
CHAPTER 1  OVERVIEW 

 

ANSWERS TO QUESTIONS 

1.1 Computer architecture refers to those attributes of a system visible 

to a programmer or, put another way, those attributes that have a 
direct impact on the logical execution of a program. Computer 

organization refers to the operational units and their interconnections 
that realize the architectural specifications. Examples of architectural 

attributes include the instruction set, the number of bits used to 
represent various data types (e.g., numbers, characters), I/O 

mechanisms, and techniques for addressing memory. Organizational 

attributes include those hardware details transparent to the 
programmer, such as control signals; interfaces between the computer 

and peripherals; and the memory technology used. 
 

1.2 Computer structure refers to the way in which the components of a 
computer are interrelated. Computer function refers to the operation of 

each individual component as part of the structure. 
 

1.3 Data processing; data storage; data movement; and control. 
 

1.4 Central processing unit (CPU): Controls the operation of the 
computer and performs its data processing functions; often simply 

referred to as processor. 
 Main memory: Stores data. 

 I/O: Moves data between the computer and its external environment. 

 System interconnection: Some mechanism that provides for 
communication among CPU, main memory, and I/O. A common 

example of system interconnection is by means of a system bus, 
consisting of a number of conducting wires to which all the other 

components attach. 
 

1.5 Control unit: Controls the operation of the CPU and hence the 
computer 

 Arithmetic and logic unit (ALU): Performs the computer’s data 
processing functions 

 Registers: Provides storage internal to the CPU 
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 CPU interconnection: Some mechanism that provides for 

communication among the control unit, ALU, and registers 



 

CHAPTER 2  COMPUTER EVOLUTION AND 

PERFORMANCE 

 

ANSWERS TO QUESTIONS 

2.1 In a stored program computer, programs are represented in a form 

suitable for storing in memory alongside the data. The computer gets its 
instructions by reading them from memory, and a program can be set or 

altered by setting the values of a portion of memory. 
 

2.2 A main memory, which stores both data and instructions: an 
arithmetic and logic unit (ALU) capable of operating on binary data; 

a control unit, which interprets the instructions in memory and causes 

them to be executed; and input and output (I/O) equipment 
operated by the control unit. 

 
2.3 Gates, memory cells, and interconnections among gates and memory 

cells. 
 

2.4 Moore observed that the number of transistors that could be put on a 
single chip was doubling every year and correctly predicted that this 

pace would continue into the near future. 
 

2.5 Similar or identical instruction set: In many cases, the same set of 
machine instructions is supported on all members of the family. Thus, a 

program that executes on one machine will also execute on any other. 
Similar or identical operating system: The same basic operating 

system is available for all family members. Increasing speed: The rate 

of instruction execution increases in going from lower to higher family 
members. Increasing Number of I/O ports: In going from lower to 

higher family members. Increasing memory size: In going from lower 
to higher family members. Increasing cost: In going from lower to 

higher family members. 
 

2.6 In a microprocessor, all of the components of the CPU are on a single 
chip. 

 



ANSWERS TO PROBLEMS 

2.1 a 

Location Instruction/Value Comments 

0 <> Constant (N) [initialized to some value] 

1 1 Constant; Integer value = 1 

2 2 Constant; Integer value = 2 

3 0 Variable Y (initialized to integer zero); 

Sum(Y) 

4L LOAD M(0 N → AC 

4R ADD M(1) AC + 1 → AC 

5L MUL M(0) N(N+1) → AC 

5R DIV M(2) AC/2 → AC 

6L STOR M(3) AC → Y; saving the Sum in variable Y 

6R JUMP M(6,20:39) Done; HALT 

 
b. 

Location Instruction/Value Comments 

0 <> Constant (N) [initialized to some value] 

1 1 Constant (loop counter increment) 

2 1 Variable i (loop index value; current) 

3 1 Variable Y = Sum of X values (Initialized to 
One) 

4L LOAD M(0 N → AC (the max limit) 

4R SUB M(2) Compute N–i → AC 

5L JUMP + M(6,0:19) Check AC > 0 ? [i < N] 

5R JUMP + M(5,20:39) i=N; done so HALT 

6L LOAD M(2) i<N so continue; Get loop counter i 

6R ADD M(1) i+1 in AC 

7L STOR M(2) AC → i 

8R ADD M(3) i + Y in AC 

8L STOR M(3) AC → Y 

8R JUMP M(4,0:19) Continue at instruction located at address 

4L 

  

  



2.2 a. 

Opcode Operand 
00000001 000000000010 

 
 b. First, the CPU must make access memory to fetch the instruction. The 

instruction contains the address of the data we want to load. During 
the execute phase accesses memory to load the data value located at 

that address for a total of two trips to memory. 
 

