
Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.1

There are two immediate inefficiencies: (1) the chaining of constructors im-
plies a potentially long set of function calls any time an instance of a deep
class, Z, is created, and (2) the algorithm for determining which version of
a certain function to use could end up looking through a large number of
classes before it finds the right one to use.

Data Structures and Algorithms in C++ 2nd Edition Goodrich Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/data-structures-and-algorithms-in-c-2nd-edition-goodrich-solutions-manual/


Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.2

Whenever a large number of classes all extend from a single class, it is likely

that you are missing out on potential code reuse from similar functions in

different classes. There is likely some factoring of functions into common

classes that could be done in this case, which would save programmer time

and maintenance time, by eliminating duplicated code.



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.3

Air traffic control software, computer integrated surgery applications, and

flight navigation systems.



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.4

Computer game development, online services for downloading music and

movies, and telephone and other communication services over the internet.



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.5

Many text editors dedicated for “tools”. Member functions could include
bringing up programs to perform spell checking, grammar checking, setting
various editor preferences (such as the language for a word processor or tab-
bing and indenting options for text editors for programming languages), im-
porting (and exporting) data from various sources, and tracking document
changes.



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.7

A class may have many different constructors. The compiler cannot know
which of the base class’s constructors would be appropriate to be called, or
what arguments should be passed to it. So the derived class must make the
call explicitly. There is only one destructor for any class, and so there is no
choice involved. Further, since destructors are not explicitly called by the
user (they are invoked automatically by the system), there is no way for a
derived class to even invoke it base class’s destructor.



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.8

Because the class FibonacciProgression does not provide public access to the

firstValue and nextValue member functions, we design a new class, Fibonac-

ciPlus, which extends the Fibonacci progression class by providing a public

member function that returns the kth element of the sequence. It is assumed

that k ≥ 1.

class FibonacciPlus : public FibonacciProgression {
public:

// constructor
FibonacciPlus(long f = 0, long s = 1)
: FibonacciProgression(f, s) { }

long getKthValue(int k) { // get the kth value (assumed k >= 1)
long f = firstValue(); // get the first value
if (k == 1) return f; // return first if k == 1
for (int i = 2; i < k; i++) // get values 2 through (k-1)st values

nextValue();
return nextValue(); // return kth value

}
};

// . . .
FibonacciPlus F(3, 4); // Fibonacci sequence from 3, 4
cout << F.getKthValue(7) << endl; // output 7th element



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.9

256 calls to nextValue will end on the value 263. Since the maximum positive

value of a long is 263
− 1, 256

− 1 calls to nextValue can be made before a

long-integer overflow.



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.10

The function to be called is GeomProgression::firstValue(), and hence the value
1 is returned. The reason is that the function firstValue is declared to be
virtual (in Progression), which means that the actual type of the object, and
not the declared type of the pointer, is used to determine which member
function is to be called.



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.11

No, d is referring to a Equestrian object that is not also of type Racer. Cast-

ing in an inheritance relationship can only move up or down the hierarchy,

not “sideways.”



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.12

The two subclasses UndergraduateStudent and GraduateStudent are derived

from the class Student, and thus inherit all the student members. In addition,

the UndergraduateStudent class adds the new boolean member inDorm, which

indicates whether the student lives in a dormitory. The GraduateStudent class

adds the new string member advisor , which stores the name of the student’s

advisor.

The Faculty class is derived from Person, and the subclasses Professor

and Instructor are derived from Faculty. The Faculty class adds new string

members officeNumber and phoneNumber . The Instructor has a boolean vari-

able isPartTime, which indicates whether the instructor is hire part-time.

The Professor class adds a new boolean variable isTenured , which indicates



whether the professor is tenured.

class UndergraduateStudent : public Student {
private:

bool inDorm;
// . . .

};
class GraduateStudent : public Student {
private:

string advisor;
// . . .

};
class Faculty : public Person {
private:

string officeNumber;
string phoneNumber;
// . . .

};
class Professor : public Faculty {
private:

bool isTenured;
// . . .

};
class Instructor : public Faculty {
private:

bool isPartTime;
// . . .

};

2



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.13

Let us assume that we define an exception class ArrayIndexBounds, whose
constructor is given the index value that caused the error. It has a member
function badIndex that returns this index. The following code checks for
the array subscript out of bounds, and if so, outputs an appropriate error
message. (It is more likely that there is a class storing the array, and this
class would throw the exception.)

try {
if (i >= array.size()) throw ArrayIndexBounds(i);
cout << array[i];

}
catch(ArrayIndexBounds& e) {

cout << "Array index " << e.badIndex() << " is out of bounds.";
}



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise R-2.14

Read it.

Ship it.

Buy it.

Read it.

Box it.

Read it.



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise C-2.1

The following program works by storing most of its source in a string vari-
able, a. The program prints the initial (include) statements, then prints the
contents of string a, but adding all the escape keys needed in the definition of
a. Finally it prints the contents of a itself, which prints the remainder of the
program. We define special characters for backslash (bs), double quotes (qq),
and newline (nl), for help in handling the character escape sequences. There
are shorter solutions than this, but they are generally harder to understand.



#include <iostream>

#include <string>

using namespace std;
string a=
"const char bs = ’\\\\’; const char nl = ’\\n’; const char qq = ’\"’;\n"

"main() {\n"

" cout << \"#include <iostream>\" << endl;\n"

" cout << \"#include <string>\" << endl;\n"

" cout << \"using namespace std;\" << endl;\n"

" cout << \"string a=\" << endl << qq;\n"

" for (int i=0; i < a.size(); i++)\n"

" switch(a[i]) {\n"

" case nl: cout << bs << ’n’ << qq << endl << qq; break;\n"

" case bs: cout << bs << bs; break;\n"

" case qq: cout << bs << qq; break;\n"

" default: cout << a[i];\n"

" }\n"

" cout << qq << ’;’ << endl; cout << a << endl;\n"

"}";
const char bs = ’\\’; const char nl = ’\n’; const char qq = ’"’;
main() {

cout << "#include <iostream>" << endl;
cout << "#include <string>" << endl;
cout << "using namespace std;" << endl;
cout << "string a=" << endl << qq;
for (int i=0; i < a.size(); i++)

switch(a[i]) {
case nl: cout << bs << ’n’ << qq << endl << qq; break;
case bs: cout << bs << bs; break;
case qq: cout << bs << qq; break;
default: cout << a[i];

}
cout << qq << ’;’ << endl; cout << a << endl;

}

2



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise C-2.4

Assume that lines are represented by the equation y = ax + b. The x
coordinate of the intersection of this line with another line y = a′x + b′

is found by equating the right hand sides and solving for x, which yields
x = (b′

− b)/(a − a′). If a = a′ the lines are parallel, in which case we throw
the Parallel exception.



class Parallel { // parallel intersection exception
private:

string errMsg;
public:

Parallel(const string& msg) { errMsg = msg; }
string getMessage() const { return errMsg; }

};

class Line {
private:

double a, b; // line is y = ax + b
public:

Line(double aa = 0, double bb = 0) // constructor
{ a = aa; b = bb; }

double intersect(const Line& ell) const throw(Parallel)
{

if (a == ell.a) throw Parallel("Intersection of parallel lines");
return (ell.b − b)/(a − ell.a);

}
};

int main() {
Line L[3];
L[0] = Line(2, 7); // create a few lines
L[1] = Line(−3, −3);
L[2] = Line(2, −11);
for (int i = 0; i < 3; i++) { // intersect all distinct pairs

for (int j = 0; j < i; j++) {
try {

double x = L[i].intersect(L[j]);
cout << "Lines " << j << " and " << i

<< " cross at " << x << endl;
}
catch (Parallel& e) {

cout << e.getMessage() << endl;
}

}
}

}

2



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise C-2.5

class AbsValProgression : public Progression {
protected:

long second; // second value of progression
long prev; // previous value of progression

long firstValue() { // resets to the first value
cur = first;
prev = first + second;
return cur;

}
long nextValue() { // advances to the next value

long temp = cur;
if (prev > cur) cur = prev − cur;
else cur = cur − prev;
prev = temp;
return cur;

}
public:

// constructor
AbsValProgression(long val1 = 2, long val2 = 200) {

first = val1;
second = val2;

}
};



Data Structures and Algorithms in C++
(Second Edition)

M. T. Goodrich, R. Tamassia, and D. M. Mount

John Wiley & Sons

Solution of Exercise C-2.6

Even though the constructor takes an argument of type double, we cast the

value to type long, since this is what the base class requires. In order to

make the sqrt function accessible, we should add the statement “#include

<cmath>”.

Data Structures and Algorithms in C++ 2nd Edition Goodrich Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/data-structures-and-algorithms-in-c-2nd-edition-goodrich-solutions-manual/

