Chapter 2: Fundamentals of Data and Signals

TRUE/FALSE

1. The terms "data" and "signal" mean the same thing.

ANS: F PTS: 1 REF: 28

2. By convention, the minimum and maximum values of analog data and signals are presented as voltages.

ANS: T PTS: 1 REF: 30

3. One of the primary shortcomings of analog data and analog signals is how difficult it is to separate noise from the original waveform.

ANS: T PTS: 1 REF: 30

4. The ability to separate noise from a digital waveform is one of the great strengths of digital systems.

ANS: T PTS: 1 REF: 30

5. A sine wave is common example used to demonstrate an analog signal.

ANS: T PTS: 1 REF: 30

6. The period of a signal can be calculated by taking the reciprocal of the frequency (1/frequency).

ANS: T PTS: 1 REF: 33

7. The telephone system transmits signals in the range of 150 Hz to 1500 Hz.

ANS: F PTS: 1 REF: 34

8. Attenuation in a medium such as copper wire is a logarithmic loss and is a function of distance and the resistance within the wire.

ANS: T PTS: 1 REF: 34

9. Like signals, data can be analog or digital.

ANS: T PTS: 1 REF: 31

10. Telephones, AM radio, FM radio, broadcast television, and cable television are the most common examples of analog data-to-digital signal conversion.

ANS: F PTS: 1 REF: 38

11. The NRZ-L encoding scheme is simple to generate and inexpensive to implement in hardware.

ANS: T PTS: 1 REF: 39

12. With NRZI, the receiver has to check the voltage level for each bit to determine whether the bit is a 0 or a 1.

ANS: F PTS: 1 REF: 39

13. With NRZ-L, the receiver has to check whether there is a change at the beginning of the bit to determine if it is a 0 or a 1.

ANS: F PTS: 1 REF: 40

14. An inherent problem with the NRZ-L and NRZI digital encoding schemes is that long sequences of 0s in the data produce a signal that never changes.

ANS: T PTS: 1 REF: 40

15. The big disadvantage of the Manchester schemes is that roughly half the time there will be two transitions during each bit.

ANS: T PTS: 1 REF: 40

16. Under some circumstances, the baud rate may equal the bps, such as in the Manchester encoding schemes.

ANS: F PTS: 1 REF: 41

17. Amplitude shift keying is restricted to only two possible amplitude levels: low and high.

ANS: F PTS: 1 REF: 43

18. Amplitude shift keying is susceptible to sudden noise impulses such as the static charges created by a lightning storm.

ANS: T PTS: 1 REF: 44

19. Frequency shift keying is susceptible to sudden noise spikes that can cause loss of data.

ANS: F PTS: 1 REF: 44

20. Phase changes are not affected by amplitude changes, nor are they affected by intermodulation distortions.

ANS: T PTS: 1 REF: 45

21. The bps of the data transmitted using quadrature amplitude modulation is four times the baud rate.

ANS: F PTS: 1 REF: 45

22. According to a famous communications theorem created by Nyquist, the sampling rate using pulse code modulation must be at least three times the highest frequency of the original analog waveform.

ANS: F PTS: 1 REF: 50

23. One of the most common forms of data transmitted between a transmitter and a receiver is textual data.

ANS: T PTS: 1 REF: 49

24. Certain control characters provide data transfer control between a computer source and computer destination.

ANS: T PTS: 1 REF: 51

25. IBM mainframe computers are major users of the EBCDIC character set.

ANS: T PTS: 1 REF: 51

26. ASCII is a data code rarely used in the world.

ANS: F PTS: 1 REF: 52

27. A byte consists of 8 bits.

ANS: T PTS: 1 REF: 52

28. One of the major problems with Unicode is that it cannot represent symbols other than those found in the English language.

