Comput er Systens Design and Architecture 2nd Edition Heuring Sol uti ons Manual

Solutions Manual

Vincent P Heuring

Computer
Systems Design

and Architecture

SECOND EDITION

Vincent P Heuring - Harry E Jordan
University of Colorado, Boulder

Preparation assisted by Mersedeh Tehranian
University of Colorado, Boulder

Prentice

Upper Saddle River, New Jersey 07458

Visit TestBankDeal .comto get conplete for all chapters

https://testbankdeal.com/download/computer-systems-design-and-architecture-2nd-edition-heuring-solutions-manual/

Associate Editor: Alice Dworkin

Executive Managing Editor: Vince O'Brien
Managing Editor: David A. George
Production Editor: Barbara Till
Supplement Cover Manager: Daniel Sandin
Manufacturing Buyer: llene Kahn

© 2004, 1997 by Pearson Education, Inc.
m Pearson Prentice Hall
Pearson Education, Inc.
Hall Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without
permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or implied,
with regard to these programs or the documentation contained in this book. The author and pub-
lisher shall not be liable in any event for incidental or consequential damages in connection with,
or arising out of, the furnishing, performance, or use of these programs.

Pearson Prentice Hall® is a trademark of Pearson Education, Inc.

This work is protected by United States copyright laws and is provided solely for the use of
instructors in teaching their courses and assessing student learning. Dissemination or sale of any
part of this work (including on the World Wide Web) will destroy the integrity of the work and is
not permitted. The work and materials from it should never be made available to students except
by instructors using the accompanying text in their classes. All recipients of this work are expected
to abide by these restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials.

Printed in the United States of America
10987654321

ISBN 0-13-147327-1

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educacion de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

Contents

9

10

The General Purpose Machine

Machines, Machine Languages, and Digital Logic
Some Real Machines

Processor Design

Processor Design—Advanced Topics

Computer Arithmetic and the Arithmetic Unit
Memory System Design

Input and Output

Peripheral Devices

Communications, Networking, and the Internet

Appendix A Digital Logic

i1

21
34
47
69
100
113
126
132

139

Chapter 1
The General Purpose Machine

1.1 The PowerPC 601 processor addresses a maximum of 232 bytes of memory. What is the

maximum number of 64-bit words that can be stored in this memory?

$1.D
Solution: A 64-bit word = 8 bytes =23 bytes. 232 bytes of memory is equivalent to 229 64-bit
words. In decimal this is about a half billion words.

1.2 A certain IBM 970 processor has a system clock frequency of 1.2 GHz, what is the clock
period? §1.1)

Solution: 1.2GHz is 1.2 x 10° clock cycles per second, so the period is 8.3 x 1071%, or 830
ps.

1.3 Ifthe cost of RAM is $95 for a 4MB module, what will it cost to install 32 M words in an
originally empty machine if the word size is 32 bits? (§1.1)

Solution: With a word size of 32 bits, one word = 4 bytes. So 32MW =32M x 4B = 128 MB.
At $95 for 4 MB, this gives 128 MB/memory x $95/4 MB = $3,040/memory.

1.4 How many 500MB tapes will be required to back up a 120GB hard drive? How long will
the backup process require if one tape can be filled in 5 minutes? (No coffee breaks
allowed.) §1.1)

Solution: There are 120 x 230 B/disk and 500 x 22° B/tape. Thus one needs about 120 x 239/
500 x 229 tapes/disk, or 240 tapes. 240 tapes x Sminutes/tape = 1200 minutes =
20 hours.

1.5 a. A certain machine requires 1.5 us to process each 64-byte data record in a database. How long
will it take to process a database containing 100 x 108 records?
b. How many 700MB-capacity CD-ROMs will be required to store the data-
base? (81.1)

Solution: a. 1.5 us/record x 100 x 1083 records/database = 15000 seconds/database = 250 min-
utes.

b. If arecord takes 16 bytes, then there are 16 x 1010bytes/database. At 700 x 10® B/CD-
ROM, this means about 229 CD-ROMs/database. Unreasonable, even for small records!