2.3 To read a value from memory, the CPU puts the address of the value it 
wants into the MAR. The CPU then asserts the Read control line to 

memory and places the address on the address bus. Memory places the 

contents of the memory location passed on the data bus. This data is 
then transferred to the MBR. To write a value to memory, the CPU puts 

the address of the value it wants to write into the MAR. The CPU also 
places the data it wants to write into the MBR. The CPU then asserts the 

Write control line to memory and places the address on the address bus 
and the data on the data bus. Memory transfers the data on the data 

bus into the corresponding memory location. 
 

2.4 
Address Contents 

08A 
  

08B 
  

08C 
 

08D 

LOAD M(0FA) 
STOR M(0FB) 

LOAD M(0FA) 
JUMP +M(08D) 

LOAD –M(0FA) 
STOR M(0FB) 

 
 This program will store the absolute value of content at memory 

location 0FA into memory location 0FB. 
 

2.5 All data paths to/from MBR are 40 bits. All data paths to/from MAR are 
12 bits. Paths to/from AC are 40 bits. Paths to/from MQ are 40 bits. 

 
2.6  The purpose is to increase performance. When an address is presented 

to a memory module, there is some time delay before the read or write 
operation can be performed. While this is happening, an address can be 

presented to the other module. For a series of requests for successive 
words, the maximum rate is doubled.  

 



2.7 The discrepancy can be explained by noting that other system 

components aside from clock speed make a big difference in overall 
system speed. In particular, memory systems and advances in I/O 

processing contribute to the performance ratio. A system is only as fast 
as its slowest link. In recent years, the bottlenecks have been the 
performance of memory modules and bus speed. 

 
2.8 As noted in the answer to Problem 2.7, even though the Intel machine 

may have a faster clock speed (2.4 GHz vs. 1.2 GHz), that does not 

necessarily mean the system will perform faster. Different systems are 
not comparable on clock speed. Other factors such as the system 

components (memory, buses, architecture) and the instruction sets 
must also be taken into account. A more accurate measure is to run 

both systems on a benchmark. Benchmark programs exist for certain 
tasks, such as running office applications, performing floating-point 

operations, graphics operations, and so on. The systems can be 
compared to each other on how long they take to complete these tasks. 

According to Apple Computer, the G4 is comparable or better than a 
higher-clock speed Pentium on many benchmarks. 

 
2.9 This representation is wasteful because to represent a single decimal 

digit from 0 through 9 we need to have ten tubes. If we could have an 
arbitrary number of these tubes ON at the same time, then those same 

tubes could be treated as binary bits. With ten bits, we can represent 

210 patterns, or 1024 patterns. For integers, these patterns could be 
used to represent the numbers from 0 through 1023. 

 
2.10 CPI = 1.55; MIPS rate = 25.8; Execution time = 3.87 ms. Source: 

[HWAN93] 
 

2.11 a. 





CPIA 
CPIi  Ii
Ic


8 1 4  3 2  4  4  3 106

8  4  2  4 106
 2.22

MIPSA 
f

CPIA 106


200106

2.22106
 90

CPUA 
Ic CPIA

f


18106  2.2

200106
 0.2 s

CPIB 
CPIi  Ii
Ic


101 8  2  2  4  4  3 106

10 8  2  4 106
1.92

MIPSB 
f

CPIB 106


200106

1.92106
104

CPUB 
Ic CPIB

f


24 106 1.92

200106
 0.23 s

 

 
 b. Although machine B has a higher MIPS than machine A, it requires a 

longer CPU time to execute the same set of benchmark programs. 
 

2.12 a. We can express the MIPs rate as: [(MIPS rate)/106] = Ic/T. So that: 

  Ic = T  [(MIPS rate)/106]. The ratio of the instruction count of the 

RS/6000 to the VAX is [x  18]/[12x  1] =  1.5. 

 b. For the Vax, CPI = (5 MHz)/(1 MIPS) = 5. 
  For the RS/6000, CPI = 25/18 = 1.39. 

 

2.13 From Equation (2.2), MIPS = Ic/(T  106) = 100/T. The MIPS values 

are: 

 

 Computer A Computer B Computer C 

Program 1 100 10 5 

Program 2 0.1 1 5 

Program 3 0.2 0.1 2 

Program 4 1 0.125 1 

 

 Arithmetic 
mean 

Rank Harmonic 
mean 

Rank 

Computer A 25.325 1 0.25 2 

Computer B 2.8 3 0.21 3 

Computer C 3.25 2 2.1 1 



 

2.14 a. Normalized to R: 
 

Benchmark 
Processor 

R M Z 

E 1.00 1.71 3.11 

F 1.00 1.19 1.19 

H 1.00 0.43 0.49 

I 1.00 1.11 0.60 

K 1.00 2.10 2.09 

Arithmetic mean 1.00 1.31 1.50 

 



 b. Normalized to M: 

 

Benchmark Processor 

 R M Z 

E 0.59 1.00 1.82 

F 0.84 1.00 1.00 

H 2.32 1.00 1.13 

I 0.90 1.00 0.54 

K 0.48 1.00 1.00 

Arithmetic mean 1.01 1.00 1.10 

 
 c. Recall that the larger the ratio, the higher the speed. Based on (a) 

