichiometry
74) When 125 mL of $0.500 \mathrm{M} \mathrm{AgNO}_{3}$ is added to 100 . mL of $0.300 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$, how many grams of AgCl are formed?

$$
\mathrm{AgNO}_{3}(a q)+\mathrm{NH}_{4} \mathrm{Cl}(a q) \rightarrow \mathrm{AgCl}(s)+\mathrm{NH}_{4} \mathrm{NO}_{3}(a q)
$$

A) 4.30 g
B) 8.96 g
C) 13.3 g
D) 25.8 g

Answer: A
Topic: Section 3.8 Solution Stoichiometry
75) How many milliliters of $0.200 \mathrm{M} \mathrm{FeCl}_{3}$ are needed to react with an excess of $\mathrm{Na}_{2} \mathrm{~S}$ to produce 2.75 g of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ if the percent yield for the reaction is 65.0% ?

$$
3 \mathrm{Na}_{2} \mathrm{~S}(a q)+2 \mathrm{FeCl}_{3}(a q) \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}(s)+6 \mathrm{NaCl}(a q)
$$

A) 50.9 mL
B) 86.0 mL
C) 102 mL
D) 203 mL

Answer: D
Topic: Section 3.8 Solution Stoichiometry
76) If $100 . \mathrm{mL}$ of $0.100 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is added to $200 . \mathrm{mL}$ of 0.150 M NaCl , what is the concentration of Na^{+}ions in the final solution? Assume that the volumes are additive.
A) 0.133 M
B) 0.167 M
C) 0.250 M
D) 0.350 M

Answer: B
Topic: Section 3.8 Solution Stoichiometry
77) How many milliliters of 0.550 M hydriodic acid are needed to react with 25.00 mL of 0.217 M CsOH ?

$$
\mathrm{HI}(a q)+\mathrm{CsOH}(a q) \rightarrow \mathrm{CsI}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

A) 0.0158 mL
B) 0.101 mL
C) 9.86 mL
D) 63.4 mL

Answer: C
Topic: Section 3.9 Titration
78) In an acid-base neutralization reaction 23.74 mL of 0.500 M potassium hydroxide reacts with 50.00 mL of sulfuric acid solution. What is the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
A) 0.119 M
B) 0.237 M
C) 0.475 M
D) 2.11 M

Answer: A
Topic: Section 3.9 Titration
79) Balance the chemical equation given below, and determine the number of milliliters of 0.0300 M phosphoric acid required to neutralize 25.00 mL of 0.0150 M calcium hydroxide.
\qquad $\mathrm{Ca}(\mathrm{OH})_{2}(a q)+$ \qquad $\mathrm{H}_{3} \mathrm{PO}_{4}(a q) \rightarrow$ \qquad $\mathrm{Ca3}(\mathrm{PO} 4) 2(s)+$ \qquad $\mathrm{H}_{2} \mathrm{O}(l)$
A) 1.69 mL
B) 8.33 mL
C) 12.5 mL
D) 18.8 mL

Answer: B
Topic: Section 3.9 Titration
80) When 200. mL of ç M hydrochloric acid is added to 125 mL of $1.75 \times 10^{-4} \mathrm{M} \mathrm{Mg}(\mathrm{OH})$ 2, the resulting solution will be
A) acidic.
B) basic.
C) neutral.
D) It is impossible to tell from the information given.

Answer: B
Topic: Section 3.9 Titration
81) Which one of the following compounds contains the smallest percent oxygen by mass?
A) CO_{2}
B) $\mathrm{N}_{2} \mathrm{O}_{4}$
C) $\mathrm{P}_{4} \mathrm{O}_{10}$
D) SO_{2}

Answer: D
Topic: Section 3.10 Percent Composition and Empirical Formulas
82) Which one of the following contains 35% carbon by mass?
A) $\mathrm{C}_{2} \mathrm{H}_{2}$
B) CH_{4}
C) $\mathrm{CH}_{3} \mathrm{~F}$
D) CO_{2}

Answer: C
Topic: Section 3.10 Percent Composition and Empirical Formulas
83) Which of the following statements is false concerning the formula of a compound?
A) The empirical formula is the simplest whole numbered ratio of atoms in a compound.
B) The molecular formula is the true ratio of atoms in a compound.
C) The molecular formula and empirical formula can be identical.
D) The number of atoms in a molecular formula is always greater than the number of atoms in an empirical formula.
Answer: D
Topic: Section 3.10 Percent Composition and Empirical Formulas
84) What is the empirical formula for ethyl fluoride if the compound contains 49.97% carbon, 10.51% hydrogen, and 39.52% fluorine by mass?
A) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}$
B) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~F}_{2}$
C) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~F} 4$
D) $\mathrm{C}_{2} \mathrm{~F}_{2}$

Answer: A
Topic: Section 3.10 Percent Composition and Empirical Formulas
85) What is the empirical formula for perfluoropropane if the compound contains 81% fluorine and 19% carbon by mass?
A) CF_{3}
B) $\mathrm{C}_{2} \mathrm{~F}_{8}$
C) $\mathrm{C}_{3} \mathrm{~F}_{8}$
D) $\mathrm{C}_{19} \mathrm{~F} 81$

Answer: C
Topic: Section 3.10 Percent Composition and Empirical Formulas
86) What is the empirical formula of a substance that contains 2.64 g of $\mathrm{C}, 0.444 \mathrm{~g}$ of H , and 3.52 g of O?
A) $\mathrm{CH}_{2} \mathrm{O}$
B) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
C) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{3}$
D) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}$

Answer: A
Topic: Section 3.10 Percent Composition and Empirical Formulas
87) Which one of the following is not an empirical formula?
A) CHO
B) $\mathrm{CH}_{2} \mathrm{O}$
C) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
D) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

Answer: D
Topic: Section 3.10 Percent Composition and Empirical Formulas
88) Which one of the following is an empirical formula?
A) $\mathrm{C}_{2} \mathrm{~F}_{6}$
B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
C) $\mathrm{N}_{2} \mathrm{H}_{4}$
D) $\mathrm{P}_{4} \mathrm{O}_{10}$

Answer: B
Topic: Section 3.10 Percent Composition and Empirical Formulas
89) A compound responsible for the odor of garlic has a molecular weight of $146 \mathrm{~g} / \mathrm{mol}$. A 0.650 g sample of the compound contains 0.321 g of carbon, 0.044 g of hydrogen, and 0.285 g of sulfur. What is the molecular formula of the compound?
A) $\mathrm{CH}_{5} \mathrm{~S}$
B) $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~S}$
C) $\mathrm{C}_{3} \mathrm{H}_{15} \mathrm{~S}_{3}$
D) $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~S}_{2}$