1.6 a. What is the percentage relative error in using 210 as an approximation for 102
b. What is the percentage relative error in using 230 as an approximation for 102

c. What is the general formula for the relative error in using 21 a5 an approximation for

103 (§11)

Solution: a. The relative error in approximating 1000 is W = 2.4%.
230 1 09
b. Relative error in using 23 for 10° is ;9 = 737% .
10
S 10k _ 3k
¢ 1s an answer, but it is uninteresting. Strictly dullsville! The interesting
10

thing that can be seen from parts a) and b) is that the relative error increases. How can we
get a formula that helps us understand when the value of £ is too large for the approxima-
tion to be any good. One way is as follows:
Relative error is

10k 10k

2__1 , and since ln(z——) = k(10In2 —3In10) = 0.0237k , the relative error is
3k 3k
10 10 .
0.0237k
e — 1. The first two terms of a power series expansion give an idea of the behavior:

relative error = 0.0237k + 0.0003 k2. From this we see that if k > 20, the relative error
exceeds 50%—not a good approximation.

1.7 If one printed character can be stored in 1 byte, approximately how many bytes will be re-
quired to store the text of this textbook? Do not include the graphics, and do not count
the characters one by one. Show your work and state your assumptions. §1.1)

Solution: In manuscript form there are about 96 characters (including spaces and punctuation)
in a full line of text. About 3/4 of a page is full lines on the average, and there are 570
pages in the textbook. A full page could contain 50 lines.

50 lines/page x 570 pages/book x 75% x 96 char/line=~2,052,000 char~ 1.95 MB.

1.8 Consider computing the electric field in a box 1.5 c¢cm on a side. The spatial resolution in
each dimension is to be 50 um. Assume that it takes 150 instructions for every point in
the 3-D grid to do the calculation. How long does the computation take on a computer
that can execute at a rate of 100 MFOPS (millions of floating point instructions per
second)? (§1.1)

Solution: Each side of the box is 1.5 x 1072 m long. The spatial resolution in each dimension
is 50 x 10™°m. Dividing the length of the box by the spatial resolution gives 300 points/
side. Since the box is 3-dimensional, 3003 =27 x 10 points must be calculated. Each
point needs 150 instructions, so 27 x 106 points/3-D grid x 150 instructions/point =
4.05 x 10° instructions/3-D grid. The processor can execute 100 MFOPS, so dividing
4.05 x 10 instructions/3-D grid by 100 x 10° instructions/s = 40.5 s.

1.9 Describe the tools used by the assembly language programmer. (81.3)

Solution: The tools used by the assembly language programmer are editor, assembler, linker,
loader, debugger, and development system. The editor is used to edit the source code (the
assembly language). The assembler allows the programmer to generate machine lan-
guage program from assembly language programs. It translates assembly language state-
ments to their binary equivalents. The /inker links separately assembled modules together
into a single module suitable for loading and execution. The loader loads the executable
binary code into the memory and changes some logical addresses to appropriate physical
addresses. The debugger allows the programmer to observe the details of program exe-
cution. The development system is a collection of hardware and software that is used to
support system development.

1.10 Describe the differences between assembly language and high-level languages as regards
type checking. What is the source of these differences? (§1.3)

Solution: High-level languages usually have several primitive data types that are part of the
language definition. In addition, most high-level languages provide some constructs to
let the user define complex types by composition of the primitive types of the language.
Correct type usage is usually enforced by the compiler during syntactic and semantic
check phases. The rich data type structure built into higher level programming languages
is missing from most assembly and machine languages. It’s all “bits-n-bytes” at the ma-
chine level.

Assembly language programmers need to specify the addresses where the program and
data should be located and to focus on the machine level implementation. High-level lan-
guage programmers want the compiler to check the use of language constructs and to
check some semantics of programs. High-level language programmers also need short
representations of objects that are of interest to them, such as integers, reals, and charac-
ters.

1.11 What is the difference between a programmable calculator and a personal
computer? (§1.4)

Solution: The programming capability of a programmable caculator is limited, and there’s
only one “language.” It can only solve some particular kinds of numerical problems. The
I/O capability is very poor.

A personal computer is a general purpose machine. Nearly all kinds of operating systems,
programming languages, and application software can run on it. It can solve nearly all
kinds of problems, such as mathematical computation, controlling, design, information
processing, and artificial intelligence problems. It can drive all sorts of I/O devices—
vastly more than a calculator. Different computers can also be connected via a network.

1.12 How would computers be operated if there were no stored programs? (8§1.4)

Solution: If there were no stored programs, computers could only be operated by button push-
ing, switching, and rewiring. Furthermore, the operator would have to wait for the result
of a step before he or she could enter the next step. It would be the operator’s responsi-
bility to determine the next step.

1.13 What is an ISA, and what are its components? (§1.3)

Solution: The ISA is the collection of instructions and resources. It includes the instruction set,
the machine’s memory, and all of the programmer-accessible registers in the CPU and
elsewhere in the machine.

