
IM-Ch02-Data-Models-Ed12.pdf

IM-Appendix-B-UCL-Conceptual-Design-Ed12.pdf

Database Systems Design Implementation and Management 12th Edition Coronel Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/database-systems-design-implementation-and-management-12th-edition-coronel-solutions-manual/

Chapter 2 Data Models

 14

Chapter 2

Data Models

Discussion Focus

Although all of the topics covered in this chapter are important, our students have given us consistent

feedback: If you can write precise business rules from a description of operations, database design is

not that difficult. Therefore, once data modeling (Sections 2-1, "Data Modeling and Data Models",

Section 2-2 "The Importance of Data Models,” and 2-3, “Data Model Basic Building Blocks,”) has been

examined in detail, Section 2-4, “Business Rules,” should receive a lot of class time and attention.

Perhaps it is useful to argue that the answers to questions 2 and 3 in the Review Questions section are

the key to successful design. That’s why we have found it particularly important to focus on business

rules and their impact on the database design process.

What are business rules, what is their source, and why are they crucial?

Business rules are precisely written and unambiguous statements that are derived from a detailed

description of an organization's operations. When written properly, business rules define one or more of

the following modeling components:

 entities

 relationships

 attributes

 connectivities

 cardinalities – these will be examined in detail in Chapter 3, “The Relational Database Model.”

Basically, the cardinalities yield the minimum and maximum number of entity occurrences in an

entity. For example, the relationship decribed by “a professor teaches one or more classes”

means that the PROFESSOR entity is referenced at least once and no more than four times in the

CLASS entity.

 constraints

Because the business rules form the basis of the data modeling process, their precise statement is crucial

to the success of the database design. And, because the business rules are derived from a precise

description of operations, much of the design's success depends on the accuracy of the description of

operations.

Examples of business rules are:

 An invoice contains one or more invoice lines.

 Each invoice line is associated with a single invoice.

 A store employs many employees.

 Each employee is employed by only one store.

 A college has many departments.

 Each department belongs to a single college. (This business rule reflects a university that has

multiple colleges such as Business, Liberal Arts, Education, Engineering, etc.)

Chapter 2 Data Models

 15

 A driver may be assigned to drive many different vehicles.

 Each vehicle can be driven by many drivers. (Note: Keep in mind that this business rule reflects

the assignment of drivers during some period of time.)

 A client may sign many contracts.

 Each contract is signed by only one client.

 A sales representative may write many contracts.

 Each contract is written by one sales representative.

Note that each relationship definition requires the definition of two business rules. For example, the

relationship between the INVOICE and (invoice) LINE entities is defined by the first two business rules

in the bulleted list. This two-way requirement exists because there is always a two-way relationship

between any two related entities. (This two-way relationship description also reflects the implementation

by many of the available database design tools.)

Keep in mind that the ER diagrams cannot always reflect all of the business rules. For example, examine

the following business rule:

A customer cannot be given a credit line over $10,000 unless that customer has maintained a

satisfactory credit history (as determined by the credit manager) during the past two years.

This business rule describes a constraint that cannot be shown in the ER diagram. The business rule

reflected in this constraint would be handled at the applications software level through the use of a

trigger or a stored procedure. (Your students will learn about triggers and stored procedures in Chapter

8, “Advanced SQL.”)

Given their importance to successful design, we cannot overstate the importance of business rules and

their derivation from properly written description of operations. It is not too early to start asking students

to write business rules for simple descriptions of operations. Begin by using familiar operational

scenarios, such as buying a book at the book store, registering for a class, paying a parking ticket, or

renting a DVD.

Also, try reversing the process: Give the students a chance to write the business rules from a basic data

model such as the one represented by the text’s Figure 2.1 and 2.2. Ask your students to write the

business rules that are the foundation of the relational diagram in Figure 2.2 and then point their

attention to the relational tables in Figure 2.1 to indicate that an AGENT occurrence can occur multiple

times in the CUSTOMER entity, thus illustrating the implementation impact of the business rules

An agent can serve many customers.

Each customer is served by one agent.

Chapter 2 Data Models

 16

Answers to Review Questions

1. Discuss the importance of data modeling.

A data model is a relatively simple representation, usually graphical, of a more complex real world

object event. The data model’s main function is to help us understand the complexities of the real-

world environment. The database designer uses data models to facilitate the interaction among

designers, application programmers, and end users. In short, a good data model is a

communications device that helps eliminate (or at least substantially reduce) discrepancies between

the database design’s components and the real world data environment. The development of data

models, bolstered by powerful database design tools, has made it possible to substantially diminish

the database design error potential. (Review Section 2.1 in detail.)

2. What is a business rule, and what is its purpose in data modeling?

A business rule is a brief, precise, and unambigous description of a policy, procedure, or principle

within a specific organization’s environment. In a sense, business rules are misnamed: they apply to

any organization -- a business, a government unit, a religious group, or a research laboratory; large

or small -- that stores and uses data to generate information.

Business rules are derived from a description of operations. As its name implies, a description of

operations is a detailed narrative that describes the operational environment of an organization.

Such a description requires great precision and detail. If the description of operations is incorrect or

inomplete, the business rules derived from it will not reflect the real world data environment

accurately, thus leading to poorly defined data models, which lead to poor database designs. In turn,

poor database designs lead to poor applications, thus setting the stage for poor decision making –

which may ultimately lead to the demise of the organization.

Note especially that business rules help to create and enforce actions within that organization’s

environment. Business rules must be rendered in writing and updated to reflect any change in the

organization’s operational environment.

Properly written business rules are used to define entities, attributes, relationships, and constraints.

Because these components form the basis for a database design, the careful derivation and

definition of business rules is crucial to good database design.

3. How do you translate business rules into data model components?

As a general rule, a noun in a business rule will translate into an entity in the model, and a verb

(active or passive) associating nouns will translate into a relationship among the entities. For

example, the business rule “a customer may generate many invoices” contains two nouns (customer

and invoice) and a verb (“generate”) that associates them.

Chapter 2 Data Models

 17

4. Describe the basic features of the relational data model and discuss their importance to the end

user and the designer.

A relational database is a single data repository that provides both structural and data independence

while maintaining conceptual simplicity.

The relational database model is perceived by the user to be a collection of tables in which data are

stored. Each table resembles a matrix composed of row and columns. Tables are related to each other

by sharing a common value in one of their columns.

The relational model represents a breakthrough for users and designers because it lets them operate

in a simpler conceptual environment. End users find it easier to visualize their data as a collection of

data organized as a matrix. Designers find it easier to deal with conceptual data representation,

freeing them from the complexities associated with physical data representation.

5. Explain how the entity relationship (ER) model helped produce a more structured relational

database design environment.

An entity relationship model, also known as an ERM, helps identify the database's main entities and

their relationships. Because the ERM components are graphically represented, their role is more

easily understood. Using the ER diagram, it’s easy to map the ERM to the relational database

model’s tables and attributes. This mapping process uses a series of well-defined steps to generate all

the required database structures. (This structures mapping approach is augmented by a process

known as normalization, which is covered in detail in Chapter 6 “Normalization of Database

Tables.”)

6. Consider the scenario described by the statement “A customer can make many payments, but

each payment is made by only one customer” as the basis for an entity relationship diagram

(ERD) representation.

This scenario yields the ERDs shown