Answer: D
Topic: Section 3.10 Percent Composition and Empirical Formulas
90) Which statement about elemental analysis by combustion is not correct?
A) Carbon is determined from the amount of CO_{2} formed.
B) Hydrogen is determined from the amount of $\mathrm{H}_{2} \mathrm{O}$ formed.
C) Oxygen is determined from the amount of $\mathrm{H}_{2} \mathrm{O}$ formed.
D) Only carbon and hydrogen can be determined directly from CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

Answer: C
Topic: Section 3.11 Determining Empirical Formulas: Elemental Analysis
91) In the combustion analysis of an unknown compound containing only carbon, hydrogen, and oxygen, the grams of oxygen are found from the grams of
A) CO_{2} only.
B) $\mathrm{H}_{2} \mathrm{O}$ only.
C) CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ only.
D) $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and unknown compound.

Answer: D
Topic: Section 3.11 Determining Empirical Formulas: Elemental Analysis
92) Combustion analysis of an unknown compound containing only carbon and hydrogen produced 4.554 g of CO_{2} and 2.322 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?
A) CH_{2}
B) $\mathrm{C}_{2} \mathrm{H}_{5}$
C) $\mathrm{C}_{4} \mathrm{H}_{10}$
D) $\mathrm{C}_{5} \mathrm{H}_{2}$

Answer: B
Topic: Section 3.11 Determining Empirical Formulas: Elemental Analysis
93) Combustion analysis of 2.400 g of an unknown compound containing carbon, hydrogen, and oxygen produced 4.171 g of CO_{2} and 2.268 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?
A) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
B) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2}$
C) $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{O}_{3}$
D) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}$

Answer: D
Topic: Section 3.11 Determining Empirical Formulas: Elemental Analysis
94) Combustion analysis of a 0.675 g sample of an unknown compound that contains only carbon, hydrogen, and oxygen gives 0.627 g of CO_{2} and 1.534 g of $\mathrm{H}_{2} \mathrm{O}$. The molecular mass of the unknown is
A) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$.
B) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$.
C) $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{3}$.
D) unable to be determined from this data.

Answer: D
Topic: Section 3.11 Determining Empirical Formulas: Elemental Analysis
95) Isoeugenol is the compound which gives the characteristic odor to nutmeg and contains carbon, hydrogen, and oxygen. If a 0.500 g sample of isoeugenol is combusted it gives 1.341 g of CO_{2} and 0.329 g of $\mathrm{H}_{2} \mathrm{O}$. Isoeugenol has a molecular weight of $164 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of isoeugenol?
A) $\mathrm{C}_{2} \mathrm{HO}$
B) $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}$
C) $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$
D) $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$

Answer: D
Topic: Section 3.11 Determining Empirical Formulas: Elemental Analysis
96) Molecular mass can be determined by
A) combustion analysis.
B) mass spectrometry.
C) titration.
D) weighing with an analytical balance.

Answer: B
Topic: Section 3.12 Determining Molecular Masses: Mass Spectrometry
97) Which of the following statements about mass spectrometry is false?
A) Mass spectrometry can be used to determine the molecular weight of a compound.
B) The curvature of the path in a magnetic field is determined by the mass of the ion.
C) The paths of heavier ions are deflected more strongly than the paths of lighter ions.
D) The sample is changed into positively charged ions.

Answer: C
Topic: Section 3.12 Determining Molecular Masses: Mass Spectrometry
a)

b)

c)

d)

98) Acetone has the formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$. Which ball and stick model shown above represents acetone?
[gray spheres $=\mathrm{C}$, black spheres $=\mathrm{O}$, unshaded spheres $=\mathrm{H}$]
A) model a)
B) model b)
C) model c)
D) model d)

Answer: C
Topic: Conceptual Problems
99) Diethyl ether has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$. Which ball and stick model shown above represents diethyl ether? [gray spheres $=\mathrm{C}$, black spheres $=\mathrm{O}$, unshaded spheres $=\mathrm{H}$]
A) model a)
B) model b)
C) model c)
D) model d)

Answer: D
Topic: Conceptual Problems
100) Ethanol has the molecular formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$. Which ball and stick model shown above represents ethanol? [gray spheres $=\mathrm{C}$, black spheres $=\mathrm{O}$, unshaded spheres $=\mathrm{H}$]
A) model a)
B) model b)
C) model c)
D) model d)

Answer: A
Topic: Conceptual Problems
101) 2-Propanol has the molecular formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$. Which ball and stick model shown above represents 2-propanol? [gray spheres $=\mathrm{C}$, black spheres $=\mathrm{O}$, unshaded spheres $=\mathrm{H}$]
A) model a)
B) model b)
C) model c)
D) model d)

Answer: B
Topic: Conceptual Problems
102) If unshaded spheres represent nitrogen atoms and shaded spheres represent oxygen atoms, which box represents reactants and which represents products for the reaction $2 \mathrm{NO}_{2}(g) \rightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$?

(a)

(b)

(c)

A) box (a) reactants and box (b) products
B) box (a) reactants and box (d) products
C) box (c) reactants and box (b) products
D) box (c) reactants and box (d) products

Answer: D
Topic: Conceptual Problems
103) If unshaded spheres represent nitrogen atoms and shaded spheres represent oxygen atoms, which box represents reactants and which represents products for the reaction $2 \mathrm{~N}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g)$?

(a)

(b)

(c)

(d)
A) box (a) reactants and box (c) products
B) box (a) reactants and box (d) products
C) box (b) reactants and box (c) products
D) box (b) reactants and box (d) products

Answer: B
Topic: Conceptual Problems
104) What is the balanced chemical equation for the reaction of element A (unshaded spheres) with element B (shaded spheres) as represented below?

A) $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$
B) $4 \mathrm{~A}+2 \mathrm{~B} \rightarrow 4 \mathrm{AB}$
C) $\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{~B}$
D) $2 \mathrm{~A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{~A}_{2} \mathrm{~B}$

Answer: D
Topic: Conceptual Problems
105) What is the balanced chemical equation for the reaction of element A (unshaded spheres) with element B (shaded spheres) as represented below?

