ESSAY. Write your answer in the space provided or on a separate sheet of paper.

1) What is the definition of the quantity takeoff?

Answer: The quantity takeoff is where the estimator prepares a complete list of materials, labor, and equipment necessary to complete a construction project.
2) How does the quantity takeoff fit into the overall estimating process?

Answer: It must be complete before a company can determine the cost of materials, labor, and equipment, which are a necessary part of a complete bid.

1) Using Figures $34-3$ and $34-4$, determine the base cost per square foot for an 85,000 -square-foot, steel-frame parking garage with face-brick over concrete block exterior.
Answer: $\$ 81.70$ per square foot
2) Using Figures 34-3 and 34-4, determine base perimeter for an $85,000-$ square-foot parking garage.

Answer: 529 feet
3) Using Figures 34-3 and 34-4, determine the perimeter adjustment for an 85,000 -square-foot parking garage.

Answer: $\$ 1.80$ per square foot
4) Using Figures 34-3 and 34-4, determine the story-height adjustment for an 85,000 -square-foot parking garage. Answer: $\$ 0.85$ per square foot
5) Using Figures $34-3$ and $34-4$, determine the added cost for a 12 -inch by 18 -inch traffic sign.

Answer: $\$ 97.50$ per each
6) What items would you include on an 8 -foot-high, wood-framed, interior wall for a residence?

Answer: The items should include: sole plate, wood studs, top plate, 1/2-inch drywall, paint, and base.
7) Your company just completed a $1,100-$ square-foot convince store for a client for $\$ 225,000$. Next year, the same client wants to build a 1,300 -square-foot convince store in the same city. Determine the estimated cost of the convince store using an inflation factor of 4 percent per year.
Answer: First adjust for size using an E of 0.9 using Eq. $34-1$ as follows:

$$
\text { Cost }=\text { Cost } \times \mathrm{TCM}=\$ 225,000\left(\frac{1,300}{1,100}\right)^{0.9}=\$ 261,504
$$

Finally, adjust for inflation using Eq. 34-4 as follows:

$$
\operatorname{Cost}_{t+n}=\operatorname{Cost}_{t}(1+\bar{f})^{n}=\$ 261,504(1+0.04)^{1}=\$ 271,964
$$

Use $\$ 272,000$
8) Using Figures 34-3 and 34-4, determine the cost for a 180-foot by 269 -foot, three-story, precast concrete parking garage with face-brick over concrete block exterior. The parking garage is expected to have a 460 parking stalls and one parking attendant booth. The average story height is 11.0 feet.
Answer: The area and perimeter of the parking garage is determined as follows:

$$
\begin{aligned}
& \text { Area }=(180 \mathrm{ft})(269 \mathrm{ft})(3 \text { stories })=145,260 \mathrm{sf} \\
& \text { Perimeter }=180 \mathrm{ft}+269 \mathrm{ft}+180 \mathrm{ft}+269 \mathrm{ft}=898 \mathrm{ft}
\end{aligned}
$$

From Figure 34-3, the cost per square foot for a 145,000-square-foot parking garage with precast concrete parking garage with face-brick over concrete block exterior is $\$ 66.80$. From Figure $34-3$, the base perimeter is 723 feet and the perimeter adjustment is $\$ 1.10$ per square foot per 100 foot of perimeter. The perimeter adjustment is as follows:

$$
\text { Perimeter Add }=\left(\frac{898 \mathrm{ft}-723 \mathrm{ft}}{100 \mathrm{ft}}\right) \$ 1.10 / \mathrm{sft}=\$ 1.93 / \mathrm{sft}
$$

From Figure 34-4, the base story height is 10 feet and, from Figure 34-3, the adjustment for the story height is $\$ 0.65$ per square foot per foot of height. The story-height adjustment is as follows:

$$
\text { Story-Height Add }=(1 \mathrm{ft})(\$ 0.65 / \mathrm{ft}-\mathrm{sft})=\$ 0.65 / \mathrm{sft}
$$

The base cost per square foot is as follows:

$$
\text { Cost }=\$ 66.80+\$ 1.93+\$ 0.65=\$ 69.38 / \mathrm{sft}
$$

The base cost is calculated as follows:

$$
\text { Cost }=(145,260 \mathrm{sft})(\$ 69.38 / \mathrm{sft})=\$ 10,078,139
$$