ANS: F PTS: 1 REF: 53

29. ASCII is one of the supported code charts in Unicode.

ANS: T PTS: 1 REF: 53

30. In Unicode, the letter "r" is represented by the binary value of 0000 0000 0101 0100 0010.

ANS: F PTS: 1 REF: 53

MULTIPLE CHOICE

1.		are entities that	convey	meaning with	in a con	nputer or computer system.
	a.	Signals			с.	Impulse
	b.	Data			d.	EMI
	AN	IS: B	PTS:	1	REF:	30

If you want to transfer data from one point to another, either via a physical wire or through radio waves, the data has to be converted into a(n) _____.
a hertz

a. Hertz		C. Signa
b. Unicode		d. byte
ANS: C	PTS: 1	REF: 30

3. _____ are represented as continuous waveforms that can be at an infinite number of points between some given minimum and maximum.

a. Analog signals		с.	Digital data
b. Digital signals		d.	Digital pulses
ANS: A	PTS: 1	REF:	30

4.	The most common e	xample o	of data is	the hur	nan voice.
	a. sampling			с.	digital
	b. baud			d.	analog
	ANS: D	PTS:	1	REF:	30
5.	Unfortunately, noise extremely difficult, t a. analog	to separa	curs as a(n) te noise from a	wav an analo c.	reform, and this makes it challenging, if not og waveform that represents data. hertz
	b. digital			d.	byte
	ANS: A	PTS:	1	REF:	31
~	1.	c	.1 .1		c
6.	are discrete wa	iveforms	, rather than co	ontinuoi	ls waveforms.
	a. Analog signals			c.	Analog data
	D. Analog bauds			u.	Analog uata
	ANS: C	PTS:	1	REF:	32
7.	The three basic com	ponents (of analog and o	digital s	ignals are: amplitude, frequency, and
	a. cycles		C	с.	hertz
	b. baud			d.	phase
	ANS: D	PTS:	1	REF:	33
8	The amplitude of a s	sional car	he expressed	as volte	s or watts
0.	a hertz	inginal cal	i be expressed		hits
	h amps			d.	hytes
	ANS: B	PTS:	1	REF:	33
0		1	1 6.1		
9.	The of a signal frame	is the nu	umber of times	s a signa	al makes a complete cycle within a given time
	a phase			C	period
	h amplitude			c. d	frequency
	ANS: D	PTS:	1	REF:	33
10.	Cycles per second, o	or freque	ncy, is represen	nted by	·
	a. bytes			c.	bits
	b. hertz			d.	watts
	ANS: B	PTS:	1	REF:	33
11.	The frequency range than approximately	e of the a Hz	verage human	voice u	sually goes no lower than 300 Hz and no higher
	a. 2200	112.		C.	3400
	b 2400			d.	5300
	ANS: C	ρτς.	1	REE.	34
	1110. C	110.	•	ILL ¹	51
12.	The lowest note pos	sible on t	the piano is	Hz, a	and the highest note possible is 4200 Hz.
	a. 30			c.	300
	b. 80			d.	450
	ANS: A	PTS:	1	REF:	34

13.	The bandwidth of a telephone system that transmits a single voice in the range of 300 Hz to 3400 Hz is Hz.					
	a. 10 b. 100			с. d.	3100 3700	
	ANS: C	PTS:	1	REF:	34	
14.	When traveling thro to friction. This loss a. amplification b. friction	ugh any of powe	type of mediur er, or loss of sig	n, a sigi gnal stre c. d.	nal always experiences some loss of its power due ength, is called decibel attenuation	
	ANS: D	PTS:	1	REF:	35	
15.	When a signal is ama. decibelsb. hertz	plified b	y an amplifier,	the sign c. d.	nal gains in bytes watts	
	ANS: A	PTS:	1	REF:	35	
16.	is the process of a. Amplification b. Modulation	of sendir	ng data over a s	ignal by c. d.	y varying either its amplitude, frequency, or phase. Attenuation Digital encoding	
	ANS: B	PTS:	1	REF:	38	
17.	The encoding s beginning of a 0. a. nonreturn to zero b. nonreturn to zero	scheme l o inverte o-level (has a voltage cl ed (NRZI) NRZ-L)	hange at c. d.	t the beginning of a 1 and no voltage change at the Manchester Differential Manchester	
	ANS: A	PTS:	1	REF:	39	
18.	The digital enc	coding so	cheme is simila	r to the	Manchester scheme in that there is always a	
	a. NRZ-L b. Bipolar-AMI		e mervar.	с. d.	differential Manchester NRZI	
	ANS: C	PTS:	1	REF:	40	
19.	The Manchester enc similar to seconds the a. continuous-clock b. analog-clocking	oding sc cking on king	hemes are calle a clock.	ed c. d.	, because the occurrence of a regular transition is discrete-clocking self-clocking	
	ANS: D	PTS:	1	REF:	40	
20.	The number of times a. hertz b. baud	s a signa	l changes value	e per sec c. d.	cond is called the rate. watts volts	
	ANS: B	PTS:	1	REF:	41	
21.	The data rate is mea a. bits per second (b. bytes per second	sured in (bps) l (Bps)		c. d.	bauds per second (bps) hertz per second (hps)	

