Chapter 2 Atoms, Molecules, and Ions

Instructor's Notes

Although much of this chapter will be review for many students who have taken high school chemistry, the ideas included are so central to later study that class coverage will probably be necessary. Key topics are the structure of the atom and related information (atomic number, isotopes), the mole unit, the periodic table, chemical formulas and names, and the relationships between formulas and composition. Three to five class periods will probably be necessary in order to address the essentials in this chapter unless your students are well-versed in some of these topics.

Some points on which students have some problems or questions are:
(a) The rule of determining the charges on transition metal cations tells students that they can assume such ions usually have $2+$ or $3+$ charges (with $2+$ charges especially prominent). They are often uneasy about being given this choice. We certainly emphasize that they will see other possibilities (and that even negative charges are possible but that they will not see them in the general chemistry course).
(b) Students have to be convinced that they have no choice but to learn the language of chemistry by memorizing the names and charges of polyatomic ions. They can be reminded that correct names and formulas are required to prevent serious consequences, such as the use of the wrong medicine which can have tragic results or the purchase of the wrong substance which leads to wasted resources.
(c) A very common problem students have is recognizing that MgBr_{2}, for example, is composed of Mg^{2+} and two Br^{-}ions. We have seen such combinations as Mg^{2+} and $\mathrm{Br}_{2}{ }^{2-}$.

SUGGESTED DEMONSTRATIONS

1. Properties of Elements

- Take as many samples of elements as possible to your lecture on the elements and the periodic table.
- See the series by Alton Banks in the Journal of Chemical Education titled "What's the Use?" This series describes a different element each month and gives references to the Periodic Table Videodisc.
- Pinto, G. "Using Balls from Different Sports to Model the Variation of Atomic Sizes," Journal of Chemical Education 1998, 75, 725.

2. Atomic Structure

- Hohman, J. R. "Introduction of the Scientific Method and Atomic Theory to Liberal Arts Chemistry Students," Journal of Chemical Education 1998, 75, 1578.

3. Elements That Form Molecules in Their Natural States

- Use samples of $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$, and Br_{2} to illustrate elements that are molecules.

4. Formation of Compounds from Elements and Decomposition of a Compound into Its Elements

- Bring many samples of compounds to your lecture. Ignite H_{2} in a balloon or burn Mg in O_{2} to show how elements are turned into compounds. Also burn $\mathrm{Mg}^{\text {in }} \mathrm{CO}_{2}$ to show CO_{2} is made of C and that MgO can be made another way.

5. Ionic Compounds

- Bring a number of common, ionic compounds to class.

6. The Mole Concept

- To illustrate the mole, take 1 molar quantities of elements such as $\mathrm{Mg}, \mathrm{Al}, \mathrm{C}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{Fe}$, and Cu to the classroom.
- When doing examples in lecture, it is helpful to have a sample of the element available. For example, hold up a pre-weighed sample of magnesium wire and ask how many moles of metal it contains. Or, drop a preweighed piece of sodium metal into a dish of water on the overhead projector, and ask how many moles of sodium reacted.

7. Molar Quantities

- Display molar quantities of $\mathrm{NaCl}, \mathrm{H}_{2} \mathrm{O}$, sugar, and common ionic compounds. Especially show some hydrated salts to emphasize the inclusion of $\mathrm{H}_{2} \mathrm{O}$ in their molar mass.
- Display a teaspoon of water and ask how many moles, how many molecules, and how many total atoms are contained.
- Display a piece of CaCO_{3} and ask how many moles are contained in the piece and then how many total atoms.

8. Weight Percent of Elements

- When talking about weight percent of elements, use NO_{2} as an example and then make NO_{2} from Cu and nitric acid.

9. Determine the Formula of a Hydrated Compound

- Heat samples of hydrated CoSO_{4} or CuSO_{4} to illustrate analysis of hydrated compounds and the color change that can occur when water is released and evaporated.
- For the discussion of analysis, heat a sample of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in a crucible to illustrate how to determine the number of waters of hydration and also discuss the distinctive color change observed during this process.

Solutions to Study Questions

2.1 Atoms contain the fundamental particles protons (+1 charge), neutrons (zero charge), and electrons (-1 charge). Protons and neutrons are in the nucleus of an atom. Electrons are the least massive of the three particles.
2.2 Mass number is the sum of the number of protons and number of neutrons for an atom. Atomic mass is the mass of an atom. When the mass is expressed in u, the mass of a proton and of a neutron are both approximately one. Because the mass of electrons is small relative to that of a proton or neutron, the mass number approximates the atomic mass.
2.3 Ratio of diameter of nucleus to diameter of electron cloud is $2 \times 10^{-3} \mathrm{~m}(2 \mathrm{~mm})$ to 200 m or $1: 10^{5}$. For the diameter of the atom (i.e., the electron cloud) $=1 \times 10^{-10} \mathrm{~m}\left(1 \times 10^{-8} \mathrm{~cm}\right)$, the diameter of the nucleus is $1 \times 10^{-10} \mathrm{~m} / 10^{5}=1 \times 10^{-15} \mathrm{~m}=1 \times 10^{-13} \mathrm{~cm}=1 \mathrm{fm}$.
2.4 Each gold atom has a diameter of $2 \times 145 \mathrm{pm}=290 . \mathrm{pm}$
$36 \mathrm{~cm} \cdot \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \cdot \frac{10^{12} \mathrm{pm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{Au} \text { atom }}{290 . \mathrm{pm}}=1.2 \times 10^{9} \mathrm{Au}$ atoms
(a) ${ }_{12}^{27} \mathrm{Mg}$
(b) ${ }_{22}^{48} \mathrm{Ti}$
(c) ${ }_{30}^{62} \mathrm{Zn}$
(a) ${ }_{28}^{59} \mathrm{Ni}$
(b) ${ }_{94}^{24} \mathrm{Pu}$
(c) ${ }_{74}^{184} \mathrm{~W}$

(a)	12	12	12
(b)	50	50	69
(c)	90	90	142
(d)	6	6	7
(e)	29	29	34
(f)	83	83	122

2.8 (a) Number of protons $=$ number of electrons $=43$; number of neutrons $=56$
(b) Number of protons $=$ number of electrons $=95$; number of neutrons $=146$
$2.9 \frac{\text { mass electron }}{\text { mass proton }}=\frac{9.109383 \times 10^{-28} \mathrm{~g}}{1.672622 \times 10^{-24} \mathrm{~g}}=5.446170 \times 10^{-4}$
The proton is 1834 times more massive than an electron. Dalton's estimate was off by a factor of about 2 .
2.10 Negatively charged electrons in the cathode-ray tube collide with He atoms, splitting the atom into an electron and a He^{+}cation. The electrons continued to be attracted to the anode while the cations passed through the perforated cathode.
2.11 Alpha particles are positively charged, beta particles are negatively charged, and gamma particles are neutral. Alpha particles have more mass than beta particles.
2.12 Atoms are not solid, hard, or impenetrable. They have mass (an important aspect of Dalton's hypothesis), and we now know that atoms are in rapid motion at all temperatures above absolute zero (the kineticmolecular theory).
${ }^{16} \mathrm{O} /{ }^{12} \mathrm{C}=15.995 \mathrm{u} / 12.000 \mathrm{u}=1.3329$
$15.995 \mathrm{u} \cdot 1.661 \times 10^{-24} \mathrm{~g} / \mathrm{u}=2.657 \times 10^{-23} \mathrm{~g}$
${ }_{27}^{57} \mathrm{Co}$ (30 neutrons), ${ }_{27}^{58} \mathrm{Co}$ (31 neutrons), and ${ }_{27}^{60} \mathrm{Co}$ (33 neutrons)
Atomic number of Ag is 47 ; both isotopes have 47 protons and 47 electrons.
${ }^{107} \mathrm{Ag} \quad 107-47=60$ neutrons
${ }^{109} \mathrm{Ag} \quad 109-47=62$ neutrons
$2.17 \quad{ }_{1}^{1} \mathrm{H}$, protium: one proton, one electron
${ }_{1}^{2} \mathrm{H}$, deuterium: one proton, one electron, one neutron
${ }_{1}^{3} \mathrm{H}$, tritium: one proton, one electron, two neutrons
2.18
${ }_{9}^{19} \mathrm{X},{ }_{9}^{20} \mathrm{X}$, and ${ }_{9}^{21} \mathrm{X}$ are isotopes of X
The atomic weight of thallium is 204.3833. The fact that this weight is closer to 205 than 203 indicates that the 205 isotope is the more abundant.

Strontium has an atomic weight of 87.62 so ${ }^{88} \mathrm{Sr}$ is the most abundant.
$\left({ }^{6} \mathrm{Li}\right.$ mass $)(\%$ abundance $)+\left({ }^{7} \mathrm{Li}\right.$ mass $)(\%$ abundance $)=$ atomic weight of Li $(6.015121 u)(0.0750)+(7.016003 u)(0.9250)=6.94 u$
$2.22 \quad\left({ }^{24} \mathrm{Mg}\right.$ mass $)(\%$ abundance $)+\left({ }^{25} \mathrm{Mg}\right.$ mass $)(\%$ abundance $)+\left({ }^{26} \mathrm{Mg}\right.$ mass $)(\%$ abundance $)$ $=$ atomic weight of Mg
$(23.985 \mathrm{u})(0.7899)+(24.986 \mathrm{u})(0.1000)+(25.983 \mathrm{u})(0.1101)$

$$
=24.31 \mathrm{u}
$$

Let x represent the abundance of ${ }^{69} \mathrm{Ga}$ and $(1-x)$ represent the abundance of ${ }^{71} \mathrm{Ga}$.
$69.723 \mathrm{u}=(x)(68.9257 \mathrm{u})+(1-x)(70.9249 \mathrm{u})$
$x=0.6012 ;{ }^{69} \mathrm{Ga}$ abundance is $60.12 \%,{ }^{71} \mathrm{Ga}$ abundance is 39.88%
2.24 Let x represent the abundance of ${ }^{151} \mathrm{Eu}$ and $(1-x)$ represent the abundance of ${ }^{153} \mathrm{Eu}$.
$151.965 \mathrm{u}=(x)(150.9197 \mathrm{u})+(1-x)(152.9212 \mathrm{u})$
$x=0.4777 ;{ }^{151} \mathrm{Eu}$ abundance is $47.77 \%,{ }^{153} \mathrm{Eu}$ abundance is 52.23%

2.25		titanium		thallium		
	symbol	Ti		Tl		
	atomic number	22		81		
	atomic weight	47.867		204.3833		
	period	4		6		
	group	4B		3A		
		metal		metal		
2.26		silicon	tin	antimony	sulfur	selenium
	symbol	Si	Sn	Sb	S	Se
	atomic number	14	50	51	16	34
	period	3	5	5	3	4
	group	4A	4A	5A	6A	6A
		metalloid	metal	metalloid	nonmetal	nonmetal

2.27 Periods 2 and 3 have 8 elements, Periods 4 and 5 have 18 elements, and Period 6 has 32 elements.
2.28 There are 26 elements in the seventh period, the majority of them are called the Actinides, and many of them are man-made elements.
(a) C, Cl
(b) $\mathrm{C}, \mathrm{Cl}, \mathrm{Cs}, \mathrm{Ca}$
(c) Ce
(d) $\mathrm{Cr}, \mathrm{Co}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Ce}, \mathrm{Cf}, \mathrm{Cm}$
(e) Cm, Cf
(f) Cl
2.30 There are many correct answers for parts (a) and (d). Possible answers are shown below.
(a) C, carbon
(c) Cl , chlorine
(b) Rb , rubidium
(d) Ne , neon
2.31 Metals: $\mathrm{Na}, \mathrm{Ni}, \mathrm{Np}$

Nonmetals: N, Ne
(a) Bk
(b) Br
(c) B
(d) Ba
(e) Bi
2.33 Molecular formula for nitric acid: HNO_{3}

Structural formula:
The molecule is planar.

