
Chapter 2
Question 1 The following function computes the sum of the first n ≥ 1 integers. Show how this function satisfies
the properties of a recursive function.

/** Computes the sum of the integers from 1 through n.

 @pre n > 0.

 @post None.

 @param n A positive integer

 @return The sum 1 + 2 + . . . + n. */

int sumUpTo(int n)

{

int sum = 0;

if (n == 1)

 sum = 1;

else // n > 1

 sum = n + sumUpTo(n - 1);

return sum;

} // end sumUpTo

The product of n numbers is defined in terms of the product of n − 1 numbers, which is a smaller problem of the
same type. When n is 1, the product is anArray[0]; this occurrence is the base case. Because n ≥ 1 initially and n
decreases by 1 at each recursive call, the base case will be reached.

Question 2 Write a box trace of the function given in Checkpoint Question 1.
We trace the function with 4 as its argument (see next page).

Data Abstraction and Problem Solving with C++ Walls and Mirrors 7th Edition Carrano Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/data-abstraction-and-problem-solving-with-c-walls-and-mirrors-7th-edition-carrano-solutions-manual/

Question 3 Given an integer n > 0, write a recursive function countDown that writes the integers n, n – 1, . . . ,
1. Hint: What task can you do and what task can you ask a friend to do for you?

// Precondition: n > 0.

// Postcondition: Writes n, n - 1, ... , 1.

void countDown(int n)

{

if (n > 0)

 {

 cout << n << endl;

 countDown(n-1);

 } // end if

} // end countDown

Question 4 In the previous definition of writeArrayBackward, why does the base case occur when the value
of first exceeds the value of last?

When first > last, the array is empty. That is the base case. Since the body of the if statement is skipped in this
case, no action takes place.

Question 5 Write a recursive function that computes and returns the product of the first n ≥ 1 real numbers in an
array.

// Precondition: anArray is an array of n real numbers, n ≥ 1.

// Postcondition: Returns the product of the n numbers in

// anArray.

double computeProduct(const double anArray[], int n),

{

if (n == 1)

return anArray[0];

else

return anArray[n - 1] * computeProduct(anArray, n - 1);

} // end computeProduct

Question 6 Show how the function that you wrote for the previous question satisfies the properties of a recursive
function.

1. computeProduct calls itself.
2. An array of n numbers is passed to the method. The recursive call is given a smaller array of n - 1

numbers.
3. anArray[0] is the base case.
4. Since n ≥ 1 and the number of entries considered in anArray decreases by 1 at each recursive call,

eventually the recursive call is computeProduct(anArray, 1). That is, n is 1, and the base case is
reached.

Question 7 Write a recursive function that computes and returns the product of the integers in the array
anArray[first..last].

// Precondition: anArray[first..last] is an array of integers,

// where first <= last.

// Postcondition: Returns the product of the integers in

// anArray[first..last].

double computeProduct(const int anArray[], int first, int last)

{

if (first == last)

return anArray[first];

else

return anArray[last] * computeProduct(anArray, first, last - 1);

} // end computeProduct

Question 8 Define the recursive C++ function maxArray that returns the largest value in an array and adheres
to the pseudocode just given.

// Precondition: anArray[first..last] is an array of integers,

// where first <= last.

// Postcondition: Returns the largest integer in

// anArray[first..last].

double maxArray(const int anArray[], int first, int last)

{

if (first == last)

return anArray[first];

else

 {

int mid = first + (last – first) / 2;

return max(maxArray(anArray, first, mid),

 maxArray(anArray, mid + 1, last))

 } // end if

} // end maxArray

Question 9 Trace the execution of the function solveTowers to solve the Towers of Hanoi problem for two
disks.

The three recursive calls result in the following moves: Move a disk from A to C, from A to B, and then from C to
B.

Question 10 Compute g(4, 2).

6.

Question 11 Of the following recursive functions that you saw in this chapter, identify those that exhibit tail
recursion: fact, writeBackward, writeBackward2, rabbit, P in the parade problem, getNumberOfGroups,
maxArray, binarySearch, and kSmall.

writeBackward, binarySearch, and kSmall.