1.14 Using only the instructions in Table 1.3, compile by hand the following C statements into
VAXI11 assembly language. Assume all variables are integers. (81.3)
a. Vv
b. A = B*C*D + E;

c. zZ = x*yz;

(W + X)*(Y + Z);

I

d. U=V; W=TU=+Y;

Solution: T is a temporary memory location introduced to avoid overwriting operands.

a. ADD W, X, T b. MPY B, C, T
ADD Y, 2, V MPY D, T, A
MPY T, V, V ADD E, A, A

C. MPY v, v, 2z d. MOV V, U
MPY x, 2z, z ADD U, Y, W

1.15 Using only the information in Table 1.2, encode the following MC68000 assembly lan-
guage instructions into machine language. Express your results in binary. (§1.3)

a. MOVE.W D3, D4
b. ADDI.W #65535, D4

Solution: a.
MOVE.W D3, D4

0011 100 000 000 O11

ADDI.W #65535, D4

00000110 01 000 100
1111 1111 1111 1111-e— 65535

1.16 Describe the advantages of data typing in high-level language programming. (§1.3)

Solution: Data typing helps prevent the programmer from making errors due to misuse of lan-
guage constructs, and also provides guidance to the compiler about the meaning of the
program. High-level language data types are designed for ease of representing objects

that are of interest to the programmer.

1.17 If assembly language is mostly free of data typing, how are data types expressed in as-
sembly languages? (§1.3)

Solution: They are solely determined by the intent of the programmer, who performs “data
typing” by the kind of instruction used.

1.18 Define the difference between a simulator and an emulator. Which would you prefer to
work with, and why? §1.4)

Solution: Simulators are software tools that mimic aspects of the system’s behavior and allow
a certain amount of performance estimation at an early part of the design process. Since
simulators mimic hardware performance in software, they are usually slower in operation
by orders of magnitude. Emulators can be thought of as hardware-assisted simulators that
provide operation speed closer to the speed of the hardware being emulated.

Emulators are preferred because they provide results closer to the behavior of the real
machine being emulated.

1.19 a. Define the term bus.
b. Why are buses used in computers?

c. Describe the similarities and differences between the computer bus and the electric
power grid.

d. Describe the differences between the computer bus and the water system in your
home. (§1.4)

Solution: a. A bus is a multiplexer interconnecting multiple devices and allowing multiple de-
vices to use it for communication by time sharing. It provides both a data path and a sig-
naling or control path.

b. It can save hardware and thereby reduce the cost. Using buses makes the design rela-
tively simple, and it is not difficult to add more devices to the system.

c. They use a common medium. The electric power grid only delivers power. The com-
puter bus transfers data and control signals. Once the connection is established, the power
can flow to all terminals simultaneously. Different devices use the computer bus by time-
sharing.

d. They use a common medium. The water system only delivers water. The computer bus
transfers data and control signals. Once the connection is established, the water can flow
to all terminals simultaneously. Different devices use the computer bus by time-sharing.

1.20 Provide a diagram similar to Figure 1.5 for the computer you work at most
frequently. (§1.5)

Solution: The diagram should include CPU, memory, /O, and their interconnection. The
name of each bus should be specified. I/O devices may include keyboard, mouse, bit pad,

display, printer, disk drive, CD ROM, tape, network, other computers, and so on.

1.21 How does the computer architect communicate machine specifications to the logic
designer? (§1.5)

Solution: Natural languages and some informal descriptions are inevitable. They provide a
general view of the architecture and a more intuitive “feel” for the meaning of a con-
struct. But they can be confusing, imprecise, or incomplete in their descriptive power.
Formal description languages are often used to augment natural language in this commu-
nications process. These languages are called register transfer languages, as they are spe-
cifically designed to describe information transfer between registers, a feature that is
central to the operation of the computer. Formal descriptions provide the means to be pre-
cise and exact.

1.22 What natural separation distinguishes computer logic design from classical logic
design? (§1.5)

Solution: The computer designer does not design an entire digital computer using state ma-
chine design techniques. There is a natural separation or partitioning of concerns between
the data path and the control path. Whereas the logic designer sees logic gates and flip-
flops, the computer designer sees multiplexers, decoders, and register files.

1.23 Estimate the costs of the components in Figure 1.6 for the computer you work at most
frequently. State where you got the component costs. (81.5)

Solution: From PC Magazine, www.pcmag.com.

