
CHAPTER 1 OVERVIEW

ANSWERS TO QUESTIONS

1.1 Computer architecture refers to those attributes of a system visible

to a programmer or, put another way, those attributes that have a
direct impact on the logical execution of a program. Computer

organization refers to the operational units and their interconnections
that realize the architectural specifications. Examples of architectural

attributes include the instruction set, the number of bits used to
represent various data types (e.g., numbers, characters), I/O

mechanisms, and techniques for addressing memory. Organizational

attributes include those hardware details transparent to the
programmer, such as control signals; interfaces between the computer

and peripherals; and the memory technology used.

1.2 Computer structure refers to the way in which the components of a
computer are interrelated. Computer function refers to the operation of

each individual component as part of the structure.

1.3 Data processing; data storage; data movement; and control.

1.4 Central processing unit (CPU): Controls the operation of the
computer and performs its data processing functions; often simply

referred to as processor.
 Main memory: Stores data.

 I/O: Moves data between the computer and its external environment.

 System interconnection: Some mechanism that provides for
communication among CPU, main memory, and I/O. A common

example of system interconnection is by means of a system bus,
consisting of a number of conducting wires to which all the other

components attach.

1.5 Control unit: Controls the operation of the CPU and hence the
computer

 Arithmetic and logic unit (ALU): Performs the computer’s data
processing functions

 Registers: Provides storage internal to the CPU

Computer Organization and Architecture 9th Edition William Stallings Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/computer-organization-and-architecture-9th-edition-william-stallings-solutions-manual/

 CPU interconnection: Some mechanism that provides for

communication among the control unit, ALU, and registers

CHAPTER 2 COMPUTER EVOLUTION AND

PERFORMANCE

ANSWERS TO QUESTIONS

2.1 In a stored program computer, programs are represented in a form

suitable for storing in memory alongside the data. The computer gets its
instructions by reading them from memory, and a program can be set or

altered by setting the values of a portion of memory.

2.2 A main memory, which stores both data and instructions: an
arithmetic and logic unit (ALU) capable of operating on binary data;

a control unit, which interprets the instructions in memory and causes

them to be executed; and input and output (I/O) equipment
operated by the control unit.

2.3 Gates, memory cells, and interconnections among gates and memory

cells.

2.4 Moore observed that the number of transistors that could be put on a
single chip was doubling every year and correctly predicted that this

pace would continue into the near future.

2.5 Similar or identical instruction set: In many cases, the same set of
machine instructions is supported on all members of the family. Thus, a

program that executes on one machine will also execute on any other.
Similar or identical operating system: The same basic operating

system is available for all family members. Increasing speed: The rate

of instruction execution increases in going from lower to higher family
members. Increasing Number of I/O ports: In going from lower to

higher family members. Increasing memory size: In going from lower
to higher family members. Increasing cost: In going from lower to

higher family members.

2.6 In a microprocessor, all of the components of the CPU are on a single
chip.

ANSWERS TO PROBLEMS

2.1 a

Location Instruction/Value Comments

0 <> Constant (N) [initialized to some value]

1 1 Constant; Integer value = 1

2 2 Constant; Integer value = 2

3 0 Variable Y (initialized to integer zero);

Sum(Y)

4L LOAD M(0 N → AC

4R ADD M(1) AC + 1 → AC

5L MUL M(0) N(N+1) → AC

5R DIV M(2) AC/2 → AC

6L STOR M(3) AC → Y; saving the Sum in variable Y

6R JUMP M(6,20:39) Done; HALT

b.

Location Instruction/Value Comments

0 <> Constant (N) [initialized to some value]

1 1 Constant (loop counter increment)

2 1 Variable i (loop index value; current)

3 1 Variable Y = Sum of X values (Initialized to
One)

4L LOAD M(0 N → AC (the max limit)

4R SUB M(2) Compute N–i → AC

5L JUMP + M(6,0:19) Check AC > 0 ? [i < N]

5R JUMP + M(5,20:39) i=N; done so HALT

6L LOAD M(2) i<N so continue; Get loop counter i

6R ADD M(1) i+1 in AC

7L STOR M(2) AC → i

8R ADD M(3) i + Y in AC

8L STOR M(3) AC → Y

8R JUMP M(4,0:19) Continue at instruction located at address

4L

2.2 a.

Opcode Operand
00000001 000000000010

 b. First, the CPU must make access memory to fetch the instruction. The

instruction contains the address of the data we want to load. During
the execute phase accesses memory to load the data value located at

that address for a total of two trips to memory.

2.3 To read a value from memory, the CPU puts the address of the value it
wants into the MAR. The CPU then asserts the Read control line to

memory and places the address on the address bus. Memory places the

contents of the memory location passed on the data bus. This data is
then transferred to the MBR. To write a value to memory, the CPU puts

the address of the value it wants to write into the MAR. The CPU also
places the data it wants to write into the MBR. The CPU then asserts the

Write control line to memory and places the address on the address bus
and the data on the data bus. Memory transfers the data on the data

bus into the corresponding memory location.

2.4
Address Contents

08A

08B

08C

08D

LOAD M(0FA)
STOR M(0FB)

LOAD M(0FA)
JUMP +M(08D)

LOAD –M(0FA)
STOR M(0FB)

 This program will store the absolute value of content at memory

location 0FA into memory location 0FB.

2.5 All data paths to/from MBR are 40 bits. All data paths to/from MAR are
12 bits. Paths to/from AC are 40 bits. Paths to/from MQ are 40 bits.

2.6 The purpose is to increase performance. When an address is presented

to a memory module, there is some time delay before the read or write
operation can be performed. While this is happening, an address can be

presented to the other module. For a series of requests for successive
words, the maximum rate is doubled.

2.7 The discrepancy can be explained by noting that other system

components aside from clock speed make a big difference in overall
system speed. In particular, memory systems and advances in I/O

processing contribute to the performance ratio. A system is only as fast
as its slowest link. In recent years, the bottlenecks have been the
performance of memory modules and bus speed.

2.8 As noted in the answer to Problem 2.7, even though the Intel machine

may have a faster clock speed (2.4 GHz vs. 1.2 GHz), that does not

necessarily mean the system will perform faster. Different systems are
not comparable on clock speed. Other factors such as the system

components (memory, buses, architecture) and the instruction sets
must also be taken into account. A more accurate measure is to run

both systems on a benchmark. Benchmark programs exist for certain
tasks, such as running office applications, performing floating-point

operations, graphics operations, and so on. The systems can be
compared to each other on how long they take to complete these tasks.

According to Apple Computer, the G4 is comparable or better than a
higher-clock speed Pentium on many benchmarks.

2.9 This representation is wasteful because to represent a single decimal

digit from 0 through 9 we need to have ten tubes. If we could have an
arbitrary number of these tubes ON at the same time, then those same

tubes could be treated as binary bits. With ten bits, we can represent

210 patterns, or 1024 patterns. For integers, these patterns could be
used to represent the numbers from 0 through 1023.

2.10 CPI = 1.55; MIPS rate = 25.8; Execution time = 3.87 ms. Source:

[HWAN93]

2.11 a.



CPIA 
CPIi  Ii
Ic


8 1 4  3 2  4  4  3 106

8  4  2  4 106
 2.22

MIPSA 
f

CPIA 106


200106

2.22106
 90

CPUA 
Ic CPIA

f


18106  2.2

200106
 0.2 s

CPIB 
CPIi  Ii
Ic


101 8  2  2  4  4  3 106

10 8  2  4 106
1.92

MIPSB 
f

CPIB 106


200106

1.92106
104

CPUB 
Ic CPIB

f


24 106 1.92

200106
 0.23 s

 b. Although machine B has a higher MIPS than machine A, it requires a

longer CPU time to execute the same set of benchmark programs.

2.12 a. We can express the MIPs rate as: [(MIPS rate)/106] = Ic/T. So that:

 Ic = T  [(MIPS rate)/106]. The ratio of the instruction count of the

RS/6000 to the VAX is [x  18]/[12x  1] = 1.5.

 b. For the Vax, CPI = (5 MHz)/(1 MIPS) = 5.
 For the RS/6000, CPI = 25/18 = 1.39.

2.13 From Equation (2.2), MIPS = Ic/(T  106) = 100/T. The MIPS values

are:

 Computer A Computer B Computer C

Program 1 100 10 5

Program 2 0.1 1 5

Program 3 0.2 0.1 2

Program 4 1 0.125 1

 Arithmetic
mean

Rank Harmonic
mean

Rank

Computer A 25.325 1 0.25 2

Computer B 2.8 3 0.21 3

Computer C 3.25 2 2.1 1

2.14 a. Normalized to R:

Benchmark
Processor

R M Z

E 1.00 1.71 3.11

F 1.00 1.19 1.19

H 1.00 0.43 0.49

I 1.00 1.11 0.60

K 1.00 2.10 2.09

Arithmetic mean 1.00 1.31 1.50

 b. Normalized to M:

Benchmark Processor

 R M Z

E 0.59 1.00 1.82

F 0.84 1.00 1.00

H 2.32 1.00 1.13

I 0.90 1.00 0.54

K 0.48 1.00 1.00

Arithmetic mean 1.01 1.00 1.10

 c. Recall that the larger the ratio, the higher the speed. Based on (a)

R is the slowest machine, by a significant amount. Based on (b), M
is the slowest machine, by a modest amount.

 d. Normalized to R:

Benchmark
Processor

R M Z

E 1.00 1.71 3.11

F 1.00 1.19 1.19

H 1.00 0.43 0.49

I 1.00 1.11 0.60

K 1.00 2.10 2.09

Geometric mean 1.00 1.15 1.18

 Normalized to M:

Benchmark Processor

 R M Z

E 0.59 1.00 1.82

F 0.84 1.00 1.00

H 2.32 1.00 1.13

I 0.90 1.00 0.54

K 0.48 1.00 1.00

Geometric mean 0.87 1.00 1.02

 Using the geometric mean, R is the slowest no matter which machine

is used for normalization.

2.15 a. Normalized to X:

Benchmark
Processor

X Y Z

1 1 2.0 0.5

2 1 0.5 2.0

Arithmetic mean 1 1.25 1.25

Geometric mean 1 1 1

 Normalized to Y:

Benchmark
Processor

X Y Z

1 0.5 1 0.25

2 2.0 1 4.0

Arithmetic mean 1.25 1 2.125

Geometric mean 1 1 1

 Machine Y is twice as fast as machine X for benchmark 1, but half as
fast for benchmark 2. Similarly machine Z is half as fast as X for

benchmark 1, but twice as fast for benchmark 2. Intuitively, these

three machines have equivalent performance. However, if we
normalize to X and compute the arithmetic mean of the speed

metric, we find that Y and Z are 25% faster than X. Now, if we
normalize to Y and compute the arithmetic mean of the speed metric,

we find that X is 25% faster than Y and Z is more than twice as fast
as Y. Clearly, the arithmetic mean is worthless in this context.

 b. When the geometric mean is used, the three machines are shown to
have equal performance when normalized to X, and also equal

performance when normalized to Y. These results are much more in
line with our intuition.

2.16 a. Assuming the same instruction mix means that the additional

instructions for each task should be allocated proportionally among
the instruction types. So we have the following table:

Instruction Type CPI Instruction Mix

Arithmetic and logic 1 60%

Load/store with cache hit 2 18%

Branch 4 12%

Memory reference with cache miss 12 10%

 CPI = 0.6 + (2  0.18) + (4  0.12) + (12  0.1) = 2.64. The CPI has

increased due to the increased time for memory access.
 b. MIPS = 400/2.64 = 152. There is a corresponding drop in the MIPS

rate.
 c. The speedup factor is the ratio of the execution times. Using

Equation 2.2, we calculate the execution time as T = Ic/(MIPS  106).

For the single-processor case, T1 = (2  106)/(178  106) = 11 ms.

With 8 processors, each processor executes 1/8 of the 2 million
instructions plus the 25,000 overhead instructions. For this case, the

execution time for each of the 8 processors is



T8 

2106

8
 0.025106

152106
1.8 ms

 Therefore we have



Speedup 
time to execute program on a single processor

time to execute program on N parallel processors


11

1.8
 6.11

 d. The answer to this question depends on how we interpret Amdahl's'

law. There are two inefficiencies in the parallel system. First, there
are additional instructions added to coordinate between threads.

Second, there is contention for memory access. The way that the
problem is stated implies that none of the code is inherently serial.

All of it is parallelizable, but with scheduling overhead. One could
argue that the memory access conflict means that to some extent

memory reference instructions are not parallelizable. But based on
the information given, it is not clear how to quantify this effect in

Amdahl's equation. If we assume that the fraction of code that is
parallelizable is f = 1, then Amdahl's law reduces to Speedup = N =8

for this case. Thus the actual speedup is only about 75% of the

theoretical speedup.

2.17 a. Speedup = (time to access in main memory)/(time to access in

cache) = T2/T1.

 b. The average access time can be computed as T = H  T1 + (1 – H) 

T2

 Using Equation (2.8):



Speedup =
Execution time before enhancement

Execution time after enhancement

T2

T


T2

H T1  1H T2


1

1H  H
T1

T2

 c. T = H  T1 + (1 – H)  (T1 + T2) = T1 + (1 – H)  T2)

 This is Equation (4.2) in Chapter 4. Now,



Speedup =
Execution time before enhancement

Execution time after enhancement

T2

T


T2

T1  1H T2


1

1H 
T1

T2

 In this case, the denominator is larger, so that the speedup is less.

2.18 Tw = w/ = 8/18 = 0.44 hours

Computer Organization and Architecture 9th Edition William Stallings Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/computer-organization-and-architecture-9th-edition-william-stallings-solutions-manual/

	Chapter 1 Overview
	Chapter 2 Computer Evolution and Performance