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

6	

Chapter 2 Recursion: The Mirrors

1
•	The problem is defined in terms of a smaller problem of the same type:

 Here, the last value in the array is checked and then the remaining part of the array is passed to the function.

• Each recursive call diminishes the size of the problem: The recursive call to getNumberEqual subtracts 1 from the
current value of n and passes this value as the argument n in the next call, effectively reducing the size of the
unsearched remainder of the array by 1.

• An instance of the problem serves as the base case: When the size of the array is 0 (i.e.: n ≤ 0), the function returns 0;
that is, an array of size 0 can have no occurrences of desiredValue. This case terminates the recursion.

• As the problem size diminishes, the base case is reached: n is an integer and is decremented by 1 with each recursive
call.

 The argument n in the nth recursive call will have the value 0, and the base case will be reached.

2a
The call rabbit(5) produces the following box trace:

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

n = 2 Base case

return 1

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = ?
return ?

n = 2

return 1

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

7	

	

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = ?
return ?

n = 1 Base case

return 1

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = 1
return 2

n = 1

return 1

n = 4
rabbit(3) = 2
rabbit(2) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = 1
return 2

n = 1

return 1

n = 4
rabbit(3) = 2
rabbit(2) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 2 Base case

return 1

n = 4
rabbit(3) = 2
rabbit(2) = 1
return 3

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 2

return 1

n = 4
rabbit(3) = 2
rabbit(2) = 1
return 3

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 2

return 1

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

n = 2 Base case

return 1

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = ?
return ?

n = 2

return 1

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

8	

The rabbit(5) call completes and the value 5 is returned to the calling function.

n = 5
rabbit(4) = 3
rabbit(3) = 2
return 5

n = 3
rabbit(2) = 1
rabbit(1) = 1
return 2

n = 1

return 1

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = ?
return ?

n = 1 Base case

return 1

n = 5
rabbit(4) = 3
rabbit(3) = ?
return ?

n = 3
rabbit(2) = 1
rabbit(1) = 1
return 2

n = 1

return 1

n = 5
rabbit(4) = 3
rabbit(3) = 2
return 5

n = 3
rabbit(2) = 1
rabbit(1) = 1
return 2

n = 1

return 1

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

9	

2b
The call countDown(5) produces the following box trace:

countDown(5) completes and returns to the calling function.

n = 5
Display 5
countDown(4)

n = 5
Display 5
countDown(4)

n = 4
Display 4
countDown(3)

n = 3
Display 3
countDown(2)

n = 5
Display 5
countDown(4)

n = 4
Display 4
countDown(3)

n = 3
Display 3
countDown(2)

n = 5
Display 5
countDown(4)

n = 4
Display 4
countDown(3)

n = 2
Display 2
countDown(1)

n = 3
Display 3
countDown(2)

n = 5
Display 5
countDown(4)

n = 4
Display 4
countDown(3)

n = 2
Display 2
countDown(1)

n = 1
Display 1
countDown(0)

n = 3
Display 3
countDown(2)

n = 5
Display 5
countDown(4)

n = 4
Display 4
countDown(3)

n = 2
Display 2
countDown(1)

n = 1
Display 1
countDown(0)

n = 3
Display 3
countDown(2)

n = 5
Display 5
countDown(4)

n = 2
Display 2
countDown(1)

n = 1
Display 1
countDown(0)

n = 4
Display 4
countDown(3)

n = 3
Display 3
countDown(2)

n = 5
Display 5
countDown(4)

n = 2
Display 2
countDown(1)

n = 1
Display 1
countDown(0)

n = 4
Display 4
countDown(3)

n = 5
Display 5
countDown(4)

n = 1
Display 1
countDown(0)

n = 4
Display 4
countDown(3)

n = 2
Display 2
countDown(1)

n = 3
Display 3
countDown(2)

n = 5
Display 5
countDown(4)

n = 1
Display 1
countDown(0)

n = 4
Display 4
countDown(3)

n = 2
Display 2
countDown(1)

n = 3
Display 3
countDown(2)

countDown(0)
completes

countDown(1)
completes

countDown(2)
completes

countDown(3)
completes

countDown(4)
completes

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

10	

3
/** Returns the sum of the first n integers in the array anArray.
 Precondition: 0 <= n <= size of anArray.
 Postcondition: The sum of the first n integers in the array anArray is returned.
 The contents of anArray and the value of n are unchanged. */
int computeSum(const int anArray[], int n)
{ // Base case
 if (n <= 0)
 return 0;
 else // Reduce the problem size
 return anArray[n - 1] + computeSum(anArray, n - 1);
} // end computeSum