Add the following costs to the base cost: one 3500 \# elevator at $\$ 173,000$; parking booth at $\$ 13,800 ; 460$ painted parking stalls at $\$ 8.60$ per stall; and 460 precast parking bumpers at $\$ 63.00$ per stall.

$$
\text { Cost }=\$ 10,078,139+\$ 173,000+\$ 13,800+460(\$ 8.60+\$ 63.00)=\$ 10,297,874
$$

Use \$10,300,000
9) Roof Takeoff Workbook from Chapters 33 and 34

Using the worksheet from Chapters 33 and 34, prepare a bid for the following roof. The slope of the roof is $4: 12$, the shingles are to be 20-year three-tab, the underlayment is to be $15 \#$ felt, the vents are to be turtle, there are two HVAC flashings, and one plumbing flashing.

Answer: Takeoff

Client Information

Name:
Address:

City:
State:
Zip Code:
Phone \#:

Project Information
Name:
Address:

City:
State:
Zip Code:
Phone \#:

Roof Slope:	4	$: 12$
Shingle Type:	20-year Three Tab	
Underlayment:	15\# Felt	
Ridge(s):	52	ft
No. of Ridges:	1	ea
Hip(s)/Valley(s):	--	ft
Horiz. Perimeter:	104	ft
Sloped Perimeter:	84	ft
Horiz. Counter:	--	ft
Sloped Counter:	--	ft
HVAC Flashings:	2	ea
Plumbing Flashings:	1	ea
Vent Type:	Turtle	
Plan View Area:		2,184
Unit Price:		sft

Roof Area

Area	Length	Width
1	52	42
2		
3		
4		
5		
6		
7		
8		
9		
10		

Bid

Bill To:	Ship To:

Materials	Quantity	Unit Price	Total
20-year Three Tab	71 bundle	12.39	879.69
20-year Three Tab Cap	$3 \quad$ bundle	15.75	47.25
Roofing Nails	$25 \quad$ lbs	1.39	34.75
15\# Felt	$8 \quad$ rolls	14.95	119.60
Underlayment Nails	$40.0 ~ C ~$	1.00	40.00
10' Drip Edge	$20 \quad$ ea	2.99	59.80
10' Counter Flashing	$--\quad$ ea	3.99	--
20' Ridge Vent	$--\quad$ ea	42.00	--
Turtle Vents	18 ea	7.00	126.00

HVAC Flashing	2 ea	9.00	18.00
Plumbing Flashing	1 ea	4.00	4.00
		Subtotal	$1,329.09$
Tax (6.5\%)			86.39
Roofing Crew	59.6 lhrs	35.00	$\underline{2,086.00}$
		Total	$3,501.48$

Half of the payment is due at delivery of materials. The remaining payment is due upon completion of the roofing.

By: \qquad . Date: \qquad .

Pricing Data

	Item	Price
Shingles		
20-year Three Tab	12.39	\$/bundle
25-year Architectural	15.98	\$/bundle
30-year Architectural	16.65	\$/bundle
40-year Architectural	17.35	\$/bundle
Cap Shingles		
20-year Three Tab	15.75	\$/bundle
25-year Architectural	31.29	\$/bundle
30-year Architectural	33.29	\$/bundle
40-year Architectural	35.29	\$/bundle
Underlayment		
15\# Felt	14.95	\$/roll
30\# Felt	13.95	\$/roll
Flashings \& Vents		
Drip Edge	2.99	\$/ea
Counter	3.99	\$/ea
Ridge Vent	42.00	\$/ea
Turtle Vents (61 sq in)	7.00	\$/ea
HVAC Pipe Flashing	9.00	\$/ea
Plumbing Flashing	4.00	\$/ea
Nails		
Roofing Nails	1.39	\$/lb
Underlayment Nails	1.00	\$/C
Item	bor	
	ctivity	
20-year Three Tab	2.50	lhr/squ
25-year Architectural	2.80	lhr/squ
30-year Architectural	3.00	lhr/squ
40-year Architectural	3.20	lhr/squ