	ANS: A	PTS:	1	REF:	41
22.	Using, when a transmits a binary 1, a. Manchester b. bipolar-AMI	device t either a	transmits a bina positive voltag	ry 0, a ge or a i c. d.	zero voltage is transmitted. When the device negative voltage is transmitted. differential Manchester NRZ-L
	ANS: B	PTS:	1	REF:	41
23.	The primary advanta transmission, there s a2	ige of a hould b	bipolar scheme e a total voltage	is that e of c.	when all the voltages are added together after a long 0
	b1			d.	1
	ANS: C	PTS:	1	REF:	41
24.	The Manchester enco because they have a a. equal to b. twice	oding so baud ra	chemes solve th te that is t	e synch he bps. c. d.	nronization problem but are relatively inefficient three times four times
	ANS: B	PTS:	1	REF:	42
25.	A device that module back to digital data i a. repeater b. switch	ates dig s a	ital data onto aı -·	n analog c. d.	g signal and then demodulates the analog signal hub modem
	ANS: D	PTS:	1	REF:	43
26.	Three currently populanalog signals are an a. noise b. baud	ılar moc nplitude	dulation technic shift keying, f	ues for requenc c. d.	encoding digital data and transmitting it over cy shift keying, and shift keying. strength phase
	ANS: D	PTS:	1	REF:	43
27.	The simplest modula a. amplitude b. phase	ntion tec	hnique is	shift ke c. d.	eying. frequency noise
	ANS: A	PTS:	1	REF:	43
28.	Frequency shift keyi a. baud noise b. bps distortion	ng is su	bject to	c. d.	intermodulation distortion noise spikes
	ANS: C	PTS:	1	REF:	44
29.	shift keying rep a. Amplitude b. Phase	presents	0s and 1s by d	ifferent c. d.	changes in the phase of a waveform. Frequency Noise
	ANS: B	PTS:	1	REF:	44

30. _____ shift keying incorporates four different phase angles, each of which represents 2 bits.

	a. Quadraturb. Quadratur	re amplitude re frequency		c. d.	Quadrature noise Quadrature phase
	ANS: D	PTS:	1	REF:	45
31.	modulat represent 4 bi	tion, which is c ts.	ommonly em	ployed in	contemporary modems, uses each signal change to
	a. Quadraturb. Quadratur	re amplitude re frequency		c. d.	Quadrature noise Quadrature phase
	ANS: A	PTS:	1	REF:	45
32.	One encoding	technique that	t converts ana	log data i	to a digital signal is
	a. NRZ-L b. Manchest	er		c. d.	pulse code modulation (PCM) NRZ-I
	ANS: C	PTS:	1	REF:	46
33.	Tracking an a below) a three	nalog wavefor shold is termed	m and conver	ting it to	pulses that represent the wave's height above (or
	a. pulse ampb. codec	plitude modula	tion (PAM)	с. d.	quantization quantization levels
	ANS: A	PTS:	1	REF:	46
34.	When conver	ting analog dat	a to digital sig	gnals, the	frequency at which the snapshots are taken is called
	the <u>rate</u> rate.			C	hns
	b. sampling			d.	byte
	ANS: B	PTS:	1	REF:	48
35.	With, a	codec tracks th	e incoming a	nalog dat	a by assessing up or down "steps."
	b. Bipolar-A	MI Manchester		с. d.	delta modulation
	ANS: D	PTS:	1	REF:	49
36.	Three importa	ant data codes	are EBCDIC,	, an	d Unicode.
	a. NRZ-L b. 4B/5B			с. d.	NRZI
	ANS: C	PTS:	1	REF:	51
37.	is an 8-t	oit code allowing	ng 256 possib	le combin	nations of textual symbols.
	a. EBCDICb. Unicode			c. d.	NRZI UTF-9
	ANS: A	PTS:	1	REF:	51
38.	The is a a. UTF-8	government st	andard in the	United S	tates.
	c. Americand. Unicode	a Standard Cod	e for Informa	tion Inter	change (ASCII)
	ANS: C	PTS:	1	REF:	52

