CHAPTER 12
TEST FORM A

1. For the sequence whose nth term is $a_{n}=(-1)^{n+1}\left(2-\frac{1}{n}\right)^{2}$, find a_{8}.
2. Find the first 5 terms of the sequence with general term $a_{n}=(-1)^{n+1}(3 n-4)$.
3. Find and evaluate: $\sum_{k=1}^{4}\left(k^{2}+k\right)$.

Write sigma notation. Answers may vary.
4. $8+16+24+32+40$
5. $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots$
6. Find the first 4 terms of the recursively defined sequence $a_{1}=2, a_{n+1}=3 a_{n}+5$.
7. Find the 20th term of the arithmetic sequence $32,28,24, \ldots$.
8. The 1 st term of an arithmetic sequence is -5 and the 12 th term is $\frac{1}{2}$. Find the 10 th term.
9. Find the sum of the first 20 terms of the series $2+12+22+\cdots$.
10. Find the sum: $\sum_{k=1}^{24}(-2 k-1)$.
11. Find the 7 th term of the geometric sequence $3,15,75,375, \ldots$.

ANSWERS

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
\qquad
\qquad
TEST FORM A

ANSWERS

12. \qquad
Find the sum, if it exists.
13. $\sum_{k=1}^{10} 2^{k}$
14. $100,000+80,000+64,000+\cdots$
15. Find fraction notation for $5 \cdot \overline{01}$.
16. \qquad
17. \qquad
18. \qquad
19. \qquad 18. Amount of an Annuity. To create a college fund, a parent makes a sequence of 15 yearly deposits of $\$ 1200$ each in a savings account on which interest is compounded annually at 3.5%. Find the amount of the annuity.
20. \qquad
21. See work.
22. Use mathematical induction to prove that, for every natural number n,

$$
5+10+15+\cdots+5 n=\frac{5 n(n+1)}{2}
$$

\qquad
TEST FORM A

Evaluate.
20. ${ }_{12} P_{3}$
21. ${ }_{13} C_{7}$
22. $\binom{n}{4}$
23. How many 4-letter code symbols can be formed with the letters $\mathrm{P}, \mathrm{R}, \mathrm{O}, \mathrm{D}, \mathrm{U}, \mathrm{C}$, and T without repetition?
24. How many 4-digit codes can be formed using the digits $2,4,6,8$, and 0 if the digits:
a) can be repeated?
b) are not repeated and must begin with 4 ?
25. Class Representatives. A class has 80 members. How many sets of 3 representatives can be selected from this group?
26. Work crews. There are 9 seniors and 6 juniors in a class. In how many ways can a clean-up crew of 3 seniors and 2 juniors be selected?
27. Expand: $(x-a)^{6}$.
28. Find the 3 rd term of the binomial expansion of $(2 x+y)^{5}$.
29. Determine the number of subsets of a set containing 8 members.
30. Chocolates. Suppose we select, without looking or otherwise inspecting, a chocolate from a box that contains 14 cream-filled chocolates and 10 caramel-filled chocolates. What is the probability that we choose a cream-filled chocolate?

ANSWERS

20. \qquad
21. \qquad
22. \qquad
23. \qquad
24. a) \qquad
b) \qquad
25. \qquad
26. \qquad
27. \qquad
28. \qquad
29. \qquad
30. \qquad
\qquad

TEST FORM A

ANSWERS
31. \qquad
32. \qquad
33. \qquad
C.
 is which of the following?
A.

B.

D.

33. Solve for $n:{ }_{n} P_{10}=3 \cdot{ }_{n} P_{9}$.

TEST FORM B
\qquad
\qquad

1. For the sequence whose nth term is $a_{n}=(-2)^{n-2}(n-1)$, find a_{8}.
2. Find the first 5 terms of the sequence with general term

$$
a_{n}=\frac{(n-1)(n+2)}{3} .
$$

3. Find and evaluate: $\sum_{k=1}^{4} \frac{2^{k}}{k+1}$.

Write sigma notation. Answers may vary.
4. $5+10+15+20+25+\cdots$
5. $3+9+27+81+243$
6. Find the first 4 terms of the recursively defined sequence $a_{1}=4, a_{n+1}=2 a_{n}-1$.
7. Find the 18th term of the arithmetic sequence $3,7,11, \ldots$.
8. The 1 st term of an arithmetic sequence is -8 and the 15 th term is 34. Find the 7th term.
9. Find the sum of the first 20 terms of the series

$$
100+75+50+25+\cdots .
$$

10. Find the sum: $\sum_{k=1}^{24}(3 k-4)$.
11. Find the $6^{\text {th }}$ term of the geometric sequence $50,10,2, \frac{2}{5}, \ldots$.