Component Price
CPU: Intel Pentium 4 motherboard $120
Cache: IBM 256 KB (94G3141) Cache Memory $39
Main memory: 512MB 400MHz DDR PC3200 DIMM $80
Disk memory: Western Digital 120GB (Ultra ATA/100, 7200 RPM) $92
Tape memory: Exabyte 80/160 GB VXA-2 Tape Drive $528

1.24 Describe as accurately as you can the implementation domain of the computer proposed
by Charles Babbage. (§1.5, 1.6)

Solution: Gears, shafts, wheels, cranks, and dials.

1.25 Describe as accurately as you can the implementation domains of the first through the
fourth generation of computers. (8§1.5, 1.6)

Solution: The first generation: vacuum tubes, relays, and mercury delay lines. The second gen-
eration: discrete transistors. The third generation: small- and medium-scale integrated
circuits, TTL chips. The fourth generation: VLSI on silicon, TTL chips, ECL chips,
PLAs, and sea-of-gates gate arrays.

Chapter 2
Machines, Machine Languages, and Digital Logic

2.1 Refer to the four items on page 38 that an instruction must specify. What would need to
be specified by the MC68000 instruction ADDILW #5, D4 described in Table
1.2? §2.1)

Solution: (1) opcode: add immediate (16- bit word. (2) operands: the immediate value 5 and
the value in data register D4. (3) result: in data register D4. (4) next instruction: implic-
itly in the word following this instruction. (Notice this instruction consists of two words .)

2.2 Repeat Exercise 2.1 for the JCXZ instruction in Table 2.3. (8§2.1)

Solution: (1) opcode: Jump if register CX is equal to zero. (2) operand: in register CX. (3)
result: none. (4) next instruction: location of the Addr if the condition is true, otherwise
implicitly the instruction after the current instruction (JCXZ).

2.3 According to the discussion in Section 2.2.1, how many instructions would the MC6800
have to execute to move a 128-bit floating point-number from one memory location to
another? (§2.1)

Solution: If we assume that data can only be moved one byte at a time from memory to an
accumulator or from an accumulator to memory, then 16 pairs of (load, store) instructions
are needed to move a 128-bit word. If single instructions are available to load and store
a 16-bit register, say IX, the number of instructions can be reduced from 32 to 16.

2.4 Write the code to implement the expression A = (B - C)*D on 3-, 2-, 1-, and 0-address
machines. Do not rearrange the expression. In accordance with programming language
practice, computing the expression should not change the values of its
operands. (§2.2)

Solution:

3-address 2-address 1-address 0-address
SUB A, B, C LOAD A, B LDA B PUSH B
MPY A, A, D SUB A, C SUB C PUSH C

MPY A, D MPY D SUB
STA A PUSH D

MPY

POP A

2.5 Compute the total memory traffic in bytes for both instruction fetch and instruction exe-
cution for the code that implements the expression evaluation the four machines in Exer-
cise 2.4 above. Assume opcodes occupy one byte, addresses occupy two bytes, and data
values also occupy two bytes. §2.2)

Solution: Solution:
Machine Instruction Fetch Instruct.ion Total memory
Execution traffic
3-address 7+7=14 6+6=12 14+12=26
2-address 5+5+5=15 4+6+6=16 15+16=31
1-address 3+3+3+3=12 2+2+2+2=8 12+8=20
0-address 3+3+1+3+14+3=14 2+2+2+2=8 14+8=22

2.6 Do problem 2.4 above, but for the expression A= B*C + D*E. (Feel free to use a tempo-
rary variable, called, say, T, if you feel you need one.) Assuming that addresses are 16
bits, data values are 16 bits, and opcodes are 8 bits, compute the size of your program, in
bytes, and the amount of memory traffic the program would generate, in bytes, when it
executes. When you compute the amount of memory traffic generated by the program,
compute separately the amount of traffic due to instruction fetch and instruction

execution. (§2.2)
Solution: T is a memory location used as a temporary.
3-address 2-address 1-address 0-address
MPY A, B, C LOAD A, B LDA D PUSH D
MPY T, D, E MPY A, C MPY E PUSH E
ADD A, A, T LOAD T, D STA T MPY
MPY T, E LDA B PUSH C
ADD A, T MPY C PUSH B
ADD T MPY
STA A ADD
POP A
Amount of traffics:
Machine Instruction Fetch Instruct.mn Total memory
Execution traffic
3-address T+7+7=21 6+6+6=18 21+18=39
2-address 5+5+5+5+5=25 4+6+4+6+6=26 25+26=51
1-address 3x 7= 21 2 x 7= 14 21+14=35
0-address (3x35)+(1x3)=18 2%x5= 10 18+10=28

The size of the program for each machine is as follows:

3-address:

The program contains 3

instructions

and each

instruction takes

(2 x3)+ 1= Tbytes, therefore the size of the program in memory would be

3 x 7= 21 bytes.

