CHAPTER 2

COST TERMINOLOGY AND COST BEHAVIORS

QUESTIONS

1. The term cost is used to refer to so many different concepts that an adjective must be attached to identify which particular type of cost is being discussed. For example, there are fixed costs, variable costs, period costs, product costs, expired costs, and opportunity costs, to name just a few.
2. A cost object is anything for which management wants to collect or accumulate costs. Before a cost can be specified as direct or indirect, the cost object must be identified. Since direct costs must be conveniently and economically traceable to the cost object, not knowing what the cost object in question is would make it impossible to identify direct costs. For example, if multiple products are made in the same production area, the salary of the area's manager would be direct to the production area but indirect to the different products. Indirect costs must be allocated in some rational and systematic manner to the cost object.
3. The assumed range of activity that reflects the company's normal operating range is referred to as the relevant range. Outside the relevant range, costs may be curvilinear because of purchase discounts, improved worker skill and productivity, worker crowding, loss in employee efficiency during overtime hours, etc. Although a curvilinear graph is more indicative of reality, it is not as easy to use in planning or controlling costs. Accordingly, accountants choose the range in which these fixed and variable costs are assumed to behave as they are defined (linear) and, as such, represent an approximation of reality.
4. It is not necessary for a causal relationship to exist between the cost predictor and the cost. All that is required is that there is a strong correlation between movement in the predictor and the cost. Alternatively, a cost driver is an activity that actually causes costs to be incurred.
The distinction between cost drivers and predictors is important because it relates to one of the objectives of managers: to control costs. By focusing cost control efforts on cost drivers, managers can exert control over costs. Exerting control over predictors that are not cost drivers will have no cost control effect.
5. A product cost is one that is associated with inventory. In a manufacturing company, product costs would include direct materials, direct labor, and overhead. In a merchandizing company, product costs are the costs of purchasing inventory and the related freight-in costs. In a service company, product costs are those costs that are incurred to generate the services provided such as supplies, service labor, and service-related overhead costs.

In all three types of organizations, a period cost is any cost that is not a product cost. These costs are non-inventoriable and are incurred in the non-factory or non-production areas of a manufacturing company or in the non-sales or non-service areas, respectively, of a retailer or service company. In general, these costs are incurred for selling and administrative activities. Many period costs are expensed when incurred, although some may be capitalized as prepaid expenses or other nonfactory assets.
6. Conversion cost is the sum of direct labor and overhead. Conversion is the process that converts raw materials and other inputs into salable products (output).
7. Factory overhead has been growing most rapidly because of the costs of technology. This cost category includes depreciation of factory and plant equipment, machinery maintenance cost, repair cost, some training costs, utilities expense to operate the machinery, and many costs related to quality control.
8. The only difference between the two systems is in their treatment of overhead. Under a normal cost system, a level of activity is chosen and the budgeted amount of overhead is determined before a period begins. Overhead is then applied to products as production occurs by using a predetermined overhead application rate. Under an actual cost system, actual overhead is added to production. Because actual overhead cannot be determined until the period ends, the overhead allocation occurs and product cost can be determined only at period-end.
The major advantage of using a normal cost system is that it allows a product's cost to be determined (estimated) at the time of production. Another major advantage is that a normal cost system provides a product cost that is stable across fluctuating levels of production and sales.
9. The cost of goods manufactured (CGM) is the total production cost of the goods that were completed and transferred to Finished Goods Inventory during the period. This amount is similar to the cost of net purchases in the cost of goods sold schedule for a retailer. Since CGM is used in computing cost of goods sold, it appears on the income statement.

EXERCISES

10. a. Direct
b. Direct
c. Direct
d. Indirect
e. Direct
f. Direct
g. Indirect
h. Direct
i. Direct
11.

Cost Object

Touch pad and buttons
Glue
Network connector
Battery
Paper towels used by line employees
AC adapter
CD drive
Mother board
Screws
Oil for production machinery
12.
a. Four hours of Perkins's time
b. Six hours of assistant's time
c. Three hours of Morris's time
d. Eight hours of CPE for Tompkin
e. One hour at lunch
f. Two hours of Perkins's time
g. One-half hour of Tompkin's time
h. Janitorial wages
i. Seven hours of Tompkin's time

Cost Object	
Laptop	$\underline{\text { Plant }}$
Direct	Direct
Indirect	Direct
Direct	Direct
Direct	Direct
Indirect	Direct
Direct	Direct
Direct	Direct
Direct	Direct
Indirect	Direct
Indirect	Direct

Cost Object		
Kennedy	Tax Services	$\underline{\text { Firm }}$
Direct	n / a	Direct
Direct	Direct	Direct
n / a	n / a	Direct
n / a	Direct	Direct
n / a	n / a	n / a
Direct	n / a	Direct
Direct	Direct	Direct
n/a	n/a	Direct
Direct	Direct	Direct

13. a. Cardboard, $\$ 0.40$; cloth, $\$ 1$; plastic, $\$ 0.50$; depreciation, $\$ 0.60$; supervisors' salaries, \$1.60; and utilities, \$0.30; total cost, \$4.40.
b. Cardboard, variable; cloth, variable; plastic, variable; depreciation, fixed; supervisors' salaries, fixed; and utilities, mixed.
c. If the company produces 10,000 caps this month, the total cost per unit will increase. The variable costs (cardboard, cloth, plastic) will remain constant per unit. The total cost for depreciation and supervisors' salaries will remain fixed, and, thus, will result in a higher cost per unit. The utility cost will go down in total but, because it is mixed, it is impossible (without other information) to estimate its total or per unit cost. Without knowing the cost formula for utility costs, it is impossible to determine the total cost of making 10,000 caps.
14. a. \& b.

Cardboard boxes $(\$ 1,000 \div 2,000)$
Mallets (\$12,000 $\div 4,000$)
Per Unit

Croquet balls ($\$ 9,000 \div 12,000$)
$\$ 0.50$
Per Set
3.00 \$ 0.50

Wire hoops ($\$ 3,600 \div 24,000$)
0.75
6.00
0.15
4.50

Production worker wages $(\$ 8,400 \div 2,000)$
?
1.80
4.20

Supervisor's salary $(\$ 2,600 \div 2,000)$?
1.30

Building and equipment rental $(\$ 2,800 \div 2,000)$
Utilities (\$1,300 $\div 2,000$)
Total
1.40
0.65
\$20.35
c. Estimated cost per set in March is

Cardboard boxes $(\$ 1,000 \div 2,000)$
\$ 0.50
Mallets $(\$ 12,000 \div 4,000 ; \$ 3 \times 2)$
6.00

Croquet balls (\$9,000 $\div 12,000 ; \$ 0.75 \times 6$)
4.50

Wire hoops ($\$ 3,600 \div 24,000 ; \$ 0.15 \times 12$)
1.80

Production worker wages $(\$ 8,400 \div 2,500)$
3.36

Supervisor's salary ($\$ 2,600 \div 2,500) 1.04$
Building and equipment rental $(\$ 2,800 \div 2,500) \quad 1.12$
Utilities ($\$ 1,400 \div 2,500$)
Total
0.56
\$18.88
15. a. Total fixed cost

Total variable cost (15,000 tickets $\times \$ 10$)
Total cost
\$ 37,500
150,000
\$187,500
b. Total cost

Desired profit margin (15,000 tickets $x \$ 8$)
Total sales price
\$187,500
120,000
Divided by assumed number of tickets sold
Selling price per ticket
$\div 15,000$
$\$ 20.50$
c. Total revenue (5,000 tickets $\times \$ 20.50$)
\$102,500
Total cost:
Fixed $\$ 37,500$
Variable $(5,000 \times \$ 10) \quad 50,000$
Net profit
$(87,500)$
\$25,000
d. The assumption made was that 15,000 tickets would be sold. The fraternity should have been informed that the fixed cost per ticket would vary, depending on the number of tickets sold. By spreading the fixed cost over fewer tickets, the fraternity would make less profit the fewer tickets that were sold.
e. Total revenue $(20,000$ tickets $\times \$ 20.50)$

Total cost:
Fixed
Variable (20,000 x \$10)
Net profit
\$410,000
\$ 37,500
200,000
$\frac{(237,500)}{\$ 172,500}$
16. a. 1. 200 returns:

Total cost $=\$ 2,000+(\$ 9 \times 200)=\$ 3,800$
Cost per unit $=\$ 3,800 \div 200=\$ 19.00$
2. 500 returns:

Total cost $=\$ 2,000+(\$ 9 \times 500)=\$ 6,500$
Cost per unit $=\$ 6,500 \div 500=\$ 13.00$
3. 800 returns:

Total cost $=\$ 2,000+(\$ 9 \times 800)=\$ 9,200$
Cost per unit $=\$ 9,200 \div 800=\$ 11.50$
b. The fixed cost per unit varies inversely with activity. Therefore, as the activity (tax returns prepared) increases, the fixed cost per unit decreases.
c. $\$ 15,000 \div 200=\$ 75 ; \$ 75+\$ 19=\$ 94$ fee to charge per return $\$ 94 \times 800=\$ 75,200$ total fees; $\$ 75,200-\$ 9,200=\$ 66,000$
17. a. 1. Number of clients contacted, number of new clients generated, number of miles traveled (if driving), number of nights away from home.
2. Number of supplies requisitions, number of hours worked, number of copies made
3. Purchase price of computers and depreciation method chosen (number of hours of computer usage, number of hours worked, expected years of service)
4. Number of hours worked, number of times maintenance crew visits the accounting firm, number of months in period (if maintenance is a strict fixed cost per month)
b. The distinction between a cost predictor and a cost driver is whether the activity measure actually causes the cost to be incurred. A cost predictor is merely an activity that changes with changes in the cost. A cost driver causes costs to be incurred. Of the costs addressed in part (a), cost drivers that could also be cost predictors would be 1) number of miles traveled, 2) number of times supplies are requisitioned, 3) number of hours worked, and 4) number of times maintenance visited the accounting firm.
18. a. Number of patients processed
b. Number of patients scheduled
c. Number of surgeries scheduled
d. Number of surgeries scheduled
e. Number of tests ordered
f. Number of patients getting tests (if all tests are performed in same lab at the same time) or Number of tests ordered (if patient has to be moved to multiple labs or for multiple tests)
g. Number of lab tests administered
h. Number of patients moved
i. Number of surgeries performed
j. Number of surgeries performed
k. Number of medications administered
l. Number of patients moved
m . Number of patients discharged (it is possible that not all patients are discharged)
n. Number of insurance companies to be billed
19. a. V, PT (could be mixed)
b. V, PD
c. $F, P D$
d. V, PT
e. F, PT
f. V, PT (could be fixed if paper towel rolls are replaced at specific intervals regardless of need)
g. F, PD (could be product if assistants are assigned to work on specific projects)
h. V, PT (could be fixed)
i. $V, P T$
j. V, PT
k. F, PT (would be fixed because it was charged for the truckload rather than for an individual piece of furniture; may be considered a period cost and not attached to the individual pieces of furniture)
20.
a. F, OH
j. V, DM
b. V, DM
k. V, DL
c. V, DM
d. V, OH (assuming cost is insignificant)
I. V, DM
e. V, DM
m. V, DM
f. F, OH
g. $V, D M$
h. F, OH
i. F, OH
21. a. $\$ 600,000-\$ 60,000=\$ 540,000$ depreciable cost $\$ 540,000 \div 10$ years $=\$ 54,000$ depreciation per year $(480 \div 600)(\$ 54,000)=\$ 43,200$ is expired cost (part of product OH)
b. Cost of goods sold

Finished goods inventory
\$43,200
\$10,800
a. One month of insurance $(\$ 18,600 \div 6)$

Bonus to corporate president
Utility cost on headquarters (\$20,000 x .40)
Total
b. Five months of insurance $(\$ 18,600 \times 5 / 6)$

Seminar fee
Total
c. Property taxes $(\$ 15,000 \times 1 / 3)$

Utility cost on factory (\$20,000 x .60)
Total
\$ 3,100
10,000
8,000
\$21,100
\$15,500
1,000
\$16,500
\$ 5,000
12,000
\$17,000
d. Product costs are assigned to products made; thus, the costs cannot be classified as expired or unexpired because it is not known whether the associated products made during May were sold. If sold, the costs would be expired; if unsold, the costs would be unexpired and be accumulated in the Finished Goods account.
23. a. Mfg.
b. Mfg., Mer., Ser.
c. Mfg., Mer., Ser.
d. Mer. (although manufacturers might refer to Finished Goods Inventory in this manner)
e. Mfg., Mer., Ser.
f. Mfg.
g. Ser.
h. Mfg., Mer.
i. Mfg., Ser.
24.
a. high
f. high
b. Iow
g. moderate
c. low
h. high
d. high
i. high
e. high
j. moderate or low
25. a. Rivets and aluminum $=\$ 12,510+\$ 1,683,000=\$ 1,695,510$

The janitorial supplies and the sealant are indirect materials.
b. Aluminum cutters and welders $=\$ 56,160+\$ 156,000=\$ 212,160$

The janitorial wages and factory supervisor salaries are indirect labor.
The salespersons' salaries are period costs.
26. a. Stainless steel, plastic, and wooden blocks = $\$ 800,000+\$ 5,600+\$ 24,800=\$ 830,400$
b. $\$ 500,000$ (equipment operators)
c. $\$ 6,000$ indirect material (oil and grease)
$\$ 354,000$ indirect labor (mechanics and supervisors)
27. Direct material:

Mulch
Landscaping rock
Plants and pots
Direct labor:
Trumble's salary $(\$ 3,000 \div 20=\$ 150$ per day; $\$ 150 \times 2$ days to design)
Gardeners' wages $(\$ 3,840 \div 20=\$ 192$ per day; $\$ 192 \times 5$ days to complete)
Overhead:
Allocated depreciation (\$200 $\div 20$ work days) \$ 10
Construction permit 95
Allocated rent (150 $\div 3,000=5 \% ; \$ 2,400 \times .05=\$ 120$;
$\$ 120 \div 30=\$ 4$ per day $x 2$ days) 8^{*}
Allocated utility bills $(\$ 1,800 \times .05=\$ 90 ; \$ 90 \div 30=$ $\$ 3$ per day $x 2$ days)
*Note: The rent and utility bills were allocated only because of the designer's use of space in the company offices. Given the immaterial amount of these allocations, Carolyn Gardens may simply want to treat these costs as period costs rather than attempting to trace them to individual jobs. Thus, an answer of $\$ 105$ for overhead would also be reasonable.
28. a. 6,000 total hours $-5,000$ regular hours $=1,000$ overtime hours
b. Direct labor: 5,000 hours $\times \$ 9$ per hour $=\$ 45,000$

Overhead: $\$ 54,000-\$ 45,000=\$ 9,000$
c. Shift premiums:

Second shift: $10 \% \times \$ 9=\$ 0.90$
Overtime premium: 75\% x $\$ 9=\$ 6.75$
Overhead costs:
Second shift premium: 2,500 hours $\times \$ 0.90=\$ 2,250$
Overtime premium: 1,000 hours $\times \$ 6.75=\$ 6,750$
29. a. 32,000 total hours $-27,000$ regular hours $=5,000$ overtime hours
b. Direct labor: 32,000 hours $\times \$ 12$ per hour $=\$ 384,000$

Overhead: $\$ 435,600-\$ 384,000=\$ 51,600$
c. Shift premiums:

Second shift: $8 \% \times \$ 12=\$ 0.96$
Third shift: $12 \% \times \$ 12=\$ 1.44$
Overtime premium: $50 \% \times \$ 12=\$ 6.00$
Manufacturing overhead costs:
Second shift premium: 9,000 hours $\times \$ 0.96=\$ 8,640$
Third shift premium: 9,000 hours $\times \$ 1.44=\$ 12,960$
Overtime premium: 5,000 hours $\times \$ 6.00=\$ 30,000$
30. a. Property tax overhead cost for February $=\$ 48,000 \div 12=\$ 4,000$

Property tax OH cost for remainder of $2010=\$ 44,000$
Actual Feb. OH costs $=\$ 530,000-\$ 124,000-\$ 44,000+\$ 81,000$ = \$443,000
b. February OH cost per unit $=\$ 443,000 \div 50,000=\$ 8.86$

Total product cost in February $=\$ 24.30+\$ 10.95+\$ 8.86=\$ 44.11$
c. If actual costs are used, product costs will differ each period. For example, January utility cost per unit was $(\$ 124,000 \div 50,000)$ or $\$ 2.48$ compared to February's cost per unit of $(\$ 81,000 \div 50,000)$ or $\$ 1.62$. However, a normal cost system uses a predetermined overhead rate that provides a smoothing effect to overhead cost variations over an annual period.
31.

Direct materials used	$\$ 24,000$
Direct labor	126,000
Overhead	$\underline{42,000}$
Current manufacturing costs	$\underline{192,000}$
Less: increase in Work in process inventory	$\$ 169,000$
Cost of goods manufactured	

Since work-in-process increased by $\$ 23,000$, current manufacturing costs must have been $\$ 23,000$ more than cost of goods manufactured.
32.
a. Beginning WIP Inventory
\$ 372,000
Raw material used
Direct labor
\$ 612,000
748,000
Manufacturing overhead
$564,000 \quad 1,924,000$
Ending WIP Inventory
$(436,000)$
\$1,860,000

Note: The beginning and ending balances of Raw Material Inventory are not used because no information is given on raw material purchases for the month but the amount of RM used is specifically provided.
b. Beginning FG Inventory

Cost of goods manufactured
Cost of goods available for sale
Ending FG Inventory
Cost of goods sold
\$ 224,000
1,860,000
\$2,084,000
$(196,000)$
\$1,888,000
33. a. Irresistible Art Schedule of Cost of Goods Manufactured For the Month Ended July 31, 2010

Beginning WIP Inventory		\$ 146,400
Beginning RM Inventory	\$ 93,200	
Raw material purchased	656,000	
Raw material available	\$749,200	
Ending RM Inventory	$(69,600)$	
Raw material used	\$679,600	
Indirect material used (plugged)	$(175,600)$	
Direct material used (given)		504,000
Direct labor (\$788,000 x 0.75)		591,000
Overhead:		
Various (given)	\$600,000	
Indirect material (from above)	175,600	
Indirect labor (\$788,000 x 0.25)	197,000	972,600
Total cost to account for		\$ 2,214,000
Ending WIP Inventory		(120,000)
Cost of goods manufactured		\$ 2,094,000

b.

Irresistible Art
Schedule of Cost of Goods Sold
For the Month Ended July 31, 2010

Beginning FG Inventory
Cost of goods manufactured
Goods available for sale
Ending FG Inventory
Cost of goods sold
\$ 72,000
2,094,000
\$2,166,000
$(104,800)$
\$2,061,200
34. a.

Targé Co.
Cost of Goods Sold Schedule
For the Month Ended March 31, 2010
Beginning FG Inventory (given)
\$ 125,000
Cost of goods manufactured
Cost of goods available for sale
2,537,500
Ending FG Inventory (given)
Cost of goods sold (given)
\$2,662,500
$(18,400)$
\$2,644,100
b.

Targé Co.

Cost of Goods Manufactured Schedule For the Month Ended March 31, 2010

Beginning WIP Inventory (given)		\$ 90,000
Direct material:		
Beginning DM Inventory (given)	\$ 30,000	
Direct material purchased	1,182,000	
Direct material available	\$1,212,000	
Ending DM Inventory (given)	$(42,000)$	
Direct material used		1,170,000
Direct labor		400,000
Overhead		900,000
Total cost to account for		\$2,560,000*
Ending WIP Inventory (\$90,000 x .25)		$(22,500)$
Cost of goods manufactured (from part a)		\$2,537,500
*Total cost to account for = Beg. WIP + DM used + DL + OH		
\$2,560,000 = \$90,000 + \$1,170,000 + DL + OH		
$\mathrm{DL}+\mathrm{OH}=$ \$2,560,000 - \$90,000-\$1,170,000		
$\mathrm{DL}+\mathrm{OH}=\$ 1,300,000$		
$\mathrm{OH}=225 \%$ of DL $=2.25 \mathrm{DL}$		
DL + 2.25 DL = \$1,300,000		
3.25 DL = \$1,300,000		
DL $=$ \$400,000		
$\mathrm{OH}=\$ 400,000 \times 2.25=\$ 900,000$		

c. Prime cost $=\mathrm{DM}+\mathrm{DL}$

$$
\begin{aligned}
& =\$ 1,170,000+\$ 400,000 \\
& =\$ 1,570,000
\end{aligned}
$$

d. Conversion cost $=\mathrm{DL}+\mathrm{OH}$

$$
\begin{aligned}
& =\$ 400,000+\$ 900,000 \\
& =\$ 1,300,000
\end{aligned}
$$

35. a. Work in Process Inventory 5,000
Supplies Inventory 5,000To record supplies usage for audit engagements
Travel Expense 8,000
Cash 8,000
To record travel expenses for partner
Fixed Overhead Control 6,500Accumulated Depreciation - laptops6,500
To record laptop depreciation
Depreciation Expense 52,500
Fixed Overhead Control 97,500
Accumulated Depreciation - building150,000
To record depreciation on NYC building
Work in Process Inventory 200,000
Salaries Payable 200,000
To accrue partner salaries
Work in Process Inventory 257,900
Salaries Payable 257,900
To accrue audit salaries
Work in Process Inventory 19,400Cash19,400
To record audit-related travel costs
Insurance Expense 6,055
Fixed Overhead Control 11,245
Prepaid Insurance and Taxes17,300To record expiration of prepaid insurance and property taxes ondowntown building
Variable Overhead Control 3,400
Wages Payable 3,400
To accrue secretarial wages

Salaries Payable	457,900	
Wages Payable	3,400	
\quad Cash		461,300

b. Cost of Services Rendered:

Supplies used		$\$ 5,000$	
Labor:	Partner salaries	$\$ 200,000$	
	Audit salaries	257,900	457,900
Overhead:	Laptop depreciation	$\$ 6,500$	
	Depreciation on building	97,500	
Travel	19,400		
Insurance and taxes	11,245		
Indirect labor	$\boxed{3,400}$	$\underline{138,045}$	
Total cost of services rendered		$\underline{\underline{\$ 600,945}}$	

36. Direct labor $(\$ 16,200+\$ 6,280)$
\$22,480
Overhead:
Supplies $(\$ 4,800-\$ 2,200) \quad \$ 2,600$
Utilities (\$2,700 x 0.90) 2,430
Office salaries (\$1,900 x 0.20)
380
Depreciation
3,700
Building rental ($\$ 3,100 \times 0.80$)
Cost of services rendered
$\underline{2,480} \quad \underline{\underline{11,590}}$

PROBLEMS

37. Type of

Cost	Variable	Fixed	Direct	Indirect	Period	Product
Paint	X		X			X
Spirits	X		X			X
Brushes	X		X			X
Overalls		X		X		X
Ad		X			X	
Assistant	X		X			X
Oper. Costs*	X			X		X
Map		X		X		X
Tolls	X		X			X
Phone	X				X	

*Some variable costs would be direct if miles to and from particular jobs are recorded.
38. a. At 80,000 boxes per month:

Material and labor costs $(\$ 79,000 \div 500)$
Overhead (\$408,000 $\div 80,000$)
\$ 158.00
5.10

Total cost per box
163.10
b. At 120,000 boxes per month:

Material and labor costs $(\$ 79,000 \div 500)$
\$ 158.00
Overhead (\$408,000 $\div 120,000$)
Total cost per box
\$ 161.40
c. Material and labor (excluding labor design)

Overhead
Total
\$ 118.00

Tota
Cost at 80,000 boxes
Cost at 120,000 boxes (excluding labor design)
Maximum labor design costs
\$ 163.10
$\$ 41.70$
d. At 80,000 boxes:

Sales ($\$ 195 \times 80,000$ boxes)
\$15,600,000
Cost of sales ($\$ 163.10 \times 80,000$ boxes)
(13,048,000)
Gross margin
\$ 2,552,000
Desired gross margin
\$ 2,552,000
Cost of sales ($\$ 161.40 \times 120,000$ boxes)
Sales needed

19,368,000
\$21,920,000
$\$ 21,920,000 \div 120,000$ boxes $=\$ 182.67$ sales price per box
e. No, the variable costs per box are constant and the fixed costs remain the same in total at any level of production.
39. a. At 150,000 meals per month:

Material and labor costs $(\$ 9,320 \div 2,000) \quad \$ 4.66$

Overhead (\$1,200,000 $\div 150,000$)
Total cost per meal
8.00
\$12.66
b. At 300,000 meals per month:

Material and labor costs $(\$ 9,320 \div 2,000) \quad \$ 4.66$
Overhead (\$1,200,000 $\div 300,000$)
Total cost per meal
c. Material and labor (excluding meat) $(\$ 5,720 \div 2,000)$

Overhead at 300,000 meals
Total cost without meat
\$ 2.86
4.00
$\$ 6.86$
Cost at 150,000 meals
\$12.66
Cost at 300,000 meals (excluding meat)
Maximum meat cost per meal
Current meat cost ($\$ 3,600 \div 2,000$)
(6.86)
\$ 5.80
(1.80)

Potential increase in meat cost
$\$ 4.00$
d. $\$ 21.92 \div 2=\$ 10.96$ maximum cost per meal

Maximum meal cost
\$10.96
Current costs for material and labor
Cost per unit for overhead
Overhead \div Cost per unit $=$ Total meals $\$ 1,200,000 \div \$ 6.30=190,476$ or 192,000 if meals must be produced in 2,000 unit batches
e. The firm would be less profitable if the manager decided to produce 192,000 dinners, but could only sell the same 150,000 the company is currently selling. The manager might accept retaining the business to boost his reputation as a "deal-maker" so as to obtain another position before the financial results were reported.

Current profitability:
Sales (150,000 x \$25.32)
Variable cost of meals (150,000 x \$4.66)
Fixed overhead
Profitability
\$3,798,000
$(699,000)$
$(1,200,000)$
\$1,899,000

Increase production but cannot increase sales:
Sales (150,000 x \$21.92)
\$3,288,000
Variable cost of meals (192,000 x \$4.66)
$(894,720)$
Fixed overhead
Profitability
$(1,200,000)$
\$1,193,280
40. a. printing invitations: step fixed
preparing the theater: step fixed
postage: variable
building stage sets: fixed
printing programs: fixed
security: fixed
script: fixed
b. Members attending $=300 \times .60=180$ members

Attendance estimate $=180+[(90 \times 1)+(90 \times 2)]=\underline{450}$ people
Fixed and step fixed costs $=\$ 360+\$ 900+\$ 1,800+\$ 350+$ $\{3 \times[\$ 110+(5 \times \$ 30)]\}+\$ 2,000=\$ 6,190$
Variable cost $=\$ 0.60 \times 450=\$ 270$
Total cost $=\$ 6,190+\$ 270=\underline{\underline{\$ 6,460}}$
c. $\$ 6,460 \div 450=\$ 14.36$ (rounded)
d. Member attendance $=300 \times .90=270$

Attendance estimate $=270+(270 \times 2)=\underline{\underline{810}}$ people
Fixed and step fixed costs $=\$ 450+\$ 1,200+\$ 1,800+\$ 350+$
$\{3 \times[\$ 110+(5 \times \$ 30)]\}+\$ 2,000=\$ 6,580$
Variable cost $=\$ 0.60 \times 810=\$ 486$
Total cost $=\$ 6,580+\$ 486=\$ 7,066$
Cost per person $=\$ 7,066 \div 810=\underline{\underline{\$ 8,72}}$ (rounded)
The reduction in per-person cost is caused by the fact that, even though some of the step fixed costs increase, the total fixed costs are spread over more attendees.
41. 1. C
2. H
3. D
4. L
5. E
6. G
7. A
8. F
9. J
42. a. Determining the cost of a product merely involves tracing direct costs to production and finding some systematic method of allocating indirect production costs to products. Controlling these costs involves completely different issues. Control of production costs requires a focus on both the product costs and the related cost drivers. Such costs can only be controlled by controlling the activity levels of the main production cost drivers.
b. The advancement of technology does make costs more difficult to control. As technology has become more pervasive in manufacturing, the indirect manufacturing costs have grown relative to production volume. Hence, controlling production volume has little to do with the control of more and more production costs. Further, with the growth in the indirect costs (such as automated technology depreciation), it is more difficult to trace production costs to specific products. This difficulty adds to the complexity of cost control because the relationship between production volume and specific products and their product costs is less obvious.
c. Production volume is no longer as significant a cost driver as it was two decades ago. The growth in both fixed costs and indirect costs suggest that production volume cannot be used as an effective control for a substantial set of production-related costs. However, production volume may still be a valid predictor because it may be reasonably well correlated with the actual cost drivers of these indirect costs and it is still the most significant cost driver for direct production costs.
43. a. To remain competitive in the global marketplace, businesses must control costs. Provision of health care is creating a crisis for American businesses. In many cases, health care costs are twice as high for U.S. industries as for their foreign competitors. There is nothing unethical about businesses being concerned about these costs and seeking ways to control them. However, before cutting coverage, businesses have an ethical obligation to identify alternatives. For example, emerging alternatives include managed health care, sharing insurance premiums with employees, and forming alliances with other businesses to directly contract for health care services. Businesses should be careful to gather employee input on solutions before making any decisions that will adversely affect health care coverage.
b. There are no correct or incorrect answers to this question. It is expected that each student will have a relatively unique ranking of the alternatives. This subpart is intended to demonstrate to the students how difficult it is to cut health care insurance coverage because each worker has different needs and different priorities.
c. By bringing some health care services in-house, a firm can replace a portion of the variable costs (per employee) with fixed costs. A company may be able to achieve similar benefits by directly contracting with health care service providers on a (partly) fixed fee basis. Likewise, companies can implement
health awareness campaigns and provide fitness facilities that will generate long-term health benefits and lower health care costs. Such approaches will result in an increase in fixed costs and lower variable costs.
44.

Finished Goods Inventory
1,749,300
Work in Process Inventory
To transfer completed work to FG
b. Beginning balance of WIP

Direct material
Direct labor
Manufacturing overhead for January (plug)
Cost to account for
Goods completed
Ending balance of WIP
\$ 18,900
800,000
720,000
270,000
\$1,808,900
(1,749,300)
\$ 59,600
45. a. Direct labor is labor that can be specifically identified with, or physically traced to, a cost object or finished product in an economically feasible manner (such as machine operator labor in a production environment). Indirect labor is all factory labor that is not classified as direct labor.
b. Certain nonproductive time may be a normal and unavoidable part of total labor time. In such cases, a pro rata share of nonproductive time should be classified as direct labor time. In many cases, nonproductive time is classified as indirect labor because it cannot be specifically identified with a cost object. For example, the amount of downtime usually cannot be specifically identified with a specific cause or particular cost object; it may result from a parts shortage or a broken machine. When there is a shortage of work and employees would therefore be idle, this time can be used for training.
c. Direct labor: The items classified as direct labor can usually be specifically identified with a quantity of labor. Furthermore, other direct costs, such as payroll taxes, are incurred by the organization because of its use of labor.

Manufacturing overhead: The items classified as manufacturing overhead usually cannot be specifically identified with direct labor quantities.

Either direct labor or manufacturing overhead: Some cost items can be classified as either direct labor or manufacturing overhead, depending on the size of the cost object. For example, for very large projects employee time can be easily associated with the projects (such as the time of specific managers, engineers, draftspersons, janitors, and material handlers). Therefore, all costs associated with these employees can be classified as direct labor costs. For smaller cost objects, such as a variety of products or subassemblies, costs are more difficult to identify with the cost objects, and, therefore, they are classified as manufacturing overhead.
d. The quantity of labor hours that should be included as direct labor or manufacturing overhead reflects a measure of activity. The activity that was performed was either directly related to the product or indirectly related (or not easily traceable) to the product. The dollar amount assigned measures the cost of the activity. Wages and salaries are not necessarily directly tied to production activity. For example, assume a direct labor employee makes \$10 per hour and time-and-a-half for overtime. This employee's activity is no different during the overtime hours-only the wage rate differs. Thus, measurement of activity and measurement of cost must be separated.
46. a. Overhead costs are the easiest to assign to other classifications since those costs are not directly related to the production of the goods.
b. Each student will have a different answer, but the following should be considered: the reason for the bank's loan-granting criteria; the effect on the company's suppliers, employees, and customers should this loan not be granted; the ability to manipulate financial income; and the inappropriate "tone at the top" that the president is suggesting.
c. The memo should contain information as to the nature of costs and the fact that the "cost" of a product can, in many instances, have many different meanings. It should indicate the need for the loan, the ability to provide collateral (if any), and
information as to payback. The memo should indicate that the "bottom line" is in excess of the bank's criteria and how this fact could influence the ability to repay. Cash flow from product sales should also be discussed because, without cash flow, income cannot pay back loan amounts.
47. a. If GP rate is 35% of sales, then CGS is 65% of sales. CGS $=.65 \times \$ 2,862,000=\$ 1,860,300$
b. Direct material used
\$ 894,000
Direct labor
Overhead:
Indirect labor
Factory insurance
Factory utilities
Factory depreciation
Factory rent
Total costs to account for
Ending WIP Inventory
Cost of goods manufactured

645,000
\$186,000
6,000
42,900
65,100
252,000
552,000
\$2,091,000
$(31,500)$
\$2,059,500
c. Ending FG Inventory = Beginning FG Inventory + CGM - CGS

$$
\begin{aligned}
& =\$ 0+\$ 2,059,500-\$ 1,860,300 \\
& =\$ 199,200
\end{aligned}
$$

d. $\mathrm{GP}=.35 \times \$ 2,862,000=\$ 1,001,700$

$$
\begin{aligned}
\text { S \& A expenses } & =\text { Gross profit }- \text { Net income } \\
& =\$ 1,001,700-\$ 250,000 \\
& =\$ 751,700
\end{aligned}
$$To issue direct material to production

Work in Process Inventory 645,000Wages Payable645,000To accrue direct labor payroll
Manufacturing Overhead Control 186,000
Wages Payable 186,000
To accrue indirect payroll
Manufacturing Overhead Control 6,000 Prepaid Insurance 6,000To record expiration of prepaid insurance on factory
Manufacturing Overhead Control 42,900Cash 42,900To pay factory utilities
Manufacturing Overhead Control 65,100Accumulated Depreciation65,100To record depreciation on factory equipment
Manufacturing Overhead Control 252,000
Cash 252,000
To pay factory rent
Work in Process Inventory 552,000Manufacturing Overhead Control552,000To assign actual overhead to WIP (see part b)
Finished Goods Inventory 2,059,500Work in Process Inventory2,059,500To transfer completed good to FG (see part b)
S \& A Expenses 751,700Accounts Payable (or Cash)751,700
To record S\&A expense (see part c)
Cost of Goods Sold 1,860,300Finished Goods Inventory1,860,300To record cost of goods sold (see part a)
Accounts Receivable 2,862,000
Sales 2,862,000
To record sales on account
48. a. Number of units sold $=\$ 648,000 \div \$ 24=\underline{\underline{27,000}}$

Number of units completed $=$ Units in FG Inventory + Units Sold

$$
\begin{aligned}
& =3,000+27,000 \\
& =\underline{\underline{30,000}}
\end{aligned}
$$

 Overhead:
 Factory rent \$ 3,600
 Factory utilities
 Supervisor salary \(\quad 6,400\)
 Total costs to account for
 Ending WIP Inventory
 Cost of goods manufactured
 16,200
 6,400 \(\quad 42,000\)
 Accounts Payable
 To purchase direct material on account

 Work in Process Inventory 186,000

 Raw Material Inventory

 186,000
 Work in Process Inventory 186,000248,000

c. $\$ 327,000 \div 30,000=\underline{\$ 10.90}$ per unit
c. $\$ 327,000 \div 30,000=\underline{\underline{\$ 10.90}}$ per unit

d. Raw Material Inventory 248,000
d. Raw Material Inventory 248,000 000

b. Direct material used \$186,000

 Direct labor 134,000
 b. Direct material used 134,000Factory rent16,200

 Factory depreciation 15,800
 Factory depreciation6,400To purchase direct material on account

 To issue direct material to production
 To issue direct material to production

 Work in Process Inventory

 134,000

 Wages Payable
 Work in Process Inventory 134,000
To accrue direct labor payroll
Manufacturing Overhead Control 3,600Cash3,600To pay factory rent
Manufacturing Overhead Control 16,200Utilities Payable16,200To accrue factory utilities
Manufacturing Overhead Control 15,800
Accumulated Depreciation 15,800
To record depreciation on factory equipment
Manufacturing Overhead Control 6,400
Cash 6,400
To pay supervisor's salary
Work in Process Inventory 42,000
Manufacturing Overhead Control 42,000To assign actual overhead to WIP (see part b)
Finished Goods Inventory 327,000Work in Process Inventory327,000To transfer completed good to FG (see part b)

Cost of Goods Sold 294,300
Finished Goods Inventory
294,300
To record cost of goods sold (\$10.90 x 27,000)
Accounts Receivable 648,000 Sales

648,000
To record sales on account ($\$ 24 \times 27,000$)
49.

	Case 1	Case 2	Case 3
Sales	\$9,300	\$19,700 ${ }^{\text {g }}$	\$112,000
Direct material used	1,200	6,100 ${ }^{\text {h }}$	18,200
Direct labor	2,500 ${ }^{\text {a }}$	4,900	32,100 ${ }^{\text {m }}$
Prime cost	3,700	11,000 ${ }^{\text {i }}$	50,300 ${ }^{\text {n }}$
Conversion cost	4,800	8,200	49,300
Overhead	2,300 ${ }^{\text {b }}$	3,300 ${ }^{\text {j }}$	17,200
Cost of goods manufactured	6,200	14,000	68,900 ${ }^{\circ}$
Beginning WIP inventory	500	900	5,600
Ending WIP inventory	$300{ }^{\text {c }}$	1,200	4,200
Beginning FG inventory	$800^{\text {d }}$	1,900	7,600
Ending FG inventory	1,200	3,700 ${ }^{\text {k }}$	4,300 ${ }^{\text {P }}$
Cost of goods sold	5,800 ${ }^{\text {e }}$	12,200	72,200
Gross profit	3,500	7,500 ${ }^{1}$	39,800 ${ }^{\text {a }}$
Operating expenses	1,300 ${ }^{\text {f }}$	3,500	18,000
Net income	2,200	4,000	21,800 ${ }^{\text {r }}$
$\begin{aligned} & \text { a Prime cost }=\mathrm{DM}+\mathrm{DL} \\ & \$ 3,700=\$ 1,200+\mathrm{X} ; \mathrm{X}=\$ 2,500 \end{aligned}$			
${ }^{\mathrm{b}}$ Conversion cost $=\mathrm{DL}+\mathrm{OH}$			
${ }^{\text {c }}$ Beg. WIP + DM + DL + OH - CGM = End. WIP$\$ 500+\$ 1,200+\$ 2,500+\$ 2,300-\$ 6,200=X ; X=\$ 300$			
${ }^{\text {e }}$ Sales - Gross profit $=$ CGS			
${ }^{\text {d }}$ Beg. FG + CGM - End. FG $=$ CGS			
${ }^{\dagger}$ Gross profit - Operating expenses $=$ NI			
Sales - CGS - Operating ex X $-\$ 12,200-\$ 3,500=\$ 4$,	= NI		
${ }^{\text {h }}$ CGM $=$ Beg. WIP + DM + DL + OH - End. WIP			
\$14,000 = \$900 + X + \$4,900 + \$3,300-\$1,200; $\mathrm{X}=$ \$6,100			
${ }^{\text {i }}$ Prime cost $=$ DM + DL			
$X=\$ 6,100+\$ 4,900 ; X=\$ 11,000$			
${ }^{\text {j }}$ Conversion cost $=\mathrm{DL}+\mathrm{OH}$			
\$8,200 = \$4,900 + X; X = \$3,300			
${ }^{\mathrm{k}}$ Beg. FG + CGM - End. FG = CGS			
\$1,900 + \$14,000 - \$ = \$12,200; X = \$3,700			

${ }^{1}$ Sales - CGS $=$ Gross profit \$19,700 - \$12,200 = X; X = \$7,500
${ }^{\mathrm{m}}$ Conversion cost $=\mathrm{DL}+\mathrm{OH}$ $\$ 49,300=X+\$ 17,200 ; X=\$ 32,100$
${ }^{n}$ Prime cost $=D M+D L$ $X=\$ 32,100+\$ 18,200 ; X=\$ 50,300$
${ }^{\circ}$ CGM $=$ Beg. WIP + DM + DL + OH - End. WIP X = \$5,600 + \$32,100 + \$18,200 + \$17,200 - \$4,200; X = \$68,900
${ }^{p}$ Beg. FG + CGM - End. $F G=C G S$
$\$ 7,600+\$ 68,900-X=\$ 72,200 ; X=\$ 4,300$
${ }^{\text {q }}$ Sales - CGS $=$ Gross profit \$112,000 - \$72,200 = X; X = \$39,800
${ }^{r}$ Gross profit - Operating expenses $=\mathrm{NI}$ $\$ 39,800-\$ 18,000=X ; X=\$ 21,800$
50. a. Under GAAP, product cost consists of all amounts that are necessary to manufacture a product. Although direct material and direct labor are clearly traceable to a product and, thus, should be considered part of product cost, a product could also not be produced without the costs of overhead. In a manufacturing plant, employees need to have some level of supervision and clean-up tasks must be performed. Glue, screws, and nails are commonly used to secure parts together. Equipment and utilities must be used. Thus, indirect labor, indirect materials, depreciation, and electricity are required to manufacture a product and should be part of that product's cost.
b. It does not seem reasonable to allocate the depreciation overhead cost of the new equipment to the dog carriers because that equipment is not required for the production of the carriers. It is for this reason that overhead costs should be separated into different allocation "pools" (as will be discussed in Chapter 4). If an overhead cost is directly related to one product line rather than another product line, that cost should be allocated only to the units to which it relates rather than all units.
c. A normal cost system uses a predetermined charge for overhead rather than using the actual amounts that are incurred. One primary component of overhead is utility cost. In Michigan, the utility cost for winter operations could be substantially greater than during the summer; in Hawaii, the climate is consistent year-round and, thus, utility costs should be fairly constant. Because of the large fluctuations in utility costs, a Michigan business might be more likely to want to "smooth" that part of overhead throughout the year by using a predetermined overhead rate.
51.
a.

Beginning inventory Direct materials
Direct materials purchased
Materials available for use
Ending inventory Direct materials
Direct materials used
X= \$208,600-\$195,800
$X=\$ 12,800$
b. Direct materials used

Direct labor
Factory overhead
Total product costs
\$ 12,300
196,300
208,600
X
\$195,800
C.

Petersham Company Schedule of Cost of Goods Manufactured For Month Ended August 31, 2010

Beginning WIP Inventory
\$ 195,800
182,400
205,700
\$ 583,900
Petersham Company
Schedule of Cost of Goods Manufactured
For Month Ended August 31, 2010

Direct material used
\$ 25,900
Direct labor 195,800

Overhead
Total costs to account for 182,400

Ending WIP Inventory
Cost of goods manufactured
d.

Petersham Company
 Cost of Goods Sold Schedule For the Month Ended August 31, 2010

Beginning FG Inventory
Cost of goods manufactured
Goods available for sale
Ending FG Inventory
Cost of goods sold
\$ 62,700
576,500
\$639,200
$(55,500)$
\$583,700
e.

Petersham Company
Income Statement
For the Month Ended August 31, 2010

Sales	$\$ 985,000$
Cost of goods sold	$\$(583,700)$
Gross profit	$\$ 401,300$
Selling and administrative expenses	$\$(171,200)$
Income before income taxes	$\$ 230,100$
Income tax expense $(\$ 230,100 \times .4)$	$\underline{\$ 192,040)}$
Net income	$\underline{\$ 138,060}$

52. a. $\$ 1,040,000 \div \$ 5,200=\underline{\underline{200}}$ units sold
b.

Flex-Em
Schedule of Cost of Goods Manufactured For Month Ended July 31, 2010

Beginning WIP Inventory		$\$$	
Direct material used		$\$ 377,000$	
Direct labor		126,800	
Overhead:	$\$ 40,600$		
\quad Indirect labor	6,000		
\quad Insurance	17,800		
\quad Utilities	$\underline{230,300}$	$\underline{294,700}$	$\underline{798,500}$
\quad Depreciation			$\$ 798,500$
Total manufacturing costs		$\underline{(51,000})$	
Ending WIP Inventory		$\underline{\$ 747,500}$	

c. $\$ 747,500 \div 230$ units $=\$ 3,250$
d. Units completed $=$ units sold + units in ending FG inventory

$$
\begin{aligned}
& =200+(\$ 97,500 \div \$ 3,250) \\
& =200+30 \\
& =\underline{\underline{230}} \text { units completed }
\end{aligned}
$$

e. $200 \times \$ 3,250=\$ 650,000$
f. Sales - CGS = GM

$$
\$ 1,040,000-\$ 650,000=\$ 390,000
$$

53. a. \& b.

	Work in Process Inventory	
BB	108,000	CGM 532,140
\#2) DM	121,200	
\#2) IM	15,000	
\#3) DL	180,000	
\#3) IL	42,00	
\#5) Util.	28,140	
\#6) Depr.	48,000	
\#7) Rent	39,600	
End. bal	49,800	

Finished Goods Inventory

	24,000	CGS	502,740
BB	532,140		
CGM	53,400		
End bal	50		

Total product cost $=$ Cost of goods manufactured $=\$ 532,140$
Period costs for August (all on income statement):

Office salaries expense (\#4)	$\$ 144,600$
Utilities expense (\#5)	12,060
Depreciation expense (\#6)	12,000
Rent expense (\#7)	$\underline{26,400}$
Total period cost	$\underline{\$ 195,060}$

54. a. Cost of goods sold for the first 18 days of June:
$\$ 460,000 \times(1-0.40)=\$ 276,000$
Cost of goods sold for the first 18 days of June:
Beginning FG Inventory
\$58,000
Cost of goods manufactured
303,000
Goods available for sale
\$361,000 ${ }^{*}$
Ending FG Inventory
$(85,000)$
Cost of goods sold
\$276,000
${ }^{*}$ CGA $=\$ 276,000+\$ 85,000=\$ 361,000$
${ }^{* *} \mathrm{CGM}=\$ 361,000-\$ 58,000=\$ 303,000$
Cost of goods manufactured for the first 18 days of June:
Beginning WIP Inventory \$96,000
DM 152,000
DL
88,000
OH
Total cost to account for
84,000
Ending WIP Inventory
Cost of goods manufactured
\$420,000
$(117,000)^{* *}$
${ }^{* * *}$ Ending WIP Inventory $=\$ 420,000-\$ 303,000=\$ 117,000$
b. The insurance company would want to substantiate the quantity and cost of the inventory. The company would require nonfinancial records including labor, material, and production. The insurance company might also require some verification of the market value (current value or replacement value) of the inventory. Further, it might require the company to substantiate the number of units in the WIP inventory and the average percentage of completion. The market value data could be obtained from industry publications and the unit data might be obtained from production records or internal receiving and shipping documents.