ANSWERS

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
\qquad
TEST FORM B

ANSWERS
12. \qquad
13. \qquad
14. \qquad 16. Salvage Value. The value of a piece of home care equipment is $\$ 4200$. Its salvage value each year is 70% of its value the year before. Give a sequence that lists the salvage value of the piece of equipment for each year of a 5-year period.
17. Hourly Wage. Dakota accepts a job with a starting hourly wage of $\$ 10.30$. He is promised a raise of $30 \notin$ per hour every two months for the next two years. What will his hourly wage be at the end of the two-year period?
18. The Economic Multiplier. The government is making a $\$ 30,000$ expenditure for environmental education. If 35% of this is spent again, and so on, what is the total effect on the economy?
19. Use mathematical induction to prove that, for every natural number n,

$$
5+9+13+\cdots+(4 n+1)=n(2 n+3)
$$

19. See work.
20. For a geometric sequence, $r=0.2$ and $S_{5}=4.9984$. Find a_{1}.

Find the sum, if it exists.
13. $\sum_{k=1}^{7} 3^{k}$
14. $2+\frac{5}{2}+\frac{25}{8}+\cdots$
15. Find fraction notation for $3 \overline{15}$.
15. \qquad
16. \qquad
17. \qquad
18. \qquad
\qquad
TEST FORM B

Evaluate.
20. ${ }_{13} P_{5}$
21. ${ }_{10} C_{7}$
22. $\binom{n}{3}$
23. How many 5-letter code symbols can be formed with the letters $\mathrm{F}, \mathrm{A}, \mathrm{C}, \mathrm{T}, \mathrm{O}$, and R without repetition?
24. How many 4-digit codes can be formed using the digits $2,4,6,8$, and 0 if the digits:
a) can be repeated?
b) are not repeated and must end with 6?
25. Class Representatives. A class has 35 members. How many sets of 2 representatives can be selected from this group?
26. Youth Sports. A youth sports team has 7 defense players and 8 offense players. How many ways can the coach choose 3 defense players and 5 offense players?
27. Expand: $(x-d)^{5}$.
28. Find the 4th term of the binomial expansion of $(p+q)^{10}$.
29. Determine the number of subsets of a set containing 5 members.
30. Card drawing. Suppose we draw a card from a well-shuffled deck of 52 cards. What is the probability of drawing a jack?

ANSWERS
20. \qquad
21. \qquad
22. \qquad
23. \qquad
24. a) \qquad
b) \qquad
25. \qquad
26. \qquad
27. \qquad
28. \qquad
29. \qquad
30. \qquad
\qquad
TEST FORM B

ANSWERS

31. \qquad
32. \qquad
33. \qquad C.

B.

D.

34. Solve for $n:\binom{n}{6}=2\binom{n-1}{5}$.

CHAPTER 12
TEST FORM C

1. For the sequence whose nth term is $a_{n}=(-1)^{n}(3 n+2)$, find a_{6}.
2. Find the first 5 terms of the sequence with general term $a_{n}=\frac{2 n-1}{n}$.
3. Find and evaluate: $\sum_{k=1}^{4} \frac{k}{2}$.

Write sigma notation. Answers may vary.
4. $-3+6-9+12-15+\cdots$
5. $\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}$
6. Find the first 4 terms of the recursively defined sequence $a_{1}=10, a_{n+1}=\frac{1}{2} a_{n}+1$.
7. Find the 12 th term of the arithmetic sequence $\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \ldots$.
8. The 1 st term of an arithmetic sequence is 21 and the 12 th term is 26.5. Find the 6th term.
9. Find the sum of the first 20 terms of the series $-5+5+15+\cdots$.
10. Find the sum: $\sum_{k=1}^{24}(4 k-2)$.
11. Find the 6 th term of the geometric sequence $2,-6,18,-54, \ldots$.
11. \qquad
\qquad
TEST FORM C

