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MOTION IN ONE DIMENSION 2 
  

Q2.1. Reason: The elevator must speed up from rest to cruising velocity. In the middle will be a period of 
constant velocity, and at the end a period of slowing to a rest. 
The graph must match this description. The value of the velocity is zero at the beginning, then it increases, then, 
during the time interval when the velocity is constant, the graph will be a horizontal line. Near the end the graph 
will decrease and end at zero. 

 
Assess: After drawing velocity-versus-time graphs (as well as others), stop and think if it matches the physical 
situation, especially by checking end points, maximum values, places where the slope is zero, etc. This one 
passes those tests. 

Q2.2. Reason: (a) The sign conventions for velocity are in Figure 2.7. The sign conventions for acceleration 
are in Figure 2.26. Positive velocity in vertical motion means an object is moving upward. Negative acceleration 
means the acceleration of the object is downward. Therefore the upward velocity of the object is decreasing. An 
example would be a ball thrown upward, before it starts to fall back down. Since it’s moving upward, its velocity 
is positive. Since gravity is acting on it and the acceleration due to gravity is always downward, its acceleration is 
negative. 
(b) To have a negative vertical velocity means that an object is moving downward. The acceleration due to 
gravity is always downward, so it is always negative. An example of a motion where both velocity and 
acceleration are negative would be a ball dropped from a height during its downward motion. Since the 
acceleration is in the same direction as the velocity, the velocity is increasing. 

 

Assess: For vertical displacement, the convention is that upward is positive and downward is negative for both 
velocity and acceleration. 

Q2.3. Reason: Call “up” the positive direction (this choice is arbitrary, and you could do it the other way, but 
this is typically easier in cases like this). Also assume that there is no air resistance. This assumption is probably 
not true (unless the rock is thrown on the moon), but air resistance is a complication that will be addressed later, 
and for small heavy items like rocks no air resistance is a pretty good assumption if the rock isn’t going too fast. 
To be able to draw this graph without help demonstrates a good level of understanding of these concepts. The 
velocity graph will not go up and down as the rock does—that would be a graph of the position. Think carefully 
about the velocity of the rock at various points during the flight. 
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At the instant the rock leaves the hand it has a large positive (up) velocity, so the value on the graph at  t = 0 needs 
to be a large positive number. The velocity decreases as the rock rises, but the velocity arrow would still point 
up. So the graph is still above the t axis, but decreasing. At the tippy-top the velocity is zero; that corresponds to 
a point on the graph where it crosses the t axis. Then as the rock descends with increasing velocity (in the 
negative, or down, direction), the graph continues below the t axis. It may not have been totally obvious before, 
but this graph will be a straight line with a negative slope. 

 

Assess: Make sure that the graph touches or crosses the t axis whenever the velocity is zero. In this case, that is 
only when it reaches to top of its trajectory and the velocity vector is changing direction from up to down. 
It is also worth noting that this graph would be more complicated if we were to include the time at the beginning 
when the rock is being accelerated by the hand. Think about what that would entail. 

Q2.4.  Reason:  Let 
  
t
0

= 0  be when you pass the origin. The other car will pass the origin at a later time 
  
t
1
 

and passes you at time 
  
t
2
. 

 
Assess:  The slope of the position graph is the velocity, and the slope for the faster car is steeper. 

Q2.5. Reason: Yes. The acceleration vector will point south when the car is slowing down while traveling 
north. 
Assess: The acceleration vector will always point in the direction opposite the velocity vector in straight line 
motion if the object is slowing down. Feeling good about this concept requires letting go of the common every 
day (mis)usage where velocity and acceleration are sometimes treated like synonyms. Physics definitions of 
these terms are more precise and when discussing physics we need to use them precisely. 

Q2.6. Reason: A predator capable of running at a great speed while not being capable of large accelerations 
could overtake slower prey that were capable of large accelerations, given enough time. However, it may not be 
as effective surprising and grabbing prey that are capable of higher acceleration. For example, prey could escape 
if the safety of a burrow were nearby. If a predator were capable of larger accelerations than its prey, while being 
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slower in speed than the prey, it would have a greater chance of surprising and grabbing prey, quickly, though 
prey might outrun it if given enough warning.  
Assess: Consider the horse-man race discussed in the text. 

Q2.7. Reason: We will neglect air resistance, and thus assume that the ball is in free fall.   
(a) 

 
!g  After leaving your hand the ball is traveling up but slowing, therefore the acceleration is down (i.e., 

negative). 
(b) 

 
!g  At the very top the velocity is zero, but it had previously been directed up and will consequently be 

directed down, so it is changing direction (i.e., accelerating) down. 
(c) 

 
!g  Just before hitting the ground it is going down (velocity is down) and getting faster; this also constitutes 

an acceleration down. 
Assess: As simple as this question is, it is sure to illuminate a student’s understanding of the difference between 
velocity and acceleration. Students would be wise to dwell on this question until it makes complete sense. 

Q2.8. Reason: (a) Once the rock leaves the thrower’s hand, it is in free fall. While in free fall, the acceleration 
of the rock is exactly the acceleration due to gravity, which has a magnitude g and is downward. The fact that the 
rock was thrown and not simply dropped means that the rock has an initial velocity when it leaves the thrower’s 
hand. This does not affect the acceleration of gravity, which does not depend on how the rock was thrown. 
(b) Just before the rock hits the water, it is still in free fall. Its acceleration remains the acceleration of gravity. Its 
velocity has increased due to gravity, but acceleration due to gravity is independent of velocity. 
Assess: No matter what the velocity of an object is, the acceleration due to gravity always has magnitude g and 
is always straight downward. 

Q2.9. Reason: (a) Sirius the dog starts at about 1 m west of a fire hydrant (the hydrant is the 

  x = 0 m position) and walks toward the east at a constant speed, passing the hydrant at   t = 1.5 s. At   t = 4 s Sirius 
encounters his faithful friend Fido 2 m east of the hydrant and stops for a 6-second barking hello-and-smell. 
Remembering some important business, Sirius breaks off the conversation at t = 10 s and sprints back to the 
hydrant, where he stays for 4 s and then leisurely pads back to his starting point. 
(b) Sirius is at rest during segments B (while chatting with Fido) and D (while at the hydrant). Notice that the 
graph is a horizontal line while Sirius is at rest. 
(c) Sirius is moving to the right whenever x is increasing. That is only during segment A. Don’t confuse 
something going right on the graph (such as segments C and E) with the object physically moving to the right (as 
in segment A). Just because t is increasing doesn’t mean x is. 
(d) The speed is the magnitude of the slope of the graph. Both segments C and E have negative slope, but C’s 
slope is steeper, so Sirius has a greater speed during segment C than during segment E. 
Assess: We stated our assumption (that the origin is at the hydrant) explicitly. During segments B and D time 
continues to increase but the position remains constant; this corresponds to zero velocity. 

Q2.10. Reason: There are five different segments of the motion, since the lines on the position-versus-time 
graph have different slopes between five different time periods. 
(a) During the first part of the motion, the position of the object, x, is constant. The line on the position-versus-
time graph has zero slope since it is horizontal, so the velocity of the object is 0 m/s. The value of the position is 
positive, so the object is to the right of the origin. 
During the second part of the motion, the line on the position-versus-time graph has a negative slope. This means 
the velocity of the object is negative. The line on the graph is straight, so the object moves with constant velocity. 
The object moves from a position to the right of the origin to a position to the left of the origin since the line goes 
below the time axis. 
During the third part of the motion, the position-versus-time graph again has zero slope, so the object’s velocity 
is again 0 m/s. The object stays at the same position throughout this part of the motion, which is on the left of the 
origin. 
In the fourth part, the slope of the line on the graph is positive. The object has a positive velocity and is moving 
toward the right. Note that the magnitude of the slope here is less than the magnitude of the slope during the 
second part of the motion. The magnitude of the velocity during this part of the motion is less than the magnitude 
of the velocity during the second part of the motion. At the end of this time period the object ends up at the 
origin. 
The object is at the origin, and stays at the origin during the final part of the motion. The slope of the line on the 
graph is zero, so the object has a velocity of 0 m/s. 
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(b) Referring to the velocities obtained in part (a), the velocity-versus-time graph would look like the following 

diagram. 

 
Assess: Velocity is given by the slope of lines on position-versus-time graphs. See Conceptual Example 2.1 and 
the discussion that follows. 

Q2.11. Reason: (a) A’s speed is greater at
  
t = 1s. The slope of the tangent to B’s curve at

  
t = 1s is smaller than the 

slope of A’s line.  
(b) A and B have the same speed just before

  
t = 3 s.At that time, the slope of the tangent to the curve representing 

B’s motion is equal to the slope of the line representing A’s motion.  
Assess: The fact that B’s curve is always above A’s doesn’t really matter. The respective slopes matter, not how 
high on the graph the curves are. 

Q2.12. Reason: (a) D. The steepness of the tangent line is greatest at D.  
(b) C, D, E. Motion to the left is indicated by a decreasing segment on the graph.  
(c) C. The speed corresponds to the steepness of the tangent line, so the question can be re-cast as “Where is the 
tangent line getting steeper (either positive or negative slope, but getting steeper)?” The slope at B is zero and is 
greatest at D, so it must be getting steeper at C.  
(d) A, E. The speed corresponds to the steepness of the tangent line, so the question can be re-cast as “Where is 
the tangent line getting less steep (either positive or negative slope, but getting less steep)?” 
(e) B. Before B the object is moving right and after B it is moving left.  
Assess: It is amazing that we can get so much information about the velocity (and even about the acceleration) 
from a position-versus-time graph. Think about this carefully. Notice also that the object is at rest (to the left of 
the origin) at point F. 

Q2.13. Reason: (a) For the velocity to be constant, the velocity-versus-time graph must have zero slope. 
Looking at the graph, there are three time intervals where the graph has zero slope: segment A, segment D and 
segment F. 
(b) For an object to be speeding up, the magnitude of the velocity of the object must be increasing. When the 
slope of the lines on the graph is nonzero, the object is accelerating and therefore changing speed.  
Consider segment B. The velocity is positive while the slope of the line is negative. Since the velocity and 
acceleration are in opposite directions, the object is slowing down. At the start of segment B, we can see the 
velocity is +2 m/s, while at the end of segment B the velocity is 0 m/s. 
During segment E the slope of the line is positive which indicates positive acceleration, but the velocity is 
negative. Since the acceleration and velocity are in opposite directions, the object is slowing here also. Looking 
at the graph at the beginning of segment E the velocity is –2 m/s, which has a magnitude of 2 m/s. At the end of 
segment E the velocity is 0 m/s, so the object has slowed down.  
Consider segment C. Here the slope of the line is negative and the velocity is negative. The velocity and 
acceleration are in the same direction so the object is speeding up. The object is gaining velocity in the negative 
direction. At the beginning of that segment the velocity is 0 m/s, and at the end the velocity is –2 m/s, which has 
a magnitude of 2 m/s. 
(c) In the analysis for part (b), we found that the object is slowing down during segments B and E. 
(d) An object standing still has zero velocity. The only time this is true on the graph is during segment F, where 
the line has zero slope, and is along v = 0 m/s. 
(e) For an object to moving to the right, the convention is that the velocity is positive. In terms of the graph, 
positive values of velocity are above the time axis. The velocity is positive for segments A and B. The velocity 
must also be greater than zero. Segment F represents a velocity of 0 m/s. 
Assess: Speed is the magnitude of the velocity vector. Compare to Conceptual Example 2.6 and also Question 
2.2. 

Q2.14. Reason: Assume that the acceleration during braking is constant. 
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There are a number of ways to approach this question. First, you probably recall from a driver’s education course 
that stopping distance is not directly proportional to velocity; this already tips us off that the answer probably is 
not 2d. 
Let’s look at a velocity-versus-time graph of the situation(s). Call time t = 0 just as the brakes are applied, this is 
the last instant the speed is v. The graph will then decrease linearly and become zero at some later time t1. Now  
add a second line to the graph starting at  t = 0 and 2v. It must also linearly decrease to zero—and it must have the 
same slope because we were told the acceleration is the same in both cases. This second line will hit the t-axis at 

a time
  
t

2
= 2t

1
. Now the crux of the matter: the displacement is the area under the velocity-versus-time graph. 

Carefully examine the two triangles and see that the larger one has 4 times the area of the smaller one; one way is 
to realize it has a base twice as large and a height twice as large, another is to mentally cut out the smaller 
triangle and flip and rotate it to convince yourself that four copies of it would cover the larger triangle. Thus, the 
stopping distance for the 2v case is 4d. 

 
Yet a third way to examine this question is with algebra. Equation 2.13 relates velocities and displacements at a 
constant acceleration. (We don’t want an equation with  t  in it since  t  is neither part of the supplied information 
nor what we’re after.) 

  
(v

x
)

f

2
= (v

x
)

i

2
+ 2a

x
!x  

Note that the stopping distance is the !x in the equation, and that
  
v

f
= 0.  

  
(v

x
)

i

2
= !2a

x
"x  

Given that a is constant and the same in both cases, we see that there is a square relationship between the 
stopping distance and the initial velocity, so doubling the velocity will quadruple the stopping distance. 
Assess: It demonstrates clear and versatile thinking to approach a question in multiple ways, and it gives an 
important check on our work. 
The graphical approach in this case is probably the more elegant and insightful; there is a danger that the 
algebraic approach can lead to blindly casting about for an equation and then plugging and chugging. This latter 
mentality is to be strenuously avoided. Equations should only be used with correct conceptual understanding. 
Also note in the last equation above that the left side cannot be negative, but the right side isn’t either since a is 
negative for a situation where the car is slowing down. So the signs work out. The units work out as well since 

both sides will be in  m
2
/s

2
.  

Q2.15. Reason: This graph shows a curved position-versus-time line. Since the graph is curved the motion is 
not uniform. The instantaneous velocity, or the velocity at any given instant of time is the slope of a line tangent 
to the graph at that point in time. Consider the graph below, where tangents have been drawn at each labeled 
time. 
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Comparing the slope of the tangents at each time in the figure above, the speed of the car is greatest at time C. 
Assess: Instantaneous velocity is given by the slope a line tangent to a position-versus-time curve at a given 
instant of time. This is also demonstrated in Conceptual Example 2.4. 