R is the slowest machine, by a significant amount. Based on (b), M 
is the slowest machine, by a modest amount. 

 d. Normalized to R: 
 

Benchmark 
Processor 

R M Z 

E 1.00 1.71 3.11 

F 1.00 1.19 1.19 

H 1.00 0.43 0.49 

I 1.00 1.11 0.60 

K 1.00 2.10 2.09 

Geometric mean 1.00 1.15 1.18 

 
  Normalized to M: 

 

Benchmark Processor 

 R M Z 

E 0.59 1.00 1.82 

F 0.84 1.00 1.00 

H 2.32 1.00 1.13 

I 0.90 1.00 0.54 

K 0.48 1.00 1.00 



Geometric mean 0.87 1.00 1.02 

 
  Using the geometric mean, R is the slowest no matter which machine 

is used for normalization. 
 

2.15 a. Normalized to X: 

 

Benchmark 
Processor 

X Y Z 

1 1 2.0 0.5 

2 1 0.5 2.0 

Arithmetic mean 1 1.25 1.25 

Geometric mean 1 1 1 

 

  Normalized to Y: 
 

Benchmark 
Processor 

X Y Z 

1 0.5 1 0.25 

2 2.0 1 4.0 

Arithmetic mean 1.25 1 2.125 

Geometric mean 1 1 1 

 

  Machine Y is twice as fast as machine X for benchmark 1, but half as 
fast for benchmark 2. Similarly machine Z is half as fast as X for 

benchmark 1, but twice as fast for benchmark 2. Intuitively, these 

three machines have equivalent performance. However, if we 
normalize to X and compute the arithmetic mean of the speed 

metric, we find that Y and Z are 25% faster than X. Now, if we 
normalize to Y and compute the arithmetic mean of the speed metric, 

we find that X is 25% faster than Y and Z is more than twice as fast 
as Y. Clearly, the arithmetic mean is worthless in this context. 

 b. When the geometric mean is used, the three machines are shown to 
have equal performance when normalized to X, and also equal 

performance when normalized to Y. These results are much more in 
line with our intuition. 

 



2.16 a. Assuming the same instruction mix means that the additional 

instructions for each task should be allocated proportionally among 
the instruction types. So we have the following table: 

 

Instruction Type CPI Instruction Mix 

Arithmetic and logic 1 60% 

Load/store with cache hit 2 18% 

Branch 4 12% 

Memory reference with cache miss 12 10% 

 
  CPI = 0.6 + (2  0.18) + (4  0.12) + (12  0.1) = 2.64. The CPI has 

increased due to the increased time for memory access. 
 b. MIPS = 400/2.64 = 152. There is a corresponding drop in the MIPS 

rate. 
 c. The speedup factor is the ratio of the execution times. Using 

Equation 2.2, we calculate the execution time as T = Ic/(MIPS  106). 

For the single-processor case, T1 = (2  106)/(178  106) = 11 ms. 

With 8 processors, each processor executes 1/8 of the 2 million 
instructions plus the 25,000 overhead instructions. For this case, the 

execution time for each of the 8 processors is 



T8 

2106

8
 0.025106

152106
1.8 ms 

 
  Therefore we have 



Speedup 
time to execute program on a single processor

time to execute program on N parallel processors


11

1.8
 6.11 

 
 d. The answer to this question depends on how we interpret Amdahl's' 

law. There are two inefficiencies in the parallel system. First, there 
are additional instructions added to coordinate between threads. 

Second, there is contention for memory access. The way that the 
problem is stated implies that none of the code is inherently serial. 

All of it is parallelizable, but with scheduling overhead. One could 
argue that the memory access conflict means that to some extent 

memory reference instructions are not parallelizable. But based on 
the information given, it is not clear how to quantify this effect in 

Amdahl's equation. If we assume that the fraction of code that is 
parallelizable is f = 1, then Amdahl's law reduces to Speedup = N =8 

for this case. Thus the actual speedup is only about 75% of the 

theoretical speedup. 
 



2.17 a. Speedup = (time to access in main memory)/(time to access in 

cache) = T2/T1. 

 b. The average access time can be computed as T = H  T1 + (1 – H)  

T2 

  Using Equation (2.8): 

 



Speedup =
Execution time before enhancement

Execution time after enhancement

T2

T


T2

H T1  1H T2


1

1H  H
T1

T2

 

 

 c. T = H  T1 + (1 – H)  (T1 + T2) = T1 + (1 – H)  T2) 

  This is Equation (4.2) in Chapter 4. Now, 
 



Speedup =
Execution time before enhancement

Execution time after enhancement

T2

T


T2

T1  1H T2


1

1H 
T1

T2

 

  In this case, the denominator is larger, so that the speedup is less. 

 

2.18 Tw = w/ = 8/18 = 0.44 hours 
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