ANSWERS

12. \qquad
13. \qquad
14. Find fraction notation for $0 . \overline{74}$.
15. \qquad 16. Salvage Value. The value of a piece of home care equipment is $\$ 2000$. Its salvage value each year is 60% of its value the year before. Give a sequence that lists the salvage value of the piece of equipment for each year of a 5-year period.
16. Hourly Wage. Barry accepts a job with a starting hourly wage of $\$ 12.95$. He is promised a raise of 60ϕ per hour every 4 months for the next two years. What will his hourly wage be at the end of the two-year period?
17. Earnings. Suppose someone offered you a job for five years under the following conditions. You will be paid $\$ 5$ for the first month, $\$ 7$ for the second, and $\$ 9.80$ for the third, and so on, earning 40% more each month. How much would you earn altogether?
18. Use mathematical induction to prove that for every natural number n,

$$
1+2+2^{2}+\cdots+2^{n-1}=2^{n}-1
$$

12. For a geometric sequence, $r=2$ and $S_{4}=45$. Find a_{1}.

Find the sum, if it exists.
13. $\sum_{k=1}^{6} 4^{k}$ 14. $60+40+\frac{80}{3}+\cdots$
15.
16.
17. \qquad
18. \qquad
19. See work.
\qquad
TEST FORM C

Evaluate.
20. ${ }_{13} P_{9}$
21. ${ }_{20} C_{9}$
22. $\binom{n}{5}$
23. How many 4-letter code symbols can be formed with the letters $\mathrm{E}, \mathrm{X}, \mathrm{P}, \mathrm{A}, \mathrm{N}$, and D without repetition?
24. How many 3-digit codes can be formed using the digits $2,4,6,8$, and 0 if the digits:
a) can be repeated?
b) are not repeated and must begin with 8 ?
25. Class Representatives. A class has 60 members. How many sets of 3 representatives can be selected from this group?
26. School Committees. Suppose a school community has 9 teachers and 100 students. How many committees can be formed consisting of 2 teachers and 5 students?
27. Expand: $(x-2)^{5}$.
28. Find the 3 rd term of the binomial expansion of $(s+t)^{7}$.
29. Determine the number of subsets of a set containing 6 members.
30. Card drawing. Suppose we draw a card from a well-shuffled deck of 52 cards. What is the probability of drawing a face card (jack, queen, or king)?

ANSWERS

20. \qquad
21. \qquad
22. \qquad
23. \qquad
24. a) \qquad
b) \qquad
25. \qquad
26. \qquad
27. \qquad
28. \qquad
29. \qquad
30. \qquad
\qquad

TEST FORM C

ANSWERS

31. \qquad
32. \qquad
33. \qquad C.

B.

D.

34. Solve for $n:\binom{n}{5}=\binom{n-1}{6}$.

CHAPTER 12
TEST FORM D

NAME \qquad CLASS_SCORE GRADE \qquad

1. For the sequence whose nth term is $a_{n}=(-1)^{n-1} \frac{n}{2}(2 n+1)$, find a_{8}.
2. Find the first 5 terms of the sequence with general term

$$
a_{n}=\frac{(-1)^{n}(4 n+3)}{n}
$$

3. Find and evaluate: $\sum_{k=1}^{4} \frac{2 k-1}{k^{2}}$.

Write sigma notation. Answers may vary.
4. $(-1)+2+(-3)+4+(-5)+6$
5. $6+12+18+24+30+\cdots$
6. Find the first 4 terms of the recursively defined sequence $a_{1}=0.5, a_{n+1}=4+2 a_{n}$.
7. Find the 17 th term of the arithmetic sequence $12,7,2, \ldots$.
8. The 1 st term of an arithmetic sequence is -8 and the 15 th term is -1 . Find the 5th term.
9. Find the sum of the first 20 terms of the series $12+8+4+\cdots$.
10. Find the sum: $\sum_{k=1}^{24}(-3 k+1)$.
11. Find the 8 th term of the geometric sequence $-4,6,-9, \frac{27}{2}, \ldots$.

ANSWERS

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
\qquad
TEST FORM D

ANSWERS

12. \qquad
13. \qquad
14. \qquad
15. \qquad
16. \qquad
17. \qquad
18. \qquad
19. See work.
20. For a geometric sequence, $r=2$ and $S_{8}=-63.75$. Find a_{1}.

