
INSTRUCTOR’S MANUAL
TO ACCOMPANY

Database Processing
Fundamentals, Design, and Implementation

14th Edition

Chapter 2
Introduction to Structured Query Language

Prepared By

Scott L. Vandenberg

Siena College

David M. Kroenke and David J. Auer

Database Processing Fundamentals Design and Implementation 14th Edition Kroenke Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/database-processing-fundamentals-design-and-implementation-14th-edition-kroenke-solutions-manual/

Instructor's Manual to accompany:

Database Processing: Fundamental, Design, and Implementation (14th Edition)

David M. Kroenke and David J. Auer

Copyright © 2016 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. Printed in the United States of America.

Chapter 2 – Introduction to Structured Query Language

Page 2-3
Copyright © 2016 Pearson Education, Inc.

 CHAPTER OBJECTIVES

• To understand the use of extracted data sets in business intelligence (BI) systems

• To understand the use of ad-hoc queries in business intelligence (BI) systems

• To understand the history and significance of Structured Query Language (SQL)

• To understand the SQL SELECT/FROM/WHERE framework as the basis for
database queries

• To create SQL queries to retrieve data from a single table

• To create SQL queries that use the SQL SELECT, FROM, WHERE, ORDER BY,
GROUP BY, and HAVING clauses

• To create SQL queries that use the SQL DISTINCT, TOP, and TOP PERCENT
keywords

• To create SQL queries that use the SQL comparison operators including BETWEEN,
LIKE, IN, and IS NULL

• To create SQL queries that use the SQL logical operators including AND, OR, and
NOT

• To create SQL queries that use the SQL built-in aggregate functions of SUM,
COUNT, MIN, MAX, and AVG with and without the SQL GROUP BY clause

• To create SQL queries that retrieve data from a single table while restricting the data
based upon data in another table (subquery)

• To create SQL queries that retrieve data from multiple tables using the SQL join and
JOIN ON operations

• To create SQL queries that retrieve data from multiple tables using the SQL OUTER
JOIN operation

• To create SQL queries that retrieve data from multiple tables using SQL set
operators UNION, INTERSECT, and EXCEPT

 IMPORTANT TEACHING NOTES – READ THIS FIRST!

1. Chapter 2 – Introduction to Structured Query Language is intended to be
taught in conjunction with the version of online Chapter 10# available
at http://www.pearsonhighered.com/kroenke/ that corresponds to the DBMS that
you are using in your class.
a. If you are using Microsoft SQL Server 2014 as your DBMS, you should

use Online Chapter 10A – Managing Databases with Microsoft SQL
Server 2014, and cover pages 10A-1 through 10A-23 to help your
students get set up for the SQL work in Chapter 2.

b. If you are using Oracle Database 12c or Oracle Database XE as your
DBMS, you should use Online Chapter 10B – Managing Databases

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-4
Copyright © 2016 Pearson Education, Inc.

with Oracle Database, and cover pages 10B-1 through 10BA-23 to
help your students get set up for the SQL work in Chapter 2.

c. If you are using MySQL 5.6 as your DBMS, you should use Online
Chapter 10C – Managing Databases with MySQL 5.6, and cover
pages 10C-1 through 10C-28 to help your students get set up for the
SQL work in Chapter 2.

d. These pages cover how to build a database from existing *.sql scripts,
and the *.sql scripts for the Cape Codd database used in Chapter 2
are included in the student data files available
at http://www.pearsonhighered.com/kroenke/.

 ERRATA

• Page 70 – [27-JUL-15 – Corrected in the Instructor’s Manual for Chapter 2] – Query
labelled 18 on this page should be 22. On line 4:
/* *** SQL-Query-CH02-22 *** */

• Page 114 – [27-JUL-15 – Corrected in the Instructor’s Manual for Chapter 2] – Review
Question 2.59, last two words are redundant and should be removed:
2.59 Write an SQL statement to display the SKU, SKU_Description, and

Department of all SKUs that appear in both the Cape Codd 2013 catalog
(only in the printed catalog itself) and the Cape Codd 2014 catalog (only in
the printed catalog itself).

• Page 83 – [27-JUL-15 – Corrected in the Instructor’s Manual for Chapter 2] – Figure
2.27, bottom blue box, “Water Spots” should be:
Water Sports

• Page 132 – [27-JUL-15 – Corrected in the Instructor’s Manual for Chapter 2] – Case
Question MI.J, LocalCurrencyAmountt is misspelled:
J. Show ItemID, Description, Store, and a calculated column named

USCurrencyAmount that is equal to LocalCurrencyAmount multiplied by
the ExchangeRate for all rows of ITEM.

• Page 104 – [27-JUL-15 – Corrected in the Instructor’s Manual for Chapter 2] – Microsoft
Access also does not support the INTERSECT operation. Sentence before Query 77,
parenthesized comment should read:
(note that MySQL and Microsoft Access do not support this operator)

• Page 105 – [27-JUL-15 – Corrected in the Instructor’s Manual for Chapter 2] – Microsoft
Access also does not support the EXCEPT operation. Sentence before Query 78,
parenthesized comment should read:
(note that Oracle Database calls this the SQL MINUS operator, and MySQL and
Microsoft Access do not support this operation)

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-5
Copyright © 2016 Pearson Education, Inc.

 TEACHING SUGGESTIONS

• Database files to illustrate the examples in the chapter and solution database
files for your use are available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

• The best way for students to understand SQL is by using it. Have your students
work through the Review Questions, Project Questions, and the Marcia’s Dry
Cleaning, Queen Anne Curiosity Shop, or Morgan Importing Project Questions in
an actual database. Students can create databases in Microsoft Access with
basic tables, relationships, and data from the material in the book. SQL scripts
for Microsoft SQL Server, Oracle Database, and MySQL versions of Cape Codd,
MDC, QACS, and MI are available in the Instructor’s Resource Center on the
text’s Web site (www.pearsonhighered.com/kroenke). An Access version of
WPC is also available there.

• Microsoft Access database files for Cape Codd, together with SQL scripts for
Microsoft SQL Server, Oracle Database, and MySQL versions of Cape Codd,
MDC, QACS, and MI are available for student use in the Student Resources on
the text’s Web site (www.pearsonhighered.com/kroenke).

• The SQL processors in the various DBMSs are very fussy about character sets
used for SQL statements. They want to see plain ASCII text, not fancy fonts.
This is particularly true of the single quotation (') used to designate character
strings, but we’ve also had problems with the minus sign. If your students are
having problems getting a “properly structured SQL statement” to run, look
closely for this type of problem. It occurs most frequently when copying/pasting a
query from a word processor into a query window.

• There is a useful teaching technique which will allow you to demonstrate the SQL
queries in the text using Microsoft SQL Server if you have it available.

• Open the Microsoft SQL Server Management Studio, and create a new
SQL Server database named Cape-Codd.

• In the Microsoft SQL Server Management Studio, use the SQL
statements in the *.sql text file DBP-e14-MSSQL-Cape-Codd-Create-
Tables.sql to create the RETAIL_ORDER, ORDER_ITEM, and
SKU_DATA tables [other tables are also created].

• In the Microsoft SQL Server Management Studio, use the SQL
statements in the *.sql text file DBP-e14-MSSQL-Cape-Codd-Insert-
Data.sql to populate the RETAIL_ORDER, ORDER_ITEM, and
SKU_DATA tables [other tables are also populated].

• In the Microsoft SQL Server Management Studio, open the *.sql text file
DBP-e14-MSSQL-Cape-Codd-Query-Set-CH02.sql. This file contains all
the queries shown in the Chapter 2 text.

• Highlight the query you want to run and click the Execute Query button to
display the results of the query. An example of this is shown in the
following screenshot.

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-6
Copyright © 2016 Pearson Education, Inc.

• All of the *.sql text files needed to do this are available in the Instructor’s
Resource Center on the text’s Web site
(www.pearsonhighered.com/kroenke).

• Microsoft Access 2013 does not support all SQL-92 (and newer) constructs.

While this chapter still considers Microsoft Access as the DBMS most likely to be
used by students at this point in the course, there are some Review Questions
and Project Questions that use the ORDER BY clause with aliased computed
columns that will not run in Access (see Review Questions 2.36 – 2.38). The
correct solutions for these questions were obtained using Microsoft SQL Server
2014. The Microsoft Access results achieving the ORDER BY without using the
alias are also shown, so you can assign these problems with or without the
ORDER BY part of the questions.

• Microsoft Access 2013 does not support SQL wildcard characters (see Review
Questions 2.31 – 2.33), although it does have equivalent wildcard characters as
described in the chapter. The correct solutions for these questions were
obtained using Microsoft SQL Server 2014, and solutions are shown for Access
as well.

• For those students who are used to procedural languages, they may have some
initial difficulty with a language that does set processing like SQL. These
students are accustomed to processing rows (records) rather than sets. It is time

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-7
Copyright © 2016 Pearson Education, Inc.

well spent to make sure they understand that SQL processes tables at a time,
not rows at a time.

• Students may have some trouble understanding the GROUP BY clause. If you
can explain it in terms of traditional control break logic (sort rows on a key then
process the rows until the value of the key changes), they will have less trouble.
This also explains why the GROUP BY clause will likely present the rows sorted
even though you do not use an ORDER BY clause.

• At this point, students familiar with Microsoft Access will wonder why they are
learning SQL. They have made queries in Microsoft Access using Microsoft
Access's version of Query-By-Example (QBE), and therefore never had to
understand the SQL. In many cases, they will not know that Microsoft Access
generates SQL code when you create a query in design view. It is worth letting
them know this is done and even showing them the SQL created for and
underlying a Microsoft Access query.

• It is also important for students to understand that, in many cases, the Query-By-
Example forms such as Microsoft Access’s design view can be very inefficient.
Also, the QBE forms are not available from within an application program such as
Java or C++ or PHP, and so SQL must be written.

• It has been our experience that a review of a Cartesian Product from an algebra
class is time well spent. Show students what will happen if a WHERE statement
is left off of a join. The following example will work. Assume you create four
tables with five columns each and 100 rows each. How many columns and rows
will be displayed by the statement:

 SELECT * FROM TABLE1, TABLE2, TABLE3, TABLE4;

The result is 20 columns (not bad) but 100,000,000 rows (100 * 100 = 10,000,
10,000 * 100 = 1,000,000, 1,000,000 * 100 = 100,000,000). This happens
because the JOIN is not qualified. If they understand Cartesian products then
they will understand how to fix a JOIN where the results are much too large.

• Note that in the Marcia's Dry Cleaning project, where in some previous editions
we have used tables named ORDER and ORDER_ITEM, we have changed
these table names to INVOICE and INVOICE_ITEM. We did this because
ORDER is an SQL reserved word (part of ORDER BY). Therefore, when the
table name ORDER is used as part of a query, it may need to be ("must be" in
Access 2013) enclosed in delimiters as [ORDER] if the query is going to run
correctly. The topic of reserved words and delimiters is discussed in more detail
in Chapters 7 and 8. However, now is a good time to introduce it to your
students.

• Note that Microsoft Access SQL requires the INNER JOIN syntax instead of the
standard SQL syntax JOIN used by Microsoft SQL Server, Oracle Database, and
MySQL. Also note that Oracle prohibits the “AS” keyword when aliasing table
names using the JOIN syntax. See solutions to Review Question 51.

• Students will frequently try to UNION OR INTERSECT tables that are not
compatible (have different schemas). It is useful to illustrate a few examples of
how/why this doesn’t work (e.g. try UNIONing RETAIL_ORDER and

Chapter 2 – Introduction to Structured Query Language

Page 2-8
Copyright © 2016 Pearson Education, Inc.

ORDER_ITEM to answer the English query “Give me all orders and their items”
to distinguish this from a join).

• String comparisons using LIKE (and other operators) may or may not be case-
sensitive, depending on the DBMS used and on the default settings set up by the
DBA; see solutions to Case Question MDC-F for more details and suggestions.

• Screen shot solutions to all the queries in this chapter come from Microsoft
Access. Note that some of them are from Access 2010 and some from Access
2013: the differences for the purposes of this chapter are entirely cosmetic (font
and other colors).

Chapter 2 – Introduction to Structured Query Language

Page 2-9
Copyright © 2016 Pearson Education, Inc.

 ANSWERS TO REVIEW QUESTIONS

2.1 What is an online transaction processing (OLTP) system? What is a business
intelligence (BI) system? What is a data warehouse?

An OLTP system is typically one in which a database is used to store information about daily
operational aspects of a business or other enterprise, such as sales, deposits, orders, customers,
etc. A business intelligence (BI) system is a system used to support management decisions by
producing information for assessment, analysis, planning and control. BI systems typically use
data from a data warehouse, which is a database typically combining information from
operational databases, other relevant internal data, and separately-purchased external data.

2.2 What is an ad-hoc query?

An ad-hoc query is a query created by the user as needed, rather than a query programmed into an
application.

2.3 What does SQL stand for, and what is SQL?

SQL stands for Structured Query Language. SQL is the universal query language for relational
DBMS products.

2.4 What does SKU stand for? What is an SKU?

SKU stands for stock keeping unit. An SKU is a an identifier used to label and distinguish each
item sold by a business.

2.5 Summarize how data were altered and filtered in creating the Cape Codd data
extraction.

Data from the Cape Codd operational retail sales database were used to create a retail sales
extraction database with three tables: RETAIL_ORDER, ORDER_ITEM, and SKU_DATA.

The RETAIL_ORDER table uses only a few of the columns in the operational database. The
structure of the table is:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear,
 OrderTotal)

For this table, the original column OrderDate (in the data format MM/DD/YYYY [04/26/2013])
was converted into the columns OrderMonth (in a Character(12) format so that each month is
spelled out [April]) and OrderYear (in an Integer format with each year appearing as a four-digit
year [2013]).

We also note that the OrderTotal column includes tax, shipping, and other charges that do not
appear in the data extract. Thus, it does not equal the sum of the related ExtendedPrice column in
the ORDER_ITEM table discussed below.

The ORDER_ITEM table uses an extract of the items purchased for each order. The structure of
the table is:

Chapter 2 – Introduction to Structured Query Language

Page 2-10
Copyright © 2016 Pearson Education, Inc.

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

For this table, there is one row for each SKU associated with a given OrderNumber, representing
one row for each type of item purchased in a specific order.

The SKU_DATA table uses an extract of the item identifying and describing data in the complete
operational table. The structure of the table is:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

For this table, there is one row to describe each SKU, representing one particular item that is sold
by Cape Codd.

2.6 Explain, in general terms, the relationships of the RETAIL_ORDER, ORDER_ITEM, and
SKU_DATA tables. What is the relationship of these tables to the
CATALOG_SKU_2014 and CATALOG_SKU_2015 tables?

In general, each sale in RETAIL_ORDER relates to one or more rows in ORDER_ITEM that
detail the items sold in the specific order. Each row in ORDER_ITEM is associated with a
specific SKU in the SKU_DATA table. Thus one SKU may be associated once with each
specific order number, but may also be associated with many different order numbers (as long as
it appears only once in each order). The two CATALOG tables are not formally related to any of
the other tables.

Using the Microsoft Access Relationship window, the relationships are shown in Figure 2-4 and
look like this:

Figure 2-4 – The Cape Codd Database

In traditional database terms (which will be discussed in Chapter 3) OrderNumber and SKU in
ORDER_ITEM are foreign keys that provide the links to the RETAIL_ORDER and SKU_DATA
tables respectively. Using an underline to show primary keys and italics to show foreign keys,
the tables and their relationships are shown as:

Chapter 2 – Introduction to Structured Query Language

Page 2-11
Copyright © 2016 Pearson Education, Inc.

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear,
 OrderTotal)

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

SKU_DATA (SKU, SKU_Description, Department, Buyer)

2.7 Summarize the background of SQL.

SQL was developed by IBM in the late 1970s, and in 1992 it was endorsed as a national standard
by the American National Standards Institute (ANSI). That version is called SQL-92. There is a
later version called SQL3 that has some object-oriented concepts, but SQL3 has not received
much commercial attention.

2.8 What is SQL-92? How does it relate to the SQL statements in this chapter?

SQL-92 is the version of SQL endorsed as a national standard by the American National
Standards Institute (ANSI) in 1992. It is the version of SQL supported by most commonly used
relational database management systems. The SQL statements in this chapter are based on SQL-
92 and the SQL standards that followed and modified it.

2.9 What features have been added to SQL in versions subsequent to SQL-92?

Versions of SQL subsequent to SQL-92 have extended features or added new features to SQL,
the most important of which, for our purposes, is support for Extensible Markup Language
(XML).

2.10 Why is SQL described as a data sublanguage?

A data sublanguage consists only of language statements for defining and processing a database.
To obtain a full programming language, SQL statements must be embedded in scripting
languages such as VBScript or in programming languages such as Java or C#.

2.11 What does DML stand for? What are DML statements?

DML stands for data manipulation language. DML statements are used for querying and
modifying data.

2.12 What does DDL stand for? What are DDL statements?

DDL stands for data definition language. DDL statements are used for creating tables,
relationships.

Chapter 2 – Introduction to Structured Query Language

Page 2-12
Copyright © 2016 Pearson Education, Inc.

2.13 What is the SQL SELECT/FROM/WHERE framework?

The SQL SELECT/FROM/WHERE framework is the basis for queries in SQL. In this
framework:

• The SQL SELECT clause specifies which columns are to be listed in the query results.

• The SQL FROM clause specifies which tables are to be used in the query.

• The SQL WHERE clause specifies which rows are to be listed in the query results.

2.14 Explain how Microsoft Access uses SQL.

Microsoft Access uses SQL, but generally hides the SQL from the user. For example, Microsoft
Access automatically generates SQL and sends it to Microsoft Access’s internal Access Database
Engine (ADE, which is a variant of the Microsoft Jet engine) every time you run a query, process
a form, or create a report. To go beyond elementary database processing, you need to know how
to use SQL in Microsoft Access. Queries in Access are by default created using the GUI QBE
interface, then translated into SQL for processing. One can also create SQL queries directly in
Access, bypassing QBE if desired.

2.15 Explain how enterprise-class DBMS products use SQL.

Enterprise-class DBMS products, which include Microsoft SQL Server, Oracle Corporation’s
Oracle Database and MySQL, and IBM’s DB2, require you to know and use SQL. All data
manipulation is expressed in SQL in these products.

The Cape Codd Outdoor Sports sale extraction database has been modified to include three
additional tables: the INVENTORY table, the WAREHOUSE table, and the
CATALOG_SKU_2013 table. The table schemas for these tables, RETAIL_ORDER,
ORDER_ITEM, SKU_DATA, CATALOG_SKU_2014, and CATALOG_SKU_2015 tables, are as
follows:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear,
OrderTotal)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)
SKU_DATA (SKU, SKU_Description, Department, Buyer)
WAREHOUSE (WarehouseID, WarehouseCity, WarehouseState, Manager, Squarefeet)
INVENTORY (WarehouseID, SKU, SKU_Description, QuantityOnHand,
QuantityOnOrder)
CATALOG_SKU_2013 (CatalogID, SKU, SKU_Description, CatalogPage,
DateOnWebSite)

CATALOG_SKU_2014 (CatalogID, SKU, SKU_Description, CatalogPage,
DateOnWebSite)

CATALOG_SKU_2015 (CatalogID, SKU, SKU_Description, CatalogPage,
DateOnWebSite)

Chapter 2 – Introduction to Structured Query Language

Page 2-13
Copyright © 2016 Pearson Education, Inc.

The eight tables in the revised Cape Codd database schema are shown in Figure 2-34. The
column characteristics for the WAREHOUSE table are shown in Figure 2-35, the column
characteristics for the INVENTORY table are shown in Figure 2-36, and the column
characteristics for the CATALOG_SKU_2013 table are shown in Figure 2-37. The data for the
WAREHOUSE table are shown in Figure 2-38, the data for the INVENTORY table are shown in
Figure 2-39, and the data for the CATALOG_SKU_2013 table are shown in Figure 2-40.

Figure 2-34 – The Cape Codd Database with the WAREHOUSE, INVENTORY, and
CATALOG_SKU_2013 tables

Figure 2-35 - Column Characteristics for the WAREHOUSE Table

Chapter 2 – Introduction to Structured Query Language

Page 2-14
Copyright © 2016 Pearson Education, Inc.

Figure 2-36 - Column Characteristics for the INVENTORY Table

Figure 2-37 - Column Characteristics for the CATALOG_SKU_2013 Table

Chapter 2 – Introduction to Structured Query Language

Page 2-15
Copyright © 2016 Pearson Education, Inc.

Figure 2-38 - Cape Codd Database WAREHOUSE Table Data

Chapter 2 – Introduction to Structured Query Language

Page 2-16
Copyright © 2016 Pearson Education, Inc.

Figure 2-39 - Cape Codd Database INVENTORY Table Data

Chapter 2 – Introduction to Structured Query Language

Page 2-17
Copyright © 2016 Pearson Education, Inc.

Figure 2-40 - Cape Codd Database CATALOG_SKU_2013 Table Data

You will need to create and setup a database named Cape_Codd for use with the
Cape Codd review questions. You may have already created this database as suggested in
Chapter 2 and used it to run the SQL queries discussed in the chapter. If you haven’t, you
need to do so now.

A Microsoft Access database named Cape_Codd.accdb is available on our Web site (www
.pearsonhighered.com/kroenke) that contains all the tables and data for the Cape Codd Outdoor
Sports sales data extract database. Also available on our Web site are SQL scripts for creating
and populating the tables for the Cape_Codd database in Microsoft SQL Server, Oracle
Database, and MySQL.

If you are using the Microsoft Access 2013 Cape_Codd.accdb database, simply copy it to
an appropriate location in your Documents folder. Otherwise, you will need to use the
discussion and instructions necessary for setting up the Cape_Codd database in the DBMS
product you are using:

■ For Microsoft SQL Server 2014, see online Chapter 10A.

■ For Oracle Database 12c or Oracle Express Edition 11g Release 2, see online
 Chapter 10B.
■ For MySQL 5.6 Community Server, see online Chapter 10C.

Once you have setup your Cape_Codd database, create an SQL script named Cape-Codd-
CH02-RQ.sql, and use it to record and store SQL statements that answer each of the following
questions (if the question requires a written answer, use an SQL comment to record your
answer):

NOTE: All answers below show the correct SQL statement, as well as SQL statements modified
for Microsoft Access 2013 when needed. Whenever possible, all results were obtained by

Chapter 2 – Introduction to Structured Query Language

Page 2-18
Copyright © 2016 Pearson Education, Inc.

running the SQL statements in Microsoft Access 2013, and the corresponding screen shots of the
results are shown below. As explained in the text, some queries cannot be run in Microsoft
Access 2013, and for those queries the correct result was obtained using Microsoft SQL Server
2014. The SQL statements shown should run with little, if any, modification needed for Oracle
Database 12c, Oracle Database Express Edition 11g R2, and MySQL 5.6.

Solutions to Review Questions 2.17 – 2.60 are contained in the Microsoft Access database DBP-
e14-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site
(www.pearsonhighered.com/kroenke). Solutions in SQL Server, Oracle, and MySQL are also
available at the same site.

If your students are using a DBMS other than Microsoft Access, the SQL code to create and
populate the Cape Codd database is available in the *.sql script files for SQL Server 2014, Oracle
Database 12c/Express Edition 11gR2, and MySQL 5.6 in the Instructor’s Resource Center on the
text’s Web site (www.pearsonhighered.com/kroenke).

2.16 There is an intentional flaw in the design of the INVENTORY table used in these
exercises. This flaw was purposely included in the INVENTORY tables so that you can
answer some of the following questions using only that table. Compare the SKU and
INVENTORY tables, and determine what design flaw is included in INVENTORY.
Specifically, why did we include it?

The flaw is the inclusion of the SKU_Description attribute in the INVENTORY table. This
attribute duplicates the SKU_Description attribute and data in the SKU_DATA table, where the
attribute rightfully belongs. By duplicating SKU_Description in the INVENTORY table, we can
ask you to list the SKU and its associated description in a single table query against the
INVENTORY table. Otherwise, a two table query would be required. If these tables were in a
production database, we would eliminate the INVENTORY.SKU_Description column.

Use only the INVENTORY table to answer Review Questions 2.17 through 2.39:

2.17 Write an SQL statement to display SKU and SKU_Description.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description
FROM INVENTORY;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-19
Copyright © 2016 Pearson Education, Inc.

The question does not ask for unique SKU and SKU_Description data, but could be obtained by using:

SELECT DISTINCT SKU, SKU_Description
FROM INVENTORY;

Chapter 2 – Introduction to Structured Query Language

Page 2-20
Copyright © 2016 Pearson Education, Inc.

Chapter 2 – Introduction to Structured Query Language

Page 2-21
Copyright © 2016 Pearson Education, Inc.

2.18 Write an SQL statement to display SKU_Description and SKU.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU_Description, SKU

FROM INVENTORY;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-22
Copyright © 2016 Pearson Education, Inc.

The question does not ask for unique SKU and SKU_Description data, but could be obtained by using:
SELECT UNIQUE SKU_Description, SKU
FROM INVENTORY;

2.19 Write an SQL statement to display WarehouseID.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT WarehouseID
FROM INVENTORY;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-23
Copyright © 2016 Pearson Education, Inc.

2.20 Write an SQL statement to display unique WarehouseIDs.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT DISTINCT WarehouseID
FROM INVENTORY;

2.21 Write an SQL statement to display all of the columns without using the SQL asterisk (*)
wildcard character.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT WarehouseID, SKU, SKU_Description,
 QuantityOnHand, QuantityOnOrder
FROM INVENTORY;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-24
Copyright © 2016 Pearson Education, Inc.

2.22 Write an SQL statement to display all of the columns using the SQL asterisk (*) wildcard
character.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT *
FROM INVENTORY;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-25
Copyright © 2016 Pearson Education, Inc.

Chapter 2 – Introduction to Structured Query Language

Page 2-26
Copyright © 2016 Pearson Education, Inc.

2.23 Write an SQL statement to display all data on products having a QuantityOnHand
greater than 0.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT *
FROM INVENTORY
WHERE QuantityOnHand >0;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-27
Copyright © 2016 Pearson Education, Inc.

2.24 Write an SQL statement to display the SKU and SKU_Description for products having
QuantityOnHand equal to 0.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description
FROM INVENTORY
WHERE QuantityOnHand =0;

2.25 Write an SQL statement to display the SKU, SKU_Description, and WarehouseID for
products having QuantityOnHand equal to 0. Sort the results in ascending order by
WarehouseID.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID
FROM INVENTORY
WHERE QuantityOnHand =0
ORDER BY WarehouseID;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-28
Copyright © 2016 Pearson Education, Inc.

2.26 Write an SQL statement to display the SKU, SKU_Description, and WarehouseID for
products having QuantityOnHand greater than 0. Sort the results in descending order by
WarehouseID and ascending order by SKU.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID
FROM INVENTORY
WHERE QuantityOnHand > 0
ORDER BY WarehouseID DESC, SKU;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-29
Copyright © 2016 Pearson Education, Inc.

2.27 Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all
products that have a QuantityOnHand equal to 0 and a QuantityOnOrder greater than 0.
Sort the results in descending order by WarehouseID and in ascending order by SKU.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID
FROM INVENTORY
WHERE QuantityOnHand = 0
 AND QuantityOnOrder > 0
ORDER BY WarehouseID DESC, SKU;

2.28 Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all
products that have a QuantityOnHand equal to 0 or a QuantityOnOrder equal to 0. Sort
the results in descending order by WarehouseID and in ascending order by SKU.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID
FROM INVENTORY
WHERE QuantityOnHand = 0
 OR QuantityOnOrder = 0
ORDER BY WarehouseID DESC, SKU;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-30
Copyright © 2016 Pearson Education, Inc.

2.29 Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less than
10. Do not use the BETWEEN keyword.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID, QuantityOnHand
FROM INVENTORY
WHERE QuantityOnHand > 1
 AND QuantityOnhand < 10;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-31
Copyright © 2016 Pearson Education, Inc.

2.30 Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less than
10. Use the BETWEEN keyword.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID, QuantityOnHand
FROM INVENTORY
WHERE QuantityOnHand BETWEEN 2 AND 9;

2.31 Write an SQL statement to show a unique SKU and SKU_Description for all products
having an SKU description starting with ‘Half-dome’.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Note that, as discussed in Chapter 2, Microsoft Access 2013 uses wildcard characters that differ
from the SQL standard.

For Microsoft SQL Server, Oracle Database, and MySQL:

SELECT DISTINCT SKU, SKU_Description
FROM INVENTORY
WHERE SKU_Description LIKE 'Half-dome%';

For Microsoft Access:

SELECT DISTINCT SKU, SKU_Description
FROM INVENTORY
WHERE SKU_Description LIKE 'Half-dome*';

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-32
Copyright © 2016 Pearson Education, Inc.

2.32 Write an SQL statement to show a unique SKU and SKU_Description for all products
having a description that includes the word 'Climb'.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Note that, as discussed in Chapter 2, Microsoft Access 2013 uses wildcard characters that differ
from the SQL standard.

For Microsoft SQL Server, Oracle Database, and MySQL:

SELECT DISTINCT SKU, SKU_Description
FROM INVENTORY
WHERE SKU_Description LIKE '%Climb%';

For Microsoft Access:

SELECT DISTINCT SKU, SKU_Description
FROM INVENTORY
WHERE SKU_Description LIKE '*Climb*';

2.33 Write an SQL statement to show a unique SKU and SKU_Description for all products
having a ‘d’ in the third position from the left in SKU_Description.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Note that, as discussed in Chapter 2, Microsoft Access 2013 uses wildcard characters that differ
from the SQL standard.

For Microsoft SQL Server, Oracle Database, and MySQL:

SELECT DISTINCT SKU, SKU_Description
FROM INVENTORY
WHERE SKU_Description LIKE '__d%';

For Microsoft Access:

SELECT DISTINCT SKU, SKU_Description
FROM INVENTORY
WHERE SKU_Description LIKE '??d*';

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-33
Copyright © 2016 Pearson Education, Inc.

2.34 Write an SQL statement that uses all of the SQL built-in functions on the QuantityOn-
Hand column. Include meaningful column names in the result.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT COUNT(QuantityOnHand) AS NumberOfRows,
 SUM(QuantityOnHand) AS TotalQuantityOnHand,
 AVG(QuantityOnHand) AS AverageQuantityOnHand,
 MAX(QuantityOnHand) AS MaximumQuantityOnHand,
 MIN(QuantityOnHand) AS MinimumQuantityOnHand
FROM INVENTORY;

2.35 Explain the difference between the SQL built-in functions COUNT and SUM.

COUNT counts the number of rows or records in a table, while SUM adds up the data values in
the specified column.

2.36 Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand,
grouped by WarehouseID. Name the sum TotalItemsOnHand and display the results in
descending order of TotalItemsOnHand.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

For Microsoft SQL Server, Oracle Database, and MySQL:

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHand
FROM INVENTORY
GROUP BY WarehouseID
ORDER BY TotalItemsOnHand DESC;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-34
Copyright © 2016 Pearson Education, Inc.

For Microsoft Access:

Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an
aliased computed result. To correct this, we use an SQL statement with the un-aliased
computation:

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHand
FROM INVENTORY
GROUP BY WarehouseID
ORDER BY SUM(QuantityOnHand) DESC;

The results, presented below in Access, are identical in all 4 DBMSs:

2.37 Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand,

grouped by WarehouseID. Omit all SKU items that have 3 or more items on hand from
the sum, and name the sum TotalItemsOnHandLT3 and display the results in
descending order of TotalItemsOnHandLT3.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

For Microsoft SQL Server, Oracle Database, and MySQL:

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM INVENTORY
WHERE QuantityOnHand < 3
GROUP BY WarehouseID
ORDER BY TotalItemsOnHandLT3 DESC;

For Microsoft Access:

Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an
aliased computed result. To correct this, we use an SQL statement with the un-aliased
computation:

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-35
Copyright © 2016 Pearson Education, Inc.

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM INVENTORY
WHERE QuantityOnHand < 3
GROUP BY WarehouseID
ORDER BY SUM(QuantityOnHand) DESC;

The results, presented below in Access, are identical in all 4 DBMSs:

2.38 Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand
grouped by WarehouseID. Omit all SKU items that have 3 or more items on hand from
the sum, and name the sum TotalItemsOnHandLT3. Show Warehouse ID only for
warehouses having fewer than 2 SKUs in their TotalItemsOnHandLT3. Display the
results in descending order of TotalItemsOnHandLT3.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

For Microsoft SQL Server, Oracle Database and MySQL:

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM INVENTORY
WHERE QuantityOnHand < 3
GROUP BY WarehouseID
HAVING COUNT(*) < 2
ORDER BY TotalItemsOnHandLT3 DESC;

For Microsoft Access:

Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an
aliased computed result. To correct this, we use an SQL statement with the un-aliased
computation:

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3
FROM INVENTORY
WHERE QuantityOnHand < 3
GROUP BY WarehouseID
HAVING COUNT(*) < 2
ORDER BY SUM(QuantityOnHand) DESC;

The results, presented below in Access, are identical in all 4 DBMSs:

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-36
Copyright © 2016 Pearson Education, Inc.

2.39 In your answer to Review Question 2.38, was the WHERE or HAVING applied first?
Why?

The WHERE clause is always applied before the HAVING clause. Otherwise there would be
ambiguity in the SQL statement and the results would differ according to which clause was
applied first.

Use both the INVENTORY and WAREHOUSE tables to answer Review Questions 2.40
through 2.52:

2.40 Write an SQL statement to display the SKU, SKU_Description, WarehouseID,
WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the IN keyword.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description,
 WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM INVENTORY, WAREHOUSE
WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
 AND (WarehouseCity = 'Atlanta'
 OR WarehouseCity = 'Bangor'

 OR WarehouseCity = 'Chicago');

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-37
Copyright © 2016 Pearson Education, Inc.

2.41 Write an SQL statement to display the SKU, SKU_Description, WarehouseID,

WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Use the IN keyword.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description,
 WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM INVENTORY, WAREHOUSE
WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
 AND WarehouseCity IN ('Atlanta', 'Bangor' ,'Chicago');

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-38
Copyright © 2016 Pearson Education, Inc.

2.42 Write an SQL statement to display the SKU, SKU_Description, WarehouseID,

WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the NOT IN keyword.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

NOTE: The symbol for “not equal to” is < >. Since we want the query output for warehouses
that are not Atlanta or Bangor or Chicago as a set, we must ask for warehouses that are not in the
group (Atlanta and Bangor and Chicago). This means we use AND in the WHERE clause – if
we used OR in the WHERE clause, we would end up with ALL warehouses being in the query
output. This happens because each OR eliminates only one warehouse, but that warehouse still
qualifies for inclusion in the other OR statements. To demonstrate this, substitute OR for each
AND in the SQL statement below.

SELECT SKU, SKU_Description,
 WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM INVENTORY, WAREHOUSE

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-39
Copyright © 2016 Pearson Education, Inc.

WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
 AND WarehouseCity <> 'Atlanta'
 AND WarehouseCity <> 'Bangor'
 AND WarehouseCity <> 'Chicago';

2.43 Write an SQL statement to display the SKU, SKU_Description, WarehouseID,

WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Use the NOT IN keyword.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description,
 WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState
FROM INVENTORY, WAREHOUSE
WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
 AND WarehouseCity NOT IN ('Atlanta', 'Bangor' ,'Chicago');

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-40
Copyright © 2016 Pearson Education, Inc.

2.44 Write an SQL statement to produce a single column called ItemLocation that combines
the SKU_Description, the phrase “is located in”, and WarehouseCity. Do not be
concerned with removing leading or trailing blanks.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Note that the SQL syntax will vary depending upon the DBMS—see the discussion in Chapter 2.

SELECT SKU_Description+' is located in '
 +WarehouseCity AS ITEM_Location
FROM INVENTORY, WAREHOUSE
WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-41
Copyright © 2016 Pearson Education, Inc.

2.45 Write an SQL statement to show the SKU, SKU_Description, WarehouseID for all items

stored in a warehouse managed by ‘Lucille Smith’. Use a subquery.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-42
Copyright © 2016 Pearson Education, Inc.

SELECT SKU, SKU_Description, WarehouseID
FROM INVENTORY
WHERE WarehouseID IN
 (SELECT WarehouseID
 FROM WAREHOUSE
 WHERE Manager = 'Lucille Smith');

2.46 Write an SQL statement to show the SKU, SKU_Description, and WarehouseID for all
items stored in a warehouse managed by ‘Lucille Smith’. Use a join, but do not use JOIN
ON syntax.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).
SELECT SKU, SKU_Description, WAREHOUSE.WarehouseID
FROM INVENTORY, WAREHOUSE
WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID

 AND Manager = 'Lucille Smith';

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-43
Copyright © 2016 Pearson Education, Inc.

2.47 Write an SQL statement to show the SKU, SKU_Description, WarehouseID for all items
stored in a warehouse managed by ‘Lucille Smith’. Use a join using JOIN ON syntax.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

For Microsoft SQL Server, Oracle Database, and MySQL:

SELECT SKU, SKU_Description, WAREHOUSE.WarehouseID
FROM INVENTORY JOIN WAREHOUSE
 ON INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
WHERE Manager = 'Lucille Smith';

For Microsoft Access:

Microsoft Access requires the SQL JOIN ON syntax INNER JOIN instead of just JOIN:

SELECT SKU, SKU_Description, WAREHOUSE.WarehouseID
FROM INVENTORY INNER JOIN WAREHOUSE
 ON INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
WHERE Manager = 'Lucille Smith';

2.48 Write an SQL statement to show the WarehouseID and average QuantityOnHand of all
items stored in a warehouse managed by ‘Lucille Smith’. Use a subquery.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-44
Copyright © 2016 Pearson Education, Inc.

Note that the “GROUP BY” clause is necessary here since warehouse manager names are not
necessarily unique: since the question asks for warehouse ID, there should be one result for each
warehouse managed by a ‘Lucille Smith’.

SELECT WarehouseID,
 AVG(QuantityOnHand) AS AverageQuantityOnHand
FROM INVENTORY
WHERE WarehouseID IN
 (SELECT WarehouseID
 FROM WAREHOUSE
 WHERE Manager = 'Lucille Smith')
GROUP BY WarehouseID;

2.49 Write an SQL statement to show the WarehouseID and average QuantityOnHand of all
items stored in a warehouse managed by ‘Lucille Smith’. Use a join, but do not use
JOIN ON syntax.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Note that the “GROUP BY” clause is necessary here since warehouse manager names are not
necessarily unique: since the question asks for warehouse ID, there should be one result for each
warehouse managed by a ‘Lucille Smith’.

SELECT INVENTORY.WarehouseID,
 AVG(QuantityOnHand) AS AverageQuantityOnHand
FROM INVENTORY, WAREHOUSE
WHERE INVENTORY.WarehouseID = WAREHOUSE.WarehouseID
 AND Manager = 'Lucille Smith'
GROUP BY INVENTORY.Warehouse.ID;

Note the use of the complete references to INVENTORY.Warehouse—the query will NOT
work without them.

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-45
Copyright © 2016 Pearson Education, Inc.

2.50 Write an SQL statement to show the WarehouseID and average QuantityOnHand of all
items stored in a warehouse managed by ‘Lucille Smith’. Use a join using JOIN ON
syntax.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Note that the “GROUP BY” clause is necessary here since warehouse manager names are not
necessarily unique: since the question asks for warehouse ID, there should be one result for each
warehouse managed by a ‘Lucille Smith’.

For Microsoft SQL Server, Oracle Database, and MySQL:

SELECT INVENTORY.WarehouseID,
AVG(QuantityOnHand) AS AverageQuantityOnHand

FROM INVENTORY JOIN WAREHOUSE
 ON INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
WHERE Manager = 'Lucille Smith'
GROUP BY INVENTORY.WarehouseID;

For Microsoft Access:

Microsoft Access requires the SQL JOIN ON syntax INNER JOIN instead of just JOIN:

SELECT INVENTORY.WarehouseID,
AVG(QuantityOnHand) AS AverageQuantityOnHand

FROM INVENTORY INNER JOIN WAREHOUSE
 ON INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
WHERE Manager = 'Lucille Smith'
GROUP BY INVENTORY.WarehouseID;

2.51 Write an SQL statement to show the WarehouseID, WarehouseCity, WarehouseState,

Manager, SKU, SKU_Description, and QuantityOnHand of all items with a Manager of
‘Lucille Smith’. Use a join using JOIN ON syntax.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-46
Copyright © 2016 Pearson Education, Inc.

SELECT WAREHOUSE.WarehouseID, WarehouseCity,
 WarehouseState, Manager,
 SKU, SKU_Description, QuantityOnHand
FROM INVENTORY INNER JOIN WAREHOUSE
ON INVENTORY.WarehouseID=WAREHOUSE.WarehouseID
WHERE Manager = 'Lucille Smith';

Note the use of the complete references to INVENTORY.WarehouseID and
WAREHOUSE.WarehouseID—the query will NOT work without them.

The above version of the query works in Access, SQL Server, Oracle Database, and MySQL.
The “INNER” keyword is required in Access, but is optional in SQL Server, Oracle, and MySQL.
In addition, this query could benefit from aliasing (range variables) for readability, but that syntax
is slightly different in Oracle than in the other three systems (the “AS” keyword is not allowed in
Oracle). Thus the most typical, preferred solutions for each system are as follows:

 For Microsoft Access:

SELECT W.WarehouseID, WarehouseCity,
 WarehouseState, Manager,
 SKU, SKU_Description, QuantityOnHand
FROM INVENTORY AS I INNER JOIN WAREHOUSE AS W
ON I.WarehouseID=W.WarehouseID

 WHERE Manager = 'Lucille Smith';

 For Oracle Database:

SELECT W.WarehouseID, WarehouseCity,
 WarehouseState, Manager,
 SKU, SKU_Description, QuantityOnHand
FROM INVENTORY I INNER JOIN WAREHOUSE W
ON I.WarehouseID=W.WarehouseID

 WHERE Manager = 'Lucille Smith';

 For SQL Server and MySQL:

SELECT W.WarehouseID, WarehouseCity,
 WarehouseState, Manager,
 SKU, SKU_Description, QuantityOnHand
FROM INVENTORY AS I JOIN WAREHOUSE AS W
ON I.WarehouseID=W.WarehouseID

 WHERE Manager = 'Lucille Smith';

Chapter 2 – Introduction to Structured Query Language

Page 2-47
Copyright © 2016 Pearson Education, Inc.

2.52 Write an SQL statement to display the WarehouseID, the sum of QuantityOnOrder and
sum of QuantityOnHand, grouped by WarehouseID and QuantityOnOrder. Name the
sum of QuantityOnOrder as TotalItemsOnOrder and the sum of QuantityOnHand as
TotalItemsOnHand. Use only the INVENTORY table in your SQL statement.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT WarehouseID,
 SUM(QuantityOnOrder) AS TotalItemsOnOrder,
 SUM(QuantityOnHand) AS TotalItemsOnHand
FROM INVENTORY
GROUP BY WarehouseID, QuantityOnOrder;

2.53 Explain why you cannot use a subquery in your answer to question 2.52.

In a query that contains a subquery, only data from fields in the table used in the top-level query
can be included in the SELECT statement. If data from fields from other tables are also needed, a

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-48
Copyright © 2016 Pearson Education, Inc.

join must be used. In question 2.52 we needed to display WAREHOUSE.Manager but
INVENTORY would have been the table in the top-level query. Therefore, we had to use a join.

2.54 Explain how subqueries and joins differ.

(1) In a query that contains a subquery, only data from fields in the table used in the top-level
query can be included in the SELECT statement. If data from fields from other tables are also
needed, a join must be used. See the answer to question 2.53.

(2) The subqueries in this chapter are non-correlated subqueries, which have an equivalent join
structure. In Chapter 8, correlated subqueries will be discussed, and correlated subqueries do
not have an equivalent join structure—you must use subqueries.

2.55 Write an SQL statement to join WAREHOUSE and INVENTORY and include all rows of

WAREHOUSE in your answer, regardless of whether they have any INVENTORY. Run
this statement.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Note that the question doesn’t specify which columns to retrieve; we retrieve all columns (but
without repeating the join column).

SELECT W.*, I.SKU, I.SKU_Description, I.QuantityOnHand,
I.QuantityOnOrder

FROM WAREHOUSE AS W LEFT JOIN INVENTORY AS I
 ON W.WarehouseID = I.WarehouseID;

In Oracle, the “AS” keyword is not permitted in the “JOIN” clause, so the Oracle Database
solution is:

SELECT W.*, I.SKU, I.SKU_Description, I.QuantityOnHand,

I.QuantityOnOrder
FROM WAREHOUSE W LEFT JOIN INVENTORY I
 ON W.WarehouseID = I.WarehouseID;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-49
Copyright © 2016 Pearson Education, Inc.

Use both the CATALOG_SKU_2013 and CATALOG_SKU_2014 tables to answer Review
Questions 2.56 through 2.60 (for MySQL, 2.56 and 2.57 only):

2.56 Write an SQL statement to display the SKU, SKU_Description, and Department of all
SKUs that appear in either the Cape Codd 2013 Catalog (either in the printed catalog or
on the Web site) or the Cape Codd 2014 catalog (either in the printed catalog or on the
Web site) or both.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, Department
FROM CATALOG_SKU_2013
UNION
SELECT SKU, SKU_Description, Department
FROM CATALOG_SKU_2014;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-50
Copyright © 2016 Pearson Education, Inc.

2.57 Write an SQL statement to display the SKU, SKU_Description, and Department of all
SKUs that appear in either the Cape Codd 2013 Catalog (only in the printed catalog
itself) or the Cape Codd 2014 catalog (only in the printed catalog itself) or both.

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, Department
FROM CATALOG_SKU_2013
WHERE CatalogPage IS NOT NULL
UNION
SELECT SKU, SKU_Description, Department
FROM CATALOG_SKU_2014
WHERE CatalogPage IS NOT NULL;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-51
Copyright © 2016 Pearson Education, Inc.

2.58 Write an SQL statement to display the SKU, SKU_Description, and Department of all
SKUs that appear in both the Cape Codd 2013 Catalog (either in the printed catalog or
on the Web site) and the Cape Codd 2014 catalog (either in the printed catalog or on the
Web site).

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Note that Oracle Database and SQL Server support INTERSECT directly. In MySQL and
Access INTERSECT is not supported but can be simulated using a join.

 For Oracle and SQL Server:

SELECT SKU, SKU_Description, Department
FROM CATALOG_SKU_2013
INTERSECT
SELECT SKU, SKU_Description, Department

 FROM CATALOG_SKU_2014;

 For MySQL and Access:

SELECT DISTINCT CS13.SKU, CS13.SKU_Description, CS13.Department
FROM CATALOG_SKU_2013 AS CS13
 INNER JOIN CATALOG_SKU_2014 AS CS14
ON CS13.SKU = CS14.SKU;

2.59 Write an SQL statement to display the SKU, SKU_Description, and Department of all
SKUs that appear in both the Cape Codd 2013 Catalog (only in the printed catalog itself)
and the Cape Codd 2014 catalog (only in the printed catalog itself).

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-52
Copyright © 2016 Pearson Education, Inc.

Note that Oracle Database and SQL Server support INTERSECT directly. In MySQL and
Access INTERSECT is not supported but can be simulated using a join.

 For Oracle and SQL Server:

SELECT SKU, SKU_Description, Department
FROM CATALOG_SKU_2013
WHERE CatalogPage IS NOT NULL
INTERSECT
SELECT SKU, SKU_Description, Department
FROM CATALOG_SKU_2014
WHERE CatalogPage IS NOT NULL;

 For MySQL and Access:

SELECT DISTINCT CS13.SKU, CS13.SKU_Description, CS13.Department
FROM CATALOG_SKU_2013 AS CS13
 INNER JOIN CATALOG_SKU_2014 AS CS14
ON CS13.SKU = CS14.SKU
WHERE CS13.CatalogPage IS NOT NULL AND CS14.CatalogPage IS NOT NULL;

2.60 Write an SQL statement to display the SKU, SKU_Description, and Department of all
SKUs that appear in only the Cape Codd 2013 Catalog (either in the printed catalog or
on the Web site) and not in the Cape Codd 2014 catalog (either in the printed catalog or
on the Web site).

SQL Solutions to Project Questions 2.17 – 2.60 are contained in the Microsoft Access database
DBP-e14-IM-CH02-Cape-Codd-RQ.accdb and in the corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Note that Oracle Database and SQL Server support set subtraction directly. In MySQL and
Access this operation is not supported but can be simulated using an outer join.

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-53
Copyright © 2016 Pearson Education, Inc.

 For SQL Server:

SELECT SKU, SKU_Description, Department
FROM CATALOG_SKU_2013
EXCEPT
SELECT SKU, SKU_Description, Department

 FROM CATALOG_SKU_2014;

 For Oracle:

SELECT SKU, SKU_Description, Department
FROM CATALOG_SKU_2013
MINUS
SELECT SKU, SKU_Description, Department

 FROM CATALOG_SKU_2014;

 For MySQL and Access:

SELECT DISTINCT CS13.SKU, CS13.SKU_Description, CS13.Department
FROM CATALOG_SKU_2013 AS CS13
 LEFT OUTER JOIN CATALOG_SKU_2014 AS CS14
ON CS13.SKU = CS14.SKU
WHERE CS14.SKU IS NULL;

Chapter 2 – Introduction to Structured Query Language

Page 2-54
Copyright © 2016 Pearson Education, Inc.

 ANSWERS TO PROJECT QUESTIONS

For this set of project questions, we will extend the Microsoft Access 2013 database for the
Wedgewood Pacific Corporation (WPC) that we created in Chapter 1. Founded in 1957 in
Seattle, Washington, WPC has grown into an internationally recognized organization. The
company is located in two buildings. One building houses the Administration, Accounting,
Finance, and Human Resources departments, and the second houses the Production,
Marketing, and Information Systems departments. The company database contains data about
company employees, departments, company projects, company assets such as computer
equipment, and other aspects of company operations.

In the following project questions, we have already created the WPC.accdb database with the
following two tables (see Chapter 1 Project Questions):

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)

Now we will add in the following two tables:

PROJECT (ProjectID, Name, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

The four tables in the revised WPC database schema are shown in Figure 2-41. The column
characteristics for the PROJECT table are shown in Figure 2-42, and the column characteristics
for the ASSIGNMENT table are shown in Figure 2-44. Data for the PROJECT table are shown
in Figure 2-43, and the data for the ASSIGNMENT table are shown in Figure 2-45.

Figure 2-41 – The WPC Database with the PROJECT and ASSIGNMENT Tables

Chapter 2 – Introduction to Structured Query Language

Page 2-55
Copyright © 2016 Pearson Education, Inc.

2.61 Figure 2-42 shows the column characteristics for the WPC PROJECT table. Using the
column characteristics, create the PROJECT table in the WPC.accdb database.

Solutions to Project Questions 2.61 – 2.70 are contained in the Microsoft Access database DBP-
e14-IM-CH02-WPC.accdb which is available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Figure 2-42 - Column Characteristics for the PROJECT Table

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-56
Copyright © 2016 Pearson Education, Inc.

2.62 Create the relationship and referential integrity constraint between PROJECT and
DEPARTMENT. In the Edit Relationship dialog box, enable enforcing of referential
integrity and cascading of data updates, but do not enable cascading of data from
deleted records. We will define cascading actions in Chapter 6.

Solutions to Project Questions 2.61 – 2.70 are contained in the Microsoft Access database DBP-
e14-IM-CH02-WPC.accdb which is available on the text’s Web site
(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-57
Copyright © 2016 Pearson Education, Inc.

2.63 Figure 2-43 shows the data for the WPC PROJECT table. Using the Datasheet view,
enter the data shown in Figure 2-43 into your PROJECT table.

Solutions to Project Questions 2.61 – 2.70 are contained in the Microsoft Access database DBP-
e14-IM-CH02-WPC.accdb which is available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Figure 2-43 - Sample Data for the PROJECT Table

2.64 Figure 2-44 shows the column characteristics for the WPC ASSIGNMENT table. Using
the column characteristics, create the ASSIGNMENT table in the WPC.accdb database.

Solutions to Project Questions 2.61 – 2.70 are contained in the Microsoft Access database DBP-
e14-IM-CH02-WPC.accdb which is available on the text’s Web site
(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-58
Copyright © 2016 Pearson Education, Inc.

Figure 2-44 - Column Characteristics for the ASSIGNMENT Table

Chapter 2 – Introduction to Structured Query Language

Page 2-59
Copyright © 2016 Pearson Education, Inc.

2.65 Create the relationship and referential integrity constraint between ASSIGNMENT and
EMPLOYEE. In the Edit Relationship dialog box, enable enforcing of referential integrity,
but do not enable either cascading updates or the cascading of data from deleted
records.

Solutions to Project Questions 2.61 – 2.70 are contained in the Microsoft Access database DBP-
e14-IM-CH02-WPC.accdb which is available on the text’s Web site
(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-60
Copyright © 2016 Pearson Education, Inc.

2.66 Create the relationship and referential integrity constraint between ASSIGNMENT and
PROJECT. In the Edit Relationship dialog box, enable enforcing of referential integrity
and cascading of deletes, but do not enable cascading updates.

Solutions to Project Questions 2.61 – 2.70 are contained in the Microsoft Access database DBP-
e14-IM-CH02-WPC.accdb which is available on the text’s Web site
(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-61
Copyright © 2016 Pearson Education, Inc.

2.67 Figure 2-45 shows the data for the WPC ASSIGNMENT table. Using the Datasheet
view, enter the data shown in Figure 2-45 into your ASSIGNMENT table.

Solutions to Project Questions 2.61 – 2.70 are contained in the Microsoft Access database DBP-
e14-IM-CH02-WPC.accdb which is available on the text’s Web site
(www.pearsonhighered.com/kroenke).

Figure 2-45 - Sample Data for the ASSIGNMENT Table

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-62
Copyright © 2016 Pearson Education, Inc.

2.68 In Project Question 2.63, the table data was entered after referential integrity constraints
were created in Project Question 2.62. In Project Question 2.67, the table data was
entered after referential integrity constraints were created in Project Questions 2.65 and
2.66. Why was the data entered after the referential integrity constraints were created
instead of before the constraints were created?

Both the PROJECT and ASSIGNMENT tables have foreign keys. PROJECT.Department is the
foreign key in PROJECT, and both ASSIGNMENT.ProjectID and
ASSIGNMENT.EmployeeNumber are foreign keys in ASSIGNMENT. If data was entered into
these columns before the referential integrity constraints were established, it would be possible to
enter foreign key data that had no corresponding primary key data. Thus, we establish the
referential integrity constraints so that the DBMS will not allow inconsistent data to be entered
into the foreign key columns.

2.69 Using Microsoft Access SQL, create and run queries to answer the following questions.
Save each query using the query name format SQL-Query-02-##, where the ## sign is
replaced by the letter designator of the question. For example, the first query will be
saved as SQL-Query-02-A.

Solutions to Project Questions 2.61 – 2.70 are contained in the Microsoft Access database DBP-
e14-IM-CH02-WPC.accdb which is available on the text’s Web site
(www.pearsonhighered.com/kroenke).

A. What projects are in the PROJECT table? Show all information for each project.
/***** Question A - SQL-Query-02-A ************************/

SELECT * FROM PROJECT;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-63
Copyright © 2016 Pearson Education, Inc.

B. What are the ProjectID, Name, StartDate, and EndDate values of projects in the
PROJECT table?

/***** Question B - SQL-Query-02-B ************************/

SELECT ProjectID, Name, StartDate, EndDate
FROM PROJECT;

C. What projects in the PROJECT table started before August 1, 2015? Show all the
information for each project.

/***** Question C - SQL-Query-02-C ************************/

SELECT *
FROM PROJECT
WHERE StartDate < #01-AUG-15#;

Chapter 2 – Introduction to Structured Query Language

Page 2-64
Copyright © 2016 Pearson Education, Inc.

D. What projects in the PROJECT table have not been completed? Show all the
information for each project.

/***** Question D - SQL-Query-02-D ************************/

SELECT *
FROM PROJECT
WHERE EndDate IS NULL;

E. Who are the employees assigned to each project? Show ProjectID, Employee-
Number, LastName, FirstName, and Phone.

/***** Question E - SQL-Query-02-E ************************/

SELECT ProjectID, E.EmployeeNumber, LastName, FirstName, Phone
FROM ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
 ON A.EmployeeNumber=E.EmployeeNumber;

Chapter 2 – Introduction to Structured Query Language

Page 2-65
Copyright © 2016 Pearson Education, Inc.

F. Who are the employees assigned to each project? Show ProjectID, Name, and
Department. Show EmployeeNumber, LastName, FirstName, and Phone.

Note the use of the aliases ProjectName, ProjectDepartment, and EmployeePhone)

/***** Question F - SQL-Query-02-F ************************/

SELECT P.ProjectID, Name AS ProjectName,
 P.Department AS ProjectDepartment,
 E.EmployeeNumber, LastName, FirstName,
 Phone AS EmployeePhone
FROM (ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
 ON A.EmployeeNumber=E.EmployeeNumber)
 INNER JOIN PROJECT AS P
 ON A.ProjectID=P.ProjectID;

Chapter 2 – Introduction to Structured Query Language

Page 2-66
Copyright © 2016 Pearson Education, Inc.

G. Who are the employees assigned to each project? Show ProjectID, Name,
Department, and Department Phone. Show EmployeeNumber, LastName,
FirstName, and Employee Phone. Sort by ProjectID in ascending order.

Note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and
EmployeePhone.

/***** Question G - SQL-Query-02-G ************************/

SELECT P.ProjectID, Name AS ProjectName,
 D.DepartmentName AS ProjectDepartment,
 D.Phone AS DepartmentPhone,
 E.EmployeeNumber, LastName, FirstName,
 E.Phone AS EmployeePhone
FROM ((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
 ON A.EmployeeNumber=E.EmployeeNumber)
 INNER JOIN PROJECT AS P
 ON A.ProjectID=P.ProjectID)
 INNER JOIN DEPARTMENT AS D
 ON P.Department=D.DepartmentName
ORDER BY P.ProjectID;

Chapter 2 – Introduction to Structured Query Language

Page 2-67
Copyright © 2016 Pearson Education, Inc.

H. Who are the employees assigned to projects run by the marketing department?
Show ProjectID, Name, Department, and Department Phone. Show
EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in
ascending order.

Note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone, and
EmployeePhone.

/***** Question H - SQL-Query-02-H ************************/

SELECT P.ProjectID, Name AS ProjectName,
 D.DepartmentName AS ProjectDepartment,
 D.Phone AS DepartmentPhone,
 E.EmployeeNumber, LastName, FirstName,
 E.Phone AS EmployeePhone
FROM ((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E
 ON A.EmployeeNumber=E.EmployeeNumber)
 INNER JOIN PROJECT AS P
 ON A.ProjectID=P.ProjectID)
 INNER JOIN DEPARTMENT AS D
 ON P.Department=D.DepartmentName
WHERE DepartmentName='Marketing'
ORDER BY P.ProjectID;

I. How many projects are being run by the marketing department? Be sure to assign an
appropriate column name to the computed results.

Note the use of the alias NumberOfMarketingProjects.

/***** Question I - SQL-Query-02-I ************************/

SELECT COUNT(*) AS NumberOfMarketingProjects
FROM PROJECT
WHERE Department='Marketing';

Chapter 2 – Introduction to Structured Query Language

Page 2-68
Copyright © 2016 Pearson Education, Inc.

J. What is the total MaxHours of projects being run by the marketing department? Be
sure to assign an appropriate column name to the computed results.

Note the use of the alias TotalMaxHoursForMarketingProjects.
/***** Question J - SQL-Query-02-J ************************/

SELECT SUM(MaxHours) AS TotalMaxHoursForMarketingProjects
FROM PROJECT
WHERE Department='Marketing';

K. What is the average MaxHours of projects being run by the marketing department?
Be sure to assign an appropriate column name to the computed results.

Note the use of the alias AverageMaxHoursForMarketingProjects.
/***** Question K - SQL-Query-02-K ************************/

SELECT AVG(MaxHours) AS AverageMaxHoursForMarketingProjects
FROM PROJECT
WHERE Department='Marketing';

L. How many projects are being run by each department? Be sure to display each
DepartmentName and to assign an appropriate column name to the computed
results.

Note the use of the alias NumberOfDepartmentProjects.

/***** Question L - SQL-Query-02-L ************************/

SELECT Department, COUNT(*) AS NumberOfDepartmentProjects
FROM PROJECT
GROUP BY Department;

Chapter 2 – Introduction to Structured Query Language

Page 2-69
Copyright © 2016 Pearson Education, Inc.

M. Write an SQL statement to join EMPLOYEE, ASSIGNMENT, and PROJECT using
the JOIN ON syntax. Run this statement.
SELECT E.*, A.*, P.*
FROM (EMPLOYEE AS E INNER JOIN ASSIGNMENT AS A
 ON E.EmployeeNumber = A.EmployeeNumber)
 INNER JOIN PROJECT AS P
 ON A.ProjectID = P.ProjectID;

N. Write an SQL statement to join EMPLOYEE and ASSIGNMENT and include all rows

of EMPLOYEE in your answer, regardless of whether they have an ASSIGNMENT.
Run this statement.

SELECT E.*, A.*
FROM EMPLOYEE AS E LEFT JOIN ASSIGNMENT AS A
 ON E.EmployeeNumber = A.EmployeeNumber;

Chapter 2 – Introduction to Structured Query Language

Page 2-70
Copyright © 2016 Pearson Education, Inc.

2.70 Using Microsoft Access QBE, create and run new queries to answer the questions in
exercise 2.69. Save each query using the query name format QBE-Query-02-##, where
the ## sign is replaced by the letter designator of the question. For example, the first
query will be saved as QBE-Query-02-A.

Solutions to Project Questions 2.61 – 2.70 are contained in the Microsoft Access database DBP-
e14-IM-CH02-WPC.accdb which is available on the text’s Web site
(www.pearsonhighered.com/kroenke).

The results of each query will be identical to the corresponding SQL query in the previous Project
Question. Here we will show only the QBE design of the query.

A. What projects are in the PROJECT table? Show all information for each project.

B. What are the ProjectID, Name, StartDate, and EndDate values of projects in the
PROJECT table?

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-71
Copyright © 2016 Pearson Education, Inc.

C. What projects in the PROJECT table started before August 1, 2015? Show all the
information for each project.

D. What projects in the PROJECT table have not been completed? Show all the
information for each project.

Chapter 2 – Introduction to Structured Query Language

Page 2-72
Copyright © 2016 Pearson Education, Inc.

E. Who are the employees assigned to each project? Show ProjectID, Employee-
Number, LastName, FirstName, and Phone.

F. Who are the employees assigned to each project? Show ProjectID, Name, and
Department. Show EmployeeNumber, LastName, FirstName, and Phone.

Chapter 2 – Introduction to Structured Query Language

Page 2-73
Copyright © 2016 Pearson Education, Inc.

G. Who are the employees assigned to each project? Show ProjectID, Name,
Department, and Department Phone. Show EmployeeNumber, LastName,
FirstName, and Employee Phone. Sort by ProjectID in ascending order.

This question is more complicated than it seems, in that the default approach of “accepting”
all the joins in the QBE query yields an incorrect result. Without deleting the join from
EMPLOYEE to DEPARTMENT in the query window (as has been done below; right-click
on the relationship line from EMPLOYEE to DEPARTMENT and choose “Delete”), this
query will only return assignments in which an EMPLOYEE is assigned to a PROJECT that
is in the EMPLOYEE’s DEPARTMENT.

H. Who are the employees assigned to projects run by the marketing department?

Show ProjectID, Name, Department, and Department Phone. Show
EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in
ascending order.

This question is identical to question G except for the restriction to marketing department
projects. And, again, this question is more complicated than it seems, in that the default
approach of “accepting” all the joins in the QBE query yields an incorrect result. Without
deleting the join from EMPLOYEE to DEPARTMENT in the query window (as has been
done below; right-click on the relationship line from EMPLOYEE to DEPARTMENT and
choose “Delete”), this query will only return assignments in which an EMPLOYEE is
assigned to a PROJECT that is in the EMPLOYEE’s DEPARTMENT.

Chapter 2 – Introduction to Structured Query Language

Page 2-74
Copyright © 2016 Pearson Education, Inc.

I. How many projects are being run by the marketing department? Be sure to assign an
appropriate column name to the computed results.

J. What is the total MaxHours of projects being run by the marketing department? Be
sure to assign an appropriate column name to the computed results.

Chapter 2 – Introduction to Structured Query Language

Page 2-75
Copyright © 2016 Pearson Education, Inc.

Chapter 2 – Introduction to Structured Query Language

Page 2-76
Copyright © 2016 Pearson Education, Inc.

K. What is the average MaxHours of projects being run by the marketing department?
Be sure to assign an appropriate column name to the computed results.

L. How many projects are being run by each department? Be sure to display each
DepartmentName and to assign an appropriate column name to the computed
results.

Chapter 2 – Introduction to Structured Query Language

Page 2-77
Copyright © 2016 Pearson Education, Inc.

M. Write an SQL statement to join EMPLOYEE, ASSIGNMENT, and PROJECT using
the JOIN ON syntax. Run this statement.

N. Write an SQL statement to join EMPLOYEE and ASSIGNMENT and include all rows
of EMPLOYEE in your answer, regardless of whether they have an ASSIGNMENT.
Run this statement.

Chapter 2 – Introduction to Structured Query Language

Page 2-78
Copyright © 2016 Pearson Education, Inc.

 MARCIA’S DRY CLEANING CASE QUESTIONS

Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry cleaner in a
well-to-do suburban neighborhood. Marcia makes her business stand out from the competition
by providing superior customer service. She wants to keep track of each of her customers and
their orders. Ultimately, she wants to notify them that their clothes are ready via e-mail. To
provide this service, she has developed an initial database with several tables. Three of those
tables are the following:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)

INVOICE (InvoiceNumber, CustomerNumber, DateIn, DateOut, TotalAmount)

INVOICE_ITEM (InvoiceNumber, ItemNumber, Item, Quantity, UnitPrice)

In the database schema above, the primary keys are underlined and the foreign keys are shown
in italics. The database that Marcia has created is named MDC, and the three tables in the MDC
database schema are shown in Figure 2-46.

FIGURE 2-46 – The MDC Database

The column characteristics for the tables are shown in Figures 2-47, 2-48, and 2-49. The
relationship between CUSTOMER and INVOICE should enforce referential integrity, but not
cascade updates nor deletions, while the relationship between INVOICE and INVOICE_ITEM
should enforce referential integrity and cascade both updates and deletions. The data for these
tables are shown in Figures 2-50, 2-51, and 2-52.

You will need to create and setup a database named MDC-CH02 for use with these case
questions. A Microsoft Access 2013 database named MDC_CH02.accdb, and SQL scripts for
creating the MDC-CH02 database in Microsoft SQL Server, Oracle Database, and MySQL are
available on our Web site at www.pearsonhighered.com/kroenke .

If you are using the Microsoft Access 2013 MDC_CH02.accdb database, simply copy it to an
appropriate location in your Documents folder. Otherwise, you will need to use the discussion

http://www.pearsonhighered.com/kroenke

Chapter 2 – Introduction to Structured Query Language

Page 2-79
Copyright © 2016 Pearson Education, Inc.

and instructions necessary for setting up the MDC_CH02 database in the DBMS product you
are using:

• For Microsoft SQL Server 2014, see online Chapter 10A.

• For Oracle Database 12c or Oracle Express Edition 11g Release 2, see online Chapter
10B.

• For MySQL 5.6 Community Server, see online Chapter 10C.

Figure 2-47 - Column Characteristics for the CUSTOMER Table

Figure 2-48 - Column Characteristics for the INVOICE Table

Chapter 2 – Introduction to Structured Query Language

Page 2-80
Copyright © 2016 Pearson Education, Inc.

Figure 2-49 - Column Characteristics for the INVOICE_ITEM Table

Figure 2-50 - Sample Data for the MDC Database CUSTOMER table

Chapter 2 – Introduction to Structured Query Language

Page 2-81
Copyright © 2016 Pearson Education, Inc.

Figure 2-51 - Sample Data for the MDC Database INVOICE table

Chapter 2 – Introduction to Structured Query Language

Page 2-82
Copyright © 2016 Pearson Education, Inc.

Figure 2-52 - Sample Data for the MDC Database INVOICE_ITEM table

Chapter 2 – Introduction to Structured Query Language

Page 2-83
Copyright © 2016 Pearson Education, Inc.

Once you have setup your MDC_CH02 database, create an SQL script name MDC-
CH02-CQ.sql, and use it to record and store SQL statements that answer each of the
following questions (if the question requires a written answer, use and SQL comment to
record your answer):

A. Show all data in each of the tables.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-A-CUSTOMER *** */

SELECT *
FROM CUSTOMER;

Note there are two customers both named Betsy Miller.

/* *** SQL-Query-MDC-A-INVOICE *** */

SELECT *
FROM INVOICE;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-84
Copyright © 2016 Pearson Education, Inc.

/* *** SQL-Query-MDC-A-INVOICE-ITEM *** */

SELECT *
FROM INVOICE_ITEM;

Chapter 2 – Introduction to Structured Query Language

Page 2-85
Copyright © 2016 Pearson Education, Inc.

B. List the LastName, FirstName, and Phone of all customers.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-B *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER;

C. List the LastName, FirstName, and Phone for all customers with a FirstName of
“Nikki”.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-C *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE FirstName = 'Nikki';

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-86
Copyright © 2016 Pearson Education, Inc.

D. List the LastName, FirstName, Phone, DateIn, and DateOut of all orders in excess of
$100.00.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-D *** */

SELECT LastName, FirstName, Phone, DateIn, DateOut
FROM CUSTOMER, INVOICE
WHERE TotalAmount > 100
 AND CUSTOMER.CustomerID = INVOICE.CustomerNumber;

E. List the LastName, FirstName, and Phone of all customers whose first name starts
with 'B'.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

The correct SQL-92 statement for Oracle Database, SQL Server, and MySQL, which uses the
wildcard %, is:

/* *** SQL-Query-MDC-E *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE FirstName LIKE 'B%';

/* *** SQL-Query-MDC-E-Access *** */

However, Microsoft Access uses the wildcard *, which gives the following SQL statement:

/* *** SQL-Query-MDC-E-Access *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE FirstName LIKE 'B*';

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-87
Copyright © 2016 Pearson Education, Inc.

F. List the LastName, FirstName, and Phone of all customers whose last name includes
the characters 'cat'.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

Note that LIKE comparisons will not always work the way you expect: You need to
understand when the comparisons are case-sensitive and when they are not. Before running
any query involving LIKE, run a small test query to determine whether your DBMS as
configured by your DBA is comparing with case sensitivity or not. If you are using Oracle
Database, MySQL, or SQL Server, there are ways to force a LIKE comparison to be case-
sensitive or case-insensitive; those details are beyond the scope of this text. Microsoft
Access, by default, is case-insensitive. To do a case-sensitive LIKE comparison in Microsoft
Access, use the “instr” function instead of “LIKE” (see DBP-e14-IM-CH02-MDC.accdb for
the solution).

The previous paragraph explains why, in general, you may get different results than those
presented below for Access (the Access results are for a default, case-insensitive query). If
you are using a DBMS in which the comparisons are case-sensitive, then only the first row in
the results below will appear.

The correct SQL-92 statement, for Oracle Database, MySQL, and SQL Server, which uses
the wildcard %, is:

/* *** SQL-Query-MDC-F *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE LastName LIKE '%cat%';

However, Microsoft Access uses the wildcard *, which gives the following SQL statement:

/* *** SQL-Query-MDC-F-Access *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE LastName LIKE '*cat*';

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-88
Copyright © 2016 Pearson Education, Inc.

G. List the LastName, FirstName, and Phone for all customers whose second and third
digits (from the left) of their phone number are 23. For example, any phone number
with an area code of ‘723’ would meet the criteria.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

Note that since the phone numbers in this database include the area code, we are really
finding phone numbers with ‘23’ as the second and third numbers in the area code. We
could, of course, write statements to find ‘23’ in the prefix or in the 4-digit sequence portion
of the phone number.

The correct SQL-92 statement, which uses the wildcards % and _, is:

/* *** SQL-Query-MDC-G *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE Phone LIKE '_23%';

However, Microsoft Access uses the wildcards * and ?, which give the following SQL
statement:

/* *** SQL-Query-MDC-G-Access *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE Phone LIKE '?23*';

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-89
Copyright © 2016 Pearson Education, Inc.

H. Determine the maximum and minimum TotalAmount.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-H *** */

SELECT MAX (TotalAmt) AS MaxTotalAmount,
 MIN (TotalAmt) AS MinTotalAmount
FROM INVOICE;

I. Determine the average TotalAmount.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

Note that since ORDER is an SQL reserved word, it must be enclosed in delimiters (square
brackets []).

/* *** SQL-Query-MDC-I *** */

SELECT AVG (TotalAmt) AS AvgTotalAmount
FROM INVOICE;

J. Count the number of customers.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-J *** */

SELECT Count (*)AS NumberOfCustomers
FROM CUSTOMER;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-90
Copyright © 2016 Pearson Education, Inc.

K. Group customers by LastName and then by FirstName.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-K *** */

SELECT LastName, FirstName
FROM CUSTOMER
GROUP BY LastName, FirstName;

L. Count the number of customers having each combination of LastName and
FirstName.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-L *** */

SELECT LastName, FirstName,
 COUNT (*) AS Last_First_Combination_Count
FROM CUSTOMER
GROUP BY LastName, FirstName;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-91
Copyright © 2016 Pearson Education, Inc.

M. Show the LastName, FirstName, and Phone of all customers who have had an order

with TotalAmount greater than $100.00. Use a subquery. Present the results sorted
by LastName in ascending order and then FirstName in descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-M *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE CustomerID IN
 (SELECT CustomerNumber
 FROM INVOICE
 WHERE TotalAmount > 100)
ORDER BY LastName, FirstName DESC;

N. Show the LastName, FirstName and Phone of all customers who have had an order
with TotalAmount greater than $100.00. Use a join, but do not use JOIN ON syntax.
Present the results sorted by LastName in ascending order and then FirstName in
descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-92
Copyright © 2016 Pearson Education, Inc.

/* *** SQL-Query-MDC-N *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER, INVOICE
WHERE CUSTOMER.CustomerID = INVOICE.CustomerNumber
 AND TotalAmount > 100
ORDER BY LastName, FirstName DESC;

O. Show the LastName, FirstName and Phone of all customers who have had an order
with TotalAmount greater than $100.00. Use a join using JOIN ON syntax. Present
the results sorted by LastName in ascending order and then FirstName in
descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-O *** */

SELECT CUSTOMER.LastName, CUSTOMER.FirstName, CUSTOMER.Phone
FROM CUSTOMER JOIN INVOICE
 ON CUSTOMER.CustomerID = INVOICE.CustomerNumber
WHERE INVOICE.TotalAmount>100;

Note that for Microsoft Access, we must use the INNER JOIN syntax:

/* *** SQL-Query-MDC-O *** */

SELECT CUSTOMER.LastName, CUSTOMER.FirstName, CUSTOMER.Phone
FROM CUSTOMER INNER JOIN INVOICE
 ON CUSTOMER.CustomerID = INVOICE.CustomerNumber
WHERE INVOICE.TotalAmount>100;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-93
Copyright © 2016 Pearson Education, Inc.

P. Show the LastName, FirstName and Phone of all customers who have had an order
with an Item named “Dress Shirt”. Use a subquery. Present the results sorted by
LastName in ascending order and then FirstName in descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

Note the solution below uses 2 subqueries; other correct solutions are possible that use one
subquery and a join (the question does not specify that two subqueries must be used).

/* *** SQL-Query-MDC-P *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE CustomerID IN
 (SELECT CustomerNumber
 FROM INVOICE
 WHERE InvoiceNumber IN
 (SELECT InvoiceNumber
 FROM INVOICE_ITEM
 WHERE Item = 'Dress Shirt'))
ORDER BY LastName, FirstName DESC;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-94
Copyright © 2016 Pearson Education, Inc.

Q. Show the LastName, FirstName and Phone of all customers who have had an order
with an Item named “Dress Shirt”. Use a join, but do not use JOIN ON syntax.
Present the results sorted by LastName in ascending order and then FirstName in
descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-Q-Access *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER, INVOICE, INVOICE_ITEM
WHERE CUSTOMER.CustomerID = INVOICE.CustomerNumber
 AND INVOICE.InvoiceNumber = INVOICE_ITEM.InvoiceNumber
 AND INVOICE_ITEM.Item = 'Dress Shirt'
ORDER BY LastName, FirstName DESC;

R. Show the LastName, FirstName and Phone of all customers who have had an order

with an Item named “Dress Shirt”. Use a join using JOIN ON syntax. Present the
results sorted by LastName in ascending order and then FirstName in descending
order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

For Oracle Database, SQL Server, and MySQL:

/* *** SQL-Query-MDC-R *** */

SELECT CUSTOMER.LastName, CUSTOMER.FirstName,
 CUSTOMER.Phone
FROM (CUSTOMER JOIN INVOICE
 ON CUSTOMER.CustomerID = INVOICE.CustomerNumber)
 JOIN INVOICE_ITEM

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-95
Copyright © 2016 Pearson Education, Inc.

 ON INVOICE.InvoiceNumber = INVOICE_ITEM.InvoiceNumber
WHERE INVOICE_ITEM.Item='Dress Shirt';

Note that for Microsoft Access, we must use the INNER JOIN syntax:

/* *** SQL-Query-MDC-R-Access *** */

SELECT CUSTOMER.LastName, CUSTOMER.FirstName,
 CUSTOMER.Phone
FROM (CUSTOMER INNER JOIN INVOICE
 ON CUSTOMER.CustomerID = INVOICE.CustomerNumber)
 INNER JOIN INVOICE_ITEM
 ON INVOICE.InvoiceNumber = INVOICE_ITEM.InvoiceNumber
WHERE INVOICE_ITEM.Item ='Dress Shirt';

S. Show the LastName, FirstName, and Phone of all customers who have had an order
with an Item named “Dress Shirt”. Use a combination of a join using JOIN ON
syntax with a subquery. Present results sorted by LastName in ascending order and
then FirstName in descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

Note that multiple correct solutions are possible here; this solution joins CUSTOMER with
INVOICE and uses INVOICE_ITEM by itself in the subquery. Another solution would use
CUSTOMER by itself in the main query then a subquery that contains a join of INVOICE
and INVOICE_ITEM. Both versions are presented in the solution files.

For SQL Server, MySQL, and Oracle Database:

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-96
Copyright © 2016 Pearson Education, Inc.

/* *** SQL-Query-MDC *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER JOIN INVOICE
ON CUSTOMER.CustomerID = INVOICE.CustomerNumber
 WHERE INVOICE.InvoiceNumber IN
 (SELECT InvoiceNumber
 FROM INVOICE_ITEM
 WHERE Item = 'Dress Shirt')
ORDER BY LastName, FirstName DESC;

The Access version requires the “INNER JOIN” syntax:

/* *** SQL-Query-MDC-Access *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER INNER JOIN INVOICE
ON CUSTOMER.CustomerID = INVOICE.CustomerNumber
 WHERE INVOICE.InvoiceNumber IN
 (SELECT InvoiceNumber
 FROM INVOICE_ITEM
 WHERE Item = 'Dress Shirt')
ORDER BY LastName, FirstName DESC;

T. Show the LastName, FirstName, Phone, and TotalAmount of all customer orders
that included an Item named “Dress Shirt”. Also show the LastName, FirstName,
and Phone of all other customers. Present results sorted by TotalAmount in
ascending order, then LastName in ascending order, and then FirstName in
descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MDC.accdb and in the corresponding files for Oracle Database, SQL
Server, and MySQL, which are all available at the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-97
Copyright © 2016 Pearson Education, Inc.

Note that this is a very challenging question! The best solution involves adding the ‘Dress
Shirt’ restriction to the inner JOIN before performing the LEFT JOIN, otherwise (if we put
the ‘Dress Shirt’ restriction in the WHERE clause) every customer will have an invoice so the
LEFT JOIN will not produce any NULLs, and we will get an incorrect result from the query.
Examples of this are not covered in the text, but at the same time, the text does not say you
can’t do it either.

The LEFT JOIN solution for Oracle Database, MySQL, and SQL Server:

/* *** SQL-Query-MDC-T *** */

SELECT LastName, FirstName, Phone, TotalAmount
FROM CUSTOMER LEFT JOIN (INVOICE JOIN INVOICE_ITEM

ON INVOICE.InvoiceNumber = INVOICE_ITEM.InvoiceNumber AND
INVOICE_ITEM.Item = 'Dress Shirt')

 ON CustomerID = CustomerNumber
ORDER BY TotalAmount, LastName, FirstName DESC;

Note that Microsoft Access does not allow nesting an INNER JOIN inside a LEFT or RIGHT
JOIN. It also disallows adding the non-join condition to the “ON” clause. So in order to
create a solution in Access, we must either (1) use a more complicated version of the query
with a UNION but without an OUTER JOIN or (2) create and save an intermediate query
(view) to be used in the final query. Note that these two approaches will also work with
Oracle, SQL Server, or MySQL.

/* *** SQL-Query-MDC-T-UNION *** */

SELECT LastName, FirstName, Phone, TotalAmount
FROM CUSTOMER C, INVOICE I, INVOICE_ITEM II
WHERE C.CustomerID = I.CustomerNumber AND I.InvoiceNumber =
 II.InvoiceNumber AND II.Item = 'Dress Shirt'
UNION SELECT LastName, FirstName, Phone, NULL
FROM CUSTOMER
WHERE CustomerID NOT IN
 (SELECT CustomerNumber
 FROM INVOICE I, INVOICE_ITEM II
 WHERE I.InvoiceNumber = II.InvoiceNumber AND II.Item = 'Dress
Shirt')
ORDER BY TotalAmount, LastName, FirstName DESC;

The other approach using Access involves writing and saving an intermediate query (also
called a “view”; see Chapter 7). We first write and save a query that produces the
CustomerNumber and TotalAmount for all invoices involving a ‘Dress Shirt’:

/* *** SQL-Query-MDC-T-Temp *** */

SELECT CustomerNumber, TotalAmount
FROM INVOICE I, INVOICE_ITEM II
WHERE I.InvoiceNumber = II.InvoiceNumber AND II.Item = ‘Dress
Shirt’;

Now we can use that temporary query as if it were just another table to produce the final
result:

Chapter 2 – Introduction to Structured Query Language

Page 2-98
Copyright © 2016 Pearson Education, Inc.

/* *** SQL-Query-MDC-T-Final *** */

SELECT LastName, FirstName, Phone, TotalAmount
FROM CUSTOMER AS C LEFT OUTER JOIN [SQL-Query-MDC-T-Temp] AS T
 ON C.CustomerID = T.CustomerNumber
ORDER BY TotalAmount, LastName, FirstName DESC;

The results below are the same for all correct versions of this query, with the possible
exception of where the NULL TotalAmounts are presented: In Access, NULL comes before
all values; in Oracle, it comes last, etc.

Chapter 2 – Introduction to Structured Query Language

Page 2-99
Copyright © 2016 Pearson Education, Inc.

 ANSWERS TO THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS

The Queen Anne Curiosity Shop is an upscale home furnishings store in a well-to-do urban
neighborhood. It sells both antiques and current-production household items that complement or
are useful with the antiques. For example, the store sells antique dining room tables and new
tablecloths. The antiques are purchased from both individuals and wholesalers, and the new
items are purchased from distributors. The store’s customers include individuals, owners of bed-
and-breakfast operations, and local interior designers who work with both individuals and small
businesses. The antiques are unique, though some multiple items, such as dining room chairs,
may be available as a set (sets are never broken). The new items are not unique, and an item
may be reordered if it is out of stock. New items are also available in various sizes and colors
(for example, a particular style of tablecloth may be available in several sizes and in a variety of
colors).

Assume that The Queen Anne Curiosity Shop designs a database with the following tables:

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP, Phone,
Email)
ITEM (ItemID, ItemDescription, CompanyName, PurchaseDate, ItemCost,
ItemPrice)
SALE (SaleID, CustomerID, SaleDate, SubTotal, Tax, Total)
SALE_ITEM (SaleID, SaleItemID, ItemID, ItemPrice)

The referential integrity constraints are:

CustomerID in SALE must exist in CustomerID in CUSTOMER
SaleID in SALE_ITEM must exist in SaleID in SALE
ItemID in SALE_ITEM must exist in ItemID in ITEM
Assume that CustomerID of CUSTOMER, ItemID of ITEM, SaleID of SALE, and SaleItemID of
SALE_ITEM are all surrogate keys with values as follows:

CustomerID Start at 1 Increment by 1
ItemID Start at 1 Increment by 1
SaleID Start at 1 Increment by 1
The database that The Queen Anne Curiosity Shop has created is named QACS, and the four
tables in the QACS database schema are shown in Figure 2-53.

Chapter 2 – Introduction to Structured Query Language

Page 2-100
Copyright © 2016 Pearson Education, Inc.

Figure 2-53 – The QACS Database

The column characteristics for the tables are shown in Figures 2-54, 2-55, 2-56, and 2-57. The
relationships CUSTOMER-to-SALE and ITEM-to-SALE_ITEM should enforce referential
integrity, but not cascade updates nor deletions, while the relationship between SALE and
SALE_ITEM should enforce referential integrity and cascade both updates and deletions. The
data for these tables are shown in Figures 2-58, 2-59, 2-60, and 2-61.

Figure 2-54 - Column Characteristics for the QACS Database CUSTOMER Table

Chapter 2 – Introduction to Structured Query Language

Page 2-101
Copyright © 2016 Pearson Education, Inc.

Figure 2-55 - Column Characteristics for the QACS Database SALE Table

Figure 2-56 - Column Characteristics for the QACS Database SALE_ITEM Table

Chapter 2 – Introduction to Structured Query Language

Page 2-102
Copyright © 2016 Pearson Education, Inc.

Figure 2-57 - Column Characteristics for the QACS Database ITEM Table

Figure 2-58 – Sample Data for the QACS Database CUSTOMER Table

Chapter 2 – Introduction to Structured Query Language

Page 2-103
Copyright © 2016 Pearson Education, Inc.

Figure 2-59 - Sample Data for the QACS Database SALE Table

Chapter 2 – Introduction to Structured Query Language

Page 2-104
Copyright © 2016 Pearson Education, Inc.

Figure 2-60 - Sample Data for the QACS Database SALE_ITEM Table

Chapter 2 – Introduction to Structured Query Language

Page 2-105
Copyright © 2016 Pearson Education, Inc.

Figure 2-61 - Sample Data for the QACS Database ITEM Table

You will need to create and setup a database named QACS_CH02 for use with The
Queen Anne Curiosity Shop project questions. A Microsoft Access 2013 database named
QACS_CH02.accdb, and SQL scripts for creating the QACS_CH02 database in Microsoft
SQL Server, Oracle Database, and MySQL are available on our Web site
at www.pearsonhighered.com/kroenke.

http://www.pearsonhighered.com/kroenke

Chapter 2 – Introduction to Structured Query Language

Page 2-106
Copyright © 2016 Pearson Education, Inc.

If you are using the Microsoft Access 2013 QACS_CH02.accdb database, simply copy
it to an appropriate location in your Documents folder. Otherwise, you will need to use the
discussion and instructions necessary for setting up the QACS_CH02 database in the DBMS
product you are using:

■ For Microsoft SQL Server 2014, see online Chapter 10A.

■ For Oracle Database 12c or Oracle Express Edition 11g Release 2, see online
 Chapter 10B.
■ For MySQL 5.6 Community Server, see online Chapter 10C.

Once you have setup your QACS_CH02 database, create an SQL script named QACSCH02-
CQ.sql, and use it to record and store SQL statements that answer each of the following
questions (if the question requires a written answer, use an SQL comment to record your
answer):

A. Show all data in each of the tables.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-A-CUSTOMER *** */

SELECT *
FROM CUSTOMER;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-107
Copyright © 2016 Pearson Education, Inc.

/* *** SQL-Query-QACS-A-SALE *** */

SELECT *
FROM SALE;

/* *** SQL-Query-QACS-A-SALE-ITEM *** */

SELECT *
FROM SALE_ITEM;

Chapter 2 – Introduction to Structured Query Language

Page 2-108
Copyright © 2016 Pearson Education, Inc.

/* *** SQL-Query-QACS-A-ITEM *** */

SELECT *
FROM ITEM;

B. List the LastName, FirstName, and Phone of all customers.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-B *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-109
Copyright © 2016 Pearson Education, Inc.

C. List the LastName, FirstName, and Phone for all customers with a FirstName of 'John'.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-C *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE FirstName = 'John';

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-110
Copyright © 2016 Pearson Education, Inc.

D. List the LastName, FirstName, Phone, SaleDate, and Total of all sales in excess of
$100.00.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-D *** */

SELECT LastName, FirstName, Phone, SaleDate, Total
FROM CUSTOMER, SALE
WHERE CUSTOMER.CustomerID = SALE.CustomerID
 AND Total > 100;

E. List the LastName, FirstName, and Phone of all customers whose first name starts
with 'D'.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

For SQL Server, Oracle Database, and MySQL:

/* *** SQL-Query-QACS-E *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE FirstName LIKE 'D%';

For Microsoft Access:

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-111
Copyright © 2016 Pearson Education, Inc.

/* *** SQL-Query-QACS-E *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE FirstName LIKE 'D*';

F. List the LastName, FirstName, and Phone of all customers whose last name includes
the characters 'ne'.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

For SQL Server, Oracle Database, and MySQL:

/* *** SQL-Query-QACS-F *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE LastName LIKE '%ne%';

For Microsoft Access:

/* *** SQL-Query-QACS-F *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE LastName LIKE '*ne*';

G. List the LastName, FirstName, and Phone for all customers whose eighth and ninth
digits (starting from the left) of their phone number are 56. For example, a phone
number ending in “567” would meet the criteria.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-112
Copyright © 2016 Pearson Education, Inc.

Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

For SQL Server, Oracle Database, and MySQL:

/* *** SQL-Query-QACS-G *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE Phone LIKE '%56_';

For Microsoft Access:

/* *** SQL-Query-QACS-G *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE Phone LIKE '*56?';

H. Determine the maximum and minimum sales Total.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-H *** */

SELECT MAX (Total) as MaximumTotalSales,
 MIN (Total) as MinimumTotalSales
FROM SALE;

I. Determine the average sales Total.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-113
Copyright © 2016 Pearson Education, Inc.

Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-I *** */

SELECT AVG (Total) as AverageTotalSales
FROM SALE;

J. Count the number of customers.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-J *** */

SELECT COUNT (*) AS NumberOfCustomers
FROM CUSTOMER;

K. Group customers by LastName and then by FirstName.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-K *** */

SELECT LastName, FirstName
FROM CUSTOMER
GROUP BY LastName, FirstName;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-114
Copyright © 2016 Pearson Education, Inc.

L. Count the number of customers having each combination of LastName and FirstName.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-L *** */

SELECT LastName, FirstName, COUNT (*) AS NumberOfCustomers
FROM CUSTOMER
GROUP BY LastName, FirstName;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-115
Copyright © 2016 Pearson Education, Inc.

M. Show the LastName, FirstName, and Phone of all customers who have had an order
with Total greater than $100.00. Use a subquery. Present the results sorted by
LastName in ascending order and then FirstName in descending order.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-M *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE CustomerID IN
 (SELECT CustomerID
 FROM SALE
 WHERE Total > 100)
ORDER BY LastName, FirstName DESC;

N. Show the LastName, FirstName, and Phone of all customers who have had an order
with Total greater than $100.00. Use a join, but do not use JOIN ON syntax. Present
results sorted by LastName in ascending order and then FirstName in descending order.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-N *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER, SALE
WHERE CUSTOMER.CustomerID = SALE.CustomerID
 AND Total > 100;

/* For each CUSTOMER only once: */

SELECT DISTINCT LastName, FirstName, Phone
FROM CUSTOMER, SALE
WHERE CUSTOMER.CustomerID = SALE.CustomerID
 AND Total > 100;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-116
Copyright © 2016 Pearson Education, Inc.

O. Show the LastName, FirstName, and Phone of all customers who have had an order
with Total greater than $100.00. Use a join using JOIN ON syntax. Present results
sorted by LastName in ascending order and then FirstName in descending order.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-O *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER JOIN SALE
 ON CUSTOMER.CustomerID = SALE.CustomerID
WHERE Total > 100
ORDER BY LastName, FirstName DESC;

/* For each CUSTOMER only once: */

SELECT DISTINCT LastName, FirstName, Phone
FROM CUSTOMER JOIN SALE
 ON CUSTOMER.CustomerID = SALE.CustomerID
WHERE Total > 100
ORDER BY LastName, FirstName DESC;

Note that for Microsoft Access, we must use the INNER JOIN syntax:

SELECT DISTINCT LastName, FirstName, Phone
FROM CUSTOMER INNER JOIN SALE
 ON CUSTOMER.CustomerID = SALE.CustomerID
WHERE Total > 100
ORDER BY LastName, FirstName DESC;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-117
Copyright © 2016 Pearson Education, Inc.

P. Show the LastName, FirstName, and Phone of all customers who who have bought an
Item named 'Desk Lamp'. Use a subquery. Present results sorted by LastName in
ascending order and then FirstName in descending order.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-QACS-P *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER
WHERE CustomerID IN
 (SELECT CustomerID
 FROM SALE
 WHERE SaleID IN
 (SELECT SaleID
 FROM SALE_ITEM
 WHERE ItemID IN
 (SELECT ItemID
 FROM ITEM
 WHERE ItemDescription = 'Desk Lamp')))
ORDER BY LastName, FirstName DESC;

Q. Show the LastName, FirstName, and Phone of all customers who have bought an Item

named 'Desk Lamp'. Use a join, but do not use JOIN ON syntax. Present results sorted
by LastName in ascending order and then FirstName in descending order.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-118
Copyright © 2016 Pearson Education, Inc.

 For SQL Server, MySQL, and Microsoft Access:

/* *** SQL-Query-QACS-Q *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER AS C,
 SALE AS S,
 SALE_ITEM AS SI,
 ITEM AS I
WHERE C.CustomerID = S.CustomerID
 AND S.SaleID = SI.SaleID
 AND SI.ItemID = I.ItemID
 AND ItemDescription = 'Desk Lamp'
ORDER BY LastName, FirstName DESC;

 For Oracle Database, which doesn’t allow “AS” in alias (range variable) declarations:

/* *** SQL-Query-QACS-Q-Oracle *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER C,
 SALE S,
 SALE_ITEM SI,
 ITEM I
WHERE C.CustomerID = S.CustomerID
 AND S.SaleID = SI.SaleID
 AND SI.ItemID = I.ItemID
 AND ItemDescription = 'Desk Lamp'
ORDER BY LastName, FirstName DESC;

R. Show the LastName, FirstName, and Phone of all customers who have bought an Item
named 'Desk Lamp'. Use a join using JOIN ON syntax. Present results sorted by
LastName in ascending order and then FirstName in descending order.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

For MySQL and SQL Server:

/* *** SQL-Query-QACS-R *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER AS C JOIN SALE AS S

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-119
Copyright © 2016 Pearson Education, Inc.

 ON C.CustomerID = S.CustomerID
 JOIN SALE_ITEM AS SI
 ON S.SaleID = SI.SaleID
 JOIN ITEM AS I
 ON SI.ItemID = I.ItemID
WHERE ItemDescription = 'Desk Lamp'
ORDER BY LastName, FirstName DESC;

For Oracle, which does not allow “AS” in alias declarations:

/* *** SQL-Query-QACS-R *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER C JOIN SALE S
 ON C.CustomerID = S.CustomerID
 JOIN SALE_ITEM SI
 ON S.SaleID = SI.SaleID
 JOIN ITEM I
 ON SI.ItemID = I.ItemID
WHERE ItemDescription = 'Desk Lamp'
ORDER BY LastName, FirstName DESC;

Note that for Microsoft Access, we must use the INNER JOIN syntax with grouping of the
INNER JOINS:

SELECT LastName, FirstName, Phone
FROM ((CUSTOMER AS C INNER JOIN SALE AS S
 ON C.CustomerID = S.CustomerID)
 INNER JOIN SALE_ITEM AS SI
 ON S.SaleID = SI.SaleID)
 INNER JOIN ITEM AS I
 ON SI.ItemID = I.ItemID
WHERE ItemDescription = 'Desk Lamp'
ORDER BY LastName, FirstName DESC;

S. Show the LastName, FirstName, and Phone of all customers who have bought an Item
named 'Desk Lamp'. Use a combination of a join in JOIN ON syntax and a subquery.
Present results sorted by LastName in ascending order and then FirstName in
descending order.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle

Chapter 2 – Introduction to Structured Query Language

Page 2-120
Copyright © 2016 Pearson Education, Inc.

Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

For SQL Server and MySQL:

/* *** SQL-Query-QACS-S *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER AS C JOIN SALE AS S
ON C.CustomerID = S.CustomerID
WHERE SaleID IN
 (SELECT SaleID
 FROM SALE_ITEM
 WHERE ItemID IN
 (SELECT ItemID
 FROM ITEM
 WHERE ItemDescription = 'Desk Lamp'))
ORDER BY LastName, FirstName DESC;

For Oracle Database, which disallows “AS” in alias declarations:

/* *** SQL-Query-QACS-S *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER C JOIN SALE S
ON C.CustomerID = S.CustomerID
WHERE SaleID IN
 (SELECT SaleID
 FROM SALE_ITEM
 WHERE ItemID IN
 (SELECT ItemID
 FROM ITEM
 WHERE ItemDescription = 'Desk Lamp'))
ORDER BY LastName, FirstName DESC;

For Microsoft Access, which requires “INNER” in the join syntax:

/* *** SQL-Query-QACS-S *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER AS C INNER JOIN SALE AS S
ON C.CustomerID = S.CustomerID
WHERE SaleID IN
 (SELECT SaleID
 FROM SALE_ITEM
 WHERE ItemID IN
 (SELECT ItemID
 FROM ITEM
 WHERE ItemDescription = 'Desk Lamp'))
ORDER BY LastName, FirstName DESC;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-121
Copyright © 2016 Pearson Education, Inc.

T. Show the LastName, FirstName, and Phone of all customers who have bought an Item

named 'Desk Lamp'. Use a combination of a join in JOIN ON syntax and a subquery that
is different from the combination used for question S. Present results sorted by
LastName in ascending order and then FirstName in descending order.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

For MySQL and SQL Server:

/* *** SQL-Query-QACS-T *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER AS C JOIN SALE AS S ON C.CustomerID = S.CustomerID
 JOIN SALE_ITEM AS SI ON S.SaleID = SI.SaleID
WHERE ItemID IN
 (SELECT ItemID
 FROM ITEM AS I
 WHERE ItemDescription = 'Desk Lamp')
ORDER BY LastName, FirstName DESC;

For Oracle Database, which does not allow “AS” in alias declarations:

/* *** SQL-Query-QACS-T *** */

SELECT LastName, FirstName, Phone
FROM CUSTOMER C JOIN SALE S ON C.CustomerID = S.CustomerID
 JOIN SALE_ITEM SI ON S.SaleID = SI.SaleID
WHERE ItemID IN
 (SELECT ItemID
 FROM ITEM I
 WHERE ItemDescription = 'Desk Lamp')
ORDER BY LastName, FirstName DESC;

For Microsoft Access, which requires “INNER” in join syntax and parenthesization of multiple
joins performed using JOIN syntax:

/* *** SQL-Query-QACS-T *** */

SELECT LastName, FirstName, Phone
FROM (CUSTOMER AS C INNER JOIN SALE AS S ON C.CustomerID = S.CustomerID)
 INNER JOIN SALE_ITEM AS SI ON S.SaleID = SI.SaleID

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-122
Copyright © 2016 Pearson Education, Inc.

WHERE ItemID IN
 (SELECT ItemID
 FROM ITEM AS I
 WHERE ItemDescription = 'Desk Lamp')
ORDER BY LastName, FirstName DESC;

U. Show the LastName, FirstName, Phone, Item for customers who have bought an Item

named 'Desk Lamp'. Also show the LastName, FirstName, and Phone of all the other
customers. Present results sorted by Item in ascending order, then LastName in
ascending order, and then FirstName in descending order.

Solutions to The Queen Anne Curiosity Shop questions are contained in the Microsoft Access
database DBP-e14-IM-CH02-QACS.accdb and in corresponding files for SQL Server, Oracle
Database, and MySQL, which are all available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

Note that this is a very challenging question! The best solution involves adding the ‘Desk Lamp’
restriction to the inner JOINs before performing the LEFT JOIN, otherwise (if we put the ‘Desk
Lamp’ restriction in the WHERE clause) every customer will have a sale so the LEFT JOIN will
not produce any NULLs, and we will get an incorrect result from the query. Examples of this are
not covered in the text, but at the same time, the text does not say you can’t do it either.

The LEFT JOIN solution for Oracle Database, MySQL, and SQL Server:

SELECT LastName, FirstName, Phone, ItemDescription
FROM CUSTOMER LEFT JOIN (SALE
 JOIN SALE_ITEM
 ON SALE.SaleID = SALE_ITEM.SaleID
 JOIN ITEM
 ON SALE_ITEM.ItemID = ITEM.ItemID
 AND ITEM.ItemDescription = 'Desk Lamp')
ON CUSTOMER.CustomerID = SALE.CustomerID
ORDER BY ItemDescription, LastName, FirstName DESC;

Note that Microsoft Access does not allow nesting an INNER JOIN inside a LEFT or RIGHT
JOIN. It also disallows adding the non-join condition to the “ON” clause. So in order to create a
solution in Access, we must either (1) use a more complicated version of the query with a
UNION but without an OUTER JOIN or (2) create and save an intermediate query (view) to be
used in the final query. Note that these two approaches will also work with Oracle, SQL Server,
or MySQL.

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-123
Copyright © 2016 Pearson Education, Inc.

/* *** SQL-Query-QACS-U-UNION *** */

SELECT LastName, FirstName, Phone, ItemDescription
FROM CUSTOMER C, SALE S, SALE_ITEM SI, ITEM I
WHERE C.CustomerID = S.CustomerID
 AND S.SaleID = SI.SaleID
 AND SI.ItemID = I.ItemID
 AND ItemDescription = 'Desk Lamp'
UNION
SELECT LastName, FirstName, Phone, NULL
FROM CUSTOMER
WHERE CustomerID NOT IN
 (SELECT CustomerID FROM SALE
 WHERE SaleID IN
 (SELECT SaleID FROM SALE_ITEM
 WHERE ItemID IN
 (SELECT ItemID FROM ITEM
 WHERE ItemDescription = 'Desk Lamp')))
ORDER BY ItemDescription, LastName, FirstName DESC;

The other approach using Access involves writing and saving an intermediate query (also
called a “view”; see Chapter 7). We first write and save a query that produces the
CustomerNumber and ItemDescription for all sales involving a ‘Desk Lamp’:

/* *** SQL-Query-QACS-U-Temp *** */

SELECT CustomerID, ItemDescription
FROM SALE AS S, SALE_ITEM AS SI, ITEM AS I
WHERE S.SaleID = SI.SaleID
 AND SI.ItemID = I.ItemID
 AND ItemDescription = 'Desk Lamp';

Now we can use that temporary query as if it were just another table to produce the final
result:

/* *** SQL-Query-QACS-U-Final *** */

SELECT LastName, FirstName, Phone, ItemDescription
FROM CUSTOMER C LEFT OUTER JOIN [SQL-Query-QACS-U-TEMP] T
 ON C.CustomerID = T.CustomerID
ORDER BY ItemDescription, LastName, FirstName DESC;

The results below are the same for all correct versions of this query, with the possible
exception of where the NULL ItemDescriptions are presented: In Access, NULL comes
before all values; in Oracle, it comes last, etc.

Chapter 2 – Introduction to Structured Query Language

Page 2-124
Copyright © 2016 Pearson Education, Inc.

Chapter 2 – Introduction to Structured Query Language

Page 2-125
Copyright © 2016 Pearson Education, Inc.

 ANSWERS TO MORGAN IMPORTING PROJECT QUESTIONS

James Morgan owns and operates Morgan Importing, which purchases antiques and home
furnishings in Asia, ships those items to a warehouse facility in Los Angeles, and then sells
these items in the United States. James tracks the Asian purchases and subsequent shipments
of these items to Los Angeles by using a database to keep a list of items purchased, shipments
of the purchased items, and the items in each shipment. His database includes the following
tables:

ITEM (ItemID, Description, PurchaseDate, Store, City, Quantity, LocalCurrencyAmount,
ExchangeRate)
SHIPMENT (ShipmentID, ShipperName, ShipperInvoiceNumber, DepartureDate, ArrivalDate,
InsuredValue)
SHIPMENT_ITEM (ShipmentID, ShipmentItemID, ItemID, Value)
In the database schema above, the primary keys are underlined and the foreign keys are shown
in italics. The database that James has created is named MI, and the three tables in the MI
database schema are shown in Figure 2-62.

Figure 2-62 – The MI Database

The column characteristics for the tables are shown in Figures 2-63, 2-64, and 2-65. The data
for the tables are shown in Figures 2-66, 2-67, and 2-68. The relationship between ITEM and
SHIPMENT_ITEM should enforce referential integrity, and although it should cascade updates,
it should not cascade deletions. The relationship between SHIPMENT and SHIPMENT_ITEM
should enforce referential integrity and cascade both updates and deletions.

You will need to create and setup a database named MI_CH02 for use with the Morgan
Importing case questions. A Microsoft Access 2013 database named MI_CH02.accdb, and
SQL scripts for creating the MI_CH02 database in Microsoft SQL Server, Oracle Database,
and MySQL are available on our Web site at www.pearsonhighered.com/kroenke.
If you are using the Microsoft Access 2013 MDC_CH02.accdb database, simply
copy it to an appropriate location in your Documents folder. Otherwise, you will need to use the
discussion and instructions necessary for setting up the MI_CH02 database in the DBMS

Chapter 2 – Introduction to Structured Query Language

Page 2-126
Copyright © 2016 Pearson Education, Inc.

product you are using:

■ For Microsoft SQL Server 2014, see online Chapter 10A.

■ For Oracle Database 12c or Oracle Express Edition 11g Release 2, see online
 Chapter 10B.
■ For MySQL 5.6 Community Server, see online Chapter 10C.

Once you have setup your MI_CH02 database, create an SQL script named MICH02-
CQ.sql, and use it to record and store SQL statements that answer each of the following
questions (if the question requires a written answer, use an SQL comment to record your
answer):

Figure 2-63 - Column Characteristics for the MI Database ITEM Table

Chapter 2 – Introduction to Structured Query Language

Page 2-127
Copyright © 2016 Pearson Education, Inc.

Figure 2-64 - Column Characteristics for the MI Database SHIPMENT Table

Figure 2-65 - Column Characteristics for the MI Database SHIPMENT_ITEM Table

Figure 2-66 - Sample Data for the MI Database ITEM Table

Figure 2-67 - Sample Data for the MI Database SHIPMENT Table

Chapter 2 – Introduction to Structured Query Language

Page 2-128
Copyright © 2016 Pearson Education, Inc.

Figure 2-68 - Sample Data for the MI Database SHIPMENT_ITEM Table

A. Show all data in each of the tables.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-A-ITEM *** */

SELECT *
FROM ITEM;

/* *** SQL-Query-MI-A-SHIPMENT *** */

SELECT *
FROM SHIPMENT;

/* *** SQL-Query-MI-A-SHIPMENT-ITEM *** */

SELECT *
FROM SHIPMENT_ITEM;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-129
Copyright © 2016 Pearson Education, Inc.

B. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shipments.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-B *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber
FROM SHIPMENT;

C. List the ShipmentID, ShipperName, and ShipperInvoiceNumber for all shipments that
have an insured value greater than $10,000.00.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-C *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber
FROM SHIPMENT
WHERE InsuredValue > 10000;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-130
Copyright © 2016 Pearson Education, Inc.

D. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shippers

whose name starts with “AB”.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

The correct SQL-92 statement, which uses the wildcard %, is:

/* *** SQL-Query-MI-D *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber
FROM SHIPMENT
WHERE ShipperName LIKE 'AB%';

However, Microsoft Access uses the wildcard *, which gives the following SQL statement:

/* *** SQL-Query-MI-D-Access *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber
FROM SHIPMENT
WHERE ShipperName LIKE 'AB*';

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-131
Copyright © 2016 Pearson Education, Inc.

E. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the
ShipmentID, ShipperName, ShipperInvoiceNumber, and ArrivalDate of all shipments
that departed in December.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

The correct SQL-92 statement for SQL Server, which uses the wildcard %, is:

/* *** SQL-Query-MI-E *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM SHIPMENT
WHERE DepartureDate LIKE '12%';

Microsoft Access stores dates as strings so we can use the wildcard *, which gives the
following SQL statement:

/* *** SQL-Query-MI-E-Access *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM SHIPMENT
WHERE DepartureDate LIKE '12*';

Oracle does not store date data type values as strings, so the following Oracle-specific form
of the query must be used to extract the month:

/* *** SQL-Query-MI-E-Oracle *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM SHIPMENT
WHERE EXTRACT (MONTH FROM DepartureDate) = 12;

MySQL and SQL Server also does not store date data type values as strings, so the following
MySQL-specific form of the query must be used to extract the month. This version of the
query also works with Access:

/* *** SQL-Query-MI-E-MySQL *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM SHIPMENT
WHERE MONTH (DepartureDate) = 12;

Formatted: Indent: Left: 0"

Formatted: IM-Answer

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-132
Copyright © 2016 Pearson Education, Inc.

F. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the
ShipmentID, ShipperName, ShipperInvoiceNumber, and ArrivalDate of all shipments
that departed on the tenth day of any month.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

The correct SQL-92 statement for SQL Server, which uses the wildcards _ and %, is:

/* *** SQL-Query-MI-F *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM SHIPMENT
WHERE DepartureDate LIKE '___10%';

Microsoft Access stores dates as strings so we can use the wildcards * and ?, which give the
following SQL statement:

/* *** SQL-Query-MI-F-Access-A *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM SHIPMENT
WHERE DepartureDate LIKE '???10*';

Further, Microsoft Access does NOT show the leading zero in MM, so we must add a
compound WHERE clause to get months without the leading zeros:

/* *** SQL-Query-MI-F-Access-B *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM SHIPMENT
WHERE DepartureDate LIKE '???10*'
 OR DepartureDate LIKE '??10*';

Oracle does not store date data type values as strings, so the following Oracle-specific form
of the query must be used to extract the day of the month:

/* *** SQL-Query-MI-F-Oracle *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM SHIPMENT
WHERE EXTRACT (DAY FROM DepartureDate) = 10;

MySQL and SQL Server also does not store date data type values as strings, so the following
MySQL-specific form of the query must be used to extract the day of the month. This query
also works in Access:

/* *** SQL-Query-MI-FF-MySQL *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate
FROM SHIPMENT
WHERE DAY (DepartureDate) = 10;

Formatted: Tab stops: 2.01", Left + Not at 1" + 1.25" +
1.5"

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-133
Copyright © 2016 Pearson Education, Inc.

G. Determine the maximum and minimum InsuredValue.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-G *** */

SELECT MAX (InsuredValue) AS MaxInsuredValue,
 MIN (InsuredValue) AS MinInsuredValue,
FROM SHIPMENT;

H. Determine the average InsuredValue.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-H *** */

SELECT AVG (InsuredValue) AS AvgInsuredValue
FROM SHIPMENT;

I. Count the number of shipments.

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-134
Copyright © 2016 Pearson Education, Inc.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-I *** */

SELECT COUNT (*) AS NumberOfShipments
FROM SHIPMENT;

J. Show ItemID, Description, Store, and a calculated column named
USCurrencyAmount that is equal to LocalCurrencyAmount times the ExchangeRate
for all rows of ITEM.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-J *** */

SELECT ItemID, Description, Store,
 LocalCurrencyAmount * ExchangeRate AS USCurrencyAmount
FROM ITEM;

K. Group item purchases by City and Store.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-K *** */

SELECT City, Store
FROM ITEM

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-135
Copyright © 2016 Pearson Education, Inc.

GROUP BY City, Store;

L. Count the number of purchases having each combination of City and Store.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-L *** */

SELECT City, Store,
 COUNT (*) AS City_Store_Combination_Count
FROM ITEM
GROUP BY City, Store;

M. Show the ShipperName, ShipmentID and DepartureDate of all shipments that have
an item with a value of $1,000.00 or more. Use a subquery. Present results sorted
by ShipperName in ascending order and then DepartureDate in descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-M *** */

SELECT ShipperName, ShipmentID, DepartureDate
FROM SHIPMENT
WHERE ShipmentID IN
 (SELECT ShipmentID
 FROM SHIPMENT_ITEM
 WHERE Value >= 1000)

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-136
Copyright © 2016 Pearson Education, Inc.

ORDER BY ShipperName, DepartureDate DESC;

N. Show the ShipperName, ShipmentID, and DepartureDate of all shipments that have
an item with a value of $1000.00 or more. Use a join. Present results sorted by
ShipperName in ascending order and then DepartureDate in descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

This question is a little more complicated than it appears. Note how the following queries
determine that there are actually only two shipments that meet the criteria.

/* *** SQL-Query-MI-N-A *** */

SELECT ShipperName, SHIPMENT.ShipmentID, DepartureDate
FROM SHIPMENT, SHIPMENT_ITEM
WHERE SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
 AND (Value = 1000 OR Value > 1000)
ORDER BY ShipperName, DepartureDate DESC;

Note that the three lines for International are actually only one shipment, so we can use
DISTINCT to remove the duplication (shipment 4 has three items valued over $1000). Note
also that we can use the greater than or equal to operator >= to simplify the WHERE clause.
The final query is:

/* *** SQL-Query-MI-N-B *** */

SELECT DISTINCT ShipperName, SHIPMENT.ShipmentID, DepartureDate
FROM SHIPMENT, SHIPMENT_ITEM
WHERE SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
 AND Value >= 1000
ORDER BY ShipperName, DepartureDate DESC;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-137
Copyright © 2016 Pearson Education, Inc.

O. Show the ShipperName, ShipmentID, and DepartureDate of the shipments for items
that were purchased in Singapore. Use a subquery. Present results sorted by
ShipperName in ascending order and then DepartureDate in descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-O *** */

SELECT ShipperName, ShipmentID, DepartureDate
FROM SHIPMENT
WHERE ShipmentID IN
 (SELECT ShipmentID
 FROM SHIPMENT_ITEM
 WHERE ItemID IN
 (SELECT ItemID
 FROM ITEM
 WHERE City = 'Singapore'))
ORDER BY ShipperName, DepartureDate DESC;

P. Show the ShipperName, ShipmentID, and DepartureDate of all shipments that have
an item that was purchased in Singapore. Use a join, but do not use JOIN ON
syntax. Present results sorted by ShipperName in ascending order and then
DepartureDate in descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

As in question N, we will have to use a DISTINCT keyword to guarantee the appropriate
answer.

/* *** SQL-Query-MI-P *** */

SELECT DISTINCT ShipperName, SHIPMENT.ShipmentID, DepartureDate
FROM SHIPMENT, SHIPMENT_ITEM, ITEM

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-138
Copyright © 2016 Pearson Education, Inc.

WHERE SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
 AND SHIPMENT_ITEM.ItemID = ITEM.ItemID
 AND City = 'Singapore'
ORDER BY ShipperName, DepartureDate DESC;

Q. Show the ShipperName, ShipmentID, and DepartureDate of all shipments that have
an item that was purchased in Singapore. Use a join using JOIN ON syntax.
Present results sorted by ShipperName in ascending order and then DepartureDate
in descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

For Oracle Database, MySQL, and SQL Server:

/* *** SQL-Query-MI-Q *** */

 SELECT DISTINCT SHIPMENT.ShipperName, SHIPMENT_ITEM.ShipmentID,
 SHIPMENT.DepartureDate

FROM ITEM JOIN (SHIPMENT JOIN SHIPMENT_ITEM ON SHIPMENT.ShipmentID =
SHIPMENT_ITEM.ShipmentID) ON ITEM.ItemID = SHIPMENT_ITEM.ItemID
WHERE ITEM.City='Singapore'
ORDER BY ShipperName, DepartureDate DESC;

Note that for Microsoft Access, we must use the INNER JOIN syntax:

/* *** SQL-Query-MI-Q *** */

 SELECT DISTINCT SHIPMENT.ShipperName, SHIPMENT_ITEM.ShipmentID,
 SHIPMENT.DepartureDate

FROM ITEM INNER JOIN (SHIPMENT INNER JOIN SHIPMENT_ITEM ON
SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID) ON ITEM.ItemID =
SHIPMENT_ITEM.ItemID
WHERE ITEM.City='Singapore'
ORDER BY ShipperName, DepartureDate DESC;

http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-139
Copyright © 2016 Pearson Education, Inc.

R. Show the ShipperName, ShipmentID, the DepartureDate of the shipment, and Value
for items that were purchased in Singapore. Use a combination of a join and a
subquery. Present results sorted by ShipperName in ascending order and then
DepartureDate in descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-R *** */

SELECT ShipperName, SHIPMENT.ShipmentID, DepartureDate, Value
FROM SHIPMENT, SHIPMENT_ITEM
WHERE SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID
 AND ItemID IN
 (SELECT ItemID
 FROM ITEM
 WHERE City = 'Singapore')
ORDER BY ShipperName, DepartureDate DESC;

S. Show the ShipperName, ShipmentID, the DepartureDate of the shipment, and Value

for items that were purchased in Singapore. Also show the ShipperName,
ShipmentID, and DepartureDate for all other shipments. Present results sorted by
Value in ascending order, then ShipperName in ascending order, and then
DepartureDate in descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database
DBP-e14-IM-CH02-MI.accdb and in the corresponding files for Oracle Database, MySQL,
and SQL Server, which are all available in the Instructor’s Resource Center on the text’s Web
site (www.pearsonhighered.com/kroenke).

Note that this is a very challenging question! The best solution involves adding the
‘Singapore’ restriction to the inner JOIN before performing the LEFT JOIN, otherwise (if we
put the ‘Singapore’ restriction in the WHERE clause) every shipment will have an item so the
LEFT JOIN will not produce any NULLs, and we will get an incorrect result from the query.
Examples of this are not covered in the text, but at the same time, the text does not say you
can’t do it either.

The LEFT JOIN solution for Oracle Database, MySQL, and SQL Server:

/* *** SQL-Query-MI-S *** */

SELECT ShipperName, SHIPMENT.ShipmentID, DepartureDate, Value

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter 2 – Introduction to Structured Query Language

Page 2-140
Copyright © 2016 Pearson Education, Inc.

FROM SHIPMENT LEFT JOIN (ITEM JOIN SHIPMENT_ITEM
ON ITEM.ItemID = SHIPMENT_ITEM.ItemID AND

ITEM.City = ‘Singapore’)
 ON SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID

ORDER BY Value, ShipperName, DepartureDate DESC;

Note that Microsoft Access does not allow nesting an INNER JOIN inside a LEFT or RIGHT
JOIN. It also disallows adding the non-join condition to the “ON” clause. So in order to
create a solution in Access, we must either (1) use a more complicated version of the query
with a UNION but without an OUTER JOIN or (2) create and save an intermediate query
(view) to be used in the final query. Note that these two approaches will also work with
Oracle, SQL Server, or MySQL.

/* *** SQL-Query-MI-S-UNION *** */

SELECT ShipperName, S.ShipmentID, DepartureDate, Value
FROM SHIPMENT S, ITEM I, SHIPMENT_ITEM SI
WHERE S.ShipmentID = SI.ShipmentID AND I.ItemID = SI.ItemID
 AND I.City = 'Singapore'
UNION SELECT ShipperName, ShipmentID, DepartureDate, NULL
FROM SHIPMENT
WHERE ShipmentID NOT IN
 (SELECT ShipmentID
 FROM ITEM I, SHIPMENT_ITEM SI
 WHERE I.ItemID = SI.ItemID AND I.City = 'Singapore')
ORDER BY Value, ShipperName, DepartureDate DESC;

The other approach using Access involves writing and saving an intermediate query (also
called a “view”; see Chapter 7). We first write and save a query that produces the
ShipmentID and Value for all shipments involving an item from Singapore:

/* *** SQL-Query-MI-S-Temp *** */

SELECT ShipmentID, Value
FROM ITEM I, SHIPMENT_ITEM SI
WHERE I.ItemID = SI.ItemID AND I.City = ‘Singapore’;

Now we can use that temporary query as if it were just another table to produce the final
result:

/* *** SQL-Query-MI-S-Final *** */

SELECT ShipperName, S.ShipmentID, DepartureDate, Value
FROM SHIPMENT AS S LEFT OUTER JOIN [SQL-Query-MI-S-TEMP] AS T
 ON S.ShipmentID = T.ShipmentID
ORDER BY Value, ShipperName, DepartureDate DESC;

The results below are the same for all correct versions of this query, with the possible
exception of where the NULL Values are presented: In Access, NULL comes before all
values; in Oracle, it comes last, etc.

Chapter 2 – Introduction to Structured Query Language

Page 2-141
Copyright © 2016 Pearson Education, Inc.

Database Processing Fundamentals Design and Implementation 14th Edition Kroenke Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/database-processing-fundamentals-design-and-implementation-14th-edition-kroenke-solutions-manual/

	INSTRUCTOR’S MANUAL
	TO ACCOMPANY
	Fundamentals, Design, and Implementation
	14th Edition
	Chapter 2
	Introduction to Structured Query Language
	Prepared By
	Scott L. Vandenberg
	Siena College
	Database Processing: Fundamental, Design, and Implementation (14PthP Edition)
	 CHAPTER OBJECTIVES
	 IMPORTANT TEACHING NOTES – READ THIS FIRST!
	 ERRATA
	 TEACHING SUGGESTIONS
	 ANSWERS TO REVIEW QUESTIONS
	 ANSWERS TO PROJECT QUESTIONS
	 MARCIA’S DRY CLEANING CASE QUESTIONS
	 ANSWERS TO THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS
	 ANSWERS TO MORGAN IMPORTING PROJECT QUESTIONS