4
/** Returns the sum of the consecutive integers from start to end.
 Precondition: start < end.
 Postcondition: The sum of the consecutive integers from start to end is returned.
 start and end are unchanged. */
int sum(int start, int end)
{
 if (start < end)
 return start + sum(start + 1, end);
 else
 return end;
} // end sum

5a
#include <string>
// Writes a character string backward.
// Precondition: The string s is the string to write backward.
// Postcondition: s is written backward, but remains unchanged.
void writeBackward(std::string s)
{
 int length = s.size();
 if (length == 1)
 std::cout << s.substr(0, 1); // length == 1 is the base case
 else if (length > 1)
 {
 std::cout << s.substr(length – 1, 1); // Write last character
 writeBackward(s.substr(0, length - 1)); // Write rest of string backward
 } // end if
} // end writeBackward

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

11	

5b
#include <string>
// Writes a character string backward.
// Precondition: The string s is the string to write backward.
// Postcondition: s is written backward, but remains unchanged.
void writeBackward2(std::string s)
{
 int length = s.size();
 if (length > 0)
 {
 // Write all but first character of string backward
 writeBackward2(s.substr(1, length - 1));
 // Write first character
 std::cout << s.substr(0, 1);
 } // end if
 // length == 0 is the base case; do nothing
} // end writeBackward2

6
The recursive method does not have a base case. As such, it will never terminate.

7
/** Displays the integers from m through n.
 Precondition: 0 <= m <= n.
 Postcondition: The integers from m through n are displayed on one line. */
void writeIntegers(int m, int n)
{
 std::cout << m << " ";
 if (m < n)
 {
 writeIntegers(m + 1, n);
 } // end if
} // end writeIntegers

8
/** Returns the sum of the squares of 1 to n.
 Precondition: n > 0.
 Postcondition: sum of the squares of 1 to n is returned. */
int sumOfSquares(int n)
{
 int result;
 if (n == 1)
 result = 1;
 else
 result = n * n + sumOfSquares(n - 1);
 return result;
} // end sumOfSquares

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

12	

9
const int NUMBER_BASE = 10;

/** Displays the decimal digits of an integer in reverse order.
 Precondition: integer >= 0.
 Postcondition: The decimal digits of integer are displayed in reverse order.
 This function does not output a newline character at the end of a string. */
void reverseDigits(int integer)
{
 if (integer >= 0)
 { // Base case
 if (integer < NUMBER_BASE)
 std::cout << integer;
 else
 { // Display rightmost digit
 std::cout << integer % NUMBER_BASE;

 // Display remaining digits in reverse order
 reverseDigits(integer / NUMBER_BASE);
 } // end if
 } // end if
} // end reverseDigits

10a
/** Displays a line of n characters, where ch is the character.
 Precondition: n >= 0.
 Postcondition: A line of n characters ch is output
 followed by a newline. */
void writeLine(char ch, int n)
{ // Base case
 if (n <= 0)
 std::cout << std::endl;

 // Write rest of line
 else
 {
 std::cout << ch;

 writeLine(ch, n - 1);
 } // end if
} // end writeLine

	 	

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

13	

	

10b
/** Displays a block of m rows of n occurrences of the character ch.
 Precondition: m >= 0 and n >= 0.
 Postcondition: A block of m rows by n columns of character ch is displayed. */
void writeBlock(char ch, int m, int n)
{
 if (m > 0)
 {
 writeLine(ch, n); // Write first line
 writeBlock(ch, m - 1, n); // Write rest of block
 } // end if
 // Base case: m <= 0 do nothing.
} // end writeBlock

11

Enter: a = 1 b = 7
Enter: a = 1 b = 3
Leave: a = 1 b = 3
Leave: a = 1 b = 7
2

12
mystery(30) produces the following output:
Enter: first = 1 last = 30
Enter: first = 1 last = 14
Enter: first = 1 last = 6
Enter: first = 4 last = 6
Leave: first = 4 last = 6
Leave: first = 1 last = 6
Leave: first = 1 last = 14
Leave: first = 1 last = 30
mystery(30) = 5; should be 5

	

13
The given function first checks to see whether n is a positive number. If not, it immediately terminates. Otherwise, an integer
division of n by 8 is taken, and if the result is greater than 0 (i.e.: if n > 8), the function is called again with n/8 as an
argument. This call processes that portion of the number composed of higher powers of 8. After this call, the residue for the
current power, n % 8, is printed.