Find the sum, if it exists.
13. $\sum_{k=1}^{10} 3^{k}$
14. $-16+(-8)+(-4)+\cdots$
15. Find fraction notation for $2 . \overline{09}$.
16. Salvage Value. The value of a piece of home care equipment is $\$ 1200$. Its salvage value each year is 75% of its value the year before. Give a sequence that lists the salvage value of the piece of equipment for each year of a 5-year period.
17. Hourly Wage. Aidan accepts a job with a starting hourly wage of $\$ 17.50$. He is promised a raise of $80 \notin$ per hour every three months for the next two years. What will his hourly wage be at the end of the two-year period?
18. Bouncing Tennis Ball. A tennis ball is dropped from a height of 12 ft and always rebounds $\frac{2}{3}$ of the distance fallen. How far (up and down) will the ball have traveled when it hits the pavement for the $5^{\text {th }}$ time?
19. Use mathematical induction to prove that for every natural number n,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

\qquad
TEST FORM D

Evaluate.
20. ${ }_{10} P_{4}$
21. ${ }_{12} C_{2}$
22. $\binom{n}{3}$
23. How many 4-letter code symbols can be formed with the letters $\mathrm{P}, \mathrm{R}, \mathrm{I}, \mathrm{M}, \mathrm{E}$, and S without repetition?
24. How many 5-digit codes can be formed using the digits $2,4,6,8$, and 0 if the digits:
a) can be repeated?
b) are not repeated and must begin with 6 ?
25. Class Representatives. A class has 40 members. How many sets of 4 representatives can be selected from this group?
26. Dinner Specials. For a particular special, a diner can choose one appetizer, one entrée, and one dessert. The restaurant offers choices from 4 appetizers, 3 entrees, and 2 desserts. In how many ways can a dinner special be formed?
27. Expand: $(a-2)^{5}$.
28. Find the 4th term of the binomial expansion of $(3 x+y)^{4}$.
29. Determine the number of subsets of a set containing 7 members.
30. Socks. Your sock drawer contains 8 black, 3 blue, 2 brown, and 2 white pairs of socks which are rolled into matching pairs. In the dark, you select a pair of socks. What is the probability that you select a pair that is white?

ANSWERS
20. \qquad
21. \qquad
22. \qquad
23. \qquad
24. a) \qquad
b) \qquad
25. \qquad
26. \qquad
27. \qquad
28. \qquad
29. \qquad
30. \qquad
\qquad
TEST FORM D

ANSWERS

31. \qquad
32. \qquad
33. \qquad C.

B.

D.

34. Solve for $n:\binom{n}{n-2}=15$.
35. For the sequence whose nth term is $a_{n}=n(n-2)^{3}$, find a_{7}.
a) 875
b) 1728
c) 2345
d) 105
36. Find and evaluate: $\sum_{k=1}^{4} \frac{(-1)^{k+1}}{2 k}$.
a) $-\frac{1}{8}$
b) $-\frac{7}{24}$
c) $\frac{5}{12}$
d) $\frac{7}{24}$
37. \qquad
38. Find sigma notation for $1+2+4+8+16+32$.
a) $\sum_{k=1}^{5} 2^{k}$
b) $\sum_{k=1}^{6} 2^{k-1}$
c) $\sum_{k=1}^{6} 2^{k}$
d) $\sum_{k=1}^{\infty} 1 \cdot 2^{k-1}$
39. Find sigma notation for $4-6+8-10+12-14+\cdots$.
a) $\sum_{n=2}^{6} 2^{n}$
b) $\sum_{n=2}^{\infty} 2(n-2)$
c) $\sum_{n=2}^{\infty}(-1)^{n} 2 n$
d) $\sum_{n=2}^{\infty}(-1)^{n+1} 2 n$
40. \qquad
41. Find the 4th term of the recursively defined sequence $a_{1}=\frac{1}{2}, a_{n+1}=3 a_{n}+2$.
42. \qquad
a) 14
b) $39 \frac{1}{2}$
c) 63
d) $3 \frac{7}{8}$
43. Find the 19 th term of the arithmetic sequence $\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \ldots$.
44. \qquad
a) $\frac{41}{4}$
b) $\frac{43}{4}$
c) $\frac{39}{4}$
d) $\frac{19}{2}$
\qquad

TEST FORM E

ANSWERS

7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad 12. Find the sum: $\sum_{k=1}^{8}(-1)^{k} 3^{k}$.
a) 4920
b) -9840
c) -1641
d) -4920
13. \qquad
14. Find the sum, if it exists: $4+1+\frac{1}{4}+\cdots$.
a) 16
b) $\frac{16}{3}$
c) 6
d) Does not exist
a
3
c) 6
d
15. The 1 st term of an arithmetic sequence is -12 and the 20th term is 64 . Find the 5th term.
a) $-\frac{20}{19}$
b) 4
c) $\frac{32}{19}$
d) $-\frac{8}{5}$
16. Find the sum of the first 20 terms of the series $20+15+10+\cdots$.
a) -600
b) -1100
c) -750
d) -550
17. Find the sum $\sum_{k=1}^{20}(-3 k+5)$.
a) -530
b) -55
c) -1060
d) 990
18. Find the 6th term of the geometric sequence $100,80,64, \ldots$.
a) $\frac{16,384}{625}$
b) $\frac{1024}{25}$
c) $\frac{4096}{125}$
d) $\frac{8192}{25}$
19. For a geometric sequence, $r=\frac{1}{4}$ and $S_{4}=-2.65625$. Find a_{1}.
a) $-\frac{8}{3}$
b) -2
c) -8
d) $-\frac{85}{12}$

-

\qquad
TEST FORM E
14. When $0 . \overline{72}$ is expressed in simplified fraction notation, what is the denominator?
a) 72
b) 8
c) 11
d) 9
15. The Economic Multiplier. The government is making a $\$ 3,200,000$ expenditure for restoration of covered bridges. If 45% of this is spent again, and so on, what is the total effect on the economy? Round to the nearest dollar.
a) $\$ 7,111,111$
b) $\$ 1,760,000$
c) $\$ 4,640,000$
d) $\$ 5,818,182$
16. A garden has 4 plants in the first row, 5 in the second row, 6 in the third row, and so on for 10 rows. How many plants are there altogether?
a) 14 plants
b) 17 plants
c) 85 plants
d) 170 plants
17. Bouncing Ball. A ball is dropped from a height of 250 cm and always rebounds $\frac{3}{5}$ of the distance fallen. How far does it reach the 6th time it rebounds?
a) 6.9984 cm
b) 19.44 cm
c) 11.664 cm
d) 150 cm
18. If possible, evaluate the statement:

$$
2 n<n^{2}, \text { for } n=1,2,3, \ldots
$$

a) It is sometimes true.
b) It is never true.
c) It is always true.
d) It is not possible to evaluate.
19. Find S_{k+1}, the $(k+1)^{\text {st }}$ statement in the mathematical induction proof of $4+8+12+\cdots+4 n=2 n(n+1)$ for $n=1,2,3, \ldots$.
a) $4+4 k=2 k(k+1)$
b) $4+8+12+\cdots+4 k-2 k(k+1)=2(k+1)(k+2)$
c) $4+8+12+\cdots+4 k=2 k(k+1)$
d) $4+8+12+\cdots+4(k+1)=2(k+1)(k+2)$

ANSWERS
14. \qquad
15. \qquad
16. \qquad
17. \qquad
18. \qquad
19. \qquad

TEST FORM E

| ANSWERS | 20.Evaluate: ${ }_{8} P_{2}$.
 a) 28\quad b) 56 | c) 20,160 | d) 112 |
| :---: | :--- | :--- | :--- | :--- | :--- |

20. \qquad
a) 28
b) 56
c) 20,160
d) 112
21. \qquad
22. \qquad
23. \qquad 23. Test answers. A true-false test contains 25 questions. How many possible completed answer sheets are there?
a) $33,554,432$
b) 300
c) 625
d) 600
24. Evaluate: $\binom{n}{2}$.
a) $\frac{n!}{3!}$
b) $\frac{(n-2)!}{2!}$
c) $\frac{2!n!}{(n-2)!}$
d) $\frac{n!}{(n-2)!2!}$
a) 95,040
b) $3,991,680$
c) 792
d) 5040
25.
26. Class Representatives. A class has 100 members. How many different ways can it choose four representatives?
a) $3,921,225$
b) $94,109,400$
c) 25
d) 12,650
\qquad
TEST FORM E
27. Menu Options. In planning a morning reception, the host must choose two of five fruit options, three of six bagel options, and two of four muffin options. In how many way can this be done?
a) 12
b) 1200
c) 10
d) 28,800
28. Expand: $\left(x^{2}-1\right)^{4}$.
a) $x^{8}-1$
b) $x^{8}-4 x^{6}+16 x^{4}-4 x^{2}+1$
c) $x^{8}-4 x^{6}+6 x^{4}-4 x^{2}+1$
d) $x^{8}+4 x^{6}-6 x^{4}+4 x^{2}-1$
29. Find the 3rd term of the binomial expansion of $(c+d)^{8}$.
a) $24 c^{6} d^{2}$
b) $28 c^{6} d^{2}$
c) $28 c^{4} d^{4}$
d) $56 c^{4} d^{4}$
30. Determine the number of subsets of a set containing 8 members.
a) 16
b) 128
c) 64
d) 256
31. Card Drawing. Suppose we draw a card from a well-shuffled deck of 52 cards. What is the probability of drawing a red king?
a) $\frac{1}{26}$
b) $\frac{2}{13}$
c) $\frac{1}{24}$
d) $\frac{1}{104}$
\qquad
32. \qquad

ANSWERS

25. \qquad
26. \qquad
27. \qquad
\qquad
\qquad
TEST FORM E

ANSWERS
30. \qquad
30. The graph of the sequence whose general term is $a_{n}=2 n-8$ is which of the following?
a)

c)

b)

d)

31. Solve for $n:{ }_{n} P_{5}=\frac{1}{42} \cdot{ }_{n} P_{7}$.
a) 10
b) 14
c) 12
d) 11
\qquad
\qquad

1. For the sequence whose nth term is $a_{n}=5(2 n+1)^{2}$, find a_{6}.
a) 845
b) 65
c) 725
d) 605
2. Find and evaluate: $\sum_{k=1}^{3} \frac{k^{2}}{k+1}$.
a) $\frac{9}{4}$
b) $\frac{23}{6}$
c) $\frac{181}{144}$
d) $\frac{49}{12}$
3. Find sigma notation for $3+15+75+375+1875$.
a) $\sum_{k=1}^{\infty} 3 \cdot 5^{k}$
b) $\sum_{k=1}^{5} 3 \cdot 5^{k}$
c) $\sum_{k=1}^{5} 3 \cdot 5^{k-1}$
d) $\sum_{k=1}^{5} 5 \cdot 3^{k}$
4. Find sigma notation for $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots$.
a) $\sum_{n=1}^{5} \frac{1}{n}$
b) $\sum_{n=1}^{6} \frac{1}{n-1}$
c) $\sum_{n=1}^{\infty} n$
d) $\sum_{n=1}^{\infty} \frac{1}{n}$
5. Find the 4th term of the recursively defined sequence $a_{1}=3, a_{n+1}=2 a_{n}-5$.
a) -23
b) -9
c) -11
d) 3
6. Find the 16 th term of the arithmetic sequence $14,8,2, \ldots$.
a) -82
b) 104
c) $\frac{38}{7}$
d) -76
7. The 1 st term of an arithmetic sequence is 7 and the 20th term is -50 . Find the 5th term.
a) -8
b) -5
c) $-\frac{22}{5}$
d) $-\frac{29}{4}$

ANSWERS

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
.
\qquad
TEST FORM F

ANSWERS
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
8. Find the sum of the first 20 terms of the series $\frac{1}{3}+\frac{4}{3}+\frac{7}{3}+\cdots$.
a) $\frac{580}{3}$
b) $\frac{1180}{3}$
c) $\frac{590}{3}$
d) $\frac{640}{3}$
9. Find the sum $\sum_{k=1}^{24}(4 k+8)$.
a) 104
b) 1392
c) 2784
d) 2496
10. Find the 8 th term of the geometric sequence $10,20,40, \ldots$.
a) 1280
b) 2560
c) 5120
d) 2550
11. For a geometric sequence, $r=3$ and $S_{5}=12.1$. Find a_{1}.
a) -0.5
b) -0.1
c) 0.3025
d) 0.1
12. Find the sum $\sum_{k=1}^{12}-3(2)^{k}$.
a) $-12,285$
b) $-24,570$
c) $-12,282$
d) $-12,288$
13. Find the sum, if it exists: $0.2+0.4+0.8+\cdots$.
a) 2
b) 10
c) 250
d) Does not exist
14. When $1 . \overline{38}$ is expressed in simplified fraction notation, what is the numerator?
a) 99
b) 138
c) 137
d) 46
\qquad
TEST FORM F
15. Loan Repayment. A family borrows $\$ 20,000$. The loan is to be repaid in 5 yr at 8% interest, compounded annually. How much will be repaid at the end of 5 yr ? Round to the nearest dollar.
a) $\$ 29,387$
b) $\$ 41,600$
c) $\$ 21,600$
d) $\$ 29,549$
16. A garden has 5 plants in the first row, 15 in the second row, 25 in the third row, 35 in the fourth row, and so on for 12 rows. How many plants are there altogether?
a) 1320 plants
b) 720 plants
c) 780 plants
d) 1440 plants
17. Bouncing Ball. A ball is dropped from a height of 256 cm and always rebounds $\frac{3}{4}$ of the distance fallen. How high does it reach the 5th time it rebounds?
a) 60.75 cm
b) 45.5625 cm
c) 192 cm
d) 81 cm
18. If possible, evaluate the statement:

$$
n^{2}>(n-1)^{2}, \text { for } n=1,2,3, \ldots
$$

a) It is sometimes true.
b) It is never true.
c) It is always true.
d) It is not possible to evaluate.
19. Find and evaluate the third statement, S_{3}, in a mathematical induction proof of $2+5+8+\cdots+(3 n-1)=\frac{n(3 n+1)}{2}$, for n a natural number.
a) $2=\frac{1(3 \cdot 1+1)}{2}$; True
b) $2+5+8=\frac{3(3 \cdot 3+1)}{2}$; False
c) $2+5+8+\cdots+(3 n-1)=\frac{n(3 n+1)}{2}$; True
d) $2+5+8=\frac{3(3 \cdot 3+1)}{2}$; True

ANSWERS
15. \qquad
16. \qquad
17. \qquad
18. \qquad
19. \qquad

ANSWERS
20. \qquad
20. Evaluate: ${ }_{12} P_{10}$.
a) 66
b) $239,500,800$
c) 132
d) 665,280
21. Evaluate: ${ }_{8} C_{3}$.
a) 336
b) 6720
c) 56
d) 120
22. Evaluate: $\binom{n}{3}$.
a) $\frac{n!}{(n-3)!3!}$
b) $\frac{n!}{3!}$
c) $\frac{n!}{(n-3)!}$
d) $\frac{n!3!}{(n-3)!}$
23. Test answers. A multiple choice quiz contains 12 questions, each of which may be answered a, b, or c. How many possible completed answer sheets are there?
a) 531,441
b) 1728
c) 36
d) 1320
24. Committee Members. A club contains 20 members. How many different committees of 3 members are possible?
a) 6840
b) $3,486,784,401$
c) 8000
d) 1140
\qquad
TEST FORM F
25. Menu Options. In planning a banquet menu, the host must choose three of twelve appetizer options, two of five entrée options, and one of three dessert options. In how many ways can this be done?
a) 79,2300
b) 6
c) 30
d) 6600
26. Expand: $(x+\sqrt{3})^{4}$.
a) $x^{4}+9$
b) $x^{4}+4 \sqrt{3} x^{3}+18 x^{2}+12 \sqrt{3} x+9$
c) $x^{4}+12 x^{3}+18 x^{2}+36 x+9$
d) $x^{4}+4 \sqrt{3} x^{3}+48 x^{2}+4 \sqrt{3} x+9$
27. Find the $5^{\text {th }}$ term of the binomial expansion of $(m+2)^{5}$.
a) 80 m
b) 32
c) 160 m
d) $32 m$
28. Determine the number of subsets of a set containing 10 members.
a) 512
b) 100
c) 1024
d) 45
29. Marbles. Suppose we select, without looking, one marble from a bag containing 5 red marbles, 4 yellow marbles, and 7 blue marbles. What is the probability of selecting a red or yellow marble?
a) $\frac{9}{32}$
b) $\frac{9}{16}$
c) $\frac{5}{16}$
d) $\frac{3}{4}$

ANSWERS
25. \qquad
26. \qquad
27. \qquad
28. \qquad
29. \qquad
\qquad
TEST FORM F

ANSWERS

30. \qquad which of the following?
a)

c)

b)

d)

31. Solve for $n:{ }_{n} P_{6}=6 \cdot{ }_{n} P_{4}$.
a) 7
b) 8
c) 9
d) 10