2.34 Molecular formula for asparagine: $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$

Structural formula:

(a) Mg^{2+}
(b) Zn^{2+}
(c) Ni^{2+}
(d) Ga^{3+}
(a) Se^{2-}
(b) F^{-}
(c) $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$
(d) N^{3-}
2.36
(a) Ba^{2+}
(e) S^{2-}
(b) Ti^{4+}
(f) ClO_{4}^{-}
(c) $\mathrm{PO}_{4}{ }^{3-}$
(g) Co^{2+}
(d) HCO_{3}^{-}
(h) $\mathrm{SO}_{4}{ }^{2-}$
(a) MnO_{4}^{-}
(d) $\mathrm{NH}_{4}{ }^{+}$
(b) NO_{2}^{-}
(e) $\mathrm{PO}_{4}{ }^{3-}$
(c) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(f) $\mathrm{SO}_{3}{ }^{2-}$
2.39 Potassium loses 1 electron when it becomes a monatomic ion. Argon has the same number of electrons as the K^{+}ion.
2.40 They both gain two electrons. O^{2-} has the same number of electrons as Ne and S^{2-} has the same number of electrons as Ar.
CoF_{3}
(a) $2 \mathrm{~K}^{+}$ions, $1 \mathrm{~S}^{2-}$ ion
(d) $3 \mathrm{NH}_{4}^{+}$ions, $1 \mathrm{PO}_{4}^{3-}$ ion
(b) $1 \mathrm{Co}^{2+}$ ion, $1 \mathrm{SO}_{4}{ }^{2-}$ ion
(e) $1 \mathrm{Ca}^{2+}$ ion, $2 \mathrm{ClO}^{-}$ions
(c) $1 \mathrm{~K}^{+}$ion, $1 \mathrm{MnO}_{4}^{-}$ion
(f) $1 \mathrm{Na}^{+}$ion, $1 \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$ion
(a) $1 \mathrm{Mg}^{2+}$ ion, $2 \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$ions
(d) $1 \mathrm{Ti}^{4+}$ ion, $2 \mathrm{SO}_{4}{ }^{2-}$ ions
(b) $1 \mathrm{Al}^{3+}$ ion, $3 \mathrm{OH}^{-}$ions
(e) $1 \mathrm{~K}^{+}$ion, $1 \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ion
(c) $1 \mathrm{Cu}^{2+}$ ion, $1 \mathrm{CO}_{3}{ }^{2-}$ ion
(f) $1 \mathrm{Ca}^{2+}$ ion, $1 \mathrm{HPO}_{4}{ }^{2-}$ ion

$$
\mathrm{Co}^{2+}: \mathrm{CoO} \quad \mathrm{Co}^{3+} \mathrm{Co}_{2} \mathrm{O}_{3}
$$

2.46
(a) $\mathrm{Pt}^{2+}: \mathrm{PtCl}_{2}$
$\mathrm{Pt}^{4+}: \mathrm{PtCl}_{4}$
(b) $\mathrm{Pt}^{2+}: \mathrm{PtS}$
$\mathrm{Pt}^{4+}: \mathrm{PtS}_{2}$
(a) incorrect, AlCl_{3}
(c) correct
(b) incorrect, KF
(d) correct
(a) incorrect, CaO
(c) incorrect, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ or FeO
(b) correct
(d) correct
(a) potassium sulfide
(c) ammonium phosphate
(b) cobalt(II) sulfate
(d) calcium hypochlorite
(a) calcium acetate
(b) nickel(II) phosphate
(a) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
(d) AlPO_{4}
(b) CaI_{2}
(e) $\mathrm{AgCH}_{3} \mathrm{CO}_{2}$
(c) CuBr_{2}
(a) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
(d) $\mathrm{K}_{2} \mathrm{HPO}_{4}$
(b) KMnO_{4}
(e) $\mathrm{Na}_{2} \mathrm{SO}_{3}$
(c) $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$

$\mathrm{Na}_{2} \mathrm{CO}_{3}$	sodium carbonate	NaI	sodium iodide
BaCO_{3}	barium carbonate	BaI_{2}	barium iodide

$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \quad$ magnesium nitrate
$\mathrm{FePO}_{4} \quad$ iron(III) phosphate $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \quad$ iron(III) nitrate

The force of attraction is stronger in NaF than in NaI because the distance between ion centers is smaller in $\mathrm{NaF}(235 \mathrm{pm})$ than in $\mathrm{NaI}(322 \mathrm{pm})$.
(c) aluminum hydroxide
(d) potassium dihydrogen phosphate
BaCO_{3} barium carbonate
路
ar

The attractive forces are stronger in CaO because the ion charges are greater $(+2 /-2$ in CaO and $+1 /-1$ in $\mathrm{NaCl})$.
(a) nitrogen trifluoride
(c) boron triiodide
(b) hydrogen iodide
(d) phosphorus pentafluoride
(a) dinitrogen pentaoxide
(c) oxygen difluoride
(b) tetraphosphorus trisulfide
(d) xenon tetrafluoride
(a) SCl_{2}
(b) $\mathrm{N}_{2} \mathrm{O}_{5}$
(c) SiCl_{4}
(d) $\quad \mathrm{B}_{2} \mathrm{O}_{3}$
(a) BrF_{3}
(d) $\mathrm{P}_{2} \mathrm{~F}_{4}$
(b) XeF_{2}
(e) $\mathrm{C}_{4} \mathrm{H}_{10}$
(c) $\mathrm{N}_{2} \mathrm{H}_{4}$
(a) $2.5 \mathrm{~mol} \mathrm{Al} \cdot \frac{27.0 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=68 \mathrm{~g} \mathrm{Al}$
(b) $1.25 \times 10^{-3} \mathrm{~mol} \mathrm{Fe} \cdot \frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}=0.0698 \mathrm{~g} \mathrm{Fe}$
(c) $0.015 \mathrm{~mol} \mathrm{Ca} \cdot \frac{40.1 \mathrm{~g} \mathrm{Ca}}{1 \mathrm{~mol} \mathrm{Ca}}=0.60 \mathrm{~g} \mathrm{Ca}$
(d) $653 \mathrm{~mol} \mathrm{Ne} \cdot \frac{20.18 \mathrm{~g} \mathrm{Ne}}{1 \mathrm{~mol} \mathrm{Ne}}=1.32 \times 10^{4} \mathrm{~g} \mathrm{Ne}$
(a) $4.24 \mathrm{~mol} \mathrm{Au} \cdot \frac{197.0 \mathrm{~g} \mathrm{Au}}{1 \mathrm{~mol} \mathrm{Au}}=835 \mathrm{~g} \mathrm{Au}$
(b) $15.6 \mathrm{~mol} \mathrm{He} \cdot \frac{4.003 \mathrm{~g} \mathrm{He}}{1 \mathrm{~mol} \mathrm{He}}=62.4 \mathrm{~g} \mathrm{He}$
(c) $0.063 \mathrm{~mol} \mathrm{Pt} \cdot \frac{195 \mathrm{~g} \mathrm{Pt}}{1 \mathrm{~mol} \mathrm{Pt}}=12 \mathrm{~g} \mathrm{Pt}$
(d) $3.63 \times 10^{-4} \mathrm{~mol} \mathrm{Pu} \cdot \frac{244.7 \mathrm{~g} \mathrm{Pu}}{1 \mathrm{~mol} \mathrm{Pu}}=0.0888 \mathrm{~g} \mathrm{Pu}$
(a) $127.08 \mathrm{~g} \mathrm{Cu} \cdot \frac{1 \mathrm{~mol} \mathrm{Cu}}{63.546 \mathrm{~g} \mathrm{Cu}}=1.9998 \mathrm{~mol} \mathrm{Cu}$
(b) $0.012 \mathrm{~g} \mathrm{Li} \cdot \frac{1 \mathrm{~mol} \mathrm{Li}}{6.94 \mathrm{~g} \mathrm{Li}}=1.7 \times 10^{-3} \mathrm{~mol} \mathrm{Li}$
(c) $5.0 \mathrm{mg} \mathrm{Am} \cdot \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}} \cdot \frac{1 \mathrm{~mol} \mathrm{Am}}{243 \mathrm{~g} \mathrm{Am}}=2.1 \times 10^{-5} \mathrm{~mol} \mathrm{Am}$
(d) $6.75 \mathrm{~g} \mathrm{Al} \cdot \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}}=0.250 \mathrm{~mol} \mathrm{Al}$
(a) $16.0 \mathrm{~g} \mathrm{Na} \cdot \frac{1 \mathrm{~mol} \mathrm{Na}}{22.99 \mathrm{~g} \mathrm{Na}}=0.696 \mathrm{~mol} \mathrm{Na}$
(b) $0.876 \mathrm{~g} \mathrm{Sn} \cdot \frac{1 \mathrm{~mol} \mathrm{Sn}}{118.7 \mathrm{~g} \mathrm{Sn}}=7.38 \times 10^{-3} \mathrm{~mol} \mathrm{Sn}$
(c) $0.0034 \mathrm{~g} \mathrm{Pt} \cdot \frac{1 \mathrm{~mol} \mathrm{Pt}}{195 \mathrm{~g} \mathrm{Pt}}=1.7 \times 10^{-5} \mathrm{~mol} \mathrm{Pt}$
(d) $0.983 \mathrm{~g} \mathrm{Xe} \cdot \frac{1 \mathrm{~mol} \mathrm{Xe}}{131.3 \mathrm{~g} \mathrm{Xe}}=7.49 \times 10^{-3} \mathrm{~mol} \mathrm{Xe}$
$3.99 \mathrm{~g} \mathrm{Ca} \cdot \frac{1 \mathrm{~mol} \mathrm{Ca}}{40.078 \mathrm{~g} \mathrm{Ca}}=0.0996 \mathrm{~mol} \mathrm{Ca}$
$1.85 \mathrm{~g} \mathrm{P} \cdot \frac{1 \mathrm{molP}}{30.9737 \mathrm{~g}}=0.0597 \mathrm{~mol} \mathrm{P}$
$4.14 \mathrm{~g} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{O}}{15.9994 \mathrm{~g} \mathrm{O}}=0.259 \mathrm{~mol} \mathrm{O}$
$0.02 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.00794 \mathrm{~g} \mathrm{H}}=0.02 \mathrm{~mol} \mathrm{H}$
$0.02 \mathrm{~mol} \mathrm{H}<0.0597 \mathrm{~mol} \mathrm{P}<0.0996 \mathrm{~mol} \mathrm{Ca}<0.259 \mathrm{~mol} \mathrm{O}$
2.68 mass and the smallest number of atoms.
$1.0 \mathrm{~g} \mathrm{He} \cdot \frac{1 \mathrm{~mol} \mathrm{He}}{4.00 \mathrm{~g} \mathrm{He}} \cdot \frac{6.02 \times 10^{23} \mathrm{He} \text { atoms }}{1 \mathrm{~mol} \mathrm{He}}=1.5 \times 10^{23} \mathrm{He}$ atoms
$1.0 \mathrm{~g} \mathrm{Fe} \cdot \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.8 \mathrm{~g} \mathrm{Fe}} \cdot \frac{6.02 \times 10^{23} \mathrm{Fe} \text { atoms }}{1 \mathrm{~mol} \mathrm{Fe}}=1.1 \times 10^{22} \mathrm{Fe}$ atoms
$0.10 \mathrm{~g} \mathrm{~K} \cdot \frac{1 \mathrm{~mol} \mathrm{~K}}{39.0983 \mathrm{~g} \mathrm{~K}}=0.0026 \mathrm{~mol} \mathrm{~K}$
$0.10 \mathrm{~g} \mathrm{Mo} \cdot \frac{1 \mathrm{~mol} \mathrm{Mo}}{95.96 \mathrm{~g} \mathrm{Mo}}=0.0010 \mathrm{~mol} \mathrm{Mo}$
$0.10 \mathrm{~g} \mathrm{Cr} \cdot \frac{1 \mathrm{~mol} \mathrm{Cr}}{51.9961 \mathrm{~g} \mathrm{Cr}}=0.0019 \mathrm{~mol} \mathrm{Cr}$
$0.10 \mathrm{~g} \mathrm{Al} \cdot \frac{1 \mathrm{~mol} \mathrm{Al}}{26.9815 \mathrm{~g}}=0.0037 \mathrm{~mol} \mathrm{Al}$
$0.0010 \mathrm{~mol} \mathrm{Mo}<0.0019 \mathrm{~mol} \mathrm{Cr}<0.0026 \mathrm{~mol} \mathrm{~K}<0.0037 \mathrm{~mol} \mathrm{Al}$
$52 \mathrm{~g} \mathrm{Ga} \cdot \frac{1 \mathrm{~mol} \mathrm{Ga}}{69.7 \mathrm{~g} \mathrm{Ga}} \cdot \frac{6.02 \times 10^{23} \mathrm{Ga} \text { atoms }}{1 \mathrm{~mol} \mathrm{Ga}}=4.5 \times 10^{23} \mathrm{Ga}$ atoms