39.	The A	SCII character	set exis	sts in a fe	w different fo	orms, inclu	iding a	version that allows for 128
	a. 3-	bit		luai syiii	C.	6-bit		
	b. 5-	bit			d.	7-bit		
	ANS:	D	PTS:	1	REF:	52		
40.	The U	nicode charact	er set u	ses	bit characte	ers.		
	a. 4				C.	16		
	0. 0	G	DTC	1	u.	52		
	ANS:	С	PTS:	1	REF:	53		
СОМ	PLETI	ON						
1.	Conve	erting analog da	ata to di	gital sigr	als is general	ly called _		·
	ANS:	digitization						
	PTS:	1	REF:	29				
2.			are	e the elect	tric or electro	magnetic i	impulses use	d to encode and transmit data.
	ANS:	Signals						
	PTS:	1	REF:	30				
3.			ist	unwanted	l electrical or	electroma	gnetic energ	y that degrades the quality of
	signals	s and data.					6	,
	ANS:	Noise						
	PTS:	1	REF:	31				
4.	The			_ of a sig	nal is the heig	ght of the	wave above	(or below) a given reference
	point.							
	ANS:	amplitude						
	PTS:	1	REF:	33				
5.	The			_, or time	e interval, of o	one cycle i	is called its p	period.
	ANS:	length						
	PTS:	1	REF:	33				
6.	The ra	nge of frequen	cies tha	t a signal	l spans from r	ninimum t	to maximum	is called the
	AND		•					
	ANS:	spectrum						
	PTS:	1	REF:	34				

7.	The of a signal is the absolute value of the difference between the lowest and highest frequencies.
	ANS: bandwidth
	PTS: 1 REF: 34
8.	Because extraneous noise degrades original signals, an electronic device usually has a(n) that is less than its bandwidth.
	ANS: effective bandwidth
	PTS: 1 REF: 34
9.	The of a signal is the position of the waveform relative to a given moment of time, or relative to time zero.
	ANS: phase
	PTS: 1 REF: 34
10.	is a relative measure of signal loss or gain and is used to measure the logarithmic loss or gain of a signal.
	ANS: Decibel (dB) Decibel dB
	PTS: 1 REF: 35
11.	is the opposite of attenuation.
	ANS: Amplification
	PTS: 1 REF: 35
12.	The digital encoding scheme transmits 1s as zero voltages and 0s as positive voltages.
	ANS: nonreturn to zero-level (NRZ-L) nonreturn to zero-level NRZ-L
	PTS: 1 REF: 39
13.	With the encoding scheme, to transmit a 1, the signal changes from low to high in the <i>middle</i> of the interval; to transmit a 0, the signal changes from high to low in the <i>middle</i> of the interval.

ANS: Manchester

PTS: 1 REF: 40

14. The _______ encoding scheme takes 4 bits of data, converts the 4 bits into a unique 5-bit sequence, and encodes the 5 bits using NRZI.

ANS: 4B/5B

PTS: 1 REF: 42

15. ______ is a simpler form of modulation in which binary 1s and 0s are represented by uniquely different values of amplitude, frequency, or phase.

ANS: Shift keying

PTS: 1 REF: 43

- - ANS: Frequency

PTS: 1 REF: 44

17. ______ is a phenomenon that occurs when the frequencies of two or more signals mix together and create new frequencies.