A) $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$
B) $\mathrm{A}+3 \mathrm{~B} \rightarrow 3 \mathrm{AB}$
C) $\mathrm{A}_{2}+\mathrm{B} \rightarrow \mathrm{AB}$
D) $\mathrm{A}_{2}+2 \mathrm{~B} \rightarrow 2 \mathrm{AB}$

Answer: D
Topic: Conceptual Problems
106) What is the balanced chemical equation for the reaction of element A (unshaded spheres) with element B (shaded spheres) as represented below?

A) $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$
B) $\mathrm{A}+3 \mathrm{~B} \rightarrow 2 \mathrm{AB}$
C) $\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow \mathrm{AB} 3$
D) $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightarrow 2 \mathrm{AB} 3$

Answer: D
Topic: Conceptual Problems
107) What is the balanced chemical equation for the reaction of element A (unshaded spheres) with element B (shaded spheres) as represented below?

A) $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$
B) $2 \mathrm{~A}+3 \mathrm{~B} \rightarrow 2 \mathrm{AB}$
C) $\mathrm{A}+\mathrm{B}_{2} \rightarrow \mathrm{AB} 3$
D) $2 \mathrm{~A}+3 \mathrm{~B}_{2} \rightarrow 2 \mathrm{AB} 3$

Answer: D
Topic: Conceptual Problems
108) Reaction of A (unshaded spheres) with B2 (shaded spheres) is shown schematically in the following diagram. Which equation best describes the stoichiometry of the reaction?

A) $\mathrm{A}_{2}+2 \mathrm{~B} \rightarrow \mathrm{~A}_{2} \mathrm{~B}_{2}$
B) $8 \mathrm{~A}+4 \mathrm{~B}_{2} \rightarrow 4 \mathrm{~A}_{2} \mathrm{~B}_{2}$
C) $2 \mathrm{~A}+\mathrm{B}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{~B}_{2}$
D) $4 \mathrm{~A}+4 \mathrm{~B}_{2} \rightarrow 4 \mathrm{~A}_{2} \mathrm{~B}_{2}$

Answer: C
Topic: Conceptual Problems
109) Reaction of A (unshaded spheres) with B_{2} (shaded spheres) is shown schematically in the following diagram. Which equation best describes the stoichiometry of the reaction?

A) $4 \mathrm{~A}+\mathrm{B}_{2} \rightarrow 8 \mathrm{~A}_{2} \mathrm{~B}$
B) $4 \mathrm{~A}+\mathrm{B}_{2} \rightarrow \mathrm{~A}_{4} \mathrm{~B}_{2}$
C) $16 \mathrm{~A}+4 \mathrm{~B}_{2} \rightarrow 8 \mathrm{~A}_{2} \mathrm{~B}$
D) $16 \mathrm{~A}+4 \mathrm{~B}_{2} \rightarrow 4 \mathrm{~A} 4 \mathrm{~B}_{2}$

Answer: B
Topic: Conceptual Problems
110) The following diagram represents the reaction of A_{2} (unshaded spheres) with B (shaded spheres). What is the balanced chemical equation for this reaction, and what is the limiting reactant?

A) $\mathrm{A}_{2}+2 \mathrm{~B} \rightarrow 2 \mathrm{AB} ; \mathrm{A}_{2}$ is the limiting reactant.
B) $\mathrm{A}_{2}+2 \mathrm{~B} \rightarrow 2 \mathrm{AB}$; B is the limiting reactant.
C) $4 \mathrm{~A}_{2}+6 \mathrm{~B} \rightarrow 6 \mathrm{AB} ; \mathrm{A}_{2}$ is the limiting reactant.
D) $4 \mathrm{~A}_{2}+6 \mathrm{~B} \rightarrow 6 \mathrm{AB}$; B is the limiting reactant.

Answer: B
Topic: Conceptual Problems
111) The following diagram represents the reaction of A_{2} (unshaded spheres) with B (shaded spheres). What is the balanced chemical equation for this reaction, and what is the limiting reactant?

A) $2 \mathrm{~A}_{2}+\mathrm{B} \rightarrow \mathrm{A} 4 \mathrm{~B} ; \mathrm{A}_{2}$ is the limiting reactant.
B) $2 \mathrm{~A}_{2}+\mathrm{B} \rightarrow \mathrm{A} 4 \mathrm{~B}$; B is the limiting reactant.
C) $4 \mathrm{~A}_{2}+6 \mathrm{~B} \rightarrow 2 \mathrm{~A}_{4} \mathrm{~B} ; \mathrm{A}_{2}$ is the limiting reactant.
D) $4 \mathrm{~A}_{2}+6 \mathrm{~B} \rightarrow 2 \mathrm{~A} 4 \mathrm{~B} ; \mathrm{B}$ is the limiting reactant.

Answer: A
Topic: Conceptual Problems
112) The following diagrams represent the reaction of A_{2} (shaded spheres) with B_{2} (unshaded spheres). Identify the limiting reactant and write a balanced equation for the reaction.

A) A_{2} is the limiting reactant; $\mathrm{A}+4 \mathrm{~B} \rightarrow \mathrm{AB} 4$.
B) A_{2} is the limiting reactant; $\mathrm{A}_{2}+4 \mathrm{~B}_{2} \rightarrow 2 \mathrm{AB} 4$.
C) B_{2} is the limiting reactant; $\mathrm{A}+4 \mathrm{~B} \rightarrow \mathrm{AB} 4$.
D) B_{2} is the limiting reactant; $\mathrm{A}_{2}+4 \mathrm{~B}_{2} \rightarrow 2 \mathrm{AB} 4$.

Answer: D
Topic: Conceptual Problems
113) The following diagrams represent the reaction of A_{2} (shaded spheres) with B_{2} (unshaded spheres). Identify the limiting reactant and write a balanced equation for the reaction.

A) A_{2} is the limiting reactant; $\mathrm{A}+3 \mathrm{~B} \rightarrow \mathrm{AB}$.
B) A_{2} is the limiting reactant; $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightarrow 2 \mathrm{AB} 3$.
C) B_{2} is the limiting reactant; $\mathrm{A}+3 \mathrm{~B} \rightarrow \mathrm{AB} 3$.
D) B_{2} is the limiting reactant; $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightarrow 2 \mathrm{AB} 3$.

Answer: D
Topic: Conceptual Problems
114) The following diagram represents the reaction of A_{2} (unshaded spheres) with B (shaded spheres). How many moles of product can be produced from the reaction of 1.0 mol of A_{2} and 1.0 mol of B?