2-address: The program contains 5 instructions and each instruction takes
(2 x2)+ 1= Sbytes, therefore the size of the program in memory would be
5 x 5= 25bytes.

I-address: The program contains 7 instructions and each instruction takes
(2 x 1)+ 1= 3bytes, therefore the size of the program in memory would be
7 x 3= 21 bytes.

0-address: The program contains 8 instructions, 5 of the instructions take
(2 x 1)+ 1= 3 bytes and 3 of them take only 1 byte, therefore the size of the program in
memory would be (5 x 3) + (3 x 1)= 18bytes.

2.7 Write SRC code to implement the expression in Exercise 2.4. Assume SRC has a multi-
ply instruction. (§2.3)
Solution:
Assume that operands and results are 1d 0, B
stored in memory addresses that can 1d ri, C
be accessed with direct addressing. sub r0, r0, rl
Also assume that SRC has a multiply ld r1, D
instruction, mpy, that uses format 6. mpy r0, r0, rl
st 0, A

2.8 Compute the total memory traffic in bytes for both instruction fetch and instruction exe-
cution for the code in Exercise 2.7. (§2.3)
Solution:
Instructions Instruction Fetch Instruct.lon Total memory
Execution traffic
1d r0, B 4B 4B 4+4=8B
1d ri, C 4B 4B 4+4=8B
sub r0, r0, rl 4B 0 4B
1d rl, D 4B 4B 4+4=8B
mpy r0, r0, rl 4B 0 4B
st r0, A 4B 4B 4+4=8B
Total 24B 16B 40B

2.9 Repeat Exercise 2.6 for a general register machine. Assume 8-bit opcodes, 5-bit register

numbers, 16 bits data words and 24-bit addresses. (§2.2)

10

Solution:

Assume that operands and results are load RO, B

stored in memory addresses that can load R1, C

be accessed with direct addressing. mul RO, RO, R1
load R1, D
load R2, E
mul R1, R1, R2
add RO, RO, R1
store RO, A

The amount of traffics for this general register machine is as the follows:

Instructions Instruction Fetch Instrucfion Total memory
Execution traffic

load RO, B 8+5+24=27b=4B 16bits=2B 27+16=43b=6B

load R1, C 8+5+24=27b=4B 16bits=2B 27+16=43b=6B
mul RO, RO, R1 8+5+5+5=23b=3B 0 23b=3B

load R1, 8+5+24=27b=4B 16bits=2B 27+16=43b=6B

load R2, 8+5+24=27b=4B 16bits=2B 27+16=43b=6B
mul R1, R1, R2 8+5+5+5=23b=3B 0 23b=3B
add RO, RO, R1 8+5+5+5=23b=3B 0 23b=3B

store RO, A 8+5+24=27b=4B 16bits=2B 27+16=43b=6B

Total 204b or 29B 80b =10B 284b or 39B

2.10

Solution:

Size of the program:

The program contains 8 instructions, 5 of the instructions take 8+5+24=27bits and 3 of
them take 8+5+5+5=23bits, therefore the size of the program in memory would be

(27 x 5) + (23 x 3)= 204 bits or 29 bytes.

Suppose the instruction word in a general register machine has space for an opcode and
either three register numbers or one register number and an address. What different in-
struction formats might be used for an ADD instruction, and how would they
work? (§2.2)

Format 1: ADD Rdst, Rsrcl, Rsrc2
Fetch the contents of register Rsrc1 and Rsrc2, add them, and then store the result into
register Rdst.

Format 2: ADD Reg, Mem-addr
Fetch the contents from register Reg and memory address Mem-addr, add them, and
then store the result to register Reg.

11

2.11 There are reasons for machine designers to want all instructions to be the same length.
Why is this not a good idea in a stack machine? §2.2)

Solution: In a stack machine, an arithmetic instruction only needs an opcode field, while a
PUSH/POP instruction needs both opcode and a much longer address field. If all instruc-
tions were forced to be the same length, a considerable amount of memory space would
be wasted in arithmetic instructions.

2.12 In the last two instructions of Table 2.3, which of the five items on page 44 are explicitly

specified and which are implicit? (§2.2)
Solution:
SOB R4 LOOP JCXZ Addr
Operation to be performed Explicit: SOB Explicit: JCXZ
Location of first operand Explicit: R4 Explicit: CX
Location of second operand Implicit: -1 none
Place to store the result Explicit: R4 none

Explicit: Location
of Addrif CX =0
Implicit: The
instruction after
JCXZ, or “PC” if
CX is not equal 0

Location of next instruction Explicit: Location
of LOOP ifresult is
not equal 0
Implicit: The
instruction after
SOB, or “PC” if

result =0

2.13 Tell which addressing modes are used by each of the instructions in Table 2.2. (§2.2)

Solution:
Instruction Source address mode Destination address mode
MULF A,B,C Direct addressing Direct addressing

nabs r3, rl

Register direct addressing

Register direct addressing

ori $2,8%1,255

Register direct addressing

Register direct addressing

DEC R2

Register direct addressing

Register direct addressing

SHL AX, 4

Register direct addressing

Register direct addressing

2.14 Suppose that SRC instruction formats are considered different only when field bound-
aries in the instruction word change and not when some fields or parts of fields are un-
used. How many different formats should appear in Figure 2.10 in this case? (§2.3)

Solution: Formats 3, 4, 5, 6, and 7 in Figure 2.9 could be considered as one format. Format
1 uses a 17-bit constant, so it is another format. Format 2 is also distinct because it uses
a 22-bit constant. Format 8 can be combined with any format that has operand field, giv-
ing 3 different formats.

12

2.15 Encode the program on page 63 in hexadecimal. (§2.3)

Solution:

Address | Label Instruction Hexadecimal
1388H lar r0, Over 3000000CH
138CH 14 rl, X 084003E8H
1390H brpl rl, roO 40001004H
1394H neg rl, rl 78401000H

| 1398H | over addi rl, rl, cost | 4842007DH
139CH st rl, X 1840000CH

2.16 Write SRC code to implement the following C statements, assuming all variables are 32-
bit integers:

a.if (a < 0) a = -a; else a = 0;

b.for (i = 0; 1 < 10; i++)
ndigit [i] = i+1; assuming a declaration of ndigit [10] (§2.3)

Solution: a.

1d r0, a ;Get value of a
la rl, O ;Get constant 0
lar r2, sign ;Set branch target
brmi r2, ro0 ;Skip next if a<o0
st rl, a ;Store 0 into a
sign: neg r0, r0 ;Converts a to -a
st r0, a ;Store -a into a
b.
la r4, 0 ;Constant O
la r3, ndigit ;R[3] points to ndigit[i]
lar r2, loop ;Branch target
addi rl, r4, O ;Make R[1], =i, O
addi r5, ri1, 1 ;Make R[5], =i+1
loop: st r5, 0(r3) ;ndigit[i] = i+1
addi r3, r3, 4 ;Advance array pointer
addi r1, r1i, 1 s i++
addi ro0, rl, -10 ;R[0]<0 iff i<10
addi r5, r5, 1 ;i+1
brmi r2, r0 ;Repeat if i<10

2.17 Testing a difference against zero is not the same as comparing two numbers in finite pre-
cision arithmetic. Propose an encoding for an SRC branch instruction that specifies two
registers to be compared, rather than one register to be compared against zero.

a.What potential problems might there be with implementing the modified instruction?

b.How would condition codes improve the situation?

13

c.Can you suggest a restructuring of the SRC branch that would help without using con-
dition codes? §2.3)

Solution: a. Two numbers are usually compared by a subtraction followed by testing the re-

2.18

sult. The problem is that the 32-bit difference does not contain enough information. In
case of overflow, the 32-bit 2’s complement difference cannot correctly show which of
the two compared numbers is greater.

b. Condition codes are flags in the processor state that are set as a side effect of some
arithmetic instruction. The usual condition code flags are N (negative), Z (zero), V (over-
flow), and C (carry out). Testing these flags gives enough information to tell the correct
result of the comparison.

c¢. The register tested in a branch instruction could hold condition codes rather than the
32-bit difference. A comparison instruction could be added to the instruction set that
compares two numbers and stores the condition codes in the destination register. The new
branch instructions could still use format 4 and 5 in Figure 2.9. The comparison instruc-
tion could use format 6.

Procedure-calling sequences are standard groups of instructions that transfer control
from the main program to a procedure, supplying it with input arguments if necessary.
Return sequences finish the procedure by setting up any output arguments and transfer-
ring control back to the point following the call. Write a call and return sequence for an
SRC procedure that computes the absolute value of an integer passed and returned in r0.
Assume 131 is the linkage register. (§2.3)

Solution:
Main:

1d r0, Integer ;load the input argument
la rl, O ;load constant 0
addi r30, r30, -4 ;assume stack pointer is r30
st r0, (r30) ;push the integer
addi r30, r30, -4 ;leave the space for the output
la r29, Proc ;load the address of procedure
brl r31, r29 ;call with return address inr31
1d r0, (r30) ;on return,
st r0, Output ;get the output result
addi r30, ¥30, 8 ;restore the stack pointer

14

Proc: addi r30, r30, -4 ;push return address
st r3l, (xr30);

la r28, Abs ;load the address of Abs

la r27, Ret ;load the address of Ret

1d r0, 8(r30) ;load integer

brmi r28, r0 ;branch to Abs if integer <0
Ret: st r0, 4(r30) ;store result from r0

1d r29, (r30) ;pop the return address

addi rl, rl1, 4

br r29 ;return to calling program
Abs: neg 10, x0 ;get the absolute value

br r27 ;return to Ret

2.19 Examine the RTN descriptions for 1a and addi.
a.How do the instructions differ?

b.Give the pros and cons of eliminating one or the other. §2.4)

Solution: First expand la to compare with addi.
la — R[ra] < ((rb = 0) — ¢2(16..0){sign extend}:
(rb=0) — R[rb] + ¢2(16..0){sign extend, 2’s complement}):
addi — R[ra] <= R[rb] + c2(16..0){sign extend, 2’s complement}:

a. Both instructions add an immediate constant to a register, but la treats R[0] as if it con-
tained zero when used as an operand, while addi treats it like any other register.

b. Eliminating either one has the advantage of saving an opcode. Eliminating la makes it
impossible to load a small constant into a register unless some register is known to con-
tain zero. Eliminating addi retains the ability to load an immediate constant but makes it
impossible to use R[0] as the first operand of an immediate add.

2.20 Modify the SRC RTN to include a SingleStep button. SingleStep functions in the follow-
ing way: when Run is true, SingleStep has no effect. When Run is false, that is, when the
machine is halted, pressing SingleStep causes the machine to execute a single instruction
and then return to the halted state. §2.4)

Solution: instruction_interpretation := (
=Run A Strt = Run < 1:
Run — (IR <= M[PC]: PC < PC + 4; instruction_execution):
-Run A =Strt A SingleStep — (SingleStep <= 0: IR < M[PC]:
PC < PC + 4; instruction_execution):

2.21 Modify the SRC to include the swap (op = 7) instruction that exchanges the contents of
two registers, ra and rb, by writing RTN for the new instruction. (§2.4)

15

Solution: swap (:= op =7) — (R[rb] <= R[ra]: R[ra] <= R[rb]):

2.22 a. Modify the SRC RTN to include a conditional jump instruction, jpr (op = 25).
It should use format 2 in Figure 2.10. The jpr instruction uses relative address-
ing, rel, instead of a branch target register. The jump should be taken only if ra = 0.

b.Change the meaning of jpr so that the jump is taken only if the register specified by
the ra field has a nonzero value. (§2.4)

Solution: a. jpr(:=op=25)—>((ra=0)— PC <rel:)
b. jpr(:=op=25)— ((R[ra] # 0) = PC < rel):
2.23 Describe in words the difference between the two addressing modes described in RTN as
follows:
aM[M[X +R[a]]]
b.M[M[X] + R[a]]. (§2.5)

Solution: They are both indexed indirect addressing modes. In mode a, the index register is
added to the address of the indirect pointer, so it is called preindexing. In mode b, the in-
direct pointer is fetched from memory address X and the index is then added to the point-
er, so it is called postindexing.

2.24 Write SRC instructions to load a value into a register using each of the addressing modes
of Table 2.8. Use multiple SRC instructions for a mode only when necessary. (82.5)

Solution:
Addressing mode Assembler | SRC instructions
syntax
Register Ra addi rt, ra, O
Register indirect (Ra) 1d rt, O(ra)
Immediate #x la rt, x(ro0)
Direct, absolute X 1ld rt, x
Indirect (%) 14 rn, X
1d rt, 0(rn)
Indexed, based, or displacement | x(Ra) 1d rt, x(ra)
Relative x(PC) ldr rt, x
Autoincrement (Ra)+ 1d rt, 0(ra)
addi ra, ra, 4
Autodecrement —(Ra) addi ra, ra, -4
1d rt, O(ra)

2.25 Assume that in a certain byte-addressed machine all instructions are 32 bits long. Assume

16

the following state of affairs for the machine:

Address | Value
PC 100

r0 200

rl 300

100 200

104 300

108 400
200 500
300 600
500 700

Fill in the following table, assuming that each statement executes from the initial state
defined above. The lea, load effective address, instruction is similar to the LEA instruction
shown in Table 2.1 (§2.5)

Solution:
Instruction Addressing Mode Value of r0 after Execution
load r0, #200 Immediate 200
load r0, 200 Direct 500
load r0, (200) Indirect 700
load r0, rl Register 300
load r0, [r1] Reg. Ind. 600
load r0, -100[r1] Based 500
lea r0 -100([rl] Based 200
load r0, 200[PC] Relative 600

2.26 Consider the C int array variable V[2]. Assume that C ints are 32 bits in size and that the
base address of V is in 13.

Write a single SRC instruction similar to those in Exercise 2.25 that will store V[2] in
4. (§2.5)

Solution: The SRC instruction to store V[2] is : load r4, 8[r3]

2.27 Using the hardware in Figure 2.24, write the RTN description and the control sequence
that implements the following:
a.R[0] < R[1]+R[2] +2
b.R[3] < R[4] + R[5] + R[6]. (§2.6)

Draw timing diagrams similar to Figure 2.25 for the control sequences developed above.

(§2.6)

17

Solution:

a. | W< R[2]+ R[Z]outa Win; b. | Y < R[6]; R[6]out’ Yin;
W W1 Wouts Win Z < R[5]+Y; | R[5]oup Zins
Y < W, Wout Yins Y < Z Zout Yips
Z < R[l] +Y; R[l]outa Zin; 7 <~ R[4] +Y; R[4]out’ Zin;
R[0] < Z; Zoyt> R[0];5 R[3] < Z; Z oy R[3]in;

2.28 Design a circuit similar to Figure 2.24, but without the incrementer, so that any register
can be added to any register and the result stored in any register in one clock cycle.(§2.5)

D Q
rio3| M
o Rl mf mf
RIOIT P Q
‘4
m/
e
R{1I ™
— ol R[”out
S o L
Solution:
D Q‘r“>
R[n-1 mR[.
] o) n=Hout
R[n-l]in>

Adder

2.29 Design data path logic that will allow any two of the following register transfers that do
not have the same destination to be done in one step. (§2.5)
A < B:
A<C:
C<B:
B C:

18

Solution:

|
e

Bout

™

D a
B
Bin Q
—1D Q
Cc
Cin —p @

2.30 It is a widespread practice to develop simulators for computers that are under
development. The simulators run on other available machines, and they allow designers
and programmers to evaluate machine hardware and software in advance of the availabil-
ity of the machine. A simulator may simulate only the abstract behavior of the machine,
without any pretense of performing the operations the way an actual machine would per-
form them, or it may simulate the structure and function of the machine down to the gate
level and below. If a compiler were available for RTN, the compiled code could be

L~

Cout

thought of as being a simulator for SRC at the most abstract level.

Begin the process of writing a behavior-level simulator for SRC by declaring the mem-
ory, formats, and effective address parts of the machine in ANSI C. Assume that only the
first 4,096 32-bit words are implemented, and assume that integers on your machine are

32-bits long. (§2.4)
Solution: /* Simulator for
int PC;
int R[32];

short int Run, Strt;
union {int M[4096];

SRC */
/* Program counter */
/* General registers */
/* Flags */

char Mem[16384] ;

} memory;

/* Main memory */

union { struct { op:5; ra:5; cl:22;

}

struct { op:

}

struct { op:
} IR;
int sge22(cl)
int ce;
{ce = c1; if (ce

return ce; }

>= 2097152)

onekR;

5; ra:5; rb:5; c2:17;

twoR ;

5; ra:5; rb:5; rc:5; c3:12;
threeR;

/* Inst. register */
/* Sign extend 22 bits */

ce 4194304 ce;

19

Comput er Systens Design and Architecture 2nd Edition Heuring Sol uti ons Manual

int sgel7(c2) /* Sign extend 17 bits */

int ce;
{ce = c2; if (ce >= 65536) ce = 131072 - ce;

return ce;}

int sgel2(c3) /* Sign extend 12 bits */
int ce;
{ce = c3; if (ce >= 2048) ce = 4096 - ce; return ce;}
int disp (IR) /* Displacement address */
int d;

{ if (IR.twoR.rb == 0) d = sgel7(IR.twoR.c2);

else d = R[IR.twoR.rb] + sgel7 (IR.twoR.c2);

return d; }
int rel (IR) /* Relative address */

int r;
{ r = PC + sge22(IR.oneR.cl); return r; }

20

Visit TestBankDeal .comto get conplete for all chapters

https://testbankdeal.com/download/computer-systems-design-and-architecture-2nd-edition-heuring-solutions-manual/

