CHAPTER 2

Groups

1. c, d
2. c, d
3. none
4. \mathbf{a}, \mathbf{c}
5. $7 ; 13 ; n-1 ; \frac{1}{3-2 i}=\frac{1}{3-2 i} \frac{3+2 i}{3+2 i}=\frac{3}{13}+\frac{2}{13} i$
6. a. $-31-i$
b. 5
c. $\frac{1}{12}\left[\begin{array}{rr}2 & -3 \\ -8 & 6\end{array}\right]$
d. $\left[\begin{array}{ll}2 & 4 \\ 4 & 6\end{array}\right]$.
7. The set does not contain the identity; closure fails.
8. $1,3,7,9,11,13,17,19$.
9. Under multiplication modulo 4,2 does not have an inverse. Under multiplication modulo $5,\{1,2,3,4\}$ is closed, 1 is the identity, 1 and 4 are their own inverses, and 2 and 3 are inverses of each other. Modulo multiplication is associative.
10. $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \neq\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
11. $a^{11}, a^{6}, a^{4}, a^{1}$
12. $5,4,8$
13. (a) $2 a+3 b$; (b) $-2 a+2(-b+c)$; (c) $-3(a+2 b)+2 c=0$
14. $(a b)^{3}=a b a b a b$ and $\left(a b^{-2} c\right)^{-2}=\left(\left(a b^{-2} c\right)^{-1}\right)^{2}=\left(c^{-1} b^{2} a^{-1}\right)^{2}=c^{-1} b^{2} a^{-1} c^{-1} b^{2} a^{-1}$.
15. Observe that $a^{5}=e$ implies that $a^{-2}=a^{3}$ and $b^{7}=e$ implies that $b^{14}=e$ and therefore $b^{-11}=b^{3}$. Thus, $a^{-2} b^{-11}=a^{3} b^{3}$. Moreover, $\left(a^{2} b^{4}\right)^{-2}=\left(\left(a^{2} b^{4}\right)^{-1}\right)^{2}=\left(b^{-4} a^{-2}\right)^{2}=\left(b^{3} a^{3}\right)^{2}$.
16. The identity is 25 .
17. Since the inverse of an element in G is in $G, H \subseteq G$. Let g belong to G. Then g^{-1} belongs to G and therefore $\left(g^{-1}\right)^{-1}=g$ belong to G. So, $G \subseteq H$.
18. $K=\left\{R_{0}, R_{180}\right\} ; L=\left\{R_{0}, R_{180}, H, V, D, D^{\prime}\right\}$.
19. The set is closed because $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$. Matrix multiplication is associative. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the identity.
Since $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ its determinant is $a d-b c=1$.
20. $1^{2}=(n-1)^{2}=1$.
21. Using closure and trial and error, we discover that $9 \cdot 74=29$ and 29 is not on the list.
22. Consider $x y x=x y x$.
23. For $n \geq 0$, we use induction. The case that $n=0$ is trivial. Then note that $(\overline{a b})^{n+1}=(a b)^{n} a b=a^{n} b^{n} a b=a^{n+1} b^{n+1}$. For $n<0$, note that $e=(a b)^{0}=(a b)^{n}(a b)^{-n}=(a b)^{n} a^{-n} b^{-n}$ so that $a^{n} b^{n}=(a b)^{n}$. In a non-Abelian group $(a b)^{n}$ need not equal $a^{n} b^{n}$.
24. The "inverse" of putting on your socks and then putting on your shoes is taking off your shoes then taking off your socks. Use D_{4} for the examples. (An appropriate name for the property $(a b c)^{-1}=c^{-1} b^{-1} a^{-1}$ is "Socks-Shoes-Boots Property.")
25. Suppose that G is Abelian. Then by Exercise 24, $(a b)^{-1}=b^{-1} a^{-1}=a^{-1} b^{-1}$. If $(a b)^{-1}=a^{-1} b^{-1}$ then by Exercise 24 $e=a b a^{-1} b^{-1}$. Multiplying both sides on the right by $b a$ yields $b a=a b$.
26. By definition, $a^{-1}\left(a^{-1}\right)^{-1}=e$. Now multiply on the left by a.
27. The case where $n=0$ is trivial. For $n>0$, note that $\left(a^{-1} b a\right)^{n}=\left(a^{-1} b a\right)\left(a^{-1} b a\right) \cdots\left(a^{-1} b a\right)(n$ terms $)$. So, cancelling the consecutive a and a^{-1} terms gives $a^{-1} b^{n} a$. For $n<0$, note that $e=\left(a^{-1} b a\right)^{n}\left(a^{-1} b a\right)^{-n}=\left(a^{-1} b a\right)^{n}\left(a^{-1} b^{-n} a\right)$ and solve for $\left(a^{-1} b a\right)^{n}$.
28. $\left(a_{1} a_{2} \cdots a_{n}\right)\left(a_{n}^{-1} a_{n-1}^{-1} \cdots a_{2}^{-1} a_{1}^{-1}\right)=e$
29. By closure we have $\{1,3,5,9,13,15,19,23,25,27,39,45\}$.
30. $Z_{105} ; Z_{44}$ and D_{22}.
31. Suppose x appears in a row labeled with a twice. Say $x=a b$ and $x=a c$. Then cancellation gives $b=c$. But we use distinct elements to label the columns.
32.

	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

33. Proceed as follows. By definition of the identity, we may complete the first row and column. Then complete row 3 and column 5 by using Exercise 31. In row 2 only c and d remain to be used. We cannot use d in position 3 in row 2 because there would then be two d 's in column 3 . This observation allows us to complete row 2 . Then rows 3 and 4 may be completed by inserting the unused two elements. Finally, we complete the bottom row by inserting the unused column elements.
34. $(a b)^{2}=a^{2} b^{2} \Leftrightarrow a b a b=a a b b \Leftrightarrow b a=a b$.
$(a b)^{-2}=b^{-2} a^{-2} \Leftrightarrow b^{-1} a^{-1} b^{-1} a^{-1}=b^{-1} b^{-1} a^{-1} a^{-1} \Leftrightarrow a^{-1} b^{-1}=$ $b^{-1} a^{-1} \Leftrightarrow b a=a b$.
35. $a x b=c$ implies that $x=a^{-1}(a x b) b^{-1}=a^{-1} c b^{-1} ; a^{-1} x a=c$ implies that $x=a\left(a^{-1} x a\right) a^{-1}=a c a^{-1}$.
36. Observe that $x a b x^{-1}=b a$ is equivalent to $x a b=b a x$ and this is true for $x=b$.
37. Since e is one solution it suffices to show that nonidentity solutions come in distinct pairs. To this end note that if $x^{3}=e$ and $x \neq e$, then $\left(x^{-1}\right)^{3}=e$ and $x \neq x^{-1}$. So if we can find one nonidentity solution we can find a second one. Now suppose that a and a^{-1} are nonidentity elements that satisfy $x^{3}=e$ and b is a nonidentity element such that $b \neq a$ and $b \neq a^{-1}$ and $b^{3}=e$. Then, as before, $\left(b^{-1}\right)^{3}=e$ and $b \neq b^{-1}$. Moreover, $b^{-1} \neq a$ and $b^{-1} \neq a^{-1}$. Thus, finding a third nonidentity solution gives a fourth one. Continuing in this fashion we see that we always have an even number of nonidentity solutions to the equation $x^{3}=e$.
To prove the second statement note that if $x^{2} \neq e$, then $x^{-1} \neq x$ and $\left(x^{-1}\right)^{2} \neq e$. So, arguing as in the preceding case we see that solutions to $x^{2} \neq e$ come in distinct pairs.
38. In $D_{4}, H R_{90} V=D R_{90} H$ but $H V \neq D H$.
39. Observe that $a a^{-1} b=b a^{-1} a$. Cancelling the middle term a^{-1} on both sides we obtain $a b=b a$.
40. $X=V R_{270} D^{\prime} H$.
41. If $F_{1} F_{2}=R_{0}$ then $F_{1} F_{2}=F_{1} F_{1}$ and by cancellation $F_{1}=F_{2}$.
42. Observe that $F_{1} F_{2}=F_{2} F_{1}$ implies that $\left(F_{1} F_{2}\right)\left(F_{1} F_{2}\right)=R_{0}$. Since F_{1} and F_{2} are distinct and $F_{1} F_{2}$ is a rotation it must be R_{180}.
43. Since $F R^{k}$ is a reflection we have $\left(F R^{k}\right)\left(F R^{k}\right)=R_{0}$. Multiplying on the left by F gives $R^{k} F R^{k}=F$.
44. Since $F R^{k}$ is a reflection we have $\left(F R^{k}\right)\left(F R^{k}\right)=R_{0}$. Multiplying on the right by R^{-k} gives $F R^{k} F=R^{-k}$. If D_{n} were Abelian, then $F R_{360^{\circ} / n} F=R_{360^{\circ} / n}$. But $\left(R_{360^{\circ} / n}\right)^{-1}=R_{360^{\circ}(n-1) / n} \neq R_{360^{\circ} / n}$ when $n \geq 3$.
45. a. R^{3}
b. R
c. $R^{5} F$
46. Closure and associativity follow from the definition of multiplication; $a=b=c=0$ gives the identity; we may find inverses by solving the equations $a+a^{\prime}=0, b^{\prime}+a c^{\prime}+b=0, c^{\prime}+c=0$ for $a^{\prime}, b^{\prime}, c^{\prime}$.
47. Since $a^{2}=b^{2}=(a b)^{2}=e$, we have $a a b b=a b a b$. Now cancel on left and right.
48. If a satisfies $x^{5}=e$ and $a \neq e$, then so does a^{2}, a^{3}, a^{4}. Now, using cancellation we have that a^{2}, a^{3}, a^{4} are not the identity and are distinct from each other and distinct from a. If these are all of the nonidentity solutions of $x^{5}=e$ we are done. If b is another solution that is not a power of a, then by the same argument b, b^{2}, b^{3} and b^{4} are four distinct nonidentity solutions. We must further show that b^{2}, b^{3} and b^{4} are distinct from a, a^{2}, a^{3}, a^{4}. If $b^{2}=a^{i}$ for some i, then cubing both sides we have $b=b^{6}=a^{3 i}$, which is a contradiction. A similar argument applies to b^{3} and b^{4}. Continuing in this fashion we have that the number of nonidentity solutions to $x^{5}=e$ is a multiple of 4 . In the general case, the number of solutions is a multiple of 4 or is infinite.
49. The matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is in $\mathrm{GL}\left(2, Z_{2}\right)$ if and only if $a d \neq b c$. This happens when a and d are 1 and at least 1 of b and c is 0 and when b and c are 1 and at least 1 of a and d is 0 . So, the elements are
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ do not commute.
50. If n is not prime, we can write $n=a b$, where $1<a<n$ and $1<b<n$. Then a and b belong to the set $\{1,2, \ldots, n-1\}$ but $0=a b \bmod n$ does not.
51. Let a be any element in G and write $x=e a$. Then
$a^{-1} x=a^{-1}(e a)=\left(a^{-1} e\right) a=a^{-1} a=e$. Then solving for x we obtain $x=a e=a$.
52. Suppose that $a b=e$ and let b^{\prime} be the element in G with the property that $b b^{\prime}=e$. Then observe that $b a=(b a) e=b a\left(b b^{\prime}\right)=b(a b) b^{\prime}=b e b^{\prime}=(b e) b^{\prime}=b b^{\prime}=e$.