A) 0.5 mol of product
B) 1.0 mol of product
C) 3.0 mol of product
D) 6.0 mol of product

Answer: B
Topic: Conceptual Problems
115) The following diagram represents the reaction of A_{2} (unshaded spheres) with B_{2} (shaded spheres). How many moles of product can be produced from the reaction of 1.0 mol of A_{2} and 1.0 mol of B_{2} ?

A) 0.5 mol of product
B) 1.0 mol of product
C) 2.0 mol of product
D) 4.0 mol of product

Answer: A
Topic: Conceptual Problems
116) The following diagrams represent the reaction of A_{2} (shaded spheres) with B_{2} (unshaded spheres). How many moles of product can be made from 1.0 mol of A_{2} and $1.0 \mathrm{~mol} \mathrm{of} \mathrm{B}_{2}$?

A) 0.67 mol product
B) 1.0 mol product
C) 2.0 mol product
D) 3.0 mol product

Answer: A
Topic: Conceptual Problems
Box (1) represents 1.0 mL of a solution of particles at a given concentration.

117) Which of the boxes (2)-(5) represents 1.0 mL of the solution that results after (1) has been diluted by adding enough solvent to make 2.0 mL of solution?
A) box (2)
B) box (3)
C) box (4)
D) box (5)

Answer: B
Topic: Conceptual Problems
118) Which of the boxes (2)-(5) represents 1.0 mL of the solution that results after (1) has been diluted by adding enough solvent to make 5.0 mL of solution?
A) box (2)
B) box (3)
C) box (4)
D) box (5)

Answer: A
Topic: Conceptual Problems
Assume that the unshaded spheres in the buret represent H^{+}ions, the shaded spheres in the flask represent OH^{-}ions, and you are carrying out a titration of the base with the acid.

119) If the volumes in the buret and the flask are identical and the concentration of the acid in the buret is 0.250 M , what is the concentration of the base in the flask?
A) 0.167 M
B) 0.250 M
C) 0.375 M
D) 0.667 M

Answer: A
Topic: Conceptual Problems
120) If the volumes in the buret and the flask are identical and the concentration of the acid in the buret is 0.500 M , what is the concentration of the base in the flask?
A) 0.333 M
B) 0.500 M
C) 0.667 M
D) 0.750 M

Answer: A
Topic: Conceptual Problems
121) Ascorbic acid, $\mathrm{C}_{6} \mathrm{H}_{8} 0_{6}$, can be represented by the molecular model shown below. If 1.00 mol of ascorbic acid is submitted to combustion analysis, how many moles of CO_{2} and how many moles of $\mathrm{H}_{2} \mathrm{O}$ would be formed?

A) $3.00 \mathrm{~mol} \mathrm{CO}_{2}$ and $2.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
B) $6.00 \mathrm{~mol} \mathrm{CO}_{2}$ and $4.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
C) $6.00 \mathrm{~mol} \mathrm{CO}_{2}$ and $8.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
D) $12.0 \mathrm{~mol} \mathrm{CO}_{2}$ and $10.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Answer: B
Topic: Conceptual Problems
122) Glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, can be represented by the molecular model shown below. If 1.00 mol of glucose is submitted to combustion analysis, how many moles of CO_{2} and how many moles of $\mathrm{H}_{2} \mathrm{O}$ would be formed?

Glucose
A) $1.00 \mathrm{~mol} \mathrm{CO}_{2}$ and $2.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
B) $6.00 \mathrm{~mol} \mathrm{CO}_{2}$ and $6.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
C) $6.00 \mathrm{~mol} \mathrm{CO}_{2}$ and $12.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
D) $12.0 \mathrm{~mol} \mathrm{CO}_{2}$ and $12.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Answer: B
Topic: Conceptual Problems
123) A hydrocarbon of unknown formula $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{y}$ was submitted to combustion analysis with the following results. What is the empirical formula of the hydrocarbon?

A) CH
B) $\mathrm{C}_{2} \mathrm{H}$
C) $\mathrm{C}_{2} \mathrm{H}_{4}$
D) $\mathrm{C}_{4} \mathrm{H}_{4}$

Answer: A
Topic: Conceptual Problems
124) A hydrocarbon of unknown formula $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{y}$ was submitted to combustion analysis with the following results. What is the empirical formula of the hydrocarbon?

A) $\mathrm{C}_{5} \mathrm{H}_{2}$
B) $\mathrm{C}_{5} \mathrm{H}_{4}$
C) $\mathrm{C}_{10} \mathrm{H}_{4}$
D) $\mathrm{C}_{10} \mathrm{H}_{8}$

Answer: B
Topic: Conceptual Problems

3.2 Algorithmic Questions

1) What is the stoichiometric coefficient for oxygen when the following equation is balanced using the lowest whole-number coefficients?
\qquad $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}(l)+$ \qquad $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ \qquad $\mathrm{CO}_{2}(g)+$ \qquad $\mathrm{H}_{2} \mathrm{O}(l)$
A) 9
B) 7
C) 5
D) 3

Answer: D
Topic: Section 3.1 Balancing Chemical Equations
2) Aluminum metal reacts with aqueous iron(II) chloride to form aqueous aluminum chloride and iron metal. What is the stoichiometric coefficient for aluminum when the chemical equation is balanced using the lowest whole-number stoichiometric coefficients?
A) 1
B) 2
C) 3
D) 4

Answer: B
Topic: Section 3.1 Balancing Chemical Equations
3) Calcium phosphate reacts with sulfuric acid to form calcium sulfate and phosphoric acid. What is the coefficient for sulfuric acid when the equation is balanced using the lowest whole-numbered coefficients?
A) 1
B) 2
C) 3
D) none of these

Answer: C
Topic: Section 3.1 Balancing Chemical Equations
4) What is the molar mass of fluorine gas?
A) $19.0 \mathrm{~g} / \mathrm{mol}$
B) $38.0 \mathrm{~g} / \mathrm{mol}$
C) $6.02 \times 1023 \mathrm{~g} / \mathrm{mol}$
D) $1.20 \times 10^{23} \mathrm{~g} / \mathrm{mol}$

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
5) What is the mass of a single fluorine molecule, F_{2} ?
A) $3.155 \times 10-23 \mathrm{~g}$
B) $6.310 \times 10^{-23} \mathrm{~g}$
C) 19.00 g
D) 38.00 g