Helium has the smallest molar mass and will have the largest number of atoms. Iron has the largest molar
$9.5 \mathrm{~g} \mathrm{Al} \cdot \frac{1 \mathrm{~mol} \mathrm{Al}}{27.0 \mathrm{~g} \mathrm{Al}} \cdot \frac{6.02 \times 10^{23} \mathrm{Al} \text { atoms }}{1 \mathrm{~mol} \mathrm{Al}}=2.1 \times 10^{23} \mathrm{Al}$ atoms
$112 \mathrm{~g} \mathrm{As} \cdot \frac{1 \mathrm{~mol} \mathrm{As}}{74.92 \mathrm{~g} \mathrm{As}} \cdot \frac{6.022 \times 10^{23} \mathrm{As} \text { atoms }}{1 \mathrm{~mol} \mathrm{As}}=9.00 \times 10^{23} \mathrm{As}$ atoms
Arsenic has the largest number of atoms in the mixture.
2.69
2.75
(a) $\mathrm{Fe}_{2} \mathrm{O}_{3} \quad 159.69 \mathrm{~g} / \mathrm{mol}$
(b) BCl_{3}
$117.17 \mathrm{~g} / \mathrm{mol}$
(c) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$
$176.13 \mathrm{~g} / \mathrm{mol}$
(a) $\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{7}\right)_{2} \quad 446.14 \mathrm{~g} / \mathrm{mol}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}$
(c) $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$
(a) $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$290.79 \mathrm{~g} / \mathrm{mol}$
249.69 g/mol
$\begin{array}{ll}\text { (a) } \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} & 126.07 \mathrm{~g} / \mathrm{mol} \\ \text { (b) } \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} & 246.48 \mathrm{~g} / \mathrm{mol}\end{array}$
(a) $0.0255 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} \cdot \frac{60.10 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}}=1.53 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
(b) $0.0255 \mathrm{~mol} \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \cdot \frac{180.2 \mathrm{~g} \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}}=4.60 \mathrm{~g} \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$
(c) $0.0255 \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} \cdot \frac{180.2 \mathrm{~g} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}{1 \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}=4.60 \mathrm{~g} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
(d) $0.0255 \mathrm{~mol}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \cdot \frac{58.08 \mathrm{~g}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}}{1 \mathrm{~mol}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}}=1.48\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
(a) $0.123 \mathrm{~mol} \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \cdot \frac{242.2 \mathrm{~g} \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4}}{1 \mathrm{~mol} \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4}}=29.8 \mathrm{~g} \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4}$
(b) $0.123 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \frac{116.2 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}}=14.3 \mathrm{~g} \mathrm{C} 4 \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
(c) $0.123 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~S} \cdot \frac{102.2 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~S}}=12.6 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~S}$
(d) $0.123 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO} \cdot \frac{191.3 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}}{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}}=23.5 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}$
$1.00 \mathrm{~kg} \mathrm{SO}_{3} \cdot \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \cdot \frac{1 \mathrm{~mol} \mathrm{SO}_{3}}{80.06 \mathrm{~g} \mathrm{SO}_{3}}=12.5 \mathrm{~mol} \mathrm{SO}_{3}$
$12.5 \mathrm{~mol} \mathrm{SO}_{3} \cdot \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol} \mathrm{SO}_{3}}=7.52 \times 10^{24}$ molecules SO_{3}
7.52×10^{24} molecules $\mathrm{SO}_{3} \cdot \frac{1 \mathrm{~S} \text { atom }}{1 \mathrm{SO}_{3} \text { molecule }}=7.52 \times 10^{24} \mathrm{~S}$ atoms
7.52×10^{24} molecules $\mathrm{SO}_{3} \cdot \frac{3 \mathrm{O} \text { atoms }}{1 \mathrm{SO}_{3} \text { molecule }}=2.26 \times 10^{25} \mathrm{O}$ atoms
$2.76 \quad 0.20 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \frac{2 \mathrm{~mol} \mathrm{NH}_{4}^{+}}{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}} \cdot \frac{6.022 \times 10^{23} \mathrm{NH}_{4}^{+} \text {ions }}{1 \mathrm{~mol} \mathrm{NH}_{4}^{+}}=2.4 \times 10^{23} \mathrm{NH}_{4}^{+}$ions
$0.20 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \frac{1 \mathrm{~mol} \mathrm{SO}_{4}^{2-}}{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}} \cdot \frac{6.022 \times 10^{23} \mathrm{SO}_{4}^{2-} \text { ions }}{1 \mathrm{~mol} \mathrm{NH}_{4}^{+}}=1.2 \times 10^{23} \mathrm{SO}_{4}{ }^{2-}$ ions
$0.20 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \frac{2 \mathrm{~mol} \mathrm{~N}}{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}} \cdot \frac{6.022 \times 10^{23} \mathrm{~N} \text { atoms }}{1 \mathrm{~mol} \mathrm{~N}}=2.4 \times 10^{23} \mathrm{~N}$ atoms
$0.20 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \frac{8 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}} \cdot \frac{6.022 \times 10^{23} \mathrm{H} \text { atoms }}{1 \mathrm{~mol} \mathrm{H}}=9.6 \times 10^{23} \mathrm{H}$ atoms
$0.20 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \frac{1 \mathrm{~mol} \mathrm{~S}}{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}} \cdot \frac{6.022 \times 10^{23} \mathrm{~S} \text { atoms }}{1 \mathrm{~mol} \mathrm{~S}}=1.2 \times 10^{23} \mathrm{~S}$ atoms
$0.20 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \frac{4 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}} \cdot \frac{6.022 \times 10^{23} \mathrm{O} \text { atoms }}{1 \mathrm{~mol} \mathrm{O}}=4.8 \times 10^{23} \mathrm{O}$ atoms

Formula: $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{1} \mathrm{O}_{2}$
Molar mass: $151.16 \mathrm{~g} / \mathrm{mol}$
1 dose $=2 \cdot 500 \mathrm{mg}=1 \times 10^{3} \mathrm{mg}$
$1 \times 10^{3} \mathrm{mg} \cdot \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \cdot \frac{1 \mathrm{~mol}}{151.16 \mathrm{~g}} \cdot \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}=4 \times 10^{21}$ molecules
(a) $324 \mathrm{mg} \mathrm{C}{ }_{9} \mathrm{H}_{8} \mathrm{O}_{4} \cdot \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}} \cdot \frac{1 \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}{180.2 \mathrm{~g} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}=1.80 \times 10^{-3} \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ $1904 \mathrm{mg} \mathrm{NaHCO} 33 \cdot \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}} \cdot \frac{1 \mathrm{~mol} \mathrm{NaHCO}_{3}}{84.007 \mathrm{~g} \mathrm{NaHCO}_{3}}=0.02266 \mathrm{~mol} \mathrm{NaHCO}_{3}$ 1000. $\mathrm{mg} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \cdot \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}} \cdot \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}}{192.13 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}}=5.205 \times 10^{-3} \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$
(b) $1.80 \times 10^{-3} \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} \cdot \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}=1.08 \times 10^{21}$ molecules $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
(a) $\frac{207.2 \mathrm{~g} \mathrm{~Pb}}{239.3 \mathrm{~g} \mathrm{PbS}} \cdot 100 \%=86.59 \% \mathrm{~Pb} \quad \frac{32.07 \mathrm{~g} \mathrm{~S}}{239.3 \mathrm{~g} \mathrm{PbS}} \cdot 100 \%=13.40 \% \mathrm{~S}$
(b) $\frac{(3)(12.01) \mathrm{g} \mathrm{C}}{44.096 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}} \cdot 100 \%=81.71 \% \mathrm{C}$

$$
\frac{(8)(1.008) \mathrm{g} \mathrm{H}}{44.096 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}} \cdot 100 \%=18.29 \% \mathrm{H}
$$

(c) $\frac{(10)(12.01) \mathrm{g} \mathrm{C}}{150.21 \mathrm{~g} \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}} \cdot 100 \%=79.95 \% \mathrm{C}$ $\frac{16.00 \mathrm{~g} \mathrm{O}}{150.21 \mathrm{~g} \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}} \cdot 100 \%=10.65 \% \mathrm{O}$

Empirical formula mass $=58.06 \mathrm{~g} / \mathrm{mol}$

The molecular formula is $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right)_{2}$, or $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
(a) $\frac{(8)(12.01) \mathrm{g} \mathrm{C}}{166.18 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}} \cdot 100 \%=57.82 \% \mathrm{C}$

$$
\frac{(2)(14.01) \mathrm{g} \mathrm{~N}}{166.18 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}} \cdot 100 \%=16.86 \% \mathrm{~N}
$$

(b) $\frac{(10)(12.01) \mathrm{g} \mathrm{C}}{156.26 \mathrm{~g} \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}} \cdot 100 \%=76.86 \% \mathrm{C}$

$$
\frac{16.00 \mathrm{~g} \mathrm{O}}{156.26 \mathrm{~g} \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}} \cdot 100 \%=10.24 \% \mathrm{O}
$$

(c) $\frac{58.93 \mathrm{~g} \mathrm{Co}}{237.93 \mathrm{~g} \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}} \cdot 100 \%=24.77 \% \mathrm{Co}$

$$
\frac{(12)(1.008) \mathrm{g} \mathrm{H}}{237.93 \mathrm{~g} \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}} \cdot 100 \%=5.084 \% \mathrm{H}
$$

$\frac{63.55 \mathrm{~g} \mathrm{Cu}}{95.62 \mathrm{~g} \mathrm{CuS}} \cdot 100 \%=66.46 \% \mathrm{Cu}$
$10.0 \mathrm{~g} \mathrm{Cu} \cdot \frac{100.00 \mathrm{~g} \mathrm{CuS}}{66.46 \mathrm{~g} \mathrm{Cu}}=15.0 \mathrm{~g} \mathrm{CuS}$
$\frac{47.87 \mathrm{~g} \mathrm{Ti}}{151.71 \mathrm{~g} \mathrm{FeTiO}_{3}} \cdot 100 \%=31.55 \% \mathrm{Ti}$
$750 \mathrm{~g} \mathrm{Ti} \cdot \frac{100.00 \mathrm{~g} \mathrm{FeTiO}_{3}}{30.35 \mathrm{~g} \mathrm{Ti}}=2.4 \times 10^{3} \mathrm{~g} \mathrm{FeTiO}_{3}$

Empirical formula mass $=59.04 \mathrm{~g} / \mathrm{mol}$

The molecular formula is $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$, or $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$
The molecular formats $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right)_{2}$, or $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$

(a)	CH	26.0	$26.0 / 13.0=2$	$\mathrm{C}_{2} \mathrm{H}_{2}$
(b)	CHO	116.1	$116.1 / 29.0=4$	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$
(c)	CH_{2}	112.2	$\left(\mathrm{CH}_{2}\right)_{8}=$	$\mathrm{C}_{8} \mathrm{H}_{16}$

2.86

Empirical formula
(a) $\quad \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}$
150.1
44.1
53.3
(c) $\quad \mathrm{B}_{2} \mathrm{H}_{5}$
$\mathrm{C}_{3} \mathrm{H}_{8}$