The function computes the number of times 80, 81, 82, ... will divide n. These values are stacked recursively and are
displayed in the reverse of the order of computation. The following is the hand execution with n = 100:

displayOctal(100)
 displayOctal(12)
 displayOctal(1)
 Display 1 % 8, or 1
 Display 12 % 8, or 4
Display 100 % 8, or 4

The final output is 144.

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

14	

14

The value of f(8) is
Function entered with n = 8
Function entered with n = 6
Function entered with n = 4
Function entered with n = 2
Function entered with n = 0
Function entered with n = 2
Function entered with n = 4
Function entered with n = 2
Function entered with n = 0
27

Even though the precondition for the function f states that its argument n is nonnegative, no actual code in f prevents a
negative value for n. For n larger than 2, the value of f(n) is the sum of f(n-2) and f(n-4). If n is even, n-2 and n-4 are
the next two smaller even integers; likewise, if n is odd, n-2 and n-4 are the next two smaller odd integers. Thus any odd
nonnegative integer n will eventually cause f(n) to evaluate f(3). Because 3 is not within the range of 0 to 2, the switch
statement’s default case will execute, and the function will recursively call f(1) and f(-1). Once n becomes negative, the
recursive calls that f(n) makes will never reach a base case. Theoretically, we will have an infinite sequence of function
calls, but in practice an exception will occur.

15
 The following output is produced when x is a value argument:

6 2
7 1
8 0
8 0
7 1
6 2

 Changing x to a reference argument produces:
6 2
7 1
8 0
8 0
8 1
8 2

	 	

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

15	

	

16a
The box trace for the call binSearch(a, 0, 7, 5) follows:

16b
The box trace for the call binSearch(a, 0, 7, 13) follows:

	

	

	

	

	

	

	

	

	

	

	

	

	

	

target = 5
first = 0
last = 7
mid = 3
target < a[3]
index = binSearch(a,0,2,5)
return ?

target = 5
first = 0
last = 2
mid = 1
target == a[1]
index = 1 Base case
return 1

target = 5
first = 0
last = 7
mid = 3
target < a[3]
index = 1
return 1

target = 5
first = 0
last = 2
mid = 1
target == a[1]
index = 1
return 1

target = 13
first = 0
last = 7
mid = 3
target > a[3]
index = binSearch(a,4,7,13)
return ?

target = 13
first = 4
last = 7
mid = 5
target < a[5]
index = binSearch(a,4,4,13)
return ?

target = 13
first = 4
last = 4
mid = 4
target < a[4]
index = binSearch(a,4,3,13)
return ?

target = 13
first = 4
last = 3
first > last
index = -1 Base case
return -1

target = 13
first = 0
last = 7
mid = 3
target > a[3]
index = binSearch(a,4,7,13)
return ?

target = 13
first = 4
last = 7
mid = 5
target < a[5]
index = binSearch(a,4,4,13)
return ?

target = 13
first = 4
last = 4
mid = 4
target < a[4]
index = -1
return -1

target = 13
first = 4
last = 3
first > last
index = -1
return -1

target = 13
first = 0
last = 7
mid = 3
target > a[3]
index = binSearch(a,4,7,13)
return ?

target = 13
first = 4
last = 7
mid = 5
target < a[5]
index = -1
return -1

target = 13
first = 4
last = 3
first > last
index = -1
return -1

target = 13
first = 4
last = 4
mid = 4
target < a[4]
index = -1
return -1

target = 13
first = 0
last = 7
mid = 3
target > a[3]
index = -1
return -1

target = 13
first = 4
last = 3
first > last
index = -1
return -1

target = 13
first = 4
last = 4
mid = 4
target < a[4]
index = -1
return -1

target = 13
first = 4
last = 7
mid = 5
target < a[5]
index = -1
return -1

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

16	

	

