Chapter 3: Interest Rate and Economic Equivalence

Types of Interest

3.1

$$
\$ 20,000=\$ 10,000(1+0.075 N)
$$

- Simple interest: $(1+0.075 N)=2$

$$
N=\frac{1}{0.075}=13.33 \approx 14 \text { years }
$$

- Compound interest:

$$
\begin{aligned}
& \$ 20,000=\$ 10,000(1+0.07)^{N} \\
& (1+0.07)^{N}=2 \\
& N=10.24 \approx 11 \text { years }
\end{aligned}
$$

3.2

- Simple interest:

$$
I=i P N=(0.06)(\$ 5,000)(5)=\$ 1,500
$$

- Compound interest:

$$
I=P\left[(1+i)^{N}-1\right]=\$ 5,000(1.3382-1)=\$ 1,691
$$

- Option 1: Compound interest with 8% :

$$
F=\$ 3,000(1+0.08)^{5}=\$ 3,000(1.4693)=\$ 4,408
$$

- Option 2: Simple interest with 9\%:

$$
\$ 3,000(1+0.09 \times 5)=\$ 3,000(1.45)=\$ 4,350
$$

\therefore Option 1 is better.
3.4

End of Year	Principal Repayment	Interest payment	Remaining Balance
0	$\$ 1,638$	$\$ 1,000$	$\$ 10,000$
1	$\$ 1,802$	$\$ 836$	$\$ 8,362$
2	$\$ 1,982$	$\$ 656$	$\$ 6,560$
3	$\$ 2,180$	$\$ 458$	$\$ 4,578$
4	$\$ 2,398$	$\$ 240$	$\$ 2,398$
5		$\$ 0$	

Equivalence Concept

3.5

$$
P=\$ 18,000(P / F, 5 \%, 5)=\$ 18,000(0.7835)=\$ 14,103
$$

3.6

$$
F=\$ 25,000(F / P, 8 \%, 3)=\$ 25,000(1.2597)=\$ 31,493
$$

3.7

$$
F=\$ 100(F / P, 10 \%, 10)+\$ 200(F / P, 10 \%, 8)=\$ 688
$$

3.8

$$
\begin{aligned}
\$ 1,000(F / P, i, 2) & =\$ 1,200 \\
\$ 1,000(1+i)^{2} & =\$ 1,200 \\
i & =\sqrt{1.2}-1 \\
i & =9.54 \%
\end{aligned}
$$

Single Payments (Use of $\boldsymbol{F} / \mathbf{P}$ or \mathbf{P} / \mathbf{F} Factors)

3.9

$$
F=\$ 180,000(F / P, 6 \%, 10)=\$ 322,353
$$

3.10
(a) $F=\$ 7,000(F / P, 6 \%, 5)=\$ 9,368$
(b) $F=\$ 3,250(F / P, 5 \%, 15)=\$ 6,757$
(c) $F=\$ 18,000(F / P, 8 \%, 33)=\$ 228,169$
(d) $F=\$ 20,000(F / P, 9 \%, 8)=\$ 39,851$

$$
\begin{aligned}
& 3.11 \\
& \hline
\end{aligned}
$$

3.12
(a) $P=\$ 15,500(P / F, 14 \%, 8)=\$ 5,434$
(b) $P=\$ 18,000(P / F, 4 \%, 12)=\$ 11,243$
(c) $P=\$ 20,000(P / F, 8 \%, 9)=\$ 10,005$
(d) $P=\$ 55,000(P / F, 11 \%, 4)=\$ 36,230$
3.13
(a) $P=\$ 12,000(P / F, 13 \%, 4)=\$ 7,360$
(b) $F=\$ 30,000(F / P, 13 \%, 5)=\$ 55,273$
3.14

$$
\begin{aligned}
& F=3 P=P(1+0.06)^{N} \\
& \log 3=N \log (1.06) \\
& N=18.85 \approx 19 \text { years }
\end{aligned}
$$

3.15

$$
F=2 P=P(1+0.08)^{N}
$$

- $\log 2=N \log (1.08)$
$N=9$ years
- Rule of 72: $72 / 8=9$ years
3.16
(a) Single-payment compound amount $(F / P, i, N)$ factors for

9\%
20.4140
31.4094

10\%
28.1024
45.2593

To find ($F / P, 9.5 \%, 38$) , first, interpolate for $n=38$:

N	9%	10%
38	27.0112	38.3965

Then, interpolate for $i=9.5 \%$:

$$
(F / P, 9.5 \%, 38)=32.7039
$$

As compared to formula determination

$$
(F / P, 9.5 \%, 38)=31.4584
$$

(b) Single-payment compound amount $(P / F, 8 \%, N)$ factors for
N
45
0.0313

50
0.0213

Then, interpolate for $N=47$

$$
(P / F, 8 \%, 47)=0.0273
$$

As compared to the value from the interest formula:

$$
(P / F, 8 \%, 47)=0.0269
$$

3.17
(a)

$$
\begin{aligned}
\$ 18(1+i)^{44} & =\$ 92,400 \\
i & =21.43 \%
\end{aligned}
$$

(b) $\quad F=\$ 97.8(F / P, 21.43 \%, 22)=\$ 7,007$ billion

Uneven Payment Series

3.18

$$
\begin{aligned}
\$ 1,000+\frac{\$ 1,000}{1.1}+\frac{\$ 1,500}{1.1^{3}} & =\frac{\$ 1,210}{1.1^{2}}+\frac{X}{1.1^{4}} \\
X & =\$ 2,981
\end{aligned}
$$

3.19

$$
P=\frac{\$ 25,000}{1.07^{2}}+\frac{\$ 33,000}{1.07^{3}}+\frac{\$ 46,000}{1.07^{4}}+\frac{\$ 38,000}{1.07^{5}}=\$ 110,961
$$

3.20

$$
F=\$ 2,000(F / P, 6 \%, 10)+\$ 2,500(F / P, 6 \%, 8)+\$ 3,000(F / P, 6 \%, 6)=\$ 11,822
$$

3.21

$$
\begin{aligned}
P= & \$ 3,000,000+\$ 2,400,000(P / F, 8 \%, 1)+\cdots \\
& +\$ 3,000,000(P / F, 8 \%, 10) \\
& =\$ 20,734,618
\end{aligned}
$$

Or,

$$
\begin{aligned}
P & =\$ 3,000,000+\$ 2,400,000(P / A, 8 \%, 5) \\
& +\$ 3,000,000(P / A, 8 \%, 5)(P / F, 8 \%, 5) \\
& =\$ 20,734,618
\end{aligned}
$$

3.22

$$
P=\$ 8,000(P / F, 6 \%, 2)+\$ 6,000(P / F, 6 \%, 5)+\$ 4,000(P / F, 6 \%, 7)=\$ 14,264
$$

Equal Payment Series

3.23
(a) With deposits made at the end of each year

$$
F=\$ 2,000(F / A, 8 \%, 15)=\$ 54,304
$$

(b) With deposits made at the beginning of each year

$$
F=\$ 2,000(F / A, 8 \%, 15)(1.08)=\$ 58,649
$$

3.24

$$
F=\$ 10,000(F / A, 6 \%, 20)=\$ 367,856
$$

3.25
(a) $F=\$ 6,000(F / A, 8 \%, 5)=\$ 35,200$
(b) $F=\$ 4,000(F / A, 6.25 \%, 12)=\$ 68,473$
(c) $F=\$ 9,000(F / A, 9.45 \%, 20)=\$ 484,359$
(d) $F=\$ 3,000(F / A, 11.75 \%, 12)=\$ 71,308$

3.26

(a) $A=\$ 32,000(A / F, 8 \%, 15)=\$ 1,179$
(b) $A=\$ 55,000(A / F, 6 \%, 10)=\$ 4,173$
(c) $A=\$ 35,000(A / F, 7 \%, 20)=\$ 853.8$
(d) $A=\$ 8,000(A / F, 11 \%, 4)=\$ 1,699$

3.27

$$
\$ 50,000(A / F, 6 \%, 10)=\$ 3,793.40
$$

3.28

$$
\begin{aligned}
\$ 35,000 & =\$ 2,000(F / A, 6 \%, N) \\
(F / A, 6 \%, N) & =17.5 \\
N & =12.32 \approx 13 \text { years }
\end{aligned}
$$

3.29

$$
\begin{aligned}
\$ 15,000 & =A(F / A, 11 \%, 5) \\
A & =\$ 2,408.57
\end{aligned}
$$

3.30

$$
\begin{aligned}
\$ 5,000 & =\$ 500(F / P, 7 \%, 5)+A(F / A, 7 \%, 5) \\
A & =\$ 747.51
\end{aligned}
$$

3.31

(a) $A=\$ 12,000(A / P, 4 \%, 6)=\$ 2,289.14$
(b) $A=\$ 3,500(A / P, 6.7 \%, 7)=\$ 642.66$
(c) $A=\$ 6,500(A / P, 3.5 \%, 5)=\$ 1,439.63$
(d) $A=\$ 32,000(A / P, 8.5 \%, 15)=\$ 3,853.47$
3.32
(a) The capital recovery factor $(A / P, i, N)$ for

N	6%	7%
35	0.0690	0.0772
40	0.0665	0.0750

To find (A/P,6.25\%,38), first, interpolate for $N=38$:
N
38
6\%
7\%
0.0759

Then, interpolate for $i=6.25 \%$;

$$
(A / P, 6.25 \%, 38)=0.0696:
$$

As compared to the value from the interest formula:

$$
(A / P, 6.25 \%, 38)=0.0694
$$

(b) The equal payment series present-worth factor ($P / A, i, 85$) for
i

9\%
10\%
11.1038

Then, interpolate for $i=9.25 \%$:

$$
(P / A, 9.25 \%, 85)=10.8271
$$

As compared to the value from the interest formula:

$$
(P / A, 9.25 \%, 85)=10.8049
$$

3.33

- Equal annual payment:

$$
A=\$ 50,000(A / P, 12 \%, 3)=\$ 20,817.45
$$

- Interest payment for the second year:

End of Year	Principal Repayment	Interest payment	Remaining Balance $\$ 50,000$		
0			$\$ 3,000$		$\$ 35,182.55$
:---:					
1					

3.34

$$
A=\$ 10,000(A / P, 9 \%, 10)=\$ 1,558.2
$$

3.35
(a) $P=\$ 1,000(P / A, 6.8 \%, 8)=\$ 6,017.86$
(b) $P=\$ 3,500(P / A, 9.5 \%, 12)=\$ 24,443.44$
(c) $P=\$ 1,900(P / A, 8.25 \%, 9)=\$ 11,746.68$
(d) $P=\$ 9,300(P / A, 7.75 \%, 5)=\$ 37,378.16$
3.36

$$
P=\$ 35,000(P / A, 12 \%, 10)=\$ 197,758
$$

Since $\$ 200,000>\$ 197,758$, You should not purchase the equipment.

3.37

(a)

$$
\begin{aligned}
P & =\$ 3,875,000+\$ 3,125,000(P / F, 6 \%, 1)+\ldots+\$ 8,875,000(P / F, 6 \%, 7) \\
& =\$ 39,547,241.99
\end{aligned}
$$

(b)

$$
P=\$ 1,375,000+\$ 1,375,000(P / A, 6 \%, 7)=\$ 9,050,774.48
$$

Since $\$ 9,050,774.48>\$ 8,000,000$, the prorated payment option is better choice.

Linear Gradient Series

3.38

$$
\begin{aligned}
F & =\$ 10,000(F / A, 8 \%, 5)+\$ 3,000(F / G, 8 \%, 5) \\
& =\$ 10,000(F / A, 8 \%, 5)+\$ 3,000(A / G, 8 \%, 5)(F / A, 8 \%, 5) \\
& =\$ 91,163.55
\end{aligned}
$$

3.39

$$
\begin{aligned}
F & =\$ 7,500(F / A, 8 \%, 5)-\$ 1,500(F / G, 8 \%, 5) \\
& =\$ 7,500(F / A, 8 \%, 5)-\$ 1,500(P / G, 8 \%, 5)(F / P, 8 \%, 5) \\
& =\$ 27,750.74
\end{aligned}
$$

3.40

$$
\begin{aligned}
P= & \$ 100+[\$ 100(F / A, 9 \%, 7)+\$ 50(F / A, 9 \%, 6)+\$ 50(F / A, 9 \%, 4) \\
& +\$ 50(F / A, 9 \%, 2)](P / F, 9 \%, 7) \\
= & \$ 991.32
\end{aligned}
$$

3.41

$$
\begin{aligned}
A & =\$ 15,000-\$ 1,000(A / G, 8 \%, 12) \\
& =\$ 10,404.25
\end{aligned}
$$

$$
\begin{aligned}
P & =\$ 1,000(P / A, 6 \%, 5)+\$ 250(P / G, 6 \%, 5) \\
& =\$ 6,196
\end{aligned}
$$

Using the geometric gradient series present worth factor, we can establish the equivalence between the loan amount $\$ 120,000$ and the balloon payment series as

$$
\begin{aligned}
& \$ 120,000=A_{1}\left(P / A_{1}, 10 \%, 9 \%, 5\right)=4.6721 A_{1} \\
& A_{1}=\$ 25,684.38
\end{aligned}
$$

Payment series

N	Payment
1	$\$ 25,684.38$
2	$\$ 28,252.82$
3	$\$ 31,078.10$
4	$\$ 34,185.91$
5	$\$ 37,604.51$

3.44

$$
\begin{aligned}
F & =\$ 6,000\left(P / A_{1}, 5 \%, 7 \%, 30\right)(F / P, 7 \%, 30) \\
& =\$ 987,093.8
\end{aligned}
$$

3.45
(a) $P=\$ 6,000,000\left(P / A_{1},-10 \%, 12 \%, 7\right)=\$ 21,372,076$
(b) Note that the oil price increases at the annual rate of 5% while the oil production decreases at the annual rate of 10%. Therefore, the annual revenue can be expressed as follows:

$$
\begin{aligned}
A_{n} & =\$ 60(1+0.05)^{n-1} 100,000(1-0.1)^{n-1} \\
& =\$ 6,000,000(0.945)^{n-1} \\
& =\$ 6,000,000(1-0.055)^{n-1}
\end{aligned}
$$

This revenue series is equivalent to a decreasing geometric gradient series with $g=-5.5 \%$. So,

$$
P=\$ 6,000,000\left(P / A_{1},-5.5 \%, 12 \%, 7\right)=\$ 23,847,897
$$

(c) Computing the present worth of the remaining series $\left(A_{4}, A_{5}, A_{6}, A_{7}\right)$ at the end of period 3 gives

$$
\begin{aligned}
A_{4} & =6,000,000(1-0.055)^{3}=5,063,451.75 \\
P & =\$ 5,063,451.75\left(P / A_{4},-5.5 \%, 12 \%, 4\right)=\$ 14,269,627.82
\end{aligned}
$$

3.46

$$
\begin{aligned}
P & =\sum_{n=1}^{20} A_{n}(1+i)^{-n} \\
& =\sum_{n=1}^{20}(2,000,000) n(1.06)^{n-1}(1.06)^{-n} \\
& =(2,000,000 / 1.06) \sum_{n=1}^{20} n\left(\frac{1.06}{1.06}\right)^{n} \\
& =\$ 396,226,415
\end{aligned}
$$

3.47

(a) The withdrawal series would be

Period	Withdrawal
11	$\$ 12,000$
12	$\$ 12,000(1.08)$
13	$\$ 12,000(1.08)(1.08)$
14	$\$ 12,000(1.08)(1.08)(1.08)$
15	$\$ 12,000(1.08)(1.08)(1.08)(1.08)$

$$
P_{10}=\$ 12,000\left(P / A_{1}, 8 \%, 12 \%, 5\right)=\$ 49,879.14
$$

Assuming that each deposit is made at the end of each year, then:

$$
\begin{aligned}
\$ 49,879.14 & =A(F / A, 12 \%, 10) \\
A & =\$ 2,842.32
\end{aligned}
$$

(b) $P_{10}=\$ 12,000\left(P / A_{1}, 8 \%, 9 \%, 5\right)=\$ 54,045.08$

$$
\begin{aligned}
\$ 54,045.08 & =A(F / A, 9 \%, 10) \\
A & =\$ 3,557.25
\end{aligned}
$$

Various Interest Factor Relationships

3.48
(a) $(P / F, 8 \%, 67)=(P / F, 8 \%, 50)(P / F, 8 \%, 17)=0.0058$

$$
(P / F, 8 \%, 67)=(1+0.08)^{-67}=0.0058
$$

(b) $(A / P, i, N)=\frac{i}{1-(P / F, i, N)}$

$$
(P / F, 8 \%, 42)=(P / F, 8 \%, 40)(P / F, 8 \%, 2)=0.0394
$$

$(A / P, 8 \%, 42)=\frac{0.08}{1-0.0394}=0.0833$
$(A / P, 8 \%, 42)=\frac{0.08(1.08)^{42}}{(1.08)^{42}-1}=0.0833$
(c) $(P / A, i, N)=\frac{1-(P / F, i, N)}{i}=\frac{1-(P / F, 8 \%, 100)(P / F, 8 \%, 35)}{0.08}=12.4996$

$$
(P / A, 8 \%, 135)=\frac{(1.08)^{135}-1}{0.08(1.08)^{135}}=12.4996
$$

3.49
(a)

$$
\begin{aligned}
& (F / P, i, N)=i(F / A, i, N)+1 \\
& \begin{aligned}
(1+i)^{N} & =i \frac{(1+i)^{N}-1}{i}+1 \\
& =(1+i)^{N}-1+1 \\
& =(1+i)^{N}
\end{aligned}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& (P / F, i, N)=1-(P / A, i, N) i \\
& \begin{aligned}
(1+i)^{-N} & =1-i \frac{(1+i)^{N}-1}{i(1+i)^{N}} \\
= & \frac{(1+i)^{N}}{(1+i)^{N}}-\frac{(1+i)^{N}-1}{(1+i)^{N}} \\
= & (1+i)^{-N}
\end{aligned}
\end{aligned}
$$

(c)

$$
\begin{aligned}
(A / F, i, N) & =(A / P, i, N)-i \\
\frac{i}{(1+i)^{N}-1} & =\frac{i(1+i)^{N}}{(1+i)^{N}-1}-i=\frac{i(1+i)^{N}}{(1+i)^{N}-1}-\frac{i\left[(1+i)^{N}-1\right]}{(1+i)^{N}-1} \\
& =\frac{i}{(1+i)^{N}-1}
\end{aligned}
$$

(d)

$$
\begin{aligned}
(A / P, i, N) & =\frac{i}{[1-(P / F, i, N)]} \\
\frac{i(1+i)^{N}}{(1+i)^{N}-1} & =\frac{i}{\frac{(1+i)^{N}}{(1+i)^{N}}-\frac{1}{(1+i)^{N}}} \\
& =\frac{i(1+i)^{N}}{(1+i)^{N}-1}
\end{aligned}
$$

(e), (f), (g) Divide the numerator and denominator by $(1+i)^{N}$ and take the limit $N \rightarrow \infty$.

Equivalence Calculations

3.50

$$
\begin{aligned}
P & =[\$ 100(F / A, 12 \%, 9)+\$ 50(F / A, 12 \%, 7)+\$ 50(F / A, 12 \%, 5)](P / F, 12 \%, 10) \\
& =\$ 740.49
\end{aligned}
$$

3.51

$$
\begin{aligned}
P(1.08)+\$ 200 & =\$ 200(P / F, 8 \%, 1) \\
+ & \$ 120(P / F, 8 \%, 2)+\$ 120(P / F, 8 \%, 3) \\
+ & \$ 300(P / F, 8 \%, 4) \\
P & =\$ 373.92
\end{aligned}
$$

3.52

$$
\begin{aligned}
A(P / A, 13 \%, 5) & =\$ 100(P / A, 13 \%, 5)+\$ 20(P / A, 13 \%, 3)(P / F, 13 \%, 2)= \\
\$ 351.72+\$ 36.98 & =(3.5172) A \\
A & =\$ 110.51
\end{aligned}
$$

$$
\begin{aligned}
P_{1} & =\$ 200+\$ 100(P / A, 6 \%, 5)+\$ 50(P / F, 6 \%, 1)+\$ 50(P / F, 6 \%, 4)+\$ 100(P / F, 6 \%, 5) \\
& =\$ 782.75 \\
P_{2} & =X(P / A, 6 \%, 5)=\$ 782.75 \\
X & =\$ 185.82
\end{aligned}
$$

3.54

$$
\begin{aligned}
P & =\$ 20(P / G, 10 \%, 5)-\$ 20(P / A, 10 \%, 12) \\
& =\$ 0.96
\end{aligned}
$$

3.55

Establish economic equivalent at $N=8$:

$$
\begin{aligned}
C(F / A, 8 \%, 8)-C(F / A, 8 \%, 2)(F / P, 8 \%, 3) & =\$ 6,000(P / A, 8 \%, 2) \\
10.6366 C-(2.08)(1.2597) C & =\$ 6,000(1.7833) \\
8.0164 C & =\$ 10,699.80 \\
C & =\$ 1,334.73
\end{aligned}
$$

3.56

The original cash flow series is

N	A_{N}	N	A_{N}
0	0	6	$\$ 900$
1	$\$ 800$	7	$\$ 920$
2	$\$ 820$	8	$\$ 300$
3	$\$ 840$	9	$\$ 300$
4	$\$ 860$	10	$\$ 300-\$ 500$
5	$\$ 880$		

3.57

$$
\begin{aligned}
\$ 300(F / A, 10 \%, 8)+\$ 200(F / A, 10 \%, 3) & =2 C(F / P, 10 \%, 8)+C(F / A, 10 \%, 7) \\
\$ 4,092.77 & =2 C(2.1436)+C(9.4872) \\
C & =\$ 297.13
\end{aligned}
$$

3.58

Establishing equivalence at $N=5$

$$
\begin{aligned}
\$ 200(F / A, 8 \%, 5)-\$ 50 & (F / P, 8 \%, 1) \\
& =X(F / A, 8 \%, 5)-(\$ 200+X)[(F / P, 8 \%, 2)+(F / P, 8 \%, 1)] \\
\$ 1,119.32 & =X(5.8666)-(\$ 200+X)(2.2464) \\
X & =\$ 433.29
\end{aligned}
$$

3.59

Computing equivalence at $N=5$

$$
X=\$ 3,000(F / A, 9 \%, 5)+\$ 3,000(P / A, 9 \%, 5)=\$ 29,623.08
$$

3.60 (b), (d), and (f)
3.61 (b), (d), and (e)
3.62

$$
\begin{aligned}
& A_{1}=(\$ 50+\$ 50(A / G, 10 \%, 5)-[\$ 50+\$ 50(P / F, 10 \%, 1)](A / P, 10 \%, 5)=\$ 115.32 \\
& A_{2}=A+A(A / P, 10 \%, 5)=1.2638 A \\
& A=\$ 91.25
\end{aligned}
$$

3.63(a)
3.64(b)
3.65(b)

$$
\begin{aligned}
& \$ 25,000+\$ 30,000(P / F, 10 \%, 6) \\
&=C(P / A, 10 \%, 12)+\$ 1,000(P / A, 10 \%, 6)(P / F, 10 \%, 6) \\
& \$ 41,935=6.8137 C+\$ 2,458.43 \\
& C=\$ 5,794
\end{aligned}
$$

Solving for an Unknown Interest Rate of Unknown Interest Periods

3.66

$$
\begin{aligned}
2 P & =P(1+i)^{5} \\
2^{1 / 5} & =1+i \\
i & =14.87 \%
\end{aligned}
$$

3.67

Establishing equivalence at $n=0$

$$
\$ 2,000(P / A, i, 6)=\$ 2,500\left(P / A_{1},-25 \%, i, 6\right)
$$

By Excel software, $i=92.36 \%$
3.68

$$
\begin{aligned}
\$ 35,000 & =\$ 10,000(F / P, i, 5)=\$ 10,000(1+i)^{5} \\
i & =28.47 \%
\end{aligned}
$$

3.69

$$
\begin{aligned}
\$ 1,000,000 & =\$ 2,000(F / A, 6 \%, N) \\
500 & =\frac{(1+0.06)^{N}-1}{0.06} \\
31 & =(1+0.06)^{N} \\
\log 31 & =N \log 1.06 \\
N & =58.93 \approx 59 \text { years }
\end{aligned}
$$

3.70

Option 1: $\$ 100,000(F / A, 7 \%, 7)(F / P, 7 \%, 13)=2,085,484.95$
Option 2: $\$ 100,000(F / A, 7 \%, 13)=2,014,064.29$

$$
\begin{aligned}
\$ 100,000(F / A, i, 7)(F / P, i, 13) & =\$ 100,000(F / A, i, 13) \\
i & =6.6 \%
\end{aligned}
$$

3.71

Assuming that annual renewal fees are paid at the beginning of each year,
(a)
$\$ 15.96+\$ 15.96(P / A, 6 \%, 3)=\$ 58.62$
It is better to take the offer because of lower cost to renew.
(b)

$$
\begin{aligned}
\$ 57.12 & =\$ 15.96+\$ 15.96(P / A, i, 3) \\
i & =7.96 \%
\end{aligned}
$$

Short Case Studies

ST 3.1

(a)

$$
P=280,000(P / A, 8 \%, 19)=2,689,007.78
$$

(b)

$$
\begin{aligned}
280,000(P / A, i, 19) & =5,600,000-283,770 \\
i & =0.00709 \%
\end{aligned}
$$

ST 3.2
(a)

$$
\begin{aligned}
P_{\text {Contract }} & =\$ 5,600,000+\$ 7,178,000(P / F, 6 \%, 1) \\
& +\$ 11,778,000(P / F, 6 \%, 2)+\ldots \\
& +\$ 17,778,000(P / F, 6 \%, 9) \\
& =\$ 97,102,826.86
\end{aligned}
$$

(b)

$$
\begin{aligned}
P_{\text {Bonus }} & =\$ 5,000,000+\$ 5,000,000(P / A, 6 \%, 5)+\$ 778,000(P / A, 6 \%, 9) \\
& =\$ 31,353,535.52>\$ 23,000,000
\end{aligned}
$$

It is better stay with the original plan.

ST 3.3
(a) Compute the equivalent present worth (in 2006) for each option at $i=6 \%$.

$$
\begin{aligned}
P_{\text {Deferred }}= & \$ 2,000,000+\$ 566,000(P / F, 6 \%, 1)+\$ 920,000(P / F, 6 \%, 2)+\cdots \\
& +\$ 1,260,000(P / F, 6 \%, 11)=\$ 8,574,491
\end{aligned}
$$

$$
\begin{aligned}
P_{\text {Non-Deferred }}= & \$ 2,000,000+\$ 900,000(P / F, 6 \%, 1)+\$ 1,000,000(P / F, 6 \%, 2)+\cdots \\
& +\$ 1,975,000(P / F, 6 \%, 5)=\$ 7,431,562
\end{aligned}
$$

\therefore At $i=6 \%$, the deferred plan is a better choice.
(b) Using either Excel or Cash Flow Analyzer, both plans would be economically equivalent at $i=15.72 \%$.

ST 3.4 Assuming that premiums paid at the end of each year, the maximum amount to invest in the prevention program is

$$
P=\$ 14,000(P / A, 12 \%, 5)=\$ 50,467 .
$$

If the premiums paid at the beginning of each year, the solution changes to

$$
P=\$ 14,000+\$ 14,000(P / A, 12 \%, 4)=\$ 56,523 .
$$

ST 3.5

- Compute the required annual net cash profit to pay off the investment and interest.

$$
\begin{aligned}
& \$ 70,000,000=A(P / A, 10 \%, 5)=3.7908 A \\
& A=\$ 18,465,824
\end{aligned}
$$

- Decide the number of shoes, X

$$
\begin{aligned}
& \$ 18,465,824=X(\$ 100) \\
& X=184,658.24
\end{aligned}
$$

ST 3.6

Establish the following equivalence equation:

$$
\$ 140,000=\$ 32,639(P / A, i, 9) .
$$

The interest rate makes two options equivalent is $i=18.10 \%$ by Excel. So, if her rate of return is over 18.10%, it is a good decision.