Assume 100.00 g of compound.
$92.26 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=7.681 \mathrm{~mol} \mathrm{C} \quad 7.74 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=7.68 \mathrm{~mol} \mathrm{H}$
$\frac{7.681 \mathrm{~mol} \mathrm{C}}{7.68 \mathrm{~mol} \mathrm{H}}=\frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{H}} \quad$ The empirical formula is CH
$\frac{26.02 \mathrm{~g} / \mathrm{mol}}{13.02 \mathrm{~g} / \mathrm{mol}}=2 \quad$ The molecular formula is $\mathrm{C}_{2} \mathrm{H}_{2}$
2.88 The compound is 88.5% B and $11.5 \% \mathrm{H}$. Assume 100.0 g of compound.
$88.5 \mathrm{~g} \mathrm{~B} \cdot \frac{1 \mathrm{~mol} \mathrm{~B}}{10.81 \mathrm{~g} \mathrm{~B}}=8.19 \mathrm{~mol} \mathrm{~B} \quad 11.5 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=11.4 \mathrm{~mol} \mathrm{H}$
$\frac{11.4 \mathrm{~mol} \mathrm{H}}{8.19 \mathrm{~mol} \mathrm{~B}}=\frac{1.39 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{~B}}=\frac{7 / 5 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{~B}}=\frac{7 \mathrm{~mol} \mathrm{H}}{5 \mathrm{~mol} \mathrm{~B}} \quad$ The empirical formula is $\mathrm{B}_{5} \mathrm{H}_{7}$
2.89 The compound is $89.94 \% \mathrm{C}$ and $10.06 \% \mathrm{H}$. Assume 100.00 g of compound.
$89.94 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=7.488 \mathrm{~mol} \mathrm{C} \quad 10.06 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.0079 \mathrm{~g} \mathrm{H}}=9.981 \mathrm{~mol} \mathrm{H}$
$\frac{9.981 \mathrm{~mol} \mathrm{H}}{7.488 \mathrm{~mol} \mathrm{C}}=\frac{1.33 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{C}}=\frac{4 / 3 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{C}}=\frac{4 \mathrm{~mol} \mathrm{H}}{3 \mathrm{~mol} \mathrm{C}} \quad$ The empirical formula is $\mathrm{C}_{3} \mathrm{H}_{4}$
$\frac{120.2 \mathrm{~g} / \mathrm{mol}}{40.07 \mathrm{~g} / \mathrm{mol}}=3$
The molecular formula is $\mathrm{C}_{9} \mathrm{H}_{12}$
2.90 Assume 100.00 g of compound.
$57.17 \mathrm{~g} \mathrm{~S} \cdot \frac{1 \mathrm{~mol} \mathrm{~S}}{32.065 \mathrm{~g} \mathrm{~S}}=1.783 \mathrm{~mol} \mathrm{~S} \quad 42.83 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=3.566 \mathrm{~mol} \mathrm{C}$
$\frac{3.566 \mathrm{~mol} \mathrm{C}}{1.783 \mathrm{~mol} \mathrm{~S}}=\frac{2 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{~S}} \quad$ The empirical formula is $\mathrm{C}_{2} \mathrm{~S}$
$\frac{448.70 \mathrm{~g} / \mathrm{mol}}{56.087 \mathrm{~g} / \mathrm{mol}}=8 \quad$ The molecular formula is $\mathrm{C}_{16} \mathrm{~S}_{8}$
2.91 Assume 100.00 g of compound.
$63.15 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=5.258 \mathrm{~mol} \mathrm{C}$
$5.30 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=5.26 \mathrm{~mol} \mathrm{H}$
$31.55 \mathrm{~g} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{O}}{15.999 \mathrm{~g} \mathrm{O}}=1.972 \mathrm{~mol} \mathrm{O}$
$\frac{5.258 \mathrm{~mol} \mathrm{C}}{1.972 \mathrm{~mol} \mathrm{O}}=\frac{2.667 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{O}}=\frac{8 \mathrm{~mol} \mathrm{C}}{3 \mathrm{~mol} \mathrm{O}} \quad \frac{5.26 \mathrm{~mol} \mathrm{H}}{1.972 \mathrm{~mol} \mathrm{O}}=\frac{2.667 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{O}}=\frac{8 \mathrm{~mol} \mathrm{H}}{3 \mathrm{~mol} \mathrm{O}}$
The empirical formula is $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$
The molar mass is equal to the empirical formula mass, so the molecular formula is also $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$
2.96

Assume 100.0 g of compound.
$74.0 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=6.16 \mathrm{~mol} \mathrm{C} \quad 8.65 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=8.58 \mathrm{~mol} \mathrm{H}$
$17.35 \mathrm{~g} \mathrm{~N} \cdot \frac{1 \mathrm{~mol} \mathrm{~N}}{14.007 \mathrm{~g} \mathrm{~N}}=1.239 \mathrm{~mol} \mathrm{~N}$
$\frac{6.16 \mathrm{~mol} \mathrm{C}}{1.239 \mathrm{~mol} \mathrm{~N}}=\frac{5 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{~N}} \quad \frac{8.58 \mathrm{~mol} \mathrm{H}}{1.239 \mathrm{~mol} \mathrm{~N}}=\frac{7 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{~N}} \quad$ The empirical formula is $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}$
$\frac{162 \mathrm{~g} / \mathrm{mol}}{81.1 \mathrm{~g} / \mathrm{mol}}=2 \quad$ The molecular formula is $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$
0.678 g compound $-0.526 \mathrm{~g} \mathrm{Xe}=0.152 \mathrm{~g} \mathrm{~F}$
$0.526 \mathrm{~g} \mathrm{Xe} \cdot \frac{1 \mathrm{~mol} \mathrm{Xe}}{131.3 \mathrm{~g} \mathrm{Xe}}=0.00401 \mathrm{~mol} \mathrm{Xe} \quad 0.152 \mathrm{~g} \mathrm{~F} \cdot \frac{1 \mathrm{~mol} \mathrm{~F}}{19.00 \mathrm{~g} \mathrm{~F}}=0.00800 \mathrm{~mol} \mathrm{~F}$
$\frac{0.00800 \mathrm{~mol} \mathrm{~F}}{0.00401 \mathrm{~mol} \mathrm{Xe}}=\frac{2 \mathrm{~mol} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{Xe}} \quad$ The empirical formula is XeF_{2}
$.94 \quad 5.722 \mathrm{~g}$ compound $-1.256 \mathrm{~g} \mathrm{~S}=4.466 \mathrm{~g} \mathrm{~F}$
$1.256 \mathrm{~g} \mathrm{~S} \cdot \frac{1 \mathrm{~mol} \mathrm{~S}}{32.066 \mathrm{~g} \mathrm{~S}}=0.03917 \mathrm{~mol} \mathrm{~S} \quad 4.466 \mathrm{~g} \mathrm{~F} \cdot \frac{1 \mathrm{~mol} \mathrm{~F}}{18.998 \mathrm{~g} \mathrm{~F}}=0.2351 \mathrm{~mol} \mathrm{~F}$
$\frac{0.2351 \mathrm{~mol} \mathrm{~F}}{0.03917 \mathrm{~mol} \mathrm{~S}}=\frac{6 \mathrm{~mol} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{~S}} \quad$ The empirical formula is $\mathrm{SF}_{6} ; x=6$
$2.95 \quad 1.394 \mathrm{~g} \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}-0.885 \mathrm{~g} \mathrm{MgSO}_{4} \mathrm{XH}_{2} \mathrm{O}=0.509 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$\left(0.509 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\left(1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / 18.02 \mathrm{~g}\right)=0.0282 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ lost
$\left(1.394 \mathrm{~g} \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)\left(1 \mathrm{~mol} \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} / 246.48 \mathrm{~g}\right)=0.005656 \mathrm{~mol}$
$0.0282 \mathrm{~mol} / 0.005656 \mathrm{~mol}=4.99 \sim 5$
$7 \mathrm{H}_{2} \mathrm{O}-5 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{H}_{2} \mathrm{O}$ left per MgSO_{4}
3.69 g product $-1.25 \mathrm{~g} \mathrm{Ge}=2.44 \mathrm{~g} \mathrm{Cl}$
$1.25 \mathrm{~g} \mathrm{Ge} \cdot \frac{1 \mathrm{~mol} \mathrm{Ge}}{72.61 \mathrm{~g} \mathrm{Ge}}=0.0172 \mathrm{~mol} \mathrm{Ge}$
$\frac{0.0688 \mathrm{~mol} \mathrm{Cl}}{0.0172 \mathrm{~mol} \mathrm{Ge}}=\frac{4 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Ge}} \quad$ The empirical formula is GeCl_{4}
2.97

Symbol	${ }^{58} \mathrm{Ni}$	S		${ }^{30} \mathrm{Ne}$
Number of protons	28	16	10	${ }^{55} \mathrm{Mn}$
Number of neutrons	30	17	10	35
Number of electrons	28	16	10	25
Name of element	nickel	sulfur	neon	manganese

2.98 The atomic weight of potassium is 39.0983 u , so the lighter isotope, ${ }^{39} \mathrm{~K}$ is more abundant than ${ }^{41} \mathrm{~K}$.
2.99 Crossword Puzzle

S	N
B	I

2.100 (a) Mg is the most abundant main group metal.
(b) H is the most abundant nonmetal.
(c) Si is the most abundant metalloid.
(d) Fe is the most abundant transition element.
(e) F and Cl are the halogens included, and of these Cl is the most abundant.
2.101
(a) $\frac{63.546 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{Cu}} \cdot \frac{1 \mathrm{~mol} \mathrm{Cu}}{6.0221 \times 10^{23} \mathrm{Cu} \text { atoms }}=1.0552 \times 10^{-22} \mathrm{~g} / \mathrm{Cu}$ atom
(b) $\frac{\$ 41.70}{7.0 \mathrm{~g} \text { wire }} \cdot \frac{1 \mathrm{~g} \text { wire }}{0.99999 \mathrm{~g} \mathrm{Cu}} \cdot \frac{1.0552 \times 10^{-22} \mathrm{~g}}{1 \mathrm{Cu} \text { atom }}=\$ 6.3 \times 10^{-22} / \mathrm{Cu}$ atom
2.102 (d) $3.43 \times 10^{-27} \mathrm{~mol} \mathrm{~S}_{8}$ is impossible. This amount is less than one molecule of S_{8}.
2.103
(a) Sr , strontium
(f) Mg , magnesium
(b) Zr , zirconium
(g) Kr, krypton
(c) C, carbon
(h) S , sulfur
(d) As, arsenic
(i) As, arsenic or Ge , germanium
(e) I, iodine
2.104 Carbon has three allotropes. Graphite consists of flat sheets of carbon atoms, diamond has carbon atoms attached to four other others in a tetrahedron, and buckminsterfullerene is a 60 -atom cage of carbon atoms. Oxygen has two allotropes. Diatomic oxygen consists of molecules containing two oxygen atoms and ozone consists of molecules containing three oxygen atoms.
2.105 (a) One mole of Na has a mass of approximately 23 g , a mole of Si has a mass of 28 g , and a mole of U has a mass of 238 g . A 0.25 mol sample of U therefore represents a greater mass.
(b) A 0.5 mol sample of Na has a mass of approximately 12.5 g , and 1.2×10^{22} atoms of Na is approximately 0.02 moles of Na . Therefore 0.50 mol Na represents a greater mass.
(c) The molar mass of K is approximately $39 \mathrm{~g} / \mathrm{mol}$ while that of Fe is approximately $56 \mathrm{~g} / \mathrm{mol}$. A single atom of Fe has a greater mass than an atom of K , so 10 atoms of Fe represents more mass.
$2.106 \quad 15 \mathrm{mg} \cdot \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}} \cdot \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.85 \mathrm{~g} \mathrm{Fe}}=2.7 \times 10^{-4} \mathrm{~mol} \mathrm{Fe}$
$2.7 \times 10^{-4} \mathrm{~mol} \mathrm{Fe} \cdot \frac{6.02 \times 10^{23} \text { atoms Fe }}{1 \mathrm{~mol} \mathrm{Fe}}=1.6 \times 10^{20}$ atoms Fe
(b) $19.921 \mathrm{~mol} \mathrm{H}_{2} \cdot \frac{2.0158 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}=40.157 \mathrm{~g} \mathrm{H}_{2}$
(c) $8.576 \mathrm{~mol} \mathrm{C} \cdot \frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=103.0 \mathrm{~g} \mathrm{C}$
(d) $7.4 \mathrm{~mol} \mathrm{Si} \cdot \frac{28.1 \mathrm{~g} \mathrm{Si}}{1 \mathrm{~mol} \mathrm{Si}}=210 \mathrm{~g} \mathrm{Si}$
(e) $9.221 \mathrm{~mol} \mathrm{Na} \cdot \frac{22.990 \mathrm{~g} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{Na}}=212.0 \mathrm{~g} \mathrm{Na}$
(f) 4.07×10^{24} atoms $\mathrm{Al} \cdot \frac{1 \mathrm{~mol} \mathrm{Al}}{6.022 \times 10^{23} \text { atoms Al }} \cdot \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=182 \mathrm{~g} \mathrm{Al}$
(g) $9.2 \mathrm{~mol} \mathrm{Cl}_{2} \cdot \frac{70.9 \mathrm{~g} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{Cl}_{2}}=650 \mathrm{~g} \mathrm{Cl}_{2}$
(b) $<$ (c) $<$ (f) $<$ (d) $<$ (e) $<$ (a) $<$ (g)
$2.108 \quad 0.744 \mathrm{~g}$ phosphorus combined with $(1.704 \mathrm{~g}-0.744 \mathrm{~g})=0.960 \mathrm{~g} \mathrm{O}$
$\frac{(0.744 / 4) \mathrm{g} \mathrm{P}}{(0.960 / 10) \mathrm{g} \mathrm{O}}=\frac{1.94 \mathrm{~g} \mathrm{P}}{1 \mathrm{~g} \mathrm{O}}$
$16.000 \mathrm{u} \mathrm{O} \cdot \frac{1.94 \mathrm{~g} \mathrm{P}}{1 \mathrm{~g} \mathrm{O}}=31.0 \mathrm{u} \mathrm{P}$
2.109 (a) Use current values to determine the atomic mass of oxygen if $\mathrm{H}=1.0000 \mathrm{u}$
$1.0000 \mathrm{u} \mathrm{H} \cdot \frac{15.9994 \mathrm{u} \mathrm{O}}{1.00794 \mathrm{u} \mathrm{H}}=15.873 \mathrm{u} \mathrm{O}$