Q2.16. Reason: C. Negative, negative; since the slope of the tangent line is negative at both A and B. 
Assess: The car’s position at B is at the origin, but it is traveling to the left and therefore has negative velocity 
in this coordinate system. 

Q2.17. Reason:  The velocity of an object is given by the physical slope of the line on the position-versus-
time graph. Since the graph has constant slope, the velocity is constant. We can calculate the slope by using 
Equation 2.1, choosing any two points on the line since the velocity is constant. In particular, at t1 = 0 s the 
position is x1 = 5 m. At time t2 = 3 s the position is x2 = 15 m. The points on the line can be read to two significant 
figures. 
The velocity is  

  

v =
!x

!t
=

x
2
" x

1

t
2
" t

1

=
15 m " 5 m

3 s " 0 s
=

10 m

3 s
= +3.3 m/s  

The correct choice is C. 
Assess: Since the slope is positive, the value of the position is increasing with time, as can be seen from the 
graph. 

Q2.18. Reason: We are asked to find the largest of four accelerations, so we compute all four from Equation 2.8: 

  

a
x

=
!v

x

!t
 

A 
  

a
x

=
10 m/s

5.0 s
= 2.0 m/s

2  

B 
  

a
x

=
5.0 m/s

2.0 s
= 2.5 m/s

2  

C 
  

a
x

=
20 m/s

7.0 s
= 2.9 m/s

2  

D 
  

a
x

=
3.0 m/s

1.0 s
= 3.0 m/s

2  

The largest of these is the last, so the correct choice is D. 
Assess: A large final speed, such as in choices A and C, does not necessarily indicate a large acceleration. 

Q2.19. Reason: The initial velocity is 20 m/s. Since the car comes to a stop, the final velocity is 0 m/s. We 
are given the acceleration of the car, and need to find the stopping distance. See the pictorial representation, 
which includes a list of values below.  

 

An equation that relates acceleration, initial velocity, final velocity, and distance is Equation 2.13.  

  
(v

x
)

f

2
= (v

x
)

i

2
+ 2a

x
!x  

Solving for 
  
!x,  

  

!x =
(v

x
)

f

2
" (v

x
)

i

2

2a
x

=
(0 m/s)

2
" (20 m/s)

2

2("4.0 m/s
2
)

= 50 m  

The correct choice is D. 
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Assess: We are given initial and final velocities and acceleration. We are asked to find a displacement, so 
Equation 2.13 is an appropriate equation to use.  

Q2.20. Reason: This is not a hard question once we remember that the displacement is the area under the 
velocity-versus-time graph. The scales on all three graphs are the same, so simple visual inspection will attest 
that Betty traveled the furthest since there is more area under her graph. The correct choice is B. 
Assess: It is important to verify that the scales on the axes on all the graphs are the same before trusting such a 
simple visual inspection. 
In the same vein, it is important to realize that although all three cars end up at the same speed (40 m/s), they do 
not end up at the same place (assuming they started at the same position); this is nothing more than reiterating 
what was said in the Reason step above. On a related note, check the accelerations: Andy’s acceleration was 
small to begin with but growing toward the end, Betty’s was large at first and decreased toward the end, and 
Carl’s acceleration was constant over the 5.0 s. Mentally tie this all together. 

Q2.21. Reason: The physical slope of the tangent to the velocity-versus-time graph gives the acceleration of 
each car. At time t = 0 s the slope of the tangent to Andy’s velocity-versus-time graph is very small. The slope of 
the tangent to the graph at the same time for Carl is larger. However, the slope of the tangent in Betty’s case is 
the largest of the three. So Betty had the greatest acceleration at t = 0 s. See the figure below. 

 

The correct choice is B. 
Assess: Acceleration is given by the physical slope of the tangent to the curve in a velocity-versus-time graph at 
a given time. 

Q2.22. Reason: Both balls are in free fall (neglecting air resistance) once they leave the hand, and so they will 
have the same acceleration. Therefore, the slopes of their velocity-versus-time graphs must be the same (i.e., the 
graphs must be parallel). That eliminates choices B and C. Ball 1 has positive velocity on the way up, while ball 
2 never goes up or has positive velocity; therefore, choice A is correct. 
Assess: Examine the other choices. In choice B ball 1 is going up faster and faster while ball 2 is going down 
faster and faster. In choice C ball 1 is going up the whole time but speeding up during the first part and slowing 
down during the last part; ball 2 is going down faster and faster. In choice D ball 2 is released from rest (as in 
choice A), but ball 1 is thrown down so that its velocity at   t = 0  is already some non-zero value down; thereafter 
both balls have the same acceleration and are in free fall. 

Q2.23. Reason: The dots from time 0 to 9 seconds indicate a direction of motion to the right. The dots are 
getting closer and closer. This indicates that the object is moving to the right and slowing down. From 9 to 16 
seconds, the object remains at the same position, so it has no velocity. From 16 to 23 seconds, the object is 
moving to the left. Its velocity is constant since the dots are separated by identical distances. 
The velocity-versus-time graph that matches this motion closest is B. 
Assess: The slope of the line in a velocity-versus-time graph gives an object’s acceleration.  

Q2.24. Reason: This can be solved with simple ratios. Since 
   

!
a =

!
!
v

!t
 and the  a  stays the same, it would take 

twice as long to change   
!
v  twice as much. 

The answer is B. 
Assess: This result can be checked by actually computing the acceleration and plugging it back into the 
equation for the second case, but ratios are slicker and quicker. 

Q2.25. Reason: This can be solved with simple ratios. Since 
   

!
a =

!
!
v

!t
 if   
!
a  is doubled then the car can change 

velocity by twice as much in the same amount of time. 
The answer is A. 
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Assess: This result can be checked by actually computing the acceleration, doubling it, and plugging it back into 
the equation for the second case, but ratios are slicker and quicker. 
 

Problems 

P2.1. Prepare: The car is traveling to the left toward the origin, so its position decreases with increase in time.  
  

Time t (s) Position x (m) 
0 1200 
1 975 
2 825 
3 750 
4 700 
5 650 
6 600 
7 500 
8 300 

Solve: (a)  

9 0 

 
(b)   

 

Assess: A car’s motion traveling down a street can be represented at least three ways: a motion diagram, 
position-versus-time data presented in a table (part (a)), and a position-versus-time graph (part (b)). 

P2.2. Prepare: Let us review our sign conventions. Position to the right of or above origin is positive, but to 
left of or below origin is negative. Velocity is positive for motion to the right and for upward motion, but it is 
negative for motion to the left and for downward motion. 

Solve:     

 Diagram Position Velocity 

 (a) 
(b) 
(c) 

Negative 
Negative 
Positive 

Positive 
Positive 
Negative 

P2.3. Prepare: The graph represents an object’s motion along a straight line. The object is in motion for the 
first 300 s and the last 200 s, and it is not moving from t = 300 s to t = 400 s.  
Solve: A forgetful physics professor goes for a walk on a straight country road. Walking at a constant speed, he 
covers a distance of 300 m in 300 s. He then stops and watches the sunset for 100 s. Realizing that it is getting 
dark, he walks faster back to his house covering the same distance in 200 s. 
Assess: The slope of the graph is positive up to t = 300 s, so the velocity is positive and motion is to the right. 
However, the slope is negative from t = 400 s to t = 600 s, so the velocity is negative and motion is to the left. 
Furthermore, because slope for the latter time interval is more than the former, motion to the left is faster than 
motion to the right. 
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P2.4. Prepare: The graph indicates motion from t = 1 hr to t = 2 hr and from t = 3 hr and t = 5 hr. According 
to our sign conventions, motion in the two time intervals is in opposite directions—to the left for the former and 
to the right for the latter. Furthermore, no motion occurs from t = 0 to t = 1 hr and from t = 2 hr to t = 3 hr. 
Solve: Forty miles into a car trip north from his home in El Dorado, an absent-minded English professor 
stopped at a rest area one Saturday. After staying there for one hour, he headed back home thinking that he was 
supposed to go on this trip on Sunday. Absent-mindedly he missed his exit and stopped after one hour of driving 
at another rest area 20 miles south of El Dorado. After waiting there for one hour, he drove back very slowly, 
confused and tired as he was, and reached El Dorado in two hours. 
Assess: The slopes tell us that car’s velocity is 60 mph to the left in the time interval (1 hr – 2 hr), but it is 10 
mph in the time interval (3 hr – 5 hr). 

P2.5.  Prepare: The slope of the position graph is the velocity graph. The position graph has a shallow 
(negative) slope for the first 8 s, and then the slope increases. 
Solve:   
(a) The change in slope comes at 8 s, so that is how long the dog moved at the slower speed.  
(b) 

 
Assess: We expect the sneaking up phase to be longer than the spring phase, so this looks like a realistic 
situation. 

P2.6.  Prepare: The slope of the position graph is the velocity graph. 
Solve:   
(a) Looking at the position graph we see the ball start at 

 
!6m  and go up to 

 
+6m  so that must be where the 

children are.  
(b) 

 

Assess: We can see that the first child rolled the ball faster to the second child than the second child did back to 
the first. 
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P2.7.  Prepare: To get a position from a velocity graph we count the area under the curve. 
Solve:   
(a) 

 

(b) We need to count the area under the velocity graph (area below the  x -axis is subtracted). There are 18 m of 
area above the axis and 4 m of area below. 

 
18m ! 4m = 14m.  

Assess: These numbers seem reasonable; a mail carrier could back up 4 m. It is also important that the problem 
state what the position is at   t = 0 , or we wouldn’t know how high to draw the position graph. 

P2.8.  Prepare: To get a position from a velocity graph we count the area under the curve. 
Solve:   
(a) 

 

(b) We need to count the area under the velocity graph (area below the x-axis is subtracted). There are 12 m of 
area below the axis and 12 m of area above. 

 
12m !12m = 0m.   

(c) A football player runs left at 3 m/s for 4 s, then cuts back to the right at 3 m/s for 2 s, then walks (continuing 
to the right) back to the starting position.  
Assess: We note an abrupt change of velocity from 3 m/s left to 3 m/s right at 4 s. It is also important that the 
problem state what the position is at 

  
t = 0,  or we wouldn’t know how high to draw the position graph. 

P2.9. Prepare: Note that the slope of the position-versus-time graph at every point gives the velocity at that point. 
Referring to Figure P2.9, the graph has a distinct slope and hence distinct velocity in the time intervals: from t = 
0 to t = 20 s; from 20 s to 30 s; and from 30 s to 40 s. 
Solve: The slope at t = 10 s is  

  

v =
!x

!t
=

100 m " 50 m

20 s
= 2.5 m/s  

The slope at t = 25 s is 

  

v =
100 m !100 m

10 s
= 0 m/s  

The slope at t = 35 s is 
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v =
0 m !100 m

10 s
= !10 m/s  

Assess: As expected a positive slope gives a positive velocity and a negative slope yields a negative velocity. 

P2.10. Prepare: Assume that the ball travels in a horizontal line at a constant 
  
v

x
.  It doesn’t really, but if it is a 

line drive then it is a fair approximation. 
Solve:  

  

!t =
!x

v
x

=
43 ft

100 mi/h

1 mi

5280 ft

"

#$
%

&'
3600 s

1 h

"

#$
%

&'
= 0.29 s  

Assess: This is a short but reasonable time for a fastball to get from the mound to home plate. 

P2.11. Prepare:  A visual overview of Alan’s and Beth’s motion that includes a pictorial representation, a 
motion diagram, and a list of values is shown below. Our strategy is to calculate and compare Alan’s and Beth’s 
time of travel from Los Angeles to San Francisco. 

 

Solve: Beth and Alan are moving at a constant speed, so we can calculate the time of arrival as follows: 

  

v =
!x

!t
=

x
f
" x

i

t
f
" t

i

# t
f

= t
i
+

x
f
" x

i

v
 

Using the known values identified in the pictorial representation, we find 

  

(t
f
)

Alan
= (t

i
)

Alan
+

(x
f
)

Alan
! (x

i
)

Alan

v
= 8:00 AM +

400 mile

50 miles/hour
= 8:00 AM + 8 hr = 4:00 PM

(t
f
)

Beth
= (t

i
)

Beth
+

(x
f
)

Beth
! (x

i
)

Beth

v
= 9:00 AM +

400 mile

60 miles/hour
= 9:00 AM + 6.67 hr = 3:40 PM

 

(a) Beth arrives first. 
(b) Beth has to wait 20 minutes for Alan. 
Assess: Times of the order of 7 or 8 hours are reasonable in the present problem. 

P2.12. Prepare: Assume that Richard only speeds on the 125 mi stretch of the interstate. We then need to 
compute the times that correspond to two different speeds for that given distance. Rearrange Equation 1.1 to 
produce 

 

time =
distance

speed
 

Solve: At the speed limit: 

 

time
1

=
125 mi

65 mi/h

60 min

1 h

!

"#
$

%&
= 115.4 min  

At the faster speed: 
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time
2

=
125 mi

70 mi/h

60 min

1 h

!

"#
$

%&
= 107.1 min  

By subtracting we see that Richard saves 8.3 min. 
Assess: Breaking the law to save 8.3 min is normally not worth it; Richard’s parents can wait 8 min. 
Notice how the hours (as well as the miles) cancel in the equations. 

P2.13. Prepare: Since each runner is running at a steady pace, they both are traveling with a constant speed. 
Each must travel the same distance to finish the race. We assume they are traveling uniformly. We can calculate 
the time it takes each runner to finish using Equation 2.1. 
Solve: The first runner finishes in  

  

!t
1

=
!x

(v
x
)

1

=
5.00 km

12.0 km/hr
= 0.417 hr  

Converting to minutes, this is 
 

(0.417 hr)
60 min

1 hr

!