	

16c
The box trace for the call binSearch(a, 0, 7, 16) follows:

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

18
a. For a binary search to work, the array must first be sorted in either ascending or descending order.
b. The index is (0 + 102) / 2 = 50.
c. Number of comparisons = ⎣ log 101 ⎦ = 6.
	 	

target = 16
first = 0
last = 7
mid = 3
target > a[3]
index = binSearch(a,4,7,16)
return ?

target = 16
first = 4
last = 7
mid = 5
target < a[5]
index = binSearch(a,4,4,16)
return ?

target = 16
first = 4
last = 4
mid = 4
target > a[4]
index = binSearch(a,5,4,16)
return ?

target = 16
first = 4
last = 3
first > last
index = -1 Base case
return -1

target = 16
first = 0
last = 7
mid = 3
target > a[3]
index = binSearch(a,4,7,16)
return ?

target = 16
first = 4
last = 7
mid = 5
target < a[5]
index = binSearch(a,4,4,16)
return ?

target = 16
first = 4
last = 4
mid = 4
target > a[4]
index = -1
return -1

target = 13
first = 4
last = 3
first > last
index = -1
return -1

target = 16
first = 0
last = 7
mid = 3
target > a[3]
index = binSearch(a,4,7,16)
return ?

target = 16
first = 4
last = 7
mid = 5
target < a[5]
index = -1
return -1

target = 16
first = 4
last = 3
first > last
index = -1
return -1

target = 16
first = 4
last = 4
mid = 4
target > a[4]
index = -1
return -1

target = 16
first = 0
last = 7
mid = 3
target > a[3]
index = -1
return -1

target = 16
first = 4
last = 3
first > last
index = -1
return -1

target = 16
first = 4
last = 4
mid = 4
target > a[4]
index = -1
return -1

target = 16
first = 4
last = 7
mid = 5
target < a[5]
index = -1
return -1

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

17	

19
/** Returns the value of x raised to the nth power.
 Precondition: n >= 0
 Postcondition: The computed value is returned. */
double power1(double x, int n)
{
 double result = 1; // Value of x^0

 while (n > 0) // Iterate until n == 0
 { result *= x;
 n--;
 } // end while
 return result;
} // end power1

/** Returns the value of x raised to the nth power.
 Precondition: n >= 0
 Postcondition: The computed value is returned. */
double power2(double x, int n)
{
 if (n == 0)
 return 1; // Base case
 else
 return x * power2(x, n-1);
} // end power2

/** Returns the value of x raised to the xth power.
 Precondition: n >= 0
 Postcondition: The computed value is returned. */
double power3(double x, int n)
{
 if (n == 0)
 return 1;
 else
 {
 double halfPower = power3(x, n/2);

 // if n is even...
 if (n % 2 == 0)
 return halfPower * halfPower;
 else // if n is odd...
 return x * halfPower * halfPower;
 } // end if
} // end power3

	

	

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

18	

19d
	 332	 319	

power1 32	 19	

power2 32	 19	

power3 7	 8	

19e
	 	 332	 319	

power2	 32	 19	

power3	 6	 5	

	

20
	 Maintain	a	count	of	the	recursive	depth	of	each	call	by	passing	this	count	as	an	additional	argument	to	the	

rabbit	function;		indent	that	many	spaces	or	tabs	in	front	of	each	line	of	output.	

/** Computes a term in the Fibonacci sequence.
 Precondition: n is a positive integer and tab > 0.
 Postcondition: The progress of the recursive function call is displayed
 as a sequence of increasingly nested blocks. The function
 returns the nth Fibonacci number. */
int rabbit(int n, int tab)
{
 int value;

 // Indent the proper distance for this block
 for (int i = 0; i < tab; i++)
 std::cout << " ";

 // Display status of call
 std::cout << "Enter rabbit: n = " << n << std::endl;

 if (n <= 2)
 value = 1;
 else // n > 2, so n-1 > 0 and n-2 > 0;
 // indent by one for next call
 value = rabbit(n - 1, 2 * tab) + rabbit(n - 2, 2 * tab);