The value of Avogadro's number is based on the atomic mass of carbon.
$1.0000 \mathrm{uH} \cdot \frac{12.011 \mathrm{u} \mathrm{C}}{1.00794 \mathrm{uH}}=11.916 \mathrm{u} \mathrm{C}$
11.916 u C $\square \frac{6.02214199 \times 10^{23} \text { particles }}{12.0000 \mathrm{u} \mathrm{C}}=5.9802 \times 10^{23}$ particles
(b) $16.0000 \mathrm{u} \mathrm{O} \cdot \frac{1.00794 \mathrm{u} \mathrm{H}}{15.9994 \mathrm{u} \mathrm{O}}=1.00798 \mathrm{u} \mathrm{H}$
$16.0000 \mathrm{u} \mathrm{O} \cdot \frac{12.011 \mathrm{u} \mathrm{C}}{15.9994 \mathrm{u} \mathrm{O}}=12.011 \mathrm{u} \mathrm{C}$
12.011 u C i $\frac{6.02214199 \times 10^{23} \text { particles }}{12.0000 \mathrm{u} \mathrm{C}}=6.0279 \times 10^{23}$ particles
2.11068 atoms $\mathrm{K} \cdot \frac{1 \mathrm{~mol} \mathrm{~K}}{6.02 \times 10^{23} \text { atoms K}} \cdot \frac{39.1 \mathrm{~g} \mathrm{~K}}{1 \mathrm{~mol} \mathrm{~K}}=4.4 \times 10^{-21} \mathrm{~g} \mathrm{~K}$

32 atoms $\mathrm{Na} \cdot \frac{1 \mathrm{~mol} \mathrm{Na}}{6.02 \times 10^{23} \text { atoms Na}} \cdot \frac{23.0 \mathrm{~g} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{Na}}=1.2 \times 10^{-21} \mathrm{~g} \mathrm{Na}$
weight $\% \mathrm{~K}=\frac{4.4 \times 10^{-21} \mathrm{~g} \mathrm{~K}}{4.4 \times 10^{-21} \mathrm{~g} \mathrm{~K}+1.2 \times 10^{-21} \mathrm{~g} \mathrm{Na}} \cdot 100 \%=78 \% \mathrm{~K}$
$2.111 \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \quad \mathrm{NiCO}_{3} \quad \mathrm{NiSO}_{4}$
2.112 A strontium atom has 38 electrons. When an atom of strontium forms an ion, it loses two electrons, forming an ion having the same number of electrons as the noble gas krypton.
2.113 All five compounds contain three chlorine atoms. The compound with the lowest molar mass, (a) BCl_{3}, has the highest weight percent of chlorine.

$$
\frac{(3)(35.45) \mathrm{g} \mathrm{Cl}}{117.16 \mathrm{~g} \mathrm{BCl}_{3}} \cdot 100 \%=90.77 \% \mathrm{Cl}
$$

2.114
(a) $1.0 \mathrm{~g} \mathrm{BeCl}_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{BeCl}_{2}}{79.9 \mathrm{~g} \mathrm{BeCl}_{2}} \cdot \frac{3 \mathrm{~mol} \text { atoms }}{1 \mathrm{~mol} \mathrm{BeCl}_{2}} \cdot \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol} \text { atoms }}=2.3 \times 10^{22}$ atoms
(b) $1.0 \mathrm{~g} \mathrm{MgCl}_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{MgCl}_{2}}{95.2 \mathrm{~g} \mathrm{MgCl}_{2}} \cdot \frac{3 \mathrm{~mol} \text { atoms }}{1 \mathrm{~mol} \mathrm{MgCl}_{2}} \cdot \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol} \text { atoms }}=1.9 \times 10^{22}$ atoms
(c) $1.0 \mathrm{~g} \mathrm{CaS} \cdot \frac{1 \mathrm{~mol} \mathrm{CaS}}{72.1 \mathrm{~g} \mathrm{CaS}} \cdot \frac{2 \mathrm{~mol} \text { atoms }}{1 \mathrm{~mol} \mathrm{CaS}} \cdot \frac{6.02 \times 10^{23} \mathrm{atoms}}{1 \mathrm{~mol} \text { atoms }}=1.7 \times 10^{22}$ atoms
(d) $1.0 \mathrm{~g} \mathrm{SrCO}_{3} \cdot \frac{1 \mathrm{~mol} \mathrm{SrCO}_{3}}{148 \mathrm{~g} \mathrm{SrCO}_{3}} \cdot \frac{5 \mathrm{~mol} \text { atoms }}{1 \mathrm{~mol} \mathrm{SrCO}_{3}} \cdot \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol} \text { atoms }}=2.0 \times 10^{22}$ atoms
(e) $1.0 \mathrm{~g} \mathrm{BaSO}_{4} \cdot \frac{1 \mathrm{~mol} \mathrm{BaSO}_{4}}{233 \mathrm{~g} \mathrm{BaSO}_{4}} \cdot \frac{6 \mathrm{~mol} \mathrm{atoms}}{1 \mathrm{~mol} \mathrm{BaSO}_{4}} \cdot \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol} \text { atoms }}=1.6 \times 10^{22}$ atoms

The $1.0-\mathrm{g}$ sample of (a) BeCl_{2} has the largest number of atoms.
$2.1153 .0 \times 10^{23}$ molecules represents 0.50 mol of adenine. The molar mass of adenine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5}\right)$ is $135.13 \mathrm{~g} / \mathrm{mol}$, so 0.5 mol of adenine has a mass of 67 g . A $40.0-\mathrm{g}$ sample of adenine therefore has less mass than 0.5 mol of adenine.
(a) BaF_{2} : barium fluoride
SiCl_{4} : silicon tetrachloride
NiBr_{2} : nickel(II) bromide
(b) BaF_{2} and NiBr_{2} are ionic; SiCl_{4} is molecular
(c) $0.50 \mathrm{~mol} \mathrm{BaF}_{2} \cdot \frac{175 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{BaF}_{2}}=88 \mathrm{~g} \mathrm{BaF}_{2}$
$0.50 \mathrm{~mol} \mathrm{SiCl}_{4} \cdot \frac{170 . \mathrm{g}}{1 \mathrm{~mol} \mathrm{SiCl}_{4}}=85 \mathrm{~g} \mathrm{SiCl}_{4}$
$1.0 \mathrm{~mol} \mathrm{NiBr}_{2} \cdot \frac{219 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{NiBr}_{2}}=219 \mathrm{~g} \mathrm{NiBr}_{2} \quad 1.0 \mathrm{~mol} \mathrm{NiBr}_{2}$ has the largest mass
$2.1170 .050 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O} \cdot \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~mL}} \cdot \frac{1.00 \mathrm{~g}}{1 \mathrm{~cm}^{3}} \cdot \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.0 \mathrm{~g}} \cdot \frac{6.02 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}=1.7 \times 10^{21}$ molecules $\mathrm{H}_{2} \mathrm{O}$
2.118 (a) Molar mass $=305.42 \mathrm{~g} / \mathrm{mol}$
(b) $55 \mathrm{mg} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3} \cdot \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}} \cdot \frac{1 \mathrm{~mol} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}}{305.42 \mathrm{~g}}=1.8 \times 10^{-4} \mathrm{~mol} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}$
(c) $\frac{(18)(12.01) \mathrm{g} \mathrm{C}}{305.42 \mathrm{~g} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}} \cdot 100 \%=70.78 \% \mathrm{C} \quad \frac{(27)(1.008) \mathrm{g} \mathrm{H}}{305.42 \mathrm{~g} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}} \cdot 100 \%=8.911 \% \mathrm{H}$

$$
\frac{14.01 \mathrm{~g} \mathrm{~N}}{305.42 \mathrm{~g} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}} \cdot 100 \%=4.587 \% \mathrm{~N} \quad \frac{(3)(16.00) \mathrm{g} \mathrm{O}^{3}}{305.42 \mathrm{~g} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}} \cdot 100 \%=15.72 \% \mathrm{O}
$$

(d) $55 \mathrm{mg} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3} \cdot \frac{70.78 \mathrm{mg} \mathrm{C}}{100.00 \mathrm{mg} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}}=39 \mathrm{mg} \mathrm{C}$
2.119 Molar mass $=245.77 \mathrm{~g} / \mathrm{mol}$
$\frac{63.55 \mathrm{~g} \mathrm{Cu}}{245.77 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}} \cdot 100 \%=25.86 \% \mathrm{Cu}$
$\frac{(4)(14.01) \mathrm{g} \mathrm{N}}{245.77 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}} \cdot 100 \%=22.80 \% \mathrm{~N}$
$\frac{(14)(1.008) \mathrm{g} \mathrm{H}}{245.77 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}} \cdot 100 \%=5.742 \% \mathrm{H}$
$\frac{32.07 \mathrm{~g} \mathrm{~S}}{245.77 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}} \cdot 100 \%=13.05 \% \mathrm{~S}$
$\frac{(5)(16.00) \mathrm{g} \mathrm{O}^{2}}{245.77 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}} \cdot 100 \%=32.55 \% \mathrm{O}$
$10.5 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \frac{25.86 \mathrm{~g} \mathrm{Cu}}{100.00 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}}=2.72 \mathrm{~g} \mathrm{Cu}$
$10.5 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{245.77 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}}=0.770 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
2.120
(a) Ethylene glycol $\quad \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} \quad$ Molar mass $=62.07 \mathrm{~g} / \mathrm{mol}$

$$
\frac{(2)(12.01) \mathrm{g} \mathrm{C}}{62.07 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}} \cdot 100 \%=38.70 \% \mathrm{C} \quad \frac{(2)(16.00) \mathrm{g} \mathrm{O}}{62.07 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}} \cdot 100 \%=51.55 \% \mathrm{O}
$$

(b) Dihydroxyacetone $\quad \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3} \quad$ Molar mass $=90.08 \mathrm{~g} / \mathrm{mol}$ $\frac{(3)(12.01) \mathrm{g} \mathrm{C}}{90.08 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}} \cdot 100 \%=40.00 \% \mathrm{C} \quad \frac{(3)(16.00) \mathrm{g} \mathrm{O}}{90.08 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}} \cdot 100 \%=53.29 \% \mathrm{O}$
(c) Ascorbic acid $\quad \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6} \quad$ Molar mass $=176.13 \mathrm{~g} / \mathrm{mol}$

$$
\frac{(6)(12.01) \mathrm{g} \mathrm{C}^{176.13 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}} \cdot 100 \%=40.91 \% \mathrm{C} \quad \frac{(6)(16.00) \mathrm{g} \mathrm{O}}{176.13 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}} \cdot 100 \%=54.51 \% \mathrm{O} .0 .}{}
$$