"#
$

%&
= 25.0 min  

For the second runner 

  

!t
2

=
!x

(v
x
)

2

=
5.00 km

14.5 km/hr
= 0.345 hr  

Converting to seconds, this is  

 

(0.345 hr)
60 min

1 hr

!

"#
$

%&
= 20.7 min  

The time the second runner waits is 25.0 min – 20.7 min = 4.3 min 
Assess: For uniform motion, velocity is given by Equation 2.1. 

P2.14. Prepare: We’ll do this problem in multiple steps. Rearrange Equation 1.1 to produce 

 

time =
distance

speed
 

Use this to compute the time the faster runner takes to finish the race; then use 
 
distance = speed ! time  to see 

how far the slower runner has gone in that amount of time. Finally, subtract that distance from the 8.00 km 
length of the race to find out how far the slower runner is from the finish line. 

 

Solve: The faster runner finishes in 

  

t =
8.00 km

14.0 km/h
= 0.571 h  
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In that time the slower runner runs 
  
d = (11.0 km/h) ! (0.571 h) = 6.29 km.   

This leaves the slower runner 
 
8.00 km ! 6.29 km = 1.71 km  from the finish line as the faster runner crosses the 

line. 
Assess: The slower runner will not even be in sight of the faster runner when the faster runner crosses the line. 
We did not need to convert hours to seconds because the hours cancelled out of the last equation. Notice we kept 
3 significant figures, as indicated by the original data. 

P2.15.   Prepare: Assume 
 
v

x
 is constant so the ratio 

 

!x

!t
 is also constant. 

Solve:   
(a) 

  

30 m

3.0 s
=

!x

1.5 s
" !x = 1.5 s

30 m

3.0 s

#

$%
&

'(
= 15 m  

(b) 

  

30 m

3.0 s
=

!x

9.0 s
" !x = 9.0 s

30 m

3.0 s

#

$%
&

'(
= 90 m  

Assess: Setting up the ratio allows us to easily solve for the distance traveled in any given time. 

P2.16.  Prepare: Assume 
 
v

x
 is constant so the ratio 

 

!x

!t
 is also constant. 

Solve:   
(a) 

  

100 m

18 s
=

400 m

!t
" !t = 18 s

400 m

100 m

#

$%
&

'(
= 72 s  

(b) 

  

100 m

18 s
=

1.0 mi

!t
" !t = 18 s

1.0 mi

100 m

#

$%
&

'(
1609 m

1.0 mi

#

$%
&

'(
= 290 s = 4.8 min  

Assess: This pace does give about the right answer for the time required to run a mile for a good marathoner. 

P2.17. Prepare: The graph in Figure P2.17 shows distinct slopes in the time intervals: 0 – 1s, 1 s – 2 s, and 

 2 s –  4 s.  We can thus obtain the velocity values from this graph using v = !x/!t.  
Solve: (a) 

 

(b) There is only one turning point. At t = 2 s the velocity changes from +20 m/s to "10 m/s, thus reversing the 
direction of motion. At t = 1 s, there is an abrupt change in motion from rest to +20 m/s, but there is no reversal 
in motion. 
Assess: As shown above in (a), a positive slope must give a positive velocity and a negative slope must yield a 
negative velocity. 
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P2.18.  Prepare: We need to estimate the distance from the heart to the brain for the second part. 30 cm is a 
good estimate. 

 
Solve:   

(a) The distance traveled is the area under the 
 
v

y
 graph. The area of a triangle is 

  

1

2
BH .   

  

!y = area =
1

2
BH =

1

2
(0.20 s)(0.75 m/s) = 7.5 cm  

(b) 

  

!t =
!y

v
y

=
30 cm

7.5 cm/beat
= 4.0 beats  

Assess: Four beats seems reasonable. 

P2.19. Prepare: Please refer to Figure P2.19. Since displacement is equal to the area under the velocity graph 
between ti and tf, we can find the car’s final position from its initial position and the area. 
Solve: (a) Using the equation xf = xi + area of the velocity graph between ti and tf, 

  

x
2 s

= 10 m + area of trapezoid between 0 s and 2 s

= 10 m +
1

2
(12 m/s + 4 m/s)(2 s) = 26 m

x
3 s

= 10 m + area of triangle between 0 s and 3 s

= 10 m +
1

2
(12 m/s)(3 s) = 28 m

x
4 s

= x
3 s

+ area between 3 s and 4 s

= 28 m +
1

2
(!4 m/s)(1 s) = 26 m

 

(b) The car reverses direction at t = 3 s, because its velocity becomes negative. 
Assess: The car starts at xi = 10 m at ti = 0. Its velocity decreases as time increases, is zero at t = 3 s, and then 
becomes negative. The slope of the velocity-versus-time graph is negative which means the car’s acceleration is 
negative and a constant. From the acceleration thus obtained and given velocities on the graph, we can also use 
kinematic equations to find the car’s position at various times. 

P2.20.  Prepare: To make the estimates from the graph we need to read the slopes from the graph. Lightly 
pencil in straight lines tangent to the graph at 

  
t = 2 s  and 

  
t = 4 s.  Then pick a pair of points on each line to 

compute the rise and the run. 
Solve:   
(a) 

  

v
x

=
200 m

4 s !1 s
= 67 m/s  

(b) 

  

v
x

=
400 m

5 s ! 2 s
= 130 m/s  

Assess: The speed is increasing, which is indeed what the graph tells us. These are reasonable numbers for a 
drag racer. 

P2.21. Prepare: Please refer to Figure P2.21. The graph in Figure P2.21 shows distinct slopes in the time 
intervals: 0 – 2 s and 2 s – 4 s. We can thus obtain the acceleration values from this graph using ax = !vx/!t. A 
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linear decrease in velocity from t = 0 s to t = 2 s implies a constant negative acceleration. On the other hand, a 
constant velocity between t = 2 s and t = 4 s means zero acceleration. 
Solve:  

 

P2.22. Prepare: Displacement is equal to the area under the velocity graph between ti and tf, and acceleration 
is the slope of the velocity-versus-time graph. 

Solve: (a) 

 

(b) From the acceleration versus t graph above, ax at t = 3.0 s is +1 m/s2. 

P2.23. Prepare: Acceleration is the rate of change of velocity. The sign conventions for position are in Figure 2.1. 
Conventions for velocity are in Figure 2.7. Conventions for acceleration are in Figure 2.26. 
Solve: (a) Since the displacements are toward the right and the velocity vectors point toward the right, the 
velocity is always positive. Since the velocity vectors are increasing in length and are pointing toward the right, 
the acceleration is positive. The position is always negative, but it is only differences in position that are 
important in calculating velocity. 
(b) Since the displacements and the velocity vectors are always downward, the velocity is always negative. Since 
the velocity vectors are increasing in length and are downward, the acceleration is negative. The position is 
always negative, but it is only differences in position that are important in calculating velocity. 
(c) Since the displacements are downward, and the velocity vectors are always downward, the velocity is always 
negative. Since the velocity vectors are increasing in length and are downward, the acceleration is negative. The 
position is always positive, but it is only differences in position that are important in calculating velocity. 
Assess: The origin for coordinates can be placed anywhere. 

P2.24.  Prepare: To figure the acceleration we compute the slope of the velocity graph by looking at the rise 
and the run for each straight line segment. 
Solve: Speeding up:  

  

a
y

=
!v

y

!t
=

0.75 m/s

0.05 s
= 15 m/s

2  
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Slowing down:  

  

a
y

=
!v

y

!t
=
"0.75 m/s

0.15 s
= "5 m/s

2  

Assess: Indeed the slope looks three time steeper in the first segment than in the second. These are pretty good 
accelerations. 

P2.25. Prepare: From a velocity-versus-time graph we find the acceleration by computing the slope. We will 
compute the slope of each straight-line segment in the graph. 

  

a
x

=
(v

x
)

f
! (v

x
)

i

t
f
! t

i

 

The trickiest part is reading the values off of the graph. 
Solve: (a)  

  

a
x
=

5.5 m/s ! 0.0 m/s

0.9 s ! 0.0 s
= 6.1 m/s

2  

(b) 

  

a
x

=
9.3 m/s ! 5.5 m/s

2.4 s ! 0.9 s
= 2.5 m/s

2  

(c) 

  

a
x
=

10.9 m/s ! 9.3 m/s

3.5 s ! 2.4 s
= 1.5 m/s

2  

Assess: This graph is difficult to read to more than one significant figure. I did my best to read a second 
significant figure but there is some estimation in the second significant figure. 
It takes Carl Lewis almost 10 s to run 100 m, so this graph covers only the first third of the race. Were the graph 
to continue, the slope would continue to decrease until the slope is zero as he reaches his (fastest) cruising speed. 
Also, if the graph were continued out to the end of the race, the area under the curve should total 100 m. 

P2.26. Prepare: We can calculate acceleration from Equation 2.8: 
Solve: For the gazelle: 

  

(a
x
) =

!v
x

!t

"

#$
%

&'
=

13 m/s

3.0 s
= 4.3 m/s

2  

For the lion: 

  

(a
x
) =

!v
x

!t

"

#$
%

&'
=

9.5 m/s

1.0 s
= 9.5 m/s

2  

For the trout: 

  

(a
x
) =

!v
x

!t

"

#$
%

&'
=

2.8 m/s

0.12 s
= 23 m/s

2  

The trout is the animal with the largest acceleration. 
Assess: A lion would have an easier time snatching a gazelle than a trout. 

P2.27.  Prepare: Acceleration is the rate of change of velocity. 

  

a
x

=
!v

x

!t
 

Where
  
!v

x
= 4.0 m/s and

  
!t = 0.11 s.  
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We will then use that acceleration in Equation 2.14 (a special case of Equation 2.12) to compute the 
displacement during the strike: 

  

! x =
1

2
a

x
(!t)

2  

where we are justified in using the special case because
  
(v

x
)

i
= 0.0 m/s.  

Solve: (a) 

  

a
x
=
!v

x

!t
=

4.0 m/s

0.11s
= 36 m/s

2  

(b) 

  

!x =
1

2
a

x
(!t)

2
=

1

2
(36 m/s

2
)(0.11s)

2
= 0.22 m  

Assess: The answer is remarkable but reasonable. The pike strikes quickly and so is able to move 0.22 m in 0.11 s, 
even starting from rest. The seconds squared cancel in the last equation. 

P2.28. Prepare: First, we will convert units: 

 

60
miles

hour
!

1 hour

3600 s
!

1609 m

1 mile
= 26.8 m/s  

We also note that g = 9.8 m/s2. Because the car has constant acceleration, we can use kinematic equations. 
Solve: (a) For initial velocity vi = 0, final velocity vf = 26.8 m/s, and  !t = 10 s, we can find the acceleration 
using 

  

v
f

= v
i
+ a!t " a =

v
f
# v

i

!t
=

(26.8 m/s # 0 m/s)

10 s
= 2.68 m/s

2  

(b) The fraction is a/g = 2.68/9.8 = 0.273. So a is 27% of g. 
(c) The displacement is calculated as follows: 

  

x
f
! x

i
= v

i
"t +

1

2
a("t)

2
=

1

2
a("t)

2
= 134 m = 440 feet  

Assess: A little over tenth of a mile displacement in 10 s is physically reasonable. 

P2.29.   Prepare: We’ll do this in parts, first computing the acceleration after the congestion. 
Solve:  

  

a =
!v

!t
=

12.0 m/s " 5.0 m/s

8.0 s
=

7.0 m/s

8.0 s
 

Now use the same acceleration to find the new velocity.  

  

v
f

= v
i
+ a!t = 12.0 m/s +

7.0

8.0
 m/s

2
"

#$
%

&'
(16 s) = 26 m/s  

Assess: The answer is a reasonable 58 mph. 

P2.30. Prepare: Because the skater slows steadily, her deceleration is a constant along the patch and we can 
use the kinematic equations of motion under constant acceleration.  
Solve: Since we know the skater’s initial and final speeds and the width of the patch over which she decelerates, 
we will use 

  

v
f

2
= v

i

2
+ 2a(x

f
! x

i
)

" a =
v

f

2
! v

i

2

2(x
f
! x

i
)

=
(6.0 m/s)

2
! (8.0 m/s)

2

2(5.0 m)
= !2.8 m/s

2
 

Assess: A deceleration of 2.8 m/s2 or 6.3 mph/s is reasonable. 
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P2.31. Prepare: The kinematic equation that relates velocity, acceleration, and distance is 

  
(v

x
)

f

2
= (v

x
)

i

2
+ 2a

x
!x.  Solve for   !x.   

  

!x =
(v

x
)

f

2
" (v

x
)

i

2

2a
x

 

Note that 
  
(v

x
)

i

2
= 0  for both planes. 

Solve: The accelerations are same, so they cancel.  

  

!x
jet

!x
prop

=

(v
x
)

f

2

2a
x

"

#
$

%

&
'

jet

(v
x
)

f

2

2a
x

"

#
$

%

&
'

prop

=

(v
x
)

f( )
jet

2

(v
x
)

f( )
prop

2
=

(2v
x
)

f( )
prop

2

(v
x
)

f( )
prop

2
= 4 ( !x

jet
= 4!x

prop
= 4(1/4 mi) = 1 mi  

Assess: It seems reasonable to need a mile for a passenger jet to take off. 

P2.32. Prepare: We recall that displacement is equal to area under the velocity graph between ti and tf, and 
acceleration is the slope of the velocity-versus-time graph. 
Solve: (a) Using the equation, 
xf = xi + area under the velocity-versus-time graph between ti and tf 
we have, 

x (at t = 1 s) = x (at t = 0 s) + area between t = 0 s and t = 1 s = 2.0 m + (4 m/s)(1 s) = 6.0 m 

Reading from the velocity-versus-time graph, vx (at t = 1 s) = 4.0 m/s. Also, ax = slope = !v/!t = 0 m/s2. 
(b)  

  

x(at t = 3.0 s) = x(at t = 0 s) + area between t = 0 s and t = 3 s

= 2.0 m + 4 m/s ! 2 s + 2 m/s !1s + (1/2) ! 2 m/s !1s = 13.0 m
 

Reading from the graph, vx (t = 3 s) = 2 m/s. The acceleration is 

  

a
x
(t = 3 s) = slope =

v
x
(at t = 4 s) ! v

x
(at t = 2 s)

2 s
= !2.0 m/s

2  

Assess: Due to the negative slope of the velocity graph between 2 s and 4 s, a negative acceleration was 
expected. 