 // Indent the proper distance for this block
 for (int i = 0; i < tab; i++)
 std::cout << " ";

 // Display status of call
 std::cout << "Leave rabbit: n = " << n << " value = " << value << std::endl;

 return value;
} // end rabbit

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

19	

21a
// Recursive version. Pre: n > 0.
int fOfNforPartA(int n)
{
 int result;
 switch(n)
 {
 case 1: case 2: case 3:
 result = 1;
 break;
 case 4:
 result = 3;
 break;
 case 5:
 result = 5;
 break;
 default: // n > 5
 result = fOfNforPartA(n - 1) + 3 * fOfNforPartA(n - 5);
 break;
 } // end switch

 return result;
} // end fOfNforPartA

f(6)	is	8;	f(7)	is	11;	f(12)	is	95;	f(15)	is	320.	

21b
Since we only need the five most recently computed values, we will maintain a "circular" five-element array indexed
modulus 5.

// Iterative version. Pre: n > 0.
int fOfNforPartB(int n)
{
 int last5[5] = {1, 1, 1, 3, 5}; // Values of f(1) through f(5)
 int result;

 if (n < 6)
 result = last5[n - 1];
 else // n >= 6
 {
 for (int i = 5; i < n; i++)
 {
 result = last5[(i - 1) % 5] + 3 * last5[(i - 5) % 5];

 // Replace entry in last5
 last5[i % 5] = result; // f(i) = f(i - 1) + 3 x f(i - 5)
 } // end for

 result = last5[(n - 1) % 5];
 } // end if

 return result;
} // end fOfNforPartB

	 	

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

20	

22
// Computes n! iteratively. n >= 0.
long fact(int n)
{
 long result = 1.0;

 if (n > 1)
 {
 for (int i = 2; i <= n; i++)
 result *= i;
 } // end if

 return result;
} // end fact

// Writes a string backwards iteratively.
void writeBackward(std::string str)
{
 for (int i = str.size() - 1; i >= 0; i--)
 std::cout << str[i];

 std::cout << std::endl;
} // end writeBackward

/** Iteratively searches a sorted array; returns either the index of the array element
 containing a value equal to the given target or -1 if no such element exists. */
int binarySearch(int anArray[], int target, int first, int last)
{
 int result = -1;
 while (first < last)
 {
 int mid = first + (last - first) / 2;

 if (anArray[mid] == target)
 {
 first = mid;
 last = mid;
 }
 else if (anArray[mid] < target)
 first = mid + 1; // Search the upper half
 else
 last = mid - 1; // Search the lower half
 } // end while

 if (first > last)
 result = -1; // If not found, return -1
 elseif (anArray[first] != target)
 result = -1;
 else
 result = first;

 return result;
} // end binarySearch

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

21	

	

23
Discovering the loop invariant will easier if we first convert the for loop to a while loop:

int previous = 1; // Initially rabbit(1)
int current = 1; // Initially rabbit(2)
int next = 1; // rabbit(n); initial value when n is 1 or 2
// Compute next rabbit values when n >= 3
int i = 3;
while (i <= n)
{
 // current is rabbit(i − 1), previous is rabbit(i − 2)
 next = current + previous; // rabbit(i)
 previous = current; // Get ready for next iteration
 current = next;
 i++;
} // end while

Before the loop: i = 3, current = rabbit(i – 1) = rabbit(2), and previous = rabbit(i – 2) = rabbit(1).
At the beginning of the loop’s body: 3 ≤ i ≤ n, current = rabbit(i – 1), and previous = rabbit(i – 2).
At the end of the loop’s body: 4 ≤ i ≤ n + 1, next = rabbit(i – 1), current = rabbit(i – 1), and previous = rabbit(i – 2).
After the loop ends, next = rabbit(n).

24a
Prove: If a and b are positive integers with a > b such that b is not a divisor of a, then gcd(a, b) = gcd(b, a mod b).

Let d = gcd(a, b). Then, a = dj and b = dk for integers d, j and k. Now let n = a mod b. Then (n - a)/b = q, where q is an
integer. So, n - a = bq, or n - dj = dkq. That is, n = d(kq + j). Then, (n/d) = kq + j, where (kq + j) is an integer. So, d divides n;
That is, d divides (a mod b).

To show that d is the greatest common divisor of b and a mod b, assume that it is not. That is, assume there exists an integer
g > d such that b = gr and (a mod b) = gs for integers r and s. Then, (gs - a)/gr = q' where q' is an integer. So gs - a = grq'.
Thus, a = g(s - rq'). We have that g divides a, and g divides b. But gcd(a, b) = d. This contradiction indicates that our
assumption was incorrect. Therefore, gcd(b, a mod b) = d = gcd(a, b) = d.

24b
 If b > a, a mod b = a. Therefore, gcd(a, b) = gcd(b, a mod b) = gcd(b, a). The arguments a and bare reversed.

24c
When a > b, the argument associated with the parameter a in the next recursive call is b, which is smaller than a. If b > a, the
next recursive call will swap the arguments so that a > b. Thus, the first argument will eventually equal the second and so
eventually a mod b will be 0. That is, the base case will be reached.

	

	 	

© 2017 Pearson Education, Inc., Hoboken, New Jersey 07030	

22	

25a

 c(n) =

0 if n = 1
1 if n = 2

(c(n − i)+1)
i=1

n−1

∑ if n > 2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

	
25b

 c(n) =
0 if n = 1
1 if n = 2

c(n −1)+ c(n − 2) if n > 2

⎧

⎨
⎪

⎩
⎪

26
Acker(1, 2) = 4.

int acker(int m, int n)
{
 int result;

 if (m == 0)
 result = n + 1;
 else if (n == 0)
 result = acker(m - 1, 1);
 else
 result = acker(m - 1, acker(m, n - 1));

 return result;
} // end acker
	

	

	

	

	 	

Recursion: The Mirrors

Chapter 2

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Recursive Solutions

• Recursion breaks problem into smaller
identical problems

– An alternative to iteration

• FIGURE 2-1 A recursive solution

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Recursive Solutions

• A recursive function calls itself

• Each recursive call solves an identical, but
smaller, problem

• Test for base case enables recursive calls to
stop

• Eventually, one of smaller problems must be
the base case

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Recursive Solutions

Questions for constructing recursive solutions

1. How to define the problem in terms of a
smaller problem of same type?

2. How does each recursive call diminish the
size of the problem?

3. What instance of problem can serve as base
case?

4. As problem size diminishes, will you reach
base case?

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Valued Function:
The Factorial of n

• An iterative solution

• A factorial solution

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Note: Do not use
recursion if a

problem has a
simple, efficient
iterative solution

A Recursive Valued Function:
The Factorial of n

FIGURE 2-2 fact(3)

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Box Trace

1. Label each recursive call

2. Represent each call to function by a new box

3. Draw arrow from box that makes call to
newly created box

4. After you create new box executing body of
function

5. On exiting function, cross off current box and
follow its arrow back

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Box Trace

FIGURE 2-4 The beginning of the box trace

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

FIGURE 2-3 A box

The Box Trace

FIGURE 2-5 Box trace of fact(3)

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Box Trace

FIGURE 2-5 Box trace of fact(3)

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Box Trace

FIGURE 2-5 Box trace of fact(3)

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Box Trace

FIGURE 2-5 Box trace of fact(3)

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Box Trace

FIGURE 2-5 Box trace of fact(3)

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

• Likely candidate for minor task is writing a
single character.

– Possible solution: strip away the last character

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

FIGURE 2-6 A recursive solution

A Recursive Void Function:
Writing a String Backward

FIGURE 2-7 Box trace of writeBackward("cat")

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-7 Box trace of writeBackward("cat")

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-7 Box trace of writeBackward("cat")

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

• Another possible solution

– Strip away the first character

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

FIGURE 2-8 Box trace of writeBackward("cat") in pseudocode

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward2("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward2("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward2("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward2("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

A Recursive Void Function:
Writing a String Backward

FIGURE 2-8 Box trace of writeBackward2("cat") in pseudocode

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Writing an Array’s Entries in
Backward Order

The function writeArrayBackward

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Binary Search

Consider details before implementing algorithm:

1. How to pass half of anArray to recursive calls
of binarySearch ?

2. How to determine which half of array
contains target?

3. What should base case(s) be?

4. How will binarySearch indicate result of
search?

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Binary Search

FIGURE 2-10 Box traces of binarySearch with anArray = <1, 5, 9,
12, 15, 21, 29, 31>: (a) a successful search for 9;

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Binary Search

FIGURE 2-10 Box traces of binarySearch with anArray = <1, 5, 9,
12, 15, 21, 29, 31>: (b) an unsuccessful search for 6

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Binary Search

FIGURE 2-11 Box trace with a reference argument

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Finding the Largest Value in an Array

FIGURE 2-12 Recursive solution to the largest-value problem

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Finding the Largest Value in an Array

FIGURE 2-13 The recursive calls
that maxArray(<1,6,8,3>) generates

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Finding kth Smallest Value of Array

Recursive solution proceeds by:

1. Selecting pivot value in array

2. Cleverly arranging/ partitioning values in array
about pivot value

3. Recursively applying strategy to one of partitions

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

FIGURE 2-14 A sample array

Finding kth Smallest Value of Array

FIGURE 2-15 A partition about a pivot

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Towers of Hanoi

• The problem statement

– Beginning with n disks on pole A and zero disks on
poles B and C, solve towers(n, A, B, C) .

• Solution

1.With all disks on A, solve towers(n – 1, A, C, B)

2.With the largest disk on pole A and all others on
pole C, solve towers(n – 1, A, B, C)

3.With the largest disk on pole B and all the other
disks on pole C, solve towers(n – 1, C, B, A)

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Towers of Hanoi

FIGURE 2-16 (

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Towers of Hanoi

FIGURE 2-17 The order of recursive calls that
results from solveTowers(3, A, B, C)

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Fibonacci Sequence
(Multiplying Rabbits)

Assume the following “facts” …

•Rabbits never die.

•Rabbit reaches sexual maturity at beginning of
third month of life.

•Rabbits always born in male-female pairs. At
beginning of every month, each sexually mature
male-female pair gives birth to exactly one
male-female pair.

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Fibonacci Sequence
(Multiplying Rabbits)

Monthly sequence

1.One pair, original two rabbits

2.One pair still

3.Two pairs (original pair, two newborns)

4.Three pairs (original pair, 1 month old,
newborns)

5.Five pairs …

6.Eight pairs …

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Fibonacci Sequence
(Multiplying Rabbits)

FIGURE 2-18 Recursive solution to the rabbit problem
(number of pairs at month n)

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Fibonacci Sequence
(Multiplying Rabbits)

F IGURE 2-19 The recursive calls that rabbit(7) generates

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

The Fibonacci Sequence
(Multiplying Rabbits)

F IGURE 2-19 The recursive calls that rabbit(7) generates

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Organizing a Parade

• Will consist of bands and floats in single line.

– You are asked not to place one band immediately
after another

• In how many ways can you organize a parade
of length n ?
– P (n) = number of ways to organize parade of length n

– F (n) = number of parades of length n, end with a float

– B (n) = number of parades of length n, end with a band

• Then P(n) = F(n) + B(n)

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Organizing a Parade

• Possible to see

• P(1) = 2

• P (2) = 3

• P (n) = P(n – 1) + P(n – 2) for n > 2

• Thus a recursive solution

• Solve the problem by breaking up into cases

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Choosing k Out of n Things

• Rock band wants to tour k out of n cities

– Order not an issue

• Let g(n, k) be number of groups of k cities
chosen from n

• Base cases

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Choosing k Out of n Things

Function for recursive solution.

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Choosing k Out of n Things

FIGURE 2-20 The recursive calls that g (4, 2) generates

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Recursion and Efficiency

• Factors that contribute to inefficiency

– Overhead associated with function calls

– Some recursive algorithms inherently inefficient

• Keep in mind

– Recursion can clarify complex solutions … but …

– Clear, efficient iterative solution may be better

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

End

Chapter 2

© 2017 Pearson Education, Hoboken, NJ. All rights reserved

Data Abstraction and Problem Solving with C++ Walls and Mirrors 7th Edition Carrano Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/data-abstraction-and-problem-solving-with-c-walls-and-mirrors-7th-edition-carrano-solutions-manual/