Ascorbic acid has a larger percentage of carbon and of oxygen.
$2.121 \frac{1.5 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{C}}=\frac{3 / 2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{C}}=\frac{3 \mathrm{~mol} \mathrm{H}}{2 \mathrm{~mol} \mathrm{C}}=\frac{6 \mathrm{~mol} \mathrm{H}}{4 \mathrm{~mol} \mathrm{C}}$
$\frac{1.25 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{C}}=\frac{5 / 4 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{C}}=\frac{5 \mathrm{~mol} \mathrm{O}}{4 \mathrm{~mol} \mathrm{C}} \quad$ The empirical formula is $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$.
$2.122 \frac{55.85 \mathrm{~g} \mathrm{Fe}}{151.92 \mathrm{~g} \mathrm{FeSO}_{4}} \cdot 100 \%=36.76 \% \mathrm{Fe} \quad \frac{55.85 \mathrm{~g} \mathrm{Fe}}{446.15 \mathrm{~g} \mathrm{Fe}_{\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{7}\right)_{2}}} \cdot 100 \%=12.52 \% \mathrm{Fe}$
The tablet containing FeSO_{4} will deliver more atoms of iron.
2.123 Assume 100.00 g of compound.
$30.70 \mathrm{~g} \mathrm{Fe} \cdot \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.845 \mathrm{~g}}=0.5497 \mathrm{~mol} \mathrm{Fe} \quad 69.30 \mathrm{~g} \mathrm{CO} \cdot \frac{1 \mathrm{~mol} \mathrm{CO}}{28.010 \mathrm{~g}}=2.474 \mathrm{~mol} \mathrm{CO}$
$\frac{2.474 \mathrm{~mol} \mathrm{CO}}{0.5497 \mathrm{~mol} \mathrm{Fe}}=\frac{4.5 \mathrm{~mol} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{Fe}}=\frac{9 \mathrm{~mol} \mathrm{CO}}{2 \mathrm{~mol} \mathrm{Fe}} \quad$ The empirical formula is $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$
2.124
(a) $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO} \quad$ Molar mass $=165.23 \mathrm{~g} / \mathrm{mol}$
(b) $\frac{(10)(12.01) \mathrm{g} \mathrm{C}}{165.23 \mathrm{~g} \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}} \cdot 100 \%=72.69 \% \mathrm{C}$
(c) $0.125 \mathrm{~g} \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO} \cdot \frac{1 \mathrm{~mol} \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}}{165.23 \mathrm{~g}}=7.57 \times 10^{-4} \mathrm{~mol} \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}$
(d) $7.57 \times 10^{-4} \mathrm{~mol} \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO} \cdot \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol} \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}}=4.56 \times 10^{20}$ molecules 4.56×10^{20} molecules $\cdot \frac{10 \mathrm{C} \text { atoms }}{1 \text { molecule }}=4.56 \times 10^{21} \mathrm{C}$ atoms
2.125
(a) $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}$

(b) $125 \mathrm{mg} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S} \cdot \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}} \cdot \frac{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}}{183.19 \mathrm{~g}}=6.82 \times 10^{-4} \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}$
(c) $125 \mathrm{mg} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S} \cdot \frac{32.07 \mathrm{mg} \mathrm{S}}{183.19 \mathrm{mg} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}}=21.9 \mathrm{mg} \mathrm{S}$
(a) chlorine trifluoride
(f) oxygen difluoride
(b) nitrogen trichloride
(g) potassium iodide, ionic
(c) strontium sulfate, ionic
(h) aluminum sulfide, ionic
(d) calcium nitrate, ionic
(i) phosphorus trichloride
(e) xenon tetrafluoride
(j) potassium phosphate, ionic
(a) NaOCl , ionic
(f) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}$, ionic
(b) BI_{3}
(g) $\mathrm{KH}_{2} \mathrm{PO}_{4}$, ionic
(c) $\mathrm{Al}\left(\mathrm{ClO}_{4}\right)_{3}$, ionic
(h) $\mathrm{S}_{2} \mathrm{Cl}_{2}$
(d) $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$, ionic
(i) ClF_{3}
(e) KMnO_{4}, ionic
(j) PF_{3}
2.127
2.128

Cation	Anion	Name	Formula
$\mathrm{NH}_{4}{ }^{+}$	Br^{-}	ammonium bromide	$\mathrm{NH}_{4} \mathrm{Br}$
Ba^{2+}	S^{2-}	barium sulfide	BaS
Fe^{2+}	Cl^{-}	iron(II) chloride	FeCl_{2}
$\mathrm{~Pb}^{2+}$	F^{-}	lead(II) fluoride	PbF_{2}
Al^{3+}	CO_{3}^{2-}	aluminum carbonate	$\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
Fe^{3+}	O^{2-}	iron(III) oxide	$\mathrm{Fe}_{2} \mathrm{O}_{3}$

2.129 (a) Assume 100.0 g of compound.

$$
14.6 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=1.22 \mathrm{~mol} \mathrm{C} \quad 39.0 \mathrm{~g} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.44 \mathrm{~mol} \mathrm{O}
$$

$$
\begin{array}{ll}
46.3 \mathrm{~g} \mathrm{~F} \cdot \frac{1 \mathrm{~mol} \mathrm{~F}}{19.00 \mathrm{~g} \mathrm{~F}}=2.44 \mathrm{~mol} \mathrm{~F} \\
\frac{2.44 \mathrm{~mol} \mathrm{O}}{1.22 \mathrm{~mol} \mathrm{C}}=\frac{2 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{C}} & \frac{2.44 \mathrm{~mol} \mathrm{~F}}{1.22 \mathrm{~mol} \mathrm{C}}=\frac{2 \mathrm{~mol} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{C}}
\end{array}
$$

The empirical formula is $\mathrm{CO}_{2} \mathrm{~F}_{2}$. The empirical formula mass is equal to the molar mass, so the molecular formula is also $\mathrm{CO}_{2} \mathrm{~F}_{2}$.
(b) Assume 100.00 g of compound.

$$
\begin{array}{ll}
93.71 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=7.802 \mathrm{~mol} \mathrm{C} & 6.29 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=6.24 \mathrm{~mol} \mathrm{H} \\
\frac{7.802 \mathrm{~mol} \mathrm{C}}{6.24 \mathrm{~mol} \mathrm{H}}=\frac{1.25 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{H}}=\frac{5 \mathrm{~mol} \mathrm{C}}{4 \mathrm{~mol} \mathrm{H}} & \text { The empirical formula is } \mathrm{C}_{5} \mathrm{H}_{4} \\
\frac{128.16 \mathrm{~g} / \mathrm{mol}}{64.08 \mathrm{~g} / \mathrm{mol}}=2 & \text { The molecular formula is } \mathrm{C}_{10} \mathrm{H}_{8}
\end{array}
$$

Assume 100.00 g of compound.

$$
\begin{array}{ll}
22.88 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=1.905 \mathrm{~mol} \mathrm{C} & 5.76 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=5.71 \mathrm{~mol} \mathrm{H} \\
71.36 \mathrm{~g} \mathrm{As} \cdot \frac{1 \mathrm{~mol} \mathrm{As}}{74.922 \mathrm{~g} \mathrm{As}}=0.9525 \mathrm{~mol} \mathrm{As} & \\
\frac{1.905 \mathrm{~mol} \mathrm{C}}{0.9525 \mathrm{~mol} \mathrm{As}}=\frac{2 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{As}} & \frac{5.71 \mathrm{~mol} \mathrm{H}}{0.9525 \mathrm{~mol} \mathrm{As}}=\frac{6 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{As}}
\end{array}
$$

The empirical formula is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{As}$

$$
\frac{210 \mathrm{~g} / \mathrm{mol}}{105.0 \mathrm{~g} / \mathrm{mol}}=2 \quad \text { The molecular formula is } \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{As}_{2}
$$

2.131 Assume 100.00 g of compound.

$$
\begin{array}{ll}
58.77 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=4.893 \mathrm{~mol} \mathrm{C} & 13.81 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.0079 \mathrm{~g} \mathrm{H}}=13.70 \mathrm{~mol} \mathrm{H} \\
27.40 \mathrm{~g} \mathrm{~N} \cdot \frac{1 \mathrm{~mol} \mathrm{~N}}{14.007 \mathrm{~g} \mathrm{~N}}=1.956 \mathrm{~mol} \mathrm{~N} & \\
\frac{4.893 \mathrm{~mol} \mathrm{C}}{1.956 \mathrm{~mol} \mathrm{~N}}=\frac{2.5 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{~N}}=\frac{5 \mathrm{~mol} \mathrm{C}}{2 \mathrm{~mol} \mathrm{~N}} & \frac{13.70 \mathrm{~mol} \mathrm{H}}{1.956 \mathrm{~mol} \mathrm{~N}}=\frac{7 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{~N}}=\frac{14 \mathrm{~mol} \mathrm{H}}{2 \mathrm{~mol} \mathrm{~N}}
\end{array}
$$

The empirical formula is $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{2}$. The empirical formula mass is equal to the molecular mass, so the molecular formula is also $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{2}$.
2.132
$0.364 \mathrm{~g} \mathrm{Ni}(\mathrm{CO})_{\mathrm{x}}-0.125 \mathrm{~g} \mathrm{Ni}=0.239 \mathrm{~g} \mathrm{CO}$
$0.239 \mathrm{~g} \mathrm{CO} \cdot \frac{1 \mathrm{~mol} \mathrm{CO}}{28.01 \mathrm{~g} \mathrm{CO}}=0.00853 \mathrm{~mol} \mathrm{CO}$
$0.125 \mathrm{~g} \mathrm{Ni} \cdot \frac{1 \mathrm{~mol} \mathrm{Ni}}{58.69 \mathrm{~g} \mathrm{Ni}}=0.00213 \mathrm{~mol} \mathrm{Ni}$
$\frac{0.00853 \mathrm{~mol} \mathrm{CO}}{0.00213 \mathrm{~mol} \mathrm{Ni}}=\frac{4 \mathrm{~mol} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{Ni}}$
The compound formula is $\mathrm{Ni}(\mathrm{CO})_{4}(x=4)$
2.133 Assume 100.0 g of compound.
$49.5 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=4.12 \mathrm{~mol} \mathrm{C}$
$3.2 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.01 \mathrm{~g} \mathrm{H}}=3.2 \mathrm{~mol} \mathrm{H}$
$22.0 \mathrm{~g} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=1.38 \mathrm{~mol} \mathrm{O}$
$25.2 \mathrm{~g} \mathrm{Mn} \cdot \frac{1 \mathrm{~mol} \mathrm{Mn}}{54.94 \mathrm{~g} \mathrm{Mn}}=0.459 \mathrm{~mol} \mathrm{Mn}$
$\frac{4.12 \mathrm{~mol} \mathrm{C}}{0.459 \mathrm{~mol} \mathrm{Mn}}=\frac{9 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{Mn}}$ $\frac{3.2 \mathrm{~mol} \mathrm{H}}{0.459 \mathrm{~mol} \mathrm{Mn}}=\frac{7 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{Mn}}$
$\frac{1.38 \mathrm{~mol} \mathrm{O}}{0.459 \mathrm{~mol} \mathrm{Mn}}=\frac{3 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Mn}}$
$\frac{(2)(30.97) \mathrm{g} \mathrm{P}}{310.18 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}} \cdot 100 \%=19.97 \% \mathrm{P}$
$15.0 \mathrm{~kg} \mathrm{P} \cdot \frac{100.00 \mathrm{~kg} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{19.97 \mathrm{~kg} \mathrm{P}}=75.1 \mathrm{~kg} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$2.135 \frac{(2)(52.00) \mathrm{kg} \mathrm{Cr}^{2}}{152.00 \mathrm{~kg} \mathrm{Cr}_{2} \mathrm{O}_{3}} \cdot 100 \%=68.42 \% \mathrm{Cr}$
$850 \mathrm{~kg} \mathrm{Cr} \cdot \frac{100.00 \mathrm{~kg} \mathrm{Cr}_{2} \mathrm{O}_{3}}{68.42 \mathrm{~kg} \mathrm{Cr}}=1200 \mathrm{~kg} \mathrm{Cr}_{2} \mathrm{O}_{3}$
$2.136 \frac{(2)(121.8) \mathrm{g} \mathrm{Sb}}{339.8 \mathrm{~g} \mathrm{Sb}_{2} \mathrm{~S}_{3}} \cdot 100 \%=71.69 \% \mathrm{Sb}$
1.00 kg ore $\cdot \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \cdot \frac{10.6 \mathrm{~g} \mathrm{Sb}}{100.0 \mathrm{~g} \text { ore }} \cdot \frac{100.00 \mathrm{~g} \mathrm{Sb}_{2} \mathrm{~S}_{3}}{71.69 \mathrm{~g} \mathrm{Sb}}=148 \mathrm{~g} \mathrm{Sb}_{2} \mathrm{~S}_{3}$
2.137
$1.246 \mathrm{~g} \mathrm{I}_{x} \mathrm{Cl}_{y}-0.678 \mathrm{~g} \mathrm{I}=0.568 \mathrm{~g} \mathrm{Cl}$
$0.678 \mathrm{~g} \mathrm{I} \cdot \frac{1 \mathrm{~mol} \mathrm{I}}{126.9 \mathrm{~g} \mathrm{I}}=0.00534 \mathrm{~mol} \mathrm{I} \quad 0.568 \mathrm{~g} \mathrm{Cl} \cdot \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g} \mathrm{Cl}}=0.0160 \mathrm{~mol} \mathrm{Cl}$
$\frac{0.0160 \mathrm{~mol} \mathrm{Cl}}{0.00534 \mathrm{~mol} \mathrm{I}}=\frac{3 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{I}} \quad$ The empirical formula is ICl_{3}
$\frac{467 \mathrm{~g} / \mathrm{mol}}{233.3 \mathrm{~g} / \mathrm{mol}}=2 \quad$ The molecular formula is $\mathrm{I}_{2} \mathrm{Cl}_{6}$
2.138
$2.04 \mathrm{~g} \mathrm{~V} \cdot \frac{1 \mathrm{~mol} \mathrm{~V}}{50.94 \mathrm{~g} \mathrm{~V}}=0.0400 \mathrm{~mol} \mathrm{~V}$
$\frac{0.0602 \mathrm{~mol} \mathrm{~S}}{0.0400 \mathrm{~mol} \mathrm{~V}}=\frac{1.5 \mathrm{~mol} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~V}}=\frac{3 \mathrm{~mol} \mathrm{~S}}{2 \mathrm{~mol} \mathrm{~V}}$
$1.93 \mathrm{~g} \mathrm{~S} \cdot \frac{1 \mathrm{~mol} \mathrm{~S}}{32.07 \mathrm{~g} \mathrm{~S}}=0.0602 \mathrm{~mol} \mathrm{~S}$