P2.33. Prepare: A visual overview of the car’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We label the car’s motion along the x-axis. For the driver’s 
maximum (constant) deceleration, kinematic equations are applicable. This is a two-part problem. We will first 
find the car’s displacement during the driver’s reaction time when the car’s deceleration is zero. Then we will 
find the displacement as the car is brought to rest with maximum deceleration. 

 

Solve: During the reaction time when a0 = 0, we can use 

  

x
1

= x
0

+ v
0
(t

1
! t

0
) +

1

2
a

0
(t

1
! t

0
)

2

= 0 m + (20 m/s)(0.50 s ! 0 s) + 0 m = 10 m
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During deceleration, 

  
v

2

2
= v

1

2
+ 2a

1
(x

2
! x

1
)   0 = (20 m/s)2 + 2(–6.0 m/s2)(x2 – 10 m) !  x2 = 43 m 

She has 50 m to stop, so she can stop in time. 
Assess: While driving at 20 m/s or 45 mph, a reaction time of 0.5 s corresponds to a distance of 33 feet or only 
two lengths of a typical car. Keep a safe distance while driving! 

P2.34.  Prepare: Do this in two parts. First compute the distance traveled during the acceleration phase and 
what speed it reaches. Then compute the additional distance traveled at that constant speed. 

Solve: During the acceleration phase, since 
  
(v

x
)

i
= 0   

  

!x =
1

2
a

x
(!t)

2
=

1

2
(250 m/s

2
)(20 ms)

2
= 0.05 m = 5.0 cm  

We also compute the speed it attains.  

  
v

x
= a

x
!t = (250 m/s

2
)(20 ms) = 5.0 m/s  

Now the distance traveled at a constant speed of 
 
5.0 m/s .   

  
!x = v

x
!t = (5.0 m/s)(30 ms) = 0.15 m = 15 cm  

Now add the two distances to get the total.  

  
!x

total
= 5.0 cm +15 cm = 20 cm  

Assess: A 20-cm-long tongue is impressive, but possible. 

P2.35. Prepare: A visual overview of your car’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We label the car’s motion along the x-axis. For maximum 
(constant) deceleration of your car, kinematic equations hold. This is a two-part problem. We will first find the 
car’s displacement during your reaction time when the car’s deceleration is zero. Then we will find the 
displacement as you bring the car to rest with maximum deceleration. 

 
Solve: (a) To find x2, we first need to determine x1. Using x1 = x0 + v0(t1 – t0), we get x1 = 0 m + (20 m/s) (0.50 s 
–0 s) = 10 m. Now, with a1 = 10 m/s2, v2 = 0 and v1 = 20 m/s, we can use 

  
v

2

2
= v

1

2
+ 2a

1
(x

2
! x

1
) " 0 m

2
/s

2
= (20 m/s)

2
+ 2(!10 m/s

2
)(x

2
!10 m) " x

2
= 30 m  

The distance between you and the deer is (x3 – x2) or (35 m – 30 m) = 5 m. 
(b) Let us find v0 max such that v2 = 0 m/s at x2 = x3 = 35 m. Using the following equation,  

  
v

2

2
! v

0 max

2
= 2a

1
(x

2
! x

1
) " 0 m

2
/s

2
! v

0 max

2
= 2(!10 m/s

2
)(35 m ! x

1
)  

Also, x1 = x0 + v0 max (t1 – t0) = v0 max (0.50 s – 0 s) = (0.50 s)v0 max. Substituting this expression for x1 in the above 
equation yields 

  
!v

0 max

2
= (!20 m/s

2
)[35 m ! (0.50 s) v

0 max
]" v

0  max

2
+ (10 m/s)v

0 max
! 700 m

2
/s

2
= 0  

The solution of this quadratic equation yields v0 max = 22 m/s. (The other root is negative and unphysical for the 
present situation.) 
Assess: An increase of speed from 20 m/s to 22 m/s is very reasonable for the car to cover an additional distance 
of 5 m with a reaction time of 0.50 s and a deceleration of 10 m/s2. 
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P2.36. Prepare: There are three parts to this motion. The acceleration is constant during each part. We are 
given the acceleration and time for the first and last segments and are asked to find a distance. Equations 2.8, 
2.11, 2.12, and 2.13 apply during these segments. During the middle constant velocity segment we can use 
Equation 2.5. 
 
Solve: Refer to the diagram below. 

 

(a) From
  
x

1
to

  
x

2
the train has a constant acceleration of

  
(a

x
)

1
= +1.1 m/s

2
. Placing the origin at the starting 

position of the train,
  
x

1
= 0 m. Since the train starts from rest,

  
(v

x
)

1
= 0 m/s. We can calculate the distance the 

train goes during this phase of the motion using Equation 2.12. 

  

x
2

= x
1
+ (v

x
)

1
(t

2
! t

1
) +

1

2
(a

x
)

1
(t

2
! t

1
)

2
=

1

2
(1.1 m/s

2
)(20 s)

2
= 220 m  

From
  
x

2
to

  
x

3
the train is traveling with constant velocity. We are given that x3 – x2 = 1100 m, so  x3 = x2 + 1100 m 

= 220 m + 1100 m = 1320 m. 

From
  
x

3
to

  
x

4
the train has a constant negative acceleration of

  
(a

x
)

3
= !2.2 m/s

2
. The train stops at the station so 

  
(v

x
)

4
= 0 m/s. We will need to find either the time the train takes to stop or its initial velocity just before 

beginning to stop to continue. We can find the velocity of the train just before it begins to stop by noticing that it 

is equal to the velocity of the train during the middle segment of the trip,
  
(v

x
)

3
, which is also equal to the velocity 

of the train at the end of the first segment of the trip:
  
(v

x
)

3
= (v

x
)

2
. We can find

  
(v

x
)

2
using Equation 2.11 during 

the first segment of the trip. 

  
(v

x
)

2
= (v

x
)

1
+ (a

x
)

1
(t

2
! t

1
) = (1.1 m/s

2
)(20 s) = 22 m/s  

We now have enough information to calculate the distance the train takes to stop using Equation 2.13: 

  
(v

x
)

4

2
= (v

x
)

3

2
+ 2(a

x
)

3
(x

4
! x

3
)  

Solving for
  
(x

4
! x

3
),  

  

(x
4
! x

3
) =

(v
x
)

4

2
! (v

x
)

3

2

2(a
x
)

3

=
(0 m/s)

2
! (22 m/s)

2

2(!2.2 m/s)
= 110 m  

Finally, we can calculate
  
x

4
= x

3
+110 m = 1320 m +100 m = 1430 m.  

The total distance the train travels is 1400 m to two significant figures. 

(b) We are given the time the train takes during the first part of the trip,
  
t
2
! t

1
= 15 s. During the constant velocity 

segment, we know that the train travels
  
x

3
! x

2
= 1100 m.We calculated its velocity during this segment in part 

(a) as
  
(v

x
)

2
= 21 m/s. Using Equation 2.5, we can calculate the time. 

  

t
3
! t

2
=

x
3
! x

2

(v
x
)

2

=
1100 m

22 m/s
= 50 s  
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To calculate the time the train takes to stop, we can use Equation 2.8. 

  

t
4
! t

3
=

(v
x
)

4
! (v

x
)

3

(a
x
)

3

=
(0 m/s) ! (22 m/s)

(!2.2 m/s)
= 10 s  

So the total time the train takes to go between stations is
  
t
4
! t

1
= 20 s + 50 s + 10 s = 80 s.  

Assess: Note that a good visual overview with a velocity-versus-time graph was very useful in organizing this 
complicated problem. We had to calculate a velocity in an early segment to use as an initial velocity in a later 
segment. This is often the case in problems involving different motions such as this one. 

P2.37. Prepare: We will use the equation for constant acceleration to find out how far the sprinter travels 
during the acceleration phase. Use Equation 2.11 to find the acceleration. 

  
v

x
= a

x
t
1

where v
0

= 0 and t
0

= 0  

  

a
x

=
v

x

t
1

=
11.2 m/s

2.14 s
= 5.23 m/s

2  

Solve: The distance traveled during the acceleration phase will be  

  

!x =
1

2
a

x
(!t)

2

=
1

2
(5.23 m/s

2
)(2.14 s)

2

= 12.0 m

 

The distance left to go at constant velocity is
 
100 m !12.0 m = 88.0 m. The time this takes at the top speed of 

11.2 m/s is 

  

!t =
!x

v
x

=
88.0 m

11.2 m/s
= 7.86 s  

The total time is 
 
2.14 s + 7.86 s = 10.0 s.  

Assess: This is indeed about the time it takes a world-class sprinter to run 100 m (the world record is a bit under 
9.8 s). 
Compare the answer to this problem with the accelerations given in Problem 2.25 for Carl Lewis. 

P2.38. Prepare: A visual overview of a ball bearing’s motion that includes a pictorial representation, a 
motion diagram, and a list of values is shown below. We label the bearing’s motion along the y-axis. The bearing 
is under free fall, so kinematic equations hold.  

 

Solve: (a) The shot is in free fall, so we can use free fall kinematics with a = –g. The height must be such that 
the shot takes 4 s to fall, so we choose tf = 4 s. From the given information it is easy to see that we need to use 

  

y
f

= y
i
+ v

i
(t

f
! t

i
) !

1

2
g(t

f
! t

i
)

2
" y

i
=

1

2
gt

f

2
=

1

2
(9.8  m/s

2
)(4 s)

2
= 78 m  

(b) The impact velocity is vf = vi ! g(tf ! ti) = -gt1 = –39 m/s. 
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Assess: Note the minus sign. The question asked for velocity, not speed, and the y-component of   
!
v  is negative 

because the vector points downward. 

P2.39. Prepare: Review the related “Try It Yourself” in the chapter. 
We will assume that, as stated in the chapter, the bill is held at the top, and the other person’s fingers are 
bracketing the bill at the bottom. 

Call the initial position of the top of the bill the origin,
  
y

o
= 0.0 m, and, for convenience, call the down direction 

positive. 

In free fall the acceleration
 
a

y
will be 9.8 m/s2. 

The length of the bill will be
  
!y, the distance the top of the bill can fall from rest in 0.25 s. 

Use Equation 2.14. 
Solve:  

  

!y =
1

2
a

y
(!t)

2
=

1

2
(9.8 m/s

2
)(0.25 s)

2
= 0.31 m  

Assess: This is about twice as long as real bills are (they are really 15 cm long), so if a typical reaction time is 
0.25 s, then almost no one would catch one in this manner. To catch a bill as small as real bills, one would need a 
reaction time of 0.13 s. 

P2.40. Prepare: A visual overview of the ball’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We label the ball’s motion along the y-axis. The ball is under free 
fall, so kinematic equations hold.   

 
Solve: (a) With yi = 0, a = –g, and vi = 19.6 m/s, we can find vf and yf at any time using the kinematic equations 

  

v
f

= v
i
+ a(t

f
! t

i
) and y

f
= y

i
+ v

i
(t

f
! t

i
) +

1

2
a(t

f
! t

i
)

2  

as follows: 
v (at t = 1 s) = 19.6 m/s + (!9.80 m/s2)(1 s ! 0 s) = 9.80 m/s 
y (at t = 1 s) = 0 m + (19.6 m/s)(1 s ! 0 s) + 1/2 (–9.80 m/s2)(1 s ! 0 s)2 = 14.7 m 
v (at t = 2 s) = 19.6 m/s + (!9.80 m/s2)(2 s ! 0 s) = 0 m/s 
y (at t = 2 s) = 0 m + (19.6 m/s)(2 s ! 0 s) + 1/2 (!9.80 m/s2)(2 s ! 0 s)2 = 19.6 m 
v (at t = 3 s) = 19.6 m/s + (!9.80 m/s2)(3 s ! 0 s) = 9.80 m/s 
y (at t = 3 s) = 0 m + (19.6 m/s)(3 s ! 0 s) + 1/2 (!9.80 m/s2)(3 s ! 0 s)2 = 14.7 m 
v (at t = 4 s) = 19.6 m/s + (!9.80 m/s2)(4 s ! 0 s) = !19.6 m/s 
y (at t = 4 s) = 0 m + (19.6 m/s)(4 s ! 0 s) + 1/2 (!9.80 m/s2)(4 s ! 0 s)2 = 0 m 
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(b) 

 

Assess: (a) A downward acceleration of 9.8 m/s2 on a particle that has been given an initial upward velocity of 
+19.6 m/s will reduce its speed to 9.8 m/s after 1 s and then to zero after 2 s. The answers obtained in this 
solution are consistent with the above logic. 
(b) Velocity changes linearly with a negative uniform acceleration of 9.8 m/s2. The position is symmetrical in 
time around the highest point which occurs at t = 2 s. 

P2.41. Prepare: If we ignore air resistance then the only force acting on both balls after they leave the hand 
(before they land) is gravity; they are therefore in free fall. 
Think about ball A’s velocity. It decreases until it reaches the top of its trajectory and then increases in the 
downward direction as it descends. When it gets back to the level of the student’s hand it will have the same 
speed downward that it had initially going upward; it is therefore now just like ball B (only later). 
Solve: (a) Because both balls are in free fall they must have the same acceleration, both magnitude and 
direction, 9.8 m/s2, down. 
(b) Because ball B has the same downward speed when it gets back to the level of the student that ball A had, 
they will have the same speed when they hit the ground.  
Assess: Draw a picture of ball B’s trajectory and draw velocity vector arrows at various points of its path. 
Air resistance would complicate this problem significantly. 

P2.42.  Prepare: Assume the jumper is in free fall after leaving the ground, so use the kinematic equation 

  
(v

y
)

f

2
= (v

y
)

i

2
+ 2a

y
!y  where 

  
(v

y
)

f

2
= 0  at the top of the leap. 