ANS: Intermodulation distortion

PTS: 1 REF: 44

18. A(n) ______ converts the analog data to a digital signal by tracking the analog waveform and taking "snapshots" of the analog data at fixed intervals.

ANS: codec

PTS: 1 REF: 46

19. Quantization error, or ______, causes the regenerated analog data to differ from the original analog data.

ANS: quantization noise

PTS: 1 REF: 48

20. A problem inherent with delta modulation is that if the analog waveform rises or drops too quickly, the codec may not be able to keep up with the change, and ______ results.

ANS: slope overload noise

PTS: 1 REF: 49

21. The set of all textual characters or symbols and their corresponding binary patterns is called a(n)

ANS: data code

PTS: 1 REF: 49

22. The control character ______ (LF) provides control between a processor and an input/output device.

ANS: linefeed

PTS: 1 REF: 51

23. The control character ______ (CR) provides control between a processor and an input/output device.

ANS: carriage return

PTS: 1 REF: 51

24. ______ is an encoding technique that provides a unique coding value for every character in every language, no matter what the platform.

ANS: Unicode

PTS: 1 REF: 53

25. Currently, ________ supports more than 110 different code charts (languages and symbol sets).

ANS: Unicode

PTS: 1 REF: 53

ESSAY

1. What are the four possible data-to-signal conversion combinations?

ANS:

Data and signals are two of the basic building blocks of any computer network. It is important to understand that the terms "data" and "signal" do not mean the same thing, and that in order for a computer network to transmit data, the data must first be converted into the appropriate signals. The one thing data and signals have in common is that both can be in either analog or digital form, which gives us four possible data-to-signal conversion combinations:

- * Analog data-to-analog signal, which involves amplitude and frequency modulation techniques
- * Digital data-to-digital signal, which involves encoding techniques
- * Digital data-to-discrete analog signal, which involves modulation techniques
- * Analog data-to-digital signal, which involves digitization techniques

PTS: 1 REF: 28

2. What are common examples of data?

ANS: Common examples of data include:

Data Communications and Computer Networks A Business Users Approach 8th Edition White Test 1

* A computer file of names and addresses stored on a hard disk drive

* The bits or individual elements of a movie stored on a DVD

* The binary 1s and 0s of music stored on a compact disc or inside an iPod

* The dots (pixels) of a photograph that has been digitized by a digital camera and stored on a memory stick

* The digits 0 through 9, which might represent some kind of sales figures for a business

PTS: 1 REF: 29-30

3. What are common examples of signals?

ANS:

Common examples of signals include:

- * A transmission of a telephone conversation over a telephone line
- * A live television news interview from Europe transmitted over a satellite system
- * A transmission of a term paper over the printer cable between a computer and a printer

* The downloading of a Web page as it transfers over the telephone line between your Internet service provider and your home computer

PTS: 1 REF: 30

4. What happens when you introduce noise into digital data and digital signals?

ANS:

Noise has the properties of an analog waveform and thus can occupy an infinite range of values; digital waveforms occupy only a finite range of values. When you combine analog noise with digital waveform, it is fairly easy to separate the original digital waveform from the noise.

If the amount of noise remains low enough that the original digital waveform can still be interpreted, then the noise can be filtered out, thereby leaving the original waveform. If, however, the noise becomes so great that it is no longer possible to distinguish a high from a low, then the noise has taken over the signal and you can no longer understand this portion of the waveform.

PTS: 1 REF: 31

5. What is the purpose of using digital encoding schemes?

ANS:

To transmit digital data using digital signals, the 1s and 0s of the digital data must be converted to the proper physical form that can be transmitted over a wire or airwave. Thus, if you wish to transmit a data value of 1, you could do this by transmitting a positive voltage on the medium. If you wish to transmit a data value of 0, you could transmit a zero voltage. You could also use the opposite scheme: a data value of 0 is positive voltage, and a data value of 1 is a zero voltage. Digital encoding schemes like this are used to convert the 0s and 1s of digital data into the appropriate transmission form. There are six digital encoding schemes that are representative of most digital encoding schemes: NRZ-L, NRZI, Manchester, differential Manchester, bipolar-AMI, and 4B/5B.

PTS: 1 REF: 38-39