The empirical formula is $\mathrm{V}_{2} \mathrm{~S}_{3}$
$2.139 \quad 15.8 \mathrm{~kg} \mathrm{FeS}_{2} \cdot \frac{55.85 \mathrm{~kg} \mathrm{Fe}}{119.99 \mathrm{~kg} \mathrm{FeS}_{2}}=7.35 \mathrm{~kg} \mathrm{Fe}$
2.140 (a) True. $0.500 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18} \cdot \frac{114.2 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}}{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}=57.1 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}$
(b) True. $\frac{(8)(12.01) \mathrm{g} \mathrm{C}}{114.2 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}} \cdot 100 \%=84.1 \% \mathrm{C}$
(c) True.
(d) False. $57.1 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18} \cdot \frac{(18)(1.008) \mathrm{g} \mathrm{H}}{114.2 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}}=9.07 \mathrm{~g} \mathrm{H}$
2.141 (d) $\mathrm{Na}_{2} \mathrm{MoO}_{4}$
$2.142 \frac{74.75 \mathrm{~g} \mathrm{Cl}}{100.00 \mathrm{~g} \mathrm{MCl}_{4}}=\frac{(4)(35.453) \mathrm{g} \mathrm{Cl}}{\text { molar mass } \mathrm{MCl}_{4}}$
Molar mass $\mathrm{MCl}_{4}=189.7 \mathrm{~g}$
Atomic weight $\mathrm{M}=189.7 \mathrm{~g} \mathrm{MCl}_{4}-(4)(35.453) \mathrm{g} \mathrm{Cl}=47.9 \mathrm{~g}$
M is Ti , titanium
2.1432 tablets $\cdot \frac{300 . \mathrm{mg}}{1 \text { tablet }} \cdot \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}} \cdot \frac{1 \mathrm{~mol} \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Bi}_{3} \mathrm{O}_{12}}{1086 \mathrm{~g} \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Bi}_{3} \mathrm{O}_{12}}=5.52 \times 10^{-4} \mathrm{~mol} \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Bi}_{3} \mathrm{O}_{12}$
$5.52 \times 10^{-4} \mathrm{~mol} \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Bi}_{3} \mathrm{O}_{12} \cdot \frac{3 \mathrm{~mol} \mathrm{Bi}}{1 \mathrm{~mol} \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Bi}_{3} \mathrm{O}_{12}} \cdot \frac{209.0 \mathrm{~g} \mathrm{Bi}}{1 \mathrm{~mol} \mathrm{Bi}}=0.346 \mathrm{~g} \mathrm{Bi}$
2.144
$\frac{15.2 \mathrm{~g} \mathrm{O}}{100 \mathrm{~g} \mathrm{MO}_{2}}=\frac{(2)(16.00) \mathrm{g} \mathrm{O}^{\text {molar mass MO}} 22}{} \quad$ Molar mass $\mathrm{MO}_{2}=211 \mathrm{~g}$
Atomic weight $\mathrm{M}=211 \mathrm{~g} \mathrm{MO}_{2}-(2)(16.00) \mathrm{g} \mathrm{O}=179 \mathrm{~g} \quad \mathrm{M}$ is Hf , hafnium
2.145 Molar mass of compound $=\frac{385 \mathrm{~g}}{2.50 \mathrm{~mol}}=154 \mathrm{~g} / \mathrm{mol}$
$154 \mathrm{~g} / \mathrm{mol}=($ molar mass of E$)+[4 \times($ molar mass of Cl$)]=\mathrm{M}_{\mathrm{E}}+4(35.45 \mathrm{~g} / \mathrm{mol})$
$\mathrm{M}_{\mathrm{E}}=12$
E is C , carbon.
$2.146 \quad \frac{15.9 \mathrm{~g}}{0.15 \mathrm{~mol}}=106 \mathrm{~g} / \mathrm{mol} \mathrm{A}_{2} \mathrm{Z}_{3} \quad \frac{9.3 \mathrm{~g}}{0.15 \mathrm{~mol}}=62 \mathrm{~g} / \mathrm{mol} \mathrm{AZ}_{2}$
For $\mathrm{AZ}_{2}: \quad($ atomic mass A$)+(2)($ atomic mass Z$)=62$

For $\mathrm{A}_{2} \mathrm{Z}_{3}: \quad(2)($ atomic mass A$)+(3)($ atomic mass Z$)=106$
(2)[62-(2)(atomic mass Z)] + (3)(atomic mass Z) $=106$
atomic mass $\mathrm{Z}=18 \mathrm{~g} / \mathrm{mol}$
atomic mass $\mathrm{A}=26 \mathrm{~g} / \mathrm{mol}$
2.147
2.148
2.150
(a) mass of nucleus $=1.06 \times 10^{-22} \mathrm{~g}$ (electron mass is negligible)
nuclear radius $=4.8 \times 10^{-6} \mathrm{~nm} \cdot \frac{10^{-9} \mathrm{~m}}{1 \mathrm{~nm}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=4.8 \times 10^{-13} \mathrm{~cm}$
volume of nucleus $=(4 / 3)(\pi)\left(4.8 \times 10^{-13} \mathrm{~cm}\right)^{3}=4.6 \times 10^{-37} \mathrm{~cm}^{3}$
density of nucleus $=\frac{1.06 \times 10^{-22} \mathrm{~g}}{4.6 \times 10^{-37} \mathrm{~cm}^{3}}=2.3 \times 10^{14} \mathrm{~g} / \mathrm{cm}^{3}$
(b) atomic radius $=0.125 \mathrm{~nm} \cdot \frac{10^{-9} \mathrm{~m}}{1 \mathrm{~nm}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=1.25 \times 10^{-8} \mathrm{~cm}$
volume of Zn atom $=(4 / 3)(\pi)\left(1.25 \times 10^{-8} \mathrm{~cm}\right)^{3}=8.18 \times 10^{-24} \mathrm{~cm}^{3}$
volume of space occupied by electrons $=8.18 \times 10^{-24} \mathrm{~cm}^{3}-4.6 \times 10^{-37} \mathrm{~cm}^{3}$

$$
=8.18 \times 10^{-24} \mathrm{~cm}^{3}
$$

density of space occupied by electrons $=\frac{(30)\left(9.11 \times 10^{-28} \mathrm{~g}\right)}{8.18 \times 10^{-24} \mathrm{~cm}^{3}}=3.34 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$
(c) The nucleus is much more dense than the space occupied by the electrons.
(a) Volume of cube $=(1.000 \mathrm{~cm})^{3}=1.000 \mathrm{~cm}^{3}$
$1.000 \mathrm{~cm}^{3} \mathrm{~Pb} \cdot \frac{11.35 \mathrm{~g} \mathrm{~Pb}}{1 \mathrm{~cm}^{3}} \cdot \frac{1 \mathrm{~mol} \mathrm{~Pb}}{207.2 \mathrm{~g} \mathrm{~Pb}} \cdot \frac{6.0221 \times 10^{23} \text { atoms } \mathrm{Pb}}{1 \mathrm{~mol} \mathrm{~Pb}}=3.299 \times 10^{22}$ atoms Pb
(b) Volume of one lead atom $=\frac{(0.60)\left(1.000 \mathrm{~cm}^{3}\right)}{3.299 \times 10^{22} \text { atoms } \mathrm{Pb}}=1.819 \times 10^{-23} \mathrm{~cm}^{3}$

$$
1.819 \times 10^{-23} \mathrm{~cm}^{3}=(4 / 3)(\pi)(\mathrm{Pb} \text { radius })^{3}
$$

Pb radius $=1.631 \times 10^{-8} \mathrm{~cm}$
2.151
(a) volume $=(0.0550 \mathrm{~cm})(1.25 \mathrm{~cm})^{2}=0.0859 \mathrm{~cm}^{3} \mathrm{Ni}$ $0.0859 \mathrm{~cm}^{3} \mathrm{Ni} \cdot \frac{8.902 \mathrm{~g} \mathrm{Ni}}{1 \mathrm{~cm}^{3}}=0.765 \mathrm{~g} \mathrm{Ni}(0.765 \mathrm{~g} \mathrm{Ni})(1 \mathrm{~mol} \mathrm{Ni} / 58.69 \mathrm{~g} \mathrm{Ni})=0.0130 \mathrm{~mol} \mathrm{Ni}$
(b) 1.261 g compound $-0.765 \mathrm{~g} \mathrm{Ni}=0.496 \mathrm{~g} \mathrm{~F}$
$0.765 \mathrm{~g} \mathrm{Ni} \cdot \frac{1 \mathrm{~mol} \mathrm{Ni}}{58.69 \mathrm{~g} \mathrm{Ni}}=0.0130 \mathrm{~mol} \mathrm{Ni} \quad 0.496 \mathrm{~g} \mathrm{~F} \cdot \frac{1 \mathrm{~mol} \mathrm{~F}}{19.00 \mathrm{~g} \mathrm{~F}}=0.0261 \mathrm{~mol} \mathrm{~F}$
$\frac{0.0261 \mathrm{~mol} \mathrm{~F}}{0.0130 \mathrm{~mol} \mathrm{Ni}}=\frac{2 \mathrm{~mol} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{Ni}} \quad$ The empirical formula is NiF_{2}
(c) NiF_{2}, nickel(II) fluoride
2.152 (a) $0.199 \mathrm{~g} \mathrm{U}_{x} \mathrm{O}_{y}-0.169 \mathrm{~g} \mathrm{U}=0.030 \mathrm{~g} \mathrm{O}$

$$
\begin{aligned}
& 0.169 \mathrm{~g} \mathrm{U} \cdot \frac{1 \mathrm{~mol} \mathrm{U}}{238.0 \mathrm{~g} \mathrm{U}}=7.10 \times 10^{-4} \mathrm{~mol} \mathrm{U} \\
& 0.030 \mathrm{~g} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{~g} \mathrm{O}}=1.9 \times 10^{-3} \mathrm{~mol} \mathrm{O} \\
& \frac{1.9 \times 10^{-3} \mathrm{~mol} \mathrm{O}}{7.10 \times 10^{-4} \mathrm{~mol} \mathrm{U}}=\frac{2.68 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{U}}=\frac{8 \mathrm{~mol} \mathrm{O}}{3 \mathrm{~mol} \mathrm{U}}
\end{aligned}
$$

The empirical formula is $\mathrm{U}_{3} \mathrm{O}_{8}$, a mixture of uranium(IV) oxide and uranium(VI) oxide.

$$
7.10 \times 10^{-4} \mathrm{~mol} \mathrm{U} \cdot \frac{1 \mathrm{~mol} \mathrm{U}_{3} \mathrm{O}_{8}}{3 \mathrm{~mol} \mathrm{U}}=2.37 \times 10^{-4} \mathrm{~mol} \mathrm{U}_{3} \mathrm{O}_{8}
$$

(b) The atomic weight of U is 238.029 u , implying that the isotope ${ }^{238} \mathrm{U}$ is the most abundant.
(c) $0.865 \mathrm{~g}-0.679 \mathrm{~g}=0.186 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ lost upon heating

$$
\begin{aligned}
& 0.186 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0103 \mathrm{~mol} \mathrm{H} \\
& 2
\end{aligned} \mathrm{O}, ~\left(0.679 \mathrm{~g} \mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}}{394.0 \mathrm{~g} \mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}}=0.00172 \mathrm{~mol} \mathrm{UO} 2\left(\mathrm{NO}_{3}\right)_{2}\right)
$$

The formula of the hydrated compound is $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$2.153 \quad 0.125 \mathrm{~mol} \mathrm{Na} \cdot \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{Na}} \cdot \frac{1 \mathrm{~cm}^{3}}{0.97 \mathrm{~g} \mathrm{Na}}=3.0 \mathrm{~cm}^{3}$
Edge $=\sqrt[3]{3.0 \mathrm{~cm}^{3}}=1.4 \mathrm{~cm}$

Assume 100.0 g of sample.

$$
\begin{array}{ll}
54.0 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=4.50 \mathrm{~mol} \mathrm{C} & 6.00 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=5.95 \mathrm{~mol} \mathrm{H} \\
40.0 \mathrm{~g} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.50 \mathrm{~mol} \mathrm{O} & \frac{5.95 \mathrm{~mol} \mathrm{H}}{2.50 \mathrm{~mol} \mathrm{O}}=\frac{2.38 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{O}}=\frac{12 \mathrm{~mol} \mathrm{H}}{5 \mathrm{~mol} \mathrm{O}}
\end{array}
$$

Answer (d) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{5}$ is correct. The other students apparently did not correctly calculate the number of moles of material in 100.0 g or they improperly calculated the ratio of those moles in determining their empirical formula.
2.155 (a) The most abundant isotopes of C, H, and Cl are ${ }^{12} \mathrm{C},{ }^{1} \mathrm{H}$, and ${ }^{35} \mathrm{Cl}$. The peak at $50 \mathrm{~m} / \mathrm{z}$ is due to ions with the makeup ${ }^{12} \mathrm{C}^{1} \mathrm{H}_{3}{ }^{35} \mathrm{Cl}^{+}$while the peak at $52 \mathrm{~m} / \mathrm{z}$ is due to ${ }^{12} \mathrm{C}^{1} \mathrm{H}_{3}{ }^{37} \mathrm{Cl}^{+}$ions. The peak at $52 \mathrm{~m} / \mathrm{z}$ is about $1 / 3$ the height of the $50 \mathrm{~m} / \mathrm{z}$ peak because the abundance of ${ }^{37} \mathrm{Cl}$ is about ${ }^{1 / 3}$ that of ${ }^{35} \mathrm{Cl}$.
(b) The species at $51 \mathrm{~m} / \mathrm{z}$ are ${ }^{13} \mathrm{C}^{1} \mathrm{H}_{3}{ }^{35} \mathrm{Cl}^{+}$and ${ }^{12} \mathrm{C}^{1} \mathrm{H}_{2}{ }^{2} \mathrm{H}_{1}{ }^{35} \mathrm{Cl}^{+}$.
2.156
(a) $m / Z 158{ }^{79} \mathrm{Br}_{2}$
$m / Z 160{ }^{79} \mathrm{Br}^{81} \mathrm{Br}$
$m / Z 162{ }^{81} \mathrm{Br}_{2}$
(b) The abundances are close enough to assume an equal abundance of ${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$. Two atoms from the two isotopes can be combined in four different manners to form Br_{2} : ${ }^{79} \mathrm{Br}_{2},{ }^{79} \mathrm{Br}^{81} \mathrm{Br},{ }^{81} \mathrm{Br}^{79} \mathrm{Br}$, and ${ }^{81} \mathrm{Br}_{2}$. Thus, the peak at $m / Z 160$ should have twice the intensity of the peaks at $m / Z 158$ and 162 .
$2.157 \quad 1.687 \mathrm{~g}$ hydrated compound $-0.824 \mathrm{~g} \mathrm{MgSO}_{4}=0.863 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$0.863 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0479 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$0.824 \mathrm{~g} \mathrm{MgSO}_{4} \cdot \frac{1 \mathrm{~mol} \mathrm{MgSO}_{4}}{120.4 \mathrm{~g} \mathrm{MgSO}_{4}}=0.00684 \mathrm{~mol} \mathrm{MgSO} 4$
$\frac{0.0479 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{0.00684 \mathrm{~mol} \mathrm{MgSO}_{4}}=\frac{7.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{MgSO}_{4}} \quad$ There are 7 water molecules per formula unit of MgSO_{4}
$2.158 \quad 4.74 \mathrm{~g}$ hydrated compound $-2.16 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=2.58 \mathrm{~g} \mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$
$2.16 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.120 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$2.58 \mathrm{~g} \mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}}{258.2 \mathrm{~g} \mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}}=0.00999 \mathrm{~mol} \mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$
$\frac{0.120 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{0.00999 \mathrm{~mol} \mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}}=\frac{12.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}}$
There are 12 water molecules per formula unit of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} ; x=12$
1.056 g Sn total -0.601 g Sn remaining $=0.455 \mathrm{~g} \mathrm{Sn}$ consumed
$0.455 \mathrm{~g} \mathrm{Sn} \cdot \frac{1 \mathrm{~mol} \mathrm{Sn}}{118.710 \mathrm{~g}}=0.00383 \mathrm{~mol} \mathrm{Sn}$
$1.947 \mathrm{~g} \mathrm{I} \mathrm{consumed} \cdot \frac{1 \mathrm{~mol} \mathrm{I}}{126.9045 \mathrm{~g} \mathrm{I}}=0.01534 \mathrm{~mol} \mathrm{I}$
$0.01534 \mathrm{~mol} \mathrm{I} / 0.00383 \mathrm{~mol} \mathrm{Sn}=4.01 \mathrm{~mol} \mathrm{I} / \mathrm{mol} \mathrm{Sn}$
Formula is SnI_{4}.
2.160 Assume 100.0 g of sample.
$54.0 \mathrm{~g} \mathrm{C} \cdot \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=4.50 \mathrm{~mol} \mathrm{C} \quad 6.00 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=5.95 \mathrm{~mol} \mathrm{H}$
$40.0 \mathrm{~g} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.50 \mathrm{~mol} \mathrm{O}$
$\frac{4.50 \mathrm{~mol} \mathrm{C}}{2.50 \mathrm{~mol} \mathrm{O}}=\frac{1.8 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{O}}=\frac{9 \mathrm{~mol} \mathrm{C}}{5 \mathrm{~mol} \mathrm{O}} \quad \frac{5.95 \mathrm{~mol} \mathrm{H}}{2.50 \mathrm{~mol} \mathrm{O}}=\frac{2.38 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{O}}=\frac{12 \mathrm{~mol} \mathrm{H}}{5 \mathrm{~mol} \mathrm{O}}$
Answer (d) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{5}$ is correct. The other students apparently did not correctly calculate the number of moles of material in 100.0 g or they improperly calculated the ratio of those moles in determining their empirical formula.
$2.161 \quad 0.832 \mathrm{~g}$ hydrated sample -0.739 g heated sample $=0.093 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$0.093 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0052 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$0.739 \mathrm{~g} \mathrm{CaCl}_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{CaCl}_{2}}{111.0 \mathrm{~g} \mathrm{CaCl}_{2}}=0.00666 \mathrm{~mol} \mathrm{CaCl}_{2}$
$\frac{0.0052 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{0.00666 \mathrm{~mol} \mathrm{CaCl}_{2}}=\frac{0.78 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CaCl}_{2}}$
The students should (c) heat the crucible again and then reweigh it.
2.162 14.710 g crucible \& $\mathrm{Sn}-13.457 \mathrm{~g}$ crucible $=1.253 \mathrm{~g} \mathrm{Sn}$
$1.253 \mathrm{~g} \mathrm{Sn} \cdot \frac{1 \mathrm{~mol} \mathrm{Sn}}{118.710 \mathrm{~g} \mathrm{Sn}}=0.01056 \mathrm{~mol} \mathrm{Sn}$
15.048 g crucible \& $\mathrm{Sn} \& \mathrm{O}-14.710 \mathrm{~g}$ crucicble $\& \mathrm{Sn}=0.338 \mathrm{~g} \mathrm{O}$
$0.338 \mathrm{~g} \mathrm{O} \cdot \frac{1 \mathrm{~mol}}{15.9994 \mathrm{~g} \mathrm{O}}=0.0211 \mathrm{~mol} \mathrm{O}$
$0.0211 \mathrm{~mol} \mathrm{O} / 0.01056 \mathrm{~mol} \mathrm{Sn}=2 \mathrm{~mol} \mathrm{O} / 1 \mathrm{~mol} \mathrm{Sn}$

Formula is SnO_{2}.
2.163 (b) the molar mass of iron, (c) Avogadro's number, and (d) the density of iron are needed $1.00 \mathrm{~cm}^{3} \cdot \frac{7.87 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~cm}^{3}} \cdot \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.85 \mathrm{~g} \mathrm{Fe}} \cdot \frac{6.022 \times 10^{23} \text { atoms Fe }}{1 \mathrm{~mol} \mathrm{Fe}}=8.49 \times 10^{22}$ atoms Fe
2.164 Element abundance generally decreases with increasing atomic number (with exceptions at $\mathrm{Li}-\mathrm{B}$ and $\mathrm{Sc}-$ Fe). Elements with an even atomic number appear to be slightly more abundant than those with an odd atomic number.
2.165 (a) Barium would be even more reactive than calcium, so a more vigorous evolution of hydrogen would occur (it might even ignite).
(b) Mg, Ca, and Ba are in periods 3, 4, and 6, respectively. Reactivity increases on going down a group in the periodic table.
2.166 One possible method involves the following steps: (1) weigh a representative sample of jelly beans (about 10) in order to determine the average mass of a jelly bean; (2) weight the jelly beans in the jar (subtract the mass of the empty jar from the mass of the jar filled with jelly beans; (3) use the average mass per jelly bean and the total mass of the jelly beans in the jar to determine the approximate number of jelly beans in the jar.

SOLUTIONS TO APPLYING CHEMICAL PRINCIPLES: ARGON - AN AMAZING DISCOVERY

1. $0.20389 \mathrm{~g} \cdot(1 \mathrm{~L} / 1.25718 \mathrm{~g})=0.16218 \mathrm{~L}=162.18 \mathrm{~mL}=162.18 \mathrm{~cm}^{3}$
2. $(0.2096)(1.42952 \mathrm{~g} / \mathrm{L})+(0.7811)(1.25092 \mathrm{~g} / \mathrm{L})+(0.00930) \mathrm{X}=1.000(1.29327 \mathrm{~g} / \mathrm{L})$
$\mathrm{X}=1.78 \mathrm{~g} / \mathrm{L}$
3. \quad Argon $M=39.948 \mathrm{u}$
$100 \%-0.337 \%-0.063 \%=99.600 \%$
$(0.00337)(35.967545 \mathrm{u})+(0.00063)(37.96732 \mathrm{u})+(0.99600) \mathrm{X}=39.948 \mathrm{u}$
$\mathrm{X}=39.963 \mathrm{u}$
4. $\quad 4.0 \mathrm{~m} \cdot 5.0 \mathrm{~m} \cdot 2.4 \mathrm{~m} \cdot\left(1 \mathrm{~L} / 1.00 \times 10^{-3} \mathrm{~m}^{3}\right)=4.8 \times 10^{4} \mathrm{~L}$
$4.8 \times 10^{4} \mathrm{~L} \cdot 1.78 \mathrm{~g} / \mathrm{L} \cdot 1 \mathrm{~mol} / 39.948 \mathrm{~g} \cdot 6.022 \times 10^{23}$ atoms $/ \mathrm{mol}=1.3 \times 10^{27}$ atoms