We assume 
  
a

y
= !9.8 m/s

2  and we are given 
  
!y = 1.1 m.  

Solve:  

  
(v

y
)

i

2
= !2a

y
"y # (v

y
)

i
= !2a

y
"y = !2(!9.8 m/s

2
)(1.1 m) = 4.4 m/s  

Assess: This is an achievable take-off speed for good jumpers. The units also work out correctly and the two 
minus signs under the square root make the radicand positive. 

P2.43.  Prepare: Assume the trajectory is symmetric (i.e., the ball leaves the ground) so half of the total time 
is the upward portion and half downward. Put the origin at the ground. 
Solve:  

(a) On the way down 
  
(v

y
)

i
= 0 m/s,  

  
y

f
= 0 m,  and 

  
!t = 2.6 s.  Solve for 

  
y

i
.   

  

0 = y
i
+

1

2
a

y
(!t)

2
" y

i
= #

1

2
a

y
(!t)

2
= #

1

2
(#9.8 m/s

2
)(2.6 s)

2
= 33.124 m $ 33 m  

(b) On the way up 
  
(v

y
)

f
= 0 m/s.  

  
(v

y
)

i

2
= !2a

y
"y # (v

y
)

i
= !2a

y
"y = !2(!9.8 m/s

2
)(33.124 m) = 25 m/s  

Assess: When thinking about real football games, this speed seems reasonable. 
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P2.44. Prepare: Since the villain is hanging on to the ladder as the helicopter is ascending, he and the 
briefcase are moving with the same upward velocity as the helicopter. We can calculate the initial velocity of the 
briefcase, which is equal to the upward velocity of the helicopter. See the following figure. 

 

Solve: We can use Equation 2.12 here. We know the time it takes the briefcase to fall, its acceleration, and the 

distance it falls. Solving for 
  
(v

y
)

i
!t,  

  

(v
y
)

i
!t = ( y

f
" y

i
) "

1

2
(a

y
)!t

2
= "130 m "

1

2
("9.80 m/s

2
)(6.0 s)

2
#

$
%

&

'
( = 46 m  

Dividing by  !t to solve for 
  
(v

y
)

i
,  

  

(v
x
)

i
=

46 m

6.0 s
= 7.7 m/s  

Assess: Note the placement of negative signs in the calculation. The initial velocity is positive, as expected for a 
helicopter ascending. 

P2.45. Prepare: There are several steps in this problem, so first draw a picture and, like the examples in the 
book, list the known quantities and what we need to find. 
Call the pool of water the origin and call t = 0 s when the first stone is released. We will assume both stones are  
in free fall after they leave the climber’s hand, so ay = –g. Let a subscript 1 refer to the first stone and a 2 refer to 
the second. 
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Solve: (a) Using 
  
(t

1
)

i
= 0   

  

( y
1
)

f
= ( y

1
)

i
+ (v

1
)

i
!t +

1

2
a

y
!t

2

0.0 m = 50 m + ("2 m/s)t
f
+

1

2
("g)t

f

2

0.0 m = 50 m " (2 m/s)t
f
" (4.9 m/s

2
)t

f

2

 

Solving this quadratic equation gives two values for 
  
t
f
: 3.0 s and

 
!3.4 s, the second of which (being negative) is 

outside the scope of this problem. 
Both stones hit the water at the same time, and it is at

  
t = 3.0 s, or 3.0 s after the first stone is released. 

(b) For the second stone
  
!t

2
= t

f
" (t

2
)

i
= 3.0 s "1.0 s = 2.0 s. We solve now for

  
(v

2
)

i
.  

  

( y
2
)

f
= ( y

2
)

i
+ (v

2
)

i
!t +

1

2
a

y
!t

2

0.0 m = 50 m + (v
2
)

i
!t

2
+

1

2
("g)!t

2

2

0.0 m = 50 m + (v
2
)

i
(2.0 s) " (4.9 m/s

2
)(2.0 s)

2

(v
2
)

i
=
"50 m + (4.9 m/s

2
)(2.0 s)

2

2.0 s
= "15.2 m/s

 

Thus, the second stone is thrown down at a speed of 15 m/s. 
(c) Equation 2.11 allows us to compute the final speeds for each stone. 

  
(v

y
)

f
= (v

y
)

i
+ a

y
!t  

 
For the first stone (which was in the air for 3.0 s): 

  
(v

1
)

f
= !2.0 m/s + (!9.8 m/s

2
)(3.0 s) = !31.4 m/s " !31 m/s  

The speed is the magnitude of this velocity, or 31 m/s.  
For the second stone (which was in the air for 2.0 s): 

  
(v

2
)

f
= !15.2 m/s + (!9.8 m/s

2
)(2.0 s) = !34.8 m/s " !35 m/s  

The speed is the magnitude of this velocity, or 35 m/s. 
Assess: The units check out in each of the previous equations. The answers seem reasonable. A stone dropped 
from rest takes 3.2 s to fall 50 m; this is comparable to the first stone, which was able to fall the 50 m in only 3.0 
s because it started with an initial velocity of  !2.0 m/s.  So we are in the right ballpark. And the second stone 
would have to be thrown much faster to catch up (because the first stone is accelerating). 

P2.46.  Prepare: Given the velocity vs. time graph we need to compute slopes to determine accelerations and 
then estimate the area under the curve to determine distance traveled. 
Solve:   
(a) At the origin a tangent line looks like it goes through 

 
(0 s,0 m/s)  and 

 
(2 s,10 m/s),  so the slope is  

  

a(0 s) =
10 m/s

2.0 s
= 5 m/s

2  

(b) Compute slopes similarly for 
  
t = 2.0 s  and   t = 4.0 s.  

  

a(2.0 s) =
8.0 m/s

4.0 s
= 2 m/s

2
a(4.0 s) =

5.0 m/s

6.0 s
= 0.8 m/s

2  

(c) We estimate the area under the curve. It looks like the area under the curve but above 10 m/s is a bit larger 
than the area above the curve but below 10 m/s. If they were equal the area would be 

 
(8 s)(10 m/s) = 80 m,  so 

we estimate a little more than 80 m.  
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Assess: It is very difficult to get a good estimate of slopes and areas from such small graphs, but the answers are 
reasonable. We do see the acceleration decreasing as we expected. 

P2.47. Prepare: The position graphs of the nerve impulses will be strictly increasing, since the impulse does, 
in fact, always travel to the right in this context. The graphs will consist of straight-line segments whose slope 
depends on the speed (i.e., whether the nerve is myelinated or not). 
The velocity graphs will be constant horizontal line segments whose height depends on the speed (i.e., whether 
the nerve is myelinated or not). 
 
Solve:  

 
Assess: The velocity graph for fiber C would continue at the same speed if we draw it for a longer fiber than  
6 axons. 

P2.48. Prepare: Assume the nerve impulses move at constant velocity and that the velocity is given to two 
significant figures. 
Solve: (a) In the case of the myelinated fiber, we are given that impulses travel a 25 m/s. The time it takes them 
to travel the 1.2 m from your finger to your brain can be calculated from Equation 2.1.  

  

!t
C

=
!x

(v
Cx

)
=

1.2 m

25 m/s
= 0.048 s  

The velocity of an impulse on fiber A is 2.0 m/s. So 

  

!t
A

=
!x

(v
x
)

A

=
1.2 m

2.0 m/s
= 0.60 s  

(b) For the partly myelinated fiber, fiber B, the speed of the impulse along the myelinated sections is 25 m/s and 
the speed along the unmyelinated sections is 2.0 m/s. Since 2/3 of fiber B is myelinated and 1/3 is not, we can 
think of the motion as consisting of traveling 2/3 the distance from finger to brain at 25 m/s with the remaining 
1/3 of the distance traveled at 2.0 m/s. Two thirds of 1.2 m is 0.80 m. One third of 1.2 m is 0.40 m. The time it 
takes to travel the whole distance is the sum of the time to travel 0.80 m at 100 m/s and 0.40 m at 1 m/s. 

  

!t
B

=
0.80 m

25 m/s
+

0.40 m

2.0 m/s
= 0.23 s  

(c) The only fiber that is effective in protecting against a burn is fiber C. Fiber A is not suitable for transmitting 
urgent sensory information. 
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Assess: This makes sense, since the difference in velocities between the myelinated and unmyelinated portions 
of the fibers is large. If even a small fraction of a fiber is unmyelinated the speed of signals slows down 
significantly. 

P2.49. Prepare: Assume the truck driver is traveling with constant velocity during each segment of his trip.  
Solve: Since the driver usually takes 8 hours to travel 440 miles, his usual velocity is 

  

v
usual x

=
!x

!t usual

=
440 mi

8 h
= 55 mph  

However, during this trip he was driving slower for the first 120 miles. Usually he would be at the 120 mile  
point in 

  

!t
usual at 120 mi

=
!x

v
usual at 120 mi x

=
120 mi

55 mph
= 2.18 h  

He is 15 minutes, or 0.25 hr late. So the time he’s taken to get 120 mi is 2.18 hr + 0.25 hr = 2.43 hr.  He wants 
to complete the entire trip in the usual 8 hours, so he only has 8 hr – 2.43 hr = 5.57 hr left to complete 440 mi – 
120 mi = 320 mi. So he needs to increase his velocity to  

  

v
to catch up x

=
!x

!t to catch up

=
320 mi

5.57 h
= 57 mph  

where additional significant figures were kept in the intermediate calculations. 
Assess: This result makes sense. He is only 15 minutes late. 

P2.50. Prepare: This is a unit conversion problem. Use Equation 2.8 to find the acceleration in km/h/s and 
then convert units. 

  

a
x

=
!v

x

!t
 

Solve: (a) 

  

a
x

=
!v

x

!t
=

150 km/h

0.50 s

1000 m

1 km

"

#$
%

&'
1 h

60 min

"

#$
%

&'
1 min

60 s

"

#$
%

&'
= 83 m/s

2  

(b) Use Equation 2.16 

  

acceleration (in units of g) =
acceleration (in units of m/s

2
)

9.80 m/s
2

=
83 m/s

2

9.80 m/s
2

= 8.5 g  

Assess: This is quite remarkable;
 
g is not an insignificant acceleration, but this is 8.5 times as much. Also 

remarkable is the exit velocity; 150 km/h is faster than you drive on the highway. 

P2.51. Prepare: We assume that the track, except for the sticky section, is frictionless and aligned along the  
x-axis. Because the motion diagram of Figure P2.51 is made at two frames of film per second, the time interval 
between consecutive ball positions is 0.5 s. 
Solve: (a)   

 Times (s) Position 
 0 –4.0 
 0.5 –2.0 
 1.0   0 
 1.5   1.8 
 2.0   3.0 
 2.5   4.0 
 3.0   5.0 
 3.5   6.0 
 4.0   7.0 
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(b)  

 

(c) !x = x (at t = 1 s) – x (at t = 0 s) = 0 m – (–4 m) = 4 m. 
(d) !x = x (at t = 4 s) – x (at t = 2 s) = 7 m – 3 m = 4 m. 

(e) From t = 0 s to t = 1 s, 
  
v

s
= !x /!t = 4 m/s.  

(f) From t = 2 s to t = 4 s, 
  
v

x
= !x /!t = 2 m/s.  

(g) The average acceleration is 

  

a =
!v

!t
=

2 m/s " 4 m/s

2 s "1s
= "2 m/s

2  

Assess: The sticky section has decreased the ball’s speed from 4 m/s, to 2 m/s, which is a reasonable magnitude. 

P2.52.  Prepare: We must carefully apply the equations of constant velocity to see why the answers to parts a 
and b are different. 
Solve:   
(a) This will be in two parts with each half having   !x = 50 mi.   

  

!t =
!x

1

(v
x
)

1

+
!x

2

(v
x
)

2

=
50 mi

40 mi/h
+

50 mi

60 mi/h
= 2.083 h " 2.1 h  

(b) Let’s see how far she goes in each half of the time.  

  

!t
1

=
!x

1

40 mi/h
!t

2
=

!x
2

60 mi/h
 

But we know 
  
!t

1
= !t

2
 so  

7
  

!x
1

40 mi/h
=

!x
2

60 mi/h
 

We also know 
  
!x

1
+!x

2
= 100 mi.  

  

!x
1

40 mi/h
=

100 mi " !x
1

60 mi/h
# !x

1
= 40 mi  

This means 
  
!x

2
= 100 mi " 40 mi = 60 mi.  Now for the total.  

  

!t
tot

= !t
1
+ !t

2
=

40 mi

40 mi/h
+

60 mi

60 mi/h
= 2.0 h  

Assess: The answers are not greatly different because 40 mph and 60 mph aren’t greatly different. 
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P2.53. Prepare: We will represent the jetliner’s motion to be along the x-axis.   
Solve: (a) To convert 80 m/s to mph, we calculate 80 m/s ! 1 mi/1609 m ! 3600 s/h = 180 mph. 

(b) Using
  
a

x
= !v/!t, we have, 

  

a
x
(t = 0 to t = 10 s) =

23 m/s ! 0 m/s

10 s ! 0 s
= 2.3 m/s

2
a

x
(t = 20 s to t = 30 s) =

69 m/s ! 46 m/s

30 s ! 20s
= 2.3 m/s

2  

For all time intervals ax is 2.3 m/s2. 
(c) Because the jetliner’s acceleration is constant, we can use kinematics as follows: 

  
(v

x
)

f
= (v

x
)

i
+ a

x
(t

f
! t

i
) " 80 m/s = 0 m/s + (2.3 m/s

2
)(t

f
! 0 s) " t

f
= 34.8 s = 35 s  

(d) Using the above values, we calculate the takeoff distance as follows:  

  

x
f

= x
i
+ (v

x
)

i
(t

f
! t

i
) +

1

2
a

x
(t

f
! t

i
)

2
= 0 m + (0 m/s)(34.8 s) +

1

2
(2.3 m/s

2
)(34.8 s)

2
= 1390 m  

For safety, the runway should be 3 ! 1390 m = 4170 m or 2.6 mi. This is longer than the 2.5 mi long runway, so 
the takeoff is not safe. 