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
6) What is the mass of 0.500 mol of dichlorodifluoro methane, $\mathrm{C} \mathrm{Cl}_{2} \mathrm{~F}_{2}$?
A) $4.14 \times 10-3 \mathrm{~g}$
B) 60.5 g
C) 121 g
D) 242 g

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
7) How many moles are there in 3.00 g of ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$?
A) 0.00725 mol
B) 0.0652 mol
C) 15.3 mol
D) 138 mol

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
8) How many Fe (II) ions are there in 20.0 g of FeSO 4 ?
A) $2.19 \times 10-25 \mathrm{iron}$ (II) ions
B) 7.92×1022 iron(II) ions
C) 4.57×10^{24} iron(II) ions
D) $1.82 \times 10^{27} \operatorname{iron}(\mathrm{II})$ ions

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
9) What is the mass of 8.50×10^{22} molecules of NH_{3} ?
A) 0.00829 g
B) 0.417 g
C) 2.40 g
D) 121 g

Answer: C
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
10) How many oxygen atoms are there in 7.00 g of sodium dichromate, $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O} 7$?
A) 0.187 oxygen atoms
B) 2.30×10^{21} oxygen atoms
C) 1.60×10^{22} oxygen atoms
D) 1.13×1023 oxygen atoms

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
11) How many chloride ions are there in 4.50 mol of aluminum chloride?
A) 3.00 chloride ions
B) 13.5 chloride ions
C) 2.71×10^{24} chloride ions
D) 8.13×10^{24} chloride ions

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
12) What is the molar mass of 1 -butene if 5.38×10^{16} molecules of 1 -butene weigh $5.00 \mu \mathrm{~g}$?
A) $56.0 \mathrm{~g} / \mathrm{mol}$
B) $178 \mathrm{~g} / \mathrm{mol}$
C) $224 \mathrm{~g} / \mathrm{mol}$
D) $447 \mathrm{~g} / \mathrm{mol}$

Answer: A
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
13) What mass of carbon dioxide, $\mathrm{C} \mathrm{O}_{2}$, contains the same number of molecules as 3.00 g of trichlorofluoromethane, $\mathrm{CCl}_{3} \mathrm{~F}$?
A) 0.106 g
B) 0.961 g
C) 1.04 g
D) 9.37 g

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
14) What mass of phosphorus pentafluoride, PF 5 , has the same number of fluorine atoms as 25.0 g of oxygen difluoride, OF_{2} ?
A) 0.933 g
B) 10.0 g
C) 23.3 g
D) 146 g

Answer: C
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
15) How many anions are there in 2.50 g of MgBr_{2} ?
A) 8.18×10^{21} anions
B) 1.64×10^{22} anions
C) 4.43×10^{25} anions
D) 8.87×1025 anions

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
16) How many cations are there in 10.0 g of sodium phosphate?
A) 3.67×10^{22} cations
B) 1.10×10^{23} cations
C) 9.87×10^{24} cations
D) 2.96×1025 cations

Answer: B
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
17) Which of the following has the greatest mass?
A) 3.88×10^{22} molecules of O_{2}
B) 1.00 g of O_{2}
C) 0.0312 mol of O_{2}
D) All of these have the same mass.

Answer: A
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
18) Which of the following has the smallest mass?
A) 3.50×1023 molecules of I_{2}
B) 85.0 g of Cl_{2}
C) 2.50 mol of F_{2}
D) 0.050 kg of Br_{2}

Answer: D
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
19) How many moles of CuO can be produced from 0.900 mol of $\mathrm{Cu}_{2} \mathrm{O}$ in the following reaction?
$2 \mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{O}_{2}(g) \rightarrow 4 \mathrm{CuO}(s)$
A) 0.450 mol
B) 0.900 mol
C) 1.80 mol
D) 3.60 mol

Answer: C
Topic: Section 3.4 Yields of Chemical Reactions
20) How many moles of BCl_{3} are needed to produce 10.0 g of $\mathrm{HCl}(\mathrm{aq})$ in the following reaction?

$$
\mathrm{BCl}_{3}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 3 \mathrm{HCl}(a q)+\mathrm{B}(\mathrm{OH})_{3}(a q)
$$

A) 0.0914 mol
B) 0.274 mol
C) 0.823 mol
D) 10.9 mol

Answer: A
Topic: Section 3.4 Yields of Chemical Reactions
21) How many grams of calcium chloride are needed to produce 1.50 g of potassium chloride?

$$
\mathrm{CaCl}_{2}(a q)+\mathrm{K}_{2} \mathrm{CO}_{3}(a q) \rightarrow 2 \mathrm{KCl}(a q)+\mathrm{CaCO}_{3}(a q)
$$

A) 0.896 g
B) 1.12 g
C) 2.23 g
D) 4.47 g

Answer: B
Topic: Section 3.4 Yields of Chemical Reactions
22) Balance the chemical equation given below, and determine the number of moles of iodine that reacts with 30.0 g of aluminum.

$$
\ldots \mathrm{Al}(s)+\ldots \mathrm{I}_{2}(s) \rightarrow \ldots \mathrm{Al}_{2} \mathrm{I}_{6}(s)
$$

A) 0.741 mol
B) 1.67 mol
C) 2.22 mol
D) 3.33 mol

Answer: B
Topic: Section 3.4 Yields of Chemical Reactions
23) Balance the chemical equation given below, and determine the number of grams of MgO are needed to produce 10.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
\qquad $\mathrm{MgO}(s)+$ \qquad $\mathrm{Fe}(s) \rightarrow$ \qquad $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+$ \qquad $\operatorname{Mg}(s)$
A) 0.312 g
B) 0.841 g
C) 2.52 g
D) 7.57 g

Answer: D
Topic: Section 3.4 Yields of Chemical Reactions
24) Dinitrogen monoxide gas decomposes to form nitrogen gas and oxygen gas. How many grams of oxygen are formed when 10.0 g of dinitrogen monoxide decomposes?
A) 0.275 g
B) 3.64 g
C) 7.27 g
D) 14.5 g

Answer: B
Topic: Section 3.4 Yields of Chemical Reactions
25) If the density of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, is $0.789 \mathrm{~g} / \mathrm{mL}$. How many milliliters of ethanol are needed to produce 15.0 g of CO_{2} according to the following chemical equation?

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)
$$

A) 6.19 mL
B) 9.95 mL
C) 19.9 mL
D) 39.8 mL

Answer: B
Topic: Section 3.4 Yields of Chemical Reactions
26) When 11.0 g of calcium metal is reacted with water, 5.00 g of calcium hydroxide is produced. Using the following balanced equation, calculate the percent yield for the reaction?

$$
\mathrm{Ca}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(a q)+\mathrm{H}_{2}(g)
$$

A) 12.3%
B) 24.6%
C) 45.5%
D) 84.0%

Answer: B
Topic: Section 3.4 Yields of Chemical Reactions
27) If the percent yield for the following reaction is 65.0%, how many grams of KClO_{3} are needed to produce 32.0 g of O_{2} ?

$$
2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)
$$

A) 53.1 g
B) 81.7 g
C) 126 g
D) 283 g

Answer: C
Topic: Section 3.4 Yields of Chemical Reactions
28) If the percent yield for the following reaction is 75.0%, and 45.0 g of NO_{2} are consumed in the reaction, how many grams of nitric acid, $\mathrm{HNO}_{3}(\mathrm{aq})$ are produced?

$$
3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)
$$

A) 30.8 g
B) 41.1 g
C) 54.8 g
D) 69.3 g

Answer: A
Topic: Section 3.4 Yields of Chemical Reactions
29) 7.0 g of nitrogen is reacted with 5.0 g of hydrogen to produce ammonia according to the chemical equation shown below. Which one of the following statements is false?

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)
$$

A) 3.5 g of hydrogen are left over.
B) Hydrogen is the excess reactant.
C) Nitrogen is the limiting reactant.
D) The theoretical yield of ammonia is 15 g .

Answer: D
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
30) 5.0 g of iron is reacted with 5.0 g of water according to the chemical equation shown below. Which one of the following statements is false?

$$
3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+4 \mathrm{H}_{2}(g)
$$

A) 6.91 g of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ are produced.
B) 2.85 g of $\mathrm{H}_{2} \mathrm{O}$ are left over.
C) Mass is conserved in this reaction.
D) Water is the limiting reactant.

Answer: D
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
31) Which substance is the limiting reactant when 2.0 g of sulfur reacts with 3.0 g of oxygen and 4.0 g of sodium hydroxide according to the following chemical equation:

$$
2 \mathrm{~S}(s)+3 \mathrm{O}_{2}(g)+4 \mathrm{NaOH}(a q) \rightarrow 2 \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

A) $S(s)$
B) $\mathrm{O}_{2}(g)$
C) $\mathrm{NaOH}(a q)$
D) None of these substances is the limiting reactant.

Answer: C
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
32) When 7.00×1022 molecules of ammonia react with 6.00×1022 molecules of oxygen according to the chemical equation shown below, how many grams of nitrogen gas are produced?

$$
4 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) 1.63 g
B) 1.86 g
C) 4.19 g
D) 6.51 g

Answer: A
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
33) When silver nitrate reacts with barium chloride, silver chloride and barium nitrate are formed. How many grams of silver chloride are formed when 10.0 g of silver nitrate reacts with 15.0 g of barium chloride?
A) 8.44 g
B) 9.40 g
C) 11.9 g
D) 18.8 g

Answer: A
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
34) Balance the chemical equation given below, and calculate the volume of nitrogen monoxide gas produced when 8.00 g of ammonia is reacted with 12.0 g of oxygen at $25^{\circ} \mathrm{C}$? The density of nitrogen monoxide at $25^{\circ} \mathrm{C}$ is $1.23 \mathrm{~g} / \mathrm{L}$.

$$
\ldots \mathrm{NH}_{3}(g)+\ldots \mathrm{O}_{2}(g) \rightarrow{ }_{C} \mathrm{NO}(g)+\ldots \mathrm{H}_{2} \mathrm{O}(l)
$$

A) 7.32 L
B) 11.1 L
C) 11.5 L
D) 17.3 L

Answer: A
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
35) What is the concentration of FeCl_{3} in a solution prepared by dissolving 20.0 g of FeCl_{3} in enough water to make 275 mL of solution?
A) $4.48 \times 10^{-4} \mathrm{M}$
B) 0.448 M
C) 2.23 M
D) $2.23 \times 10^{3} \mathrm{M}$

Answer: B
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
36) How many grams of AgNO_{3} are needed to make 250 . mL of a solution that is 0.135 M ?
A) 0.0917 g
B) 0.174 g
C) 5.73 g
D) 91.7 g

Answer: C
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
37) What volume of a 0.540 M NaOH solution contains 11.5 g of NaOH ?
A) 0.155 L
B) 0.532 L
C) 1.88 L
D) 6.44 L

Answer: B
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
38) What is the concentration of $\mathrm{NO}_{3}{ }^{-}$ions in a solution prepared by dissolving 25.0 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in enough water to produce $300 . \mathrm{mL}$ of solution?
A) 0.254 M
B) 0.508 M
C) 0.672 M
D) 1.02 M

Answer: D
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
39) If the reaction of phosphate ion with water is ignored, what is the total concentration of ions in a solution prepared by dissolving 3.00 g of $\mathrm{K}_{3} \mathrm{PO} 4$ in enough water to make 350 mL of solution?
A) 0.0101 M
B) 0.0404 M
C) 0.162 M
D) 0.323 M

Answer: B
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
40) What is the concentration of an AlCl_{3} solution if $150 . \mathrm{mL}$ of the solution contains $450 . \mathrm{mg}$ of
Cl^{-}ion?
A) $2.82 \times 10-2 \mathrm{M}$
B) $6.75 \times 10^{-2} \mathrm{M}$
C) $8.46 \times 10^{-2} \mathrm{M}$
D) $2.54 \times 10^{-1} \mathrm{M}$

Answer: A
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
41) What is the concentration of HCl in the final solution when 65 mL of a 12 M HCl solution is diluted with pure water to a total volume of 0.15 L ?
A) $2.8 \times 10^{-2} \mathrm{M}$
B) 5.2 M
C) 28 M
D) $5.2 \times 10^{3} \mathrm{M}$

Answer: B
Topic: Section 3.7 Diluting Concentrated Solutions
42) How many milliliters of a $9.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution are needed to make 0.35 L of a 3.5 M solution?
A) 0.14 mL
B) 0.90 mL
C) 140 mL
D) 900 mL

Answer: C
Topic: Section 3.7 Diluting Concentrated Solutions
43) $\mathrm{A} \mathrm{FeCl}_{3}$ solution is 0.175 M . How many mL of a $0.175 \mathrm{M} \mathrm{FeCl}_{3}$ solution are needed to make 450 . mL of a solution that is 0.300 M in Cl^{-}ion?
A) 0.771 mL
B) 257 mL
C) 771 mL
D) It is not possible to make a more concentrated solution from a less concentrated solution.

Answer: B
Topic: Section 3.7 Diluting Concentrated Solutions
44) A student dissolved 4.00 g of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ in enough water to make 100 mL of stock solution. He took 4.00 mL of the stock solution and then diluted it with water to give $275 . \mathrm{mL}$ of a final solution. How many grams of $\mathrm{NO}_{3}-$ ion are there in the final solution?
A) 0.0197 g
B) 0.0394 g
C) 0.0542 g
D) 0.108 g

Answer: D
Topic: Section 3.7 Diluting Concentrated Solutions
45) A student prepared a stock solution by dissolving 10.0 g of KOH in enough water to make 150 mL of solution. She then took 15.0 mL of the stock solution and diluted it with enough water to make water to make 65.0 mL of a final solution. What is the concentration of KOH for the final solution?
A) 0.274 M
B) 0.356 M
C) 2.81 M
D) 3.65 M

Answer: A
Topic: Section 3.7 Diluting Concentrated Solutions
46) How many milliliters of $0.260 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}$ are needed to react with 40.00 mL of $0.315 \mathrm{M} \mathrm{AgNO}_{3}$?

$$
\mathrm{Na}_{2} \mathrm{~S}(a q)+2 \mathrm{AgNO}_{3}(a q) \rightarrow 2 \mathrm{NaNO}_{3}(a q)+\mathrm{Ag}_{2} \mathrm{~S}(s)
$$

A) 24.2 mL
B) 48.5 mL
C) 66.0 mL
D) 96.9 mL

Answer: A
Topic: Section 3.8 Solution Stoichiometry
47) How many grams of CaCl_{2} are formed when 15.00 mL of $0.00237 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ reacts with excess Cl_{2} gas?

$$
2 \mathrm{Ca}(\mathrm{OH})_{2}(a q)+2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{Ca}(\mathrm{OCl})_{2}(a q)+\mathrm{CaCl}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

A) 0.00197 g
B) 0.00394 g
C) 0.00789 g
D) 0.0507 g

Answer: A
Topic: Section 3.8 Solution Stoichiometry
48) When 31.2 mL of $0.500 \mathrm{M} \mathrm{AgNO}_{3}$ is added to 25.0 mL of 0.300 M NH 4 Cl , how many grams of AgCl are formed?

$$
\mathrm{AgNO}_{3}(a q)+\mathrm{NH}_{4} \mathrm{Cl}(a q) \rightarrow \mathrm{AgCl}(s)+\mathrm{NH}_{4} \mathrm{NO}_{3}(a q)
$$

A) 1.07 g
B) 2.24 g
C) 3.31 g
D) 6.44 g

Answer: A
Topic: Section 3.8 Solution Stoichiometry
49) How many milliliters of $0.200 \mathrm{M} \mathrm{FeCl}_{3}$ are needed to react with an excess of $\mathrm{Na}_{2} \mathrm{~S}$ to produce 1.38 g of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ if the percent yield for the reaction is 65.0% ?
$3 \mathrm{Na}_{2} \mathrm{~S}(a q)+2 \mathrm{FeCl}_{3}(a q) \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}(s)+6 \mathrm{NaCl}(a q)$
A) 25.5 mL
B) 43.1 mL
C) 51.1 mL
D) 102 mL

Answer: D
Topic: Section 3.8 Solution Stoichiometry
50) If $100 . \mathrm{mL}$ of $0.400 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is added to $200 . \mathrm{mL}$ of 0.600 M NaCl , what is the concentration of
Na^{+}ions in the final solution? Assume that the volumes are additive.
A) 0.534 M
B) 0.667 M
C) 1.00 M
D) 1.40 M

Answer: B
Topic: Section 3.8 Solution Stoichiometry
51) How many milliliters of 0.550 M hydriodic acid are needed to react with 15.00 mL of 0.217 M CsOH ?
$\mathrm{HI}(a q)+\mathrm{CsOH}(a q) \rightarrow \mathrm{CsI}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
A) 0.0263 mL
B) 0.169 mL
C) 5.92 mL
D) 38.0 mL

Answer: C
Topic: Section 3.9 Titration
52) In an acid-base neutralization reaction 38.74 mL of 0.500 M potassium hydroxide reacts with 50.00 mL of sulfuric acid solution. What is the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
A) 0.194 M
B) 0.387 M
C) 0.775 M
D) 1.29 M

Answer: A
Topic: Section 3.9 Titration
53) Balance the chemical equation given below, and determine the number of milliliters of 0.00300 M phosphoric acid required to neutralize 45.00 mL of 0.00150 M calcium hydroxide.
\qquad $\mathrm{Ca}(\mathrm{OH}) 2(a q)+$ \qquad $\mathrm{H}_{3} \mathrm{PO}_{4}(a q) \rightarrow$ \qquad $\mathrm{Ca} 3(\mathrm{PO} 4) 2(\mathrm{aq})+$ \qquad $\mathrm{H}_{2} \mathrm{O}(l)$
A) 3.04 mL
B) 15.0 mL
C) 22.5 mL
D) 33.8 mL

Answer: B
Topic: Section 3.9 Titration
54) When 280 . mL of $1.50 \times 10-4 \mathrm{M}$ hydrochloric acid is added to 125 mL of $1.75 \times 10^{-4} \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$, the resulting solution will be
A) acidic.
B) basic
C) neutral.
D) It is impossible to tell from the information given.

Answer: B
Topic: Section 3.9 Titration
55) Which one of the following contains 39% carbon by mass?
A) $\mathrm{C}_{2} \mathrm{H}_{2}$
B) CH_{4}
C) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
D) CO_{2}

Answer: C
Topic: Section 3.10 Percent Composition and Empirical Formulas
56) What is the empirical formula of a substance that contains 2.64 g of $\mathrm{C}, 0.444 \mathrm{~g}$ of H , and 3.52 g of O ?
A) $\mathrm{CH}_{2} \mathrm{O}$
B) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
C) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{3}$
D) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}$

Answer: A
Topic: Section 3.10 Percent Composition and Empirical Formulas
57) Which one of the following is not an empirical formula?
A) CHO
B) $\mathrm{CH}_{2} \mathrm{O}$
C) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
D) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

Answer: D
Topic: Section 3.10 Percent Composition and Empirical Formulas
58) Combustion analysis of an unknown compound containing only carbon and hydrogen produced

A) CH_{2}
B) $\mathrm{C}_{4} \mathrm{H}_{5}$
C) $\mathrm{C}_{4} \mathrm{H}_{10}$
D) $\mathrm{C}_{5} \mathrm{H}_{2}$

Answer: B
Topic: Section 3.11 Determining Empirical Formulas: Elemental Analysis
59) Combustion analysis of 1.200 g of an unknown compound containing carbon, hydrogen, and oxygen produced 2.086 g of CO_{2} and $1.134 \mathrm{~g} \mathrm{of} \mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?
A) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
B) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2}$
C) $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{O}_{3}$
D) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}$

Answer: D
Topic: Section 3.11 Determining Empirical Formulas: Elemental Analysis

3.3 Short Answer Questions

1) A balanced equation has the same numbers and kinds of \qquad on both sides of the reaction arrow.
Answer: atoms
Topic: Section 3.1 Balancing Chemical Equations
2) When the reaction $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ is balanced using the smallest whole number coefficients, the coefficient in front of O_{2} is \qquad .
Answer: 13
Topic: Section 3.1 Balancing Chemical Equations
3) When the reaction $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ is balanced, the total number of oxygen atoms in the balanced equation is \qquad .
Answer: 40
Topic: Section 3.1 Balancing Chemical Equations
4) The fundamental SI unit for measuring matter is the \qquad .
Answer: mole
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
5) To the nearest whole number, the molar mass of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ is \qquad $\mathrm{g} / \mathrm{mol}$.
Answer: 188
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
6) The number of grams in 0.333 mol of urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$, is \qquad .
Answer: 20.0 g
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
7) How many moles are in 7.8 g of acetamide, $\mathrm{CH}_{3} \mathrm{CONH}_{2}$?

Answer: 0.13
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
8) The balanced equation for the gaseous state oxidation of ammonia is shown below.

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

How many moles of O_{2} are required to react with 1.2 mole of NH_{3} ?
Answer: 1.5 mol
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
9) The balanced equation for the reaction of acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$, and oxygen in an acetylene torch is

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

In this reaction the number of grams of oxygen required to react with 0.13 g of acetylene is \qquad . Answer: 0.40 g
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
10) Ozone is unstable, decomposing to dioxygen, as shown in the balanced equation

$$
2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}
$$

In this reaction, how many grams of dioxygen can be formed from the decomposition of 96 grams of ozone?
Answer: 96 g
Topic: Section 3.3 Chemical Arithmetic: Stoichiometry
11) The balanced equation for the decomposition of water is shown below.
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
If 0.72 g of water react completely in this reaction, what is the theoretical yield of H_{2} ?
Answer: 0.080 g
Topic: Section 3.4 Yields of Chemical Reactions
12) Oxygen can be produced from the catalytic decomposition of KClO_{3} as shown in the balanced equation below.

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

What is the percent yield if 3.20 grams of oxygen are formed from the reaction of 12.3 grams of KClO_{3} ?
Answer: 66.4\%
Topic: Section 3.4 Yields of Chemical Reactions
13) If 4.0 g of H_{2} react with 4.0 g of F_{2} in the reaction shown below, what is the limiting reactant?

$$
\mathrm{H}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{HF}
$$

Answer: F2
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
14) Ozone reacts with iodide ion as shown in the balanced equation below.

$$
\mathrm{O}_{3}+2 \mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+\mathrm{I}_{2}+2 \mathrm{OH}^{-}
$$

In this reaction, how many grams of dioxygen can be formed from the reaction of 96 grams of ozone? Answer: 64 g
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
15) When carbon dioxide dissolves in water, $\mathrm{H}+$ is formed, which makes the solution acidic, as shown in the balanced equation below.

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}
$$

Answer: 50\%
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
16) Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, is used as a rocket fuel. In the reaction below, if 80.1 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ and 92.0 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ are allowed to react, which is the limiting reactant, and how many grams of excess reactant remain at the end of the reaction?

$$
2 \mathrm{~N}_{2} \mathrm{H}_{4}+\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 3 \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Answer: limiting reactant is $\mathrm{N}_{2} \mathrm{O}_{4}, 16.0 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2} \mathrm{H}_{4}$ remain
Topic: Section 3.5 Reactions with Limiting Amounts of Reactants
17) What is the molarity of a solution prepared by dissolving 0.80 g of NaOH in enough water to make 250 mL of solution?
Answer: 0.080 M
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
18) The number of moles of CaCl_{2} in 25.0 mL of $0.222 \mathrm{M} \mathrm{CaCl}_{2}$ is \qquad .
Answer: 0.00555 mol
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
19) The number of grams of NaCl required to prepare 500 mL of 0.100 M NaCl is \qquad .
Answer: 2.92 g
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
20) The number of milliliters of 12.0 M HCl required to prepare 250 mL of 0.500 M HCl is \qquad . Answer: 10.4 mL
Topic: Section 3.6 Concentrations of Reactants in Solution: Molarity
21) What is the molarity of a solution prepared by diluting 25 mL of 2.0 M HCl with enough water to make 250 mL of solution?
Answer: 0.20 M
Topic: Section 3.7 Diluting Concentrated Solutions
22) The number of milliliters of 0.250 M HCl required to react with 50.00 mL of 0.450 M KOH in the reaction shown below is \qquad .

$$
\mathrm{HCl}+\mathrm{KOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{KCl}
$$

Answer: 90.0 mL
Topic: Section 3.8 Solution Stoichiometry
23) What is the empirical formula of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$?

Answer: CH
Topic: Section 3.10 Percent Composition and Empirical Formulas
24) The empirical formula of a compound that contains 82.66% carbon and 17.34% hydrogen is

Answer: $\mathrm{C}_{2} \mathrm{H}_{5}$

Topic: Section 3.10 Percent Composition and Empirical Formulas
25) Analysis of a $1.000-\mathrm{g}$ sample of the oral hypoglycemic agent metforminTM yielded 0.3720 g of carbon, 0.0858 g of hydrogen, and 0.5422 g of nitrogen. MetforminTM has a molar mass of $129.16 \mathrm{~g} / \mathrm{mol}$. What is the molar mass of MetforminTM?
Answer: $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}_{5}$
Topic: Section 3.11 Determining Empirical Formulas: Elemental Analysis