P2.54. Prepare: We will represent the automobile’s motion along the x-axis. Also, as the hint says, acceleration 
is the slope of the velocity graph. 
Solve: (a) 

 

The acceleration is not constant because the velocity-versus-time graph is not a straight line. 
(b) Acceleration is the slope of the velocity graph. You can use a straightedge to estimate the slope of the graph 
at t = 2 s and at t = 8 s. Alternatively, you can estimate the slope using the two data points on either side of 2 s 
and 8 s. Either way, you need the conversion factor 1 mph = 0.447 m/s from Table 1.3. 

  

a
x
(at 2 s) !

v
x
(at 4 s) " v

x
(at 0 s)

4 s " 0 s
= 11.5

mph

s
#

0.447 m/s

1 mph
= 5.1 m/s

2

a
x
(at 8 s) !

v
x
(at 10 s) " v

x
(at 6 s)

10 s " 6 s
= 4.5

mph

s
#

0.447 m/s

1 mph
= 2.0 m/s

2

 

Assess: The graph in (a) shows that the Porsche 944 Turbo’s acceleration is not a constant, but decreases with 
increasing time. 

P2.55. Prepare: We will ignore relativistic effects. After appropriate unit conversions, we’ll see how far the 
spacecraft goes during the acceleration phase and what speed it achieves and then how long it would take to go 
the remaining distance at that speed. 

 
0.50 y = 1.578!10

7
s  
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 Solve: Because 
  
(v

x
)

i
= 0 m/s   

  

!x =
1

2
a

x
(!t)

2
=

1

2
(9.8 m/s

2
)(1.578"10

7
s)

2
= 1.220 "10

15
m  

which is not a very large fraction of the whole distance. The spacecraft must still go 

 
4.1!10

16
m "1.220 !10

15
m = 3.98!10

16
m  at the achieved speed. 

The speed is  

  
!v

x
= a

x
!t = (9.8 m/s

2
)(1.578"10

7
s) = 1.55"10

8
m/s  

which is half the speed of light. The time taken to go the remaining distance at that speed is  

  

!t =
!x

v
x

=
3.98"10

16
m

1.55"10
8
m/s

= 2.57 "10
8
s = 8.15 y  

Now the total time needed is the sum of the time for the acceleration phase and the time for the constant velocity 
phase.  

  
!t = 0.50 y + 8.15 y = 8.65 y " 8.7 y  

Assess: It is now easy to see why travel to other stars will be so difficult. We even made some overly generous 
assumptions and ignored relativistic effects. 

P2.56. Prepare: Shown below is a visual overview of your car’s motion that includes a pictorial 
representation, a motion diagram, and a list of values. We label the car’s motion along the x-axis. For constant 
deceleration of your car, kinematic equations hold. This is a two-part problem. First, we will find the car’s 
displacement during your reaction time when the car’s deceleration is zero. This will give us the distance over 
which you must brake to bring the car to rest. Kinematic equations can then be used to find the required 
deceleration. 

 

Solve: (a) During the reaction time,  
x1 = x0 + v0(t1 – t0) + 1/2 a0(t1 – t0)

2 

 = 0 m + (20 m/s)(0.70 s – 0 s) + 0 m = 14 m 

After reacting, x2 – x1 = 110 m – 14 m = 96 m, that is, you are 96 m away from the intersection. 
(b) To stop successfully,  

  
v

2

2
= v

1

2
+ 2a

1
(x

2
! x

1
) " (0 m/s)

2
= (20 m/s)

2
+ 2a

1
(96 m) " a

1
= !2.1 m/s

2  

(c) The time it takes to stop can be obtained as follows:  

  
v

2
= v

1
+ a

1
(t

2
! t

1
) " 0 m/s = 20 m/s + (!2.1 m/s

2
)(t

2
! 0.70 s) " t

2
= 10 s  

P2.57. Prepare: Remember that in estimation problems different people may make slightly different 
estimates. That is OK as long as they end up with reasonable answers that are the same order-of-magnitude. 
By assuming the acceleration to be constant we can use Equation 2.14: 

  

!x =
1

2
a

x
(!t)

2  
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Solve: (a) I guessed about 1.0 cm; this was verified with a ruler and mirror.  
(b) We are given a closing time of 0.024 s, so we can compute the acceleration from rearranging Equation 2.14: 

  

a
x
=

2!x

(!t)
2

=
2(1.0 cm)

(0.024 s)
2

1 m

100 cm

"

#$
%

&'
= 35 m/s

2  

(c) Since we know the !t and the a and
  
v

i
= 0.0 m/s, we can compute the final speed from Equation 2.11: 

  
v

f
= a!t = (35 m/s

2
)(0.024 s) = 0.84 m/s  

Assess: The uncertainty in our estimates might or might not barely justify two significant figures. 
The final speed is reasonable; if we had arrived at an answer 10 times bigger or 10 times smaller we would 
probably go back and check our work. The lower lid gets smacked at this speed up to 15 times per minute! 

P2.58. Prepare: Since the acceleration during the jump is approximately constant, we can use the kinematic 
equations in Table 2.4. There are two separate segments of this motion, the jump and the free fall after the jump.  
Solve: See the following figure. Before the jump, the velocity of the bush baby is 0 m/s. 

 

We could solve for the acceleration of the bush baby during the jump using Equation 2.13 if we knew the final 

velocity the bush baby reached at the end of the jump,
  
(v

y
)

2
.  

We can find this final velocity from the second part of the motion. During this part of the motion the bush baby 

travels with the acceleration of gravity. The initial velocity it has obtained from the jump is 
  
(v

y
)

2
.  When it 

reaches its maximum height its velocity is 
  
(v

y
)

3
= 0 m/s.  It travels 2.3 m – 0.16 m = 2.14 m during the free-fall 

portion of its motion. The initial velocity it had at the beginning of the free-fall motion can be calculated from 
Equation 2.13. 

  
(v

y
)

2
= !2(a

y
)

2
"y

2
= !2(!9.80 m/s

2
)(2.14 m) = 6.476 m/s  

This is the bush baby’s final velocity at the end of the jump, just as it leaves the ground, legs straightened. Using 
this velocity and Equation 2.13 we can calculate the acceleration of the bush baby during the jump. 

  

(a
y
)

1
=

(v
y
)

2

2
! (v

y
)

1

2

2"y
1

=
(6.476 m/s)

2
! (0 m/s)

1

2

2(0.16m)
= 131 m/s

2
# 130 m/s

2  

In g’s, the acceleration is 
 

131 m/s
2

9.80 m/s
2

= 13 g’s. 

Assess: This is a very large acceleration, which is not unexpected considering the height of the jump. Note the 
acceleration during the jump is positive, as expected. 

P2.59. Prepare: Fleas are amazing jumpers; they can jump several times their body height—something we 
cannot do. 
We assume constant acceleration so we can use the equations in Table 2.4. The last of the three relates the three 
variables we are concerned with in part (a): speed, distance (which we know), and acceleration (which we want). 

  
(v

y
)

f

2
= (v

y
)

i

2
+ 2a

y
!y  
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In part (b) we use the first equation in Table 2.4 because it relates the initial and final velocities and the 
acceleration (which we know) with the time interval (which we want). 

  
(v

y
)

f
= (v

y
)

i
+ a

y
!t  

Part (c) is about the phase of the jump after the flea reaches takeoff speed and leaves the ground. So now it 

is
  
(v

y
)

i
,  that is 1.0 m/s instead of

  
(v

y
)

f
. And the acceleration is not the same as in part (a)—it is now

 
!g (with the 

positive direction up) since we are ignoring air resistance. We do not know the time it takes the flea to reach 
maximum height, so we employ the last equation in Table 2.4 again because we know everything in that equation 
except

  
!y.  

Solve: (a) Use
  
(v

y
)

i
= 0.0 m/s and rearrange the last equation in Table 2.4. 

  

a
y
=

(v
y
)

f

2

2!y
=

(1.0 m/s)
2

2(0.50 mm)

1000 mm

1 m

"

#$
%

&'
= 1000 m/s

2  

(b) Having learned the acceleration from part (a) we can now rearrange the first equation in Table 2.4 to find the 

time it takes to reach takeoff speed. Again use 
  
(v

y
)

i
= 0.0 m/s.  

  

!t =
(v

y
)

f

a
y

=
1.0 m/s

1000 m/s
2

= .0010 s  

(c) This time 
  
(v

y
)

f
= 0.0m/s  as the flea reaches the top of its trajectory. Rearrange the last equation in Table 2.4  

to get 

  

!y =

" v
y( )

i

2

2a
y

=
"(1.0 m/s)

2

2("9.8 m/s
2
)

= 0.051 m = 5.1cm  

Assess: Just over 5 cm is pretty good considering the size of a flea. It is about 10–20 times the size of a typical 
flea. 
Check carefully to see that each answer ends up in the appropriate units. 
The height of the flea at the top will round to 5.2 cm above the ground if you include the 0.050 cm during the 
initial acceleration phase before the feet actually leave the ground. 

P2.60. Prepare: Use the kinematic equations with 
  
(v

y
)

i
= 0 m/s  in the acceleration phase. 

Solve:   
(a) It leaves the ground with the final speed of the jumping phase.  

  
(v

y
)

f

2
= 2a

y
!y = 2(400)(9.8 m/s

2
)(0.0060 m) " (v

y
)

f
= 6.859 m/s # 6.9 m/s  

(b)   

  

!t =
!v

y

a
y

=
6.859 m/s

(400)(9.8 m/s
2
)

= 1.7496 ms " 1.7 ms  

(c) Now the initial speed for the free-fall phase is the final speed of the jumping phase and 
  
(v

y
)

f
= 0.   

  

(v
y
)

i

2
= !2a

y
"y # "y =

(v
y
)

i

2

!2a
y

=
(6.859 m/s)

2

!2(!9.8 m/s
2
)

= 2.4 m  

Assess: This is an amazing height for a beetle to jump, but given the large acceleration, this sounds right. 
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P2.61. Prepare: Assume the diver leaves the platform with no initial velocity. There are two parts to the 
diver’s motion. The diver is in free fall after leaving the platform. Gravity accelerates him until he hits the water, 
and then the water decelerates him. In order for him not to hit the bottom of the pool, his velocity at the bottom 
of the pool must be zero.  
Solve: We can calculate the velocity the diver enters the water with from Equation 2.13. The platform is 10 m 
above the water. Assuming his initial velocity in leaving the platform is (vy)i = 0 m/s, the velocity he has before 
he hits the water is 

  
(v

y
)

f
= 2(a

y
)

1
!y

1
= 2("9.80 m/s

2
)("10 m) = 14 m/s  

In order to come to a stop before hitting the bottom of the pool, he must be decelerated to a stop by the water 
before traveling 3.0 m. His acceleration must be 

  

(a
y
)

water
=

v
y( )

f

2

! v
y( )

i

2

2"y
2

=
(0 m/s)

2
! (14 m/s)

2

2(!3.0 m)
= +33 m/s

2  

Assess: This makes sense. In order to lose all the velocity he gained during the jump of 10 m, he must 
decelerate faster than the acceleration due to gravity. Note the acceleration in the water is positive. His 
acceleration in the water is upward, as expected.  

P2.62. Prepare: A visual overview of the ball’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We label the ball’s motion along the y-axis. As soon as the ball 
leaves the student’s hand, it is falling freely and thus kinematic equations hold. The ball’s acceleration is equal to 
the acceleration due to gravity that always acts vertically downward toward the center of the earth. The initial 
position of the ball is at the origin where yi = 0, but the final position is below the origin at yf = – 2.0 m. Recall 
sign conventions, which tell us that vi is positive and a is negative. 

 
Solve: With all the known information, it is clear that we must use 

  

 y
f

= y
i
+ v

i
!t +

1

2
a!t

2  

Substituting the known values 

  
!2 m = 0 m + (15 m/s)t

f
+ (1/2)(!9.8 m/s

2
)t

f

2  

The solution of this quadratic equation gives tf = 3.2 s. The other root of this equation yields a negative value for 
tf, which is not physical for this problem. 
Assess: A time of 3.2 s is reasonable. 
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P2.63. Prepare: A visual overview of the rock’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We represent the rock’s motion along the y-axis. As soon as the 
rock is tossed up, it falls freely and thus kinematic equations hold. The rock’s acceleration is equal to the 
acceleration due to gravity that always acts vertically downward toward the center of the earth. The initial 
position of the rock is at the origin where yi = 0, but the final position is below the origin at yf = – 10 m. Recall 
sign conventions which tell us that vi is positive and a is negative. 

 

Solve: (a) Substituting the known values into
  
y

f
= y

i
+ v

i
!t +

1

2
a!t

2
, we get 

  

!10 m = 0 m + 20 (m/s)t
f
+

1

2
(!9.8 m/s

2
)t

f

2  

One of the roots of this equation is negative and is not physically relevant. The other root is tf = 4.53 s which is 

the answer to part (b). Using
  
v

f
= v

i
+ a!t, we obtain 

  
v

f
= 20(m/s) + (!9.8 m/s

2
)(4.53 s) = !24 m/s  

(b) The time is 4.5 s. 
Assess: A time of 4.5 s is a reasonable value. The rock’s velocity as it hits the bottom of the hole has a negative 
sign because of its downward direction. The magnitude of 24 m/s compared to 20 m/s when the rock was tossed 
up is consistent with the fact that the rock travels an additional distance of 10 m into the hole. 

P2.64. Prepare: A visual overview of the rocket’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We represent the rocket’s motion along the y-axis. The rocket 
accelerates upward for 30 s, but as soon as the rocket runs out of fuel, it falls freely. The kinematic equations 
hold separately before as well as after the rocket runs out of fuel because accelerations for both situations are 
constant, 30.0 m/s2 for the former and 9.8 m/s2 for the latter. Also, note that a0 = + 30.0 m/s2 is vertically upward, 
but a1 = a2 = – 9.8 m/s2 acts vertically downward. This is a three-part problem. For the first accelerating phase, 
the initial position of the rocket is at the origin where y0 = 0, but the position when fuel runs out is at y1. Recall 
sign conventions, which tell us that v0 is positive. From the given information, we can find v1. For the second part 
of the problem, v1 is positive as the rocket is moving upward, v2 is zero as it reaches the maximum altitude, and 
a1 is negative. This helps us find y2. The third part involves finding t2 and t3, which can be obtained using 
kinematics. 
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Solve: (a) There are three parts to the motion. Both the second and third parts of the motion are free fall, with a 
= !g. The maximum altitude is y2. In the acceleration phase 

  

y
1

= y
0

+ v
0
(t

1
! t

0
) +

1

2
a(t

1
! t

0
)

2
=

1

2
at

1

2
=

1

2
(30 m/s

2
)(30 s)

2
= 13,500 m

v
1

= v
0

+ a(t
1
! t

0
) = at

1
= (30 m/s

2
)(30 s) = 900 m/s

 

In the coasting phase,  

  

v
2

2
= 0 = v

1

2
! 2g( y

2
! y

1
) " y

2
= y

1
+

v
1

2

2g
= 13,500 m +

(900 m/s)
2

2(9.8 m/s
2
)

= 54,800 m = 54.8 km  

The maximum altitude is 55 km ("33 miles). 
(b) The rocket is in the air until time t3. We already know t1 = 30 s. We can find t2 as follows: 

  

v
2

= 0 m/s = v
1
! g(t

2
! t

1
) " t

2
= t

1
+

v
1

g
= 122 s  

Then t3 is found by considering the time needed to fall 54,800 m: 

  

y
3

= 0 m = y
2

+ v
2
(t

3
! t

2
) !

1

2
g(t

3
! t

2
)

2
= y

2
!

1

2
g(t

3
! t

2
)

2
" t

3
= t

2
+

2y
2

g
= 228 s = 230s  

(c) The velocity increases linearly, with a slope of 30 (m/s)/s, for 30 s to a maximum speed of 900 m/s. It then 
begins to decrease linearly with a slope of !9.8 (m/s)/s. The velocity passes through zero (the turning point at y2) 
at t2 = 122 s. The impact velocity at t3 = 228 s is calculated to be v3 = v2 ! g(t3 ! t2) = !1000 m/s.  
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Assess: In reality, friction due to air resistance would prevent the rocket from reaching such high speeds as it 
falls, and the acceleration upward would not be constant because the mass changes as the fuel is burned, but that 
is a more complicated problem. 

P2.65. Prepare: It is clear the second ball must be thrown with a greater initial velocity than the first ball in 
order to catch up to it at the top. In the Assess step we will verify that this is indeed the case. We are not told the 
second ball has zero velocity when it hits the first ball at the top of the first ball’s trajectory (the first ball would 
have zero velocity at this time). 
There are several steps in this problem, so first draw a picture and, like the examples in the book, list the known 
quantities and what we need to find. 
Call the juggler’s hand the origin and call 

  
t = 0s when the first ball is released. We will assume both stones are in 

free fall after they leave the juggler’s hand, so
  
a

y
= !g. Let a subscript 1 refer to the first ball and a 2 refer to the 

second. 
 

Known  

  

( y
1
)

i
= 0.0m

( y
2
)

i
= 0.0m

( y
2
)

f
= ( y

1
)

f
; simply call this y

r

(v
1
)

i
= 10m/s

(v
1
)

f
= 0.0m/s

(t
1
)

i
= 0.0s

(t
2
)

i
= 0.50s

(t
2
)

f
= (t

1
)

f
; simply call this t

r

 

 
Find 

  
(v

2
)

i
 

 
The strategy will be to find the position and time of the first ball at the top of its trajectory, and then to compute 
the initial speed needed for the second ball to get to the same place at the same time. 

Solve: Use the first equation of Table 2.4 to find
 
t

f
(which is equal to

  
(t

1
)

i
+ !t

1
).Everything is in the

 
y direction 

so we drop the
 
y subscript. 

  
(v

1
)

f
= (v

1
)

i
+ a!t

1
 

Use the facts that
  
(v

1
)

f
= 0.0 m/s and

  
a = !g to solve for

  
!t

1
.  

  

!t
1

=
"(v

1
)

i

"g
=

10 m/s

9.8 m/s
2

= 1.02 s  

Then use
  
(t

1
)

i
= 0.0s to find

  
t

f
= 1.02s.  

Now use the third equation of Table 2.4 to find the position of the top of the first ball’s trajectory. 

  
(v

1
)

f

2
= (v

1
)

i

2
+ 2a!y  

We know that
  
(v

1
)

f
= 0.0 m/s and

  
a = !g.  

  

!y =
" (v

1
)

i

2

2a
=
" (10.0 m/s)

2

2("g)
= 5.1 m  

Since
  
( y

1
)

i
= 0.0 m we know that

  
( y

1
)

f
= y

f
= 5.1 m.  
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Those were the preliminaries. Now we use 
  
t
f

= 1.02 s and
  
y

f
= 5.1 m in the second equation of Table 2.4 to solve 

for
  
(v

2
)

i
. For the second ball 

  
(t

2
)

i
= 0.5 s so

  
!t

2
= 1.02 s " 0.50 s = 0.52 s.  

  

y
f

= ( y
2
)

i
+ (v

2
)

i
!t

2
+

1

2
a(!t

2
)

2  

Solving for
  
(v

2
)

i
:  

  

(v
2
)

i
=

y
f
! ( y

2
)

i
! 1

2
a("t

2
)

2

"t
2

=
5.1 m ! 0.0 m ! 1

2
(!g)(0.52 s)

2

0.52 s
=

5.1 m +
1

2
(9.8 m/s

2
)(0.52 s)

2

0.52 s
= 12 m/s  

Assess: Our original statement that
  
(v

2
)

i
had to be greater than

  
(v

1
)

i
is correct. The answer still seems to be a 

reasonable throwing speed. 

P2.66. Prepare: A visual overview of the elevator’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We represent the elevator’s motion along the y-axis. The elevator’s 
net displacement is y3 – y0 = 200 m. However, the displacement y1 – y0 occurs during the accelerating period, y3 – 
y2 occurs during the decelerating period, and y2 – y1 occurs at a speed of 5.0 m/s with no acceleration. It is clear 
that we must apply kinematics equations separately to each of these three periods. For the accelerating period, y0 
= 0, v0 = 0, v1 = 5.0 m/s, and a0 = 1.0 m/s2, so y1 and t1 can be easily determined. For the decelerating period, v3 = 
0, v2 = 5.0 m/s, and a2 = – 1.0 m/s2, so y3 – y2 and t3 – t2 can also be determined. From the thus obtained 
information, we can obtain y2 – y1 and use kinematics once again to find t2 – t1 and hence the total time to make 
the complete trip.  

 

Solve: (a) To calculate the distance to accelerate up: 

  
v

1

2
= v

0

2
+ 2a

0
( y

0
! y

0
) " (5 m/s)

2
= (0 m/s)

2
+ 2(1 m/s

2
)( y

1
! 0 m) " y

1
= 12.5m = 13m  

(b) To calculate the time to accelerate up: 

  
v

1
= v

0
+ a

0
(t

1
! t

0
) " 5 m/s = 0 m/s + (1 m/s

2
)(t

1
! 0 s) " t

1
= 5 s  
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To calculate the distance to decelerate at the top: 

  
v

3

2
= v

2

2
+ 2a

2
( y

3
! y

2
) " (0 m/s)

2
= (5 m/s)

2
+ 2(!1 m/s

2
)( y

3
! y

2
) " y

3
! y

2
= 12.5 m  

To calculate the time to decelerate at the top: 

  
v

3
= v

2
+ a

2
(t

3
! t

2
) " 0 m/s = 5 m/s + (!1 m/s

2
)(t

3
! t

2
) " t

3
! t

2
= 5 s  

The distance moved up at 5 m/s is 

  
y

2
! y

1
= ( y

3
! y

0
) ! ( y

3
! y

2
) ! ( y

1
! y

0
) = 200 m !12.5 m !12.5 m = 175 m  

The time to move up 175 m is given by 

  

y
2
! y

1
= v

1
(t

2
! t

1
) +

1

2
a

1
(t

2
! t

1
)

2
"175 m = (5 m/s)(t

2
! t

1
) " (t

2
! t

1
) = 35 s  

To total time to move to the top is 

  
(t

1
! t

0
) + (t

2
! t

1
) + (t

3
! t

2
) = 5 s + 35 s + 5 s = 45 s  

Assess: To cover a distance of 200 m at 5 m/s (ignoring acceleration and deceleration times) will require a time 
of 40 s. This is comparable to the time of 45 s for the entire trip as obtained above. 

P2.67. Prepare: A visual overview of car’s motion that includes a pictorial representation, a motion diagram, 
and a list of values is shown below. We label the car’s motion along the x-axis. This is a three-part problem. First 
the car accelerates, then it moves with a constant speed, and then it decelerates. The total displacement between the stop 

signs is equal to the sum of the three displacements, that is, 
  
x

3
! x

0
= (x

3
! x

2
) + (x

2
! x

1
) + (x

1
! x

0
).  

 

Solve: First, the car accelerates: 

  

v
1

= v
0

+ a
0
(t

1
! t

0
) = 0 m/s + (2.0 m/s

2
)(6 s ! 0 s) = 12 m/s

x
1

= x
0

+ v
0
(t

1
! t

0
) +

1

2
a

0
(t

1
! t

0
)

2
= 0 m +

1

2
(2.0 m/s

2
)(6 s ! 0 s)

2
= 36 m

 

Second, the car moves at v1: 

  

x
2
! x

1
= v

1
(t

2
! t

1
) +

1

2
a

1
(t

2
! t

1
)

2
= (12 m/s)(8 s ! 6 s) + 0 m = 24 m  

Third, the car decelerates: 

  

v
3

= v
2

+ a
2
(t

3
! t

2
) " 0 m/s = 12 m/s + (!1.5 m/s

2
)(t

3
! t

2
) " (t

3
! t

2
) = 8 s

x
3

= x
2

+ v
2
(t

3
! t

2
) +

1

2
a

2
(t

3
! t

2
)

2
" x

3
! x

2
= (12 m/s)(8 s) +

1

2
(!1.5 m/s

2
)(8 s)

2
= 48 m

 

Thus, the total distance between stop signs is 

  
x

3
! x

0
= (x

3
! x

2
) + (x

2
! x

1
) + (x

1
! x

0
) = 48 m + 24 m + 36 m = 108 m " 110 m  

Assess: A distance of approximately 360 ft in a time of around 16 s with an acceleration/deceleration is 
reasonable. 
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P2.68. Prepare: A visual overview of the toy train’s motion that includes a pictorial representation, a 
motion diagram, and a list of values is shown below. We label the train’s motion along the x-axis. We first focus 
our attention on the decelerating period and determine from the given information that a1 can be determined 
provided we know x2 – x1. While x2 is given as 6.0 m + 2.0 m = 8.0 m, kinematics in the coasting period helps us 
find x1. 

 
Solve: Using kinematics, 

  

x
1

= x
0

+ v
0
(t

1
! t

0
) +

1

2
a

0
(t

1
! t

0
)

2
= 2 m + (2.0 m/s)(2.0 s ! 0 s) + 0 m = 6.0 m  

The acceleration can now be obtained as follows: 

  
v

2

2
= v

1

2
+ 2a

1
(x

2
! x

1
) " 0 m

2
/s

2
= (2.0 m/s)

2
+ 2a

1
(8.0 m ! 6.0 m) " a

1
= !1.0 m/s

2  

Assess: A deceleration of 1 m/s2 in bringing the toy car to a halt, which was moving at a speed of only 2.0 m/s, 
over a distance of 2.0 m is reasonable. 

P2.69. Prepare: A visual overview of the motion of the two rocks, one thrown down by Heather and the other 
thrown up at the same time by Jerry, that includes a pictorial representation, a motion diagram, and a list of 
values is shown on page 2-43. We represent the motion of the rocks along the y-axis with origin at the surface of 
the water. As soon as the rocks are thrown, they fall freely and thus kinematics equations are applicable. The 
initial position for both cases is yi = 50 m and similarly the final position for both cases is at yf = 0. Recall sign 
conventions, which tell us that (vi)J is positive and (vi)H is negative.  
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Solve: (a) For Heather, 

  

( y
f
)

H
= ( y

i
)

H
+ (v

i
)

H
[(t

f
)

H
! (t

i
)

H
] +

1

2
a

0
[(t

f
)

H
! (t

i
)

H
)]

2

" 0 m = (50 m) + (!20 m/s)[(t
f
)

H
! 0 s] +

1

2
(!9.8 m/s

2
)[(t

f
)

H
! 0 s]

2

" 4.9 m/s
2
 (t

f
)

H

2
+ 20 m/s (t

f
)

H
! 50 m = 0

 

The two mathematical solutions of this equation are !5.83 s and +1.75 s. The first value is not physically 
acceptable since it represents a rock hitting the water before it was thrown, therefore, (tf)H = 1.75 s.  
For Jerry,  

  

( y
f
)

J
= ( y

i
)

J
+ (v

i
)

J
[(t

f
)

J
! (t

i
)

J
] +

1

2
a

0
[(t

f
)

J
! (t

i
)

J
)]

2

" 0 m = (50 m) + (+20 m/s)[(t
f
)

J
! 0 s] +

1

2
(!9.8 m/s

2
)[(t

f
)

J
! 0 s]

2

 

Solving this quadratic equation will yield (tf)J = !1.75 s and +5.83 s. Again only the positive root is physically 
meaningful. The elapsed time between the two splashes is (tf)J – (tf)H = 5.83 s – 1.75 s = 4.08 s = 4.1 s. 
(b) Knowing the times, it is easy to find the impact velocities: 

  

(v
f
)

H
= (v

i
)

H
+ a

0
[(t

f
)

H
! (t

i
)

H
] = (!20 m/s) + (!9.8 m/s)(1.75 s ! 0 s) = !37 m/s

(v
f
)

J
= (v

i
)

J
+ a

0
[(t

f
)

J
! (t

i
)

J
] = (+20 m/s) + (!9.8 m/s

2
)(5.83 s ! 0 s) = !37 m/s

 

Assess: The two rocks hit water with equal speeds. This is because Jerry’s rock has the same downward speed 
as Heather’s rock when it reaches Heather’s starting position during its downward motion. 

P2.70. Prepare: A visual overview of the car that includes a pictorial representation, a motion diagram, and a 
list of values is shown below. We label the car’s motion along the x-axis. For the period during which 
deceleration is maximum (but constant), constant acceleration kinematic equations are applicable. We first focus 
our attention on the decelerating period. Since t1 = 1.0 s, t2 = 15 s, and v1 = 20 m/s, we can calculate v2 if we find 
a1, which we will do using information in the slowing down and the reaction periods. 

 

Solve: The reaction time is 1.0 s, and the motion during this time is  

  
x

1
= x

0
+ v

0
(t

1
! t

0
) = 0 m + (20 m/s)(1.0 s) = 20 m  

During slowing down, 

  

x
2

= x
1
+ v

1
(t

2
! t

1
) +

1

2
a

1
(t

2
! t

1
)

2
= 200 m 

= 20 m + (20 m/s)(15 s !1.0 s) +
1

2
a

1
(15 s !1.0 s)

2
" a

1
= !1.02 m/s

2
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The final speed v2 can now be obtained as 

  
v

2
= v

1
+ a

1
(t

2
! t

1
) = (20 m/s) + (!1.02 m/s

2
)(15 s !1 s) = 5.7 m/s  

P2.71. Prepare: Before we turn to algebra, carefully examine the velocity-versus-time graph below. We draw 
the line for car 1 by starting at the origin at time zero and making the slope 2.0 m/s2. The line for car 2 starts at v2 
= 0.0 m/s when t = 2.0 s and has a slope of 8.0 m/s2. The time where the vertical dotted line should be placed is 
initially unknown; think of sliding it left and right until the areas of the two triangles (under the graphs of cars 1 
and 2) are the same. When that happens then the time where the dotted line ends up is the answer to part (a), and 
the area under the two lines (i.e., the area of each triangle) will be the answer to part (b). 

 

Since the accelerations are constant the equations in Table 2.4 will apply. Assume that each car starts from rest. 
Call the launch point the origin and call

  
t = 0s when the first car is launched. Let a subscript 1 refer to the first car 

and a 2 refer to the second. 
 

Known 

  

(x
1
)

i
= 0.0 m

(x
2
)

i
= 0.0 m

(x
2
)

f
= (x

1
)

f
; simply call this x

f

(v
1
)

i
= 0.0 m/s

(v
2
)

i
= 0.0 m/s

(t
1
)

i
= 0.0 s

(t
2
)

i
= 2.0 s

(t
2
)

f
= (t

1
)

f
; simply call this t

f

a
1

= 2.0 m/s
2

a
2

= 8.0 m/s
2

 

Find 

  

t
f

x
f

 

 
The strategy will be to use equations from Table 2.4 with the twist that no one of them has only one unknown 
(since both final velocities are unknown). So we will use various instances of the equations to get a system of 
equations with enough equations to solve for our unknowns. 
Solve: Apply the last equation in Table 2.4 to each car (with the initial velocities both zero) and then divide the 
equations. Dividing equations to get ratios is an elegant and useful technique.  

  

(v
1
)

f

2
= 2a

1
!x

(v
2
)

f

2
= 2a

2
!x
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(v
1
)

f

(v
2
)

f

!

"
#

$

%
&

2

=
a

1

a
2

=
2.0 m/s

2

8.0 m/s
2

=
1

4
 

Taking square roots gives 

  

(v
1
)

f

(v
2
)

f

=
1

2
 

(a) Now turn to the first equation in Table 2.4 and apply it to both cars (again, with both initial velocities zero). 

Since
  
(t

1
)

i
= 0.0s then

  
!t

1
= t

f
, and since

  
(t

2
)

i
= 2.0 s then

  
!t

2
= t

f
" 2.0 s,  

  
(v

1
)

f
= a

1
t

f
(v

2
)

f
= a

2
(t

f
! 2.0 s)  

Divide the equations and use the previous result.  

  

(v
1
)

f

(v
2
)

f

=
a

1

a
2

t
f

t
f
! 2.0 s

"

#
$

%

&
'

1

2
=

1

4

t
f

t
f
! 2.0 s

"

#
$

%

&
'  

Solve for
  
t
f
by multiplying both sides by

  
4(t

f
! 2.0).  

  
2(t

f
! 2.0 s) = t

f
2t

f
! 4.0 s = t

f
2t

f
! t

f
= 4.0 s t

f
= 4.0 s  

This is the answer to part (a): 
  
t
f

= 4.0 s.  

(b) Although we aren’t asked for the final velocities, we compute 
  
(v

1
)

f
so can get find the distance traveled. 

  
(v

1
)

f
= a

1
t
f

= (2.0 m/s
2
)(4.0 s) = 8.0 m/s  

With
  
(x

1
)

i
= 0.0 m then

  
!x

1
= x

f
. Since

  
(v

1
)

f
= 0.0 m/s, the last equation in Table 2.4 becomes for car 1  

  
(v

1
)

f

2
= 2a

1
x

f
 

So 

  

x
f

=
(v

1
)

f

2

2a
1

=
(8.0 m/s)

2

2(2.0 m/s
2
)

= 16 m  

A similar calculation for car 2 gives the same result; the two cars meet 16 m down the track. 
Assess: We have finally answered both parts of the problem. We check that the units are correct. 
We note the important technique of dividing one equation by another to get dimensionless ratios. 
Last, we note that the algebra agrees with the graphical approach taken at the beginning. 

P2.72. Prepare: A visual overview of the two cars that includes a pictorial representation, a motion diagram, 
and a list of values is shown below. We label the motion of the two cars along the x-axis. Constant acceleration 
kinematic equations are applicable because both cars have constant accelerations. We can easily calculate the 
times (tf)H and (tf)P from the given information.  
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Solve: The Porsche’s time to finish the race is determined from the position equation 

  

(x
f
)

P
= (x

i
)

P
+ (v

i
)

P
((t

f
)

P
! (t

i
)

P
) +

1

2
a

P
((t

f
)

P
! (t

i
)

P
)

2

" 400 m = 0 m + 0 m +
1

2
(3.5 m/s

2
)((t

f
)

P
! 0 s)

2
" (t

f
)

P
= 15 s

 

The Honda’s time to finish the race is obtained from Honda’s position equation as 

  

(x
f
)

H
= (x

i
)

H
+ (v

i
)

H
((t

f
)

H
! (t

i
)

H
) +

1

2
a

H
((t

f
)

H
! (t

i
)

H
)

2

400 m = 50 m + 0 m +
1

2
(3.0 m/s

2
)((t

f
)

H
! 0 s)

2
" (t

f
)

H
= 15 s

 

So both cars arrive at the same time. We have a tie. 

P2.73. Prepare: A visual overview of the car’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We label the car’s motion along the x-axis. This is a two-part 
problem. First, we need to use the information given to determine the acceleration during braking. We will then 
use this acceleration to find the stopping distance for a different initial velocity.  

 

Solve: (a) First, the car coasts at constant speed before braking: 

  
x

1
= x

0
+ v

0
(t

1
! t

0
) = v

0
t
1

= (30 m/s)(0.5 s) = 15 m  
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Then, the car brakes to a halt. Because we don’t know the time interval during braking, we will use 

  
v

2

2
= 0 = v

1

2
+ 2a

1
(x

2
! x

1
)  

  

! a
1

= "
v

1

2

2(x
2
" x

1
)

= "
(30 m/s)

2

2(60 m "15 m)
= "10 m/s

2  

We use v1 = v0 = 30 m/s. Note the minus sign, because
   

!
a

1
points to the left. We can repeat these steps now with 

v0 = 40 m/s. The coasting distance before braking is 

  
x

1
= v

0
t
1

= (40 m/s)(0.5 s) = 20 m  

So the braking distance is 

  
v

2

2
= 0 = v

1

2
+ 2a

1
(x

2
! x

1
)  

  

! x
2

= x
1
"

v
1

2

2a
1

= 20 m "
(40 m/s)

2

2("10 m/s
2
)

= 100 m  

(b) The car coasts at a constant speed for 0.5 s, traveling 20 m. The graph will be a straight line with a slope of 
40 m/s. For   t ! 0.5 the graph will be a parabola until the car stops at t2. We can find t2 from 

  

v
2

= 0 = v
1
+ a

1
(t

2
! t

1
) " t

2
= t

1
!

v
1

a
1

= 4.5 s  

The parabola will reach zero slope (v = 0 m/s) at t = 4.5 s. This is enough information to draw the graph shown in 
the figure. 

 

P2.74. Prepare: A visual overview of the motion of the rocket and the bolt that includes a pictorial 
representation, a motion diagram, and a list of values is shown below. We represent the rocket’s motion along the 
y-axis. The initial velocity of the bolt as it falls off the side of the rocket is the same as that of the rocket, that is, 
(vi)B = (vf)R and it is positive since the rocket is moving upward. The bolt continues to move upward with a 
deceleration equal to g = 9.8 m/s2 before it comes to rest and begins its downward journey. 
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Solve: To find aR we look first at the motion of the rocket: 

  

( y
f
)

R
= ( y

i
)

R
+ (v

i
)

R
((t

f
)

R
! (t

i
)

R
) +

1

2
a

R
((t

f
)

R
! (t

i
)

R
)

2

= 0 m + 0 m/s +
1

2
a

R
(4.0 s ! 0 s)

2
= 8a

R

 

So we must determine the magnitude of yR1 or yB0. Let us now look at the bolt’s motion: 

  

( y
f
)

B
= ( y

i
)

B
+ (v

i
)

B
((t

f
)

B
! (t

i
)

B
) +

1

2
a

B
((t

f
)

B
! (t

i
)

B
)

2

0 = ( y
f
)

R
+ (v

f
)

R
(6.0 s ! 0 s) +

1

2
(!9.8 m/s

2
)(6.0 s ! 0 s)

2

 

  
! ( y

f
)

R
= 176.4 m " (6.0 s) (v

f
)

R
 

Since
  
(v

f
)

R
= (v

i
)

R
+ a

R
((t

f
)

R
! (t

i
)

R
) = 0 m/s + 4 a

R
= 4 a

R
the above equation for (yf)R yields (yf)R = 176.4 – 6.0 

(4aR). We know from the first part of the solution that (yf)R = 8aR. Therefore, 8aR = 176.4 – 24.0 aR and hence aR 
= 5.5 m/s2. 

P2.75. Prepare: We can calculate the initial velocity obtained by the astronaut on the earth and then use that 
to calculate the maximum height the astronaut can jump on the moon. 
Solve: The astronaut can jump a maximum 0.50 m on the earth. The maximum initial velocity his leg muscles 
can give him can be calculated with Equation 2.13. His velocity at the peak of his jump is zero. 

  
(v

y
)

i
= !2(a

y
)"y = !2(!9.80 m/s

2
)(0.50 m) = 3.1 m/s  

We can also use Equation 2.13 to find the maximum height the astronaut can jump on the moon. The acceleration due 

to the moon’s gravity is
 

9.80 m/s
2

6
= 1.63 m/s

2
. On the moon, given the initial velocity above, the astronaut can jump 

  

!y
moon

=
"(v

y
)

i

2

2(a
y
)

moon

=
"(3.1 m/s)

2

2("1.63 m/s
2
)

= 3.0 m  

Assess: The answer, choice B, makes sense. The astronaut can jump much higher on the moon. 

P2.76. Prepare: In free fall we use equations for constant acceleration (Table 2.4). We assume that the 
astronaut’s safe landing speed on the moon should be the same as the safe landing speed on the earth. 
Solve: The brute force method is to compute the landing speed on the earth with Equation 2.13, and plug that 
back into the Equation 2.13 for the moon and see what the 

 
!y  could be there. This works, but is unnecessarily 

complicated and gives information (the landing speed) we don’t really need to know. 
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To be more elegant, set up Equation 2.13 for the earth and moon, with both initial velocities zero, but then set the 
final velocities (squared) equal to each other. 

  
(v

earth
)

f

2
= 2(a

earth
)!y

earth
(v

moon
)

f

2
= 2(a

moon
)!y

moon
 

  
2(a

earth
)!y

earth
= 2(a

moon
)!y

moon
 

Dividing both sides by
  
2(a

moon
)!y

earth
gives 

  

a
earth

a
moon

=
!y

moon

!y
earth

 

This result could also be accomplished by dividing the first two equations; the left side of the resulting equation 
would be 1, and then one arrives at our same result. 
Since the acceleration on the earth is six times greater than on the moon, then one can safely jump from a height 
six times greater on the moon and still have the same landing speed. 
So the answer is B. 
Assess: Notice that in the elegant method we employed we did not need to find the landing speed (but for 
curiosity’s sake it is 4.4 m/s, which seems reasonable). 

P2.77. Prepare: We can calculate the initial velocity with which the astronaut throws the ball on the earth and 
then use that to calculate the time the ball is in motion after it is thrown and comes back down on the moon. 
Solve: The initial velocity with which the ball is thrown on the earth can be calculated from Equation 2.12. 

Since the ball starts near the ground and lands near the ground,
  
x

f
= x

i
.Solving the equation for

  
(v

y
)

i,
 

  

(v
y
)

i
= !

1

2
a

y
"t = !

1

2
(!9.80 m/s

2
)(3.0 s) = 15 m/s  

The acceleration due to the moon’s gravity is
 

9.80 m/s
2

6
= 1.63 m/s

2
. We can find the time it takes to return to the 

lunar surface using the same equation as above, this time solving for  !t. If thrown upward with this initial 
velocity on the moon, 

  

!t =
"2(v

y
)

i

a
y

=
"2(15 m/s)

"1.63 m/s
2

= 18 s  

Assess: The correct choice is B. This makes sense. The ball is in motion for a much longer time on the moon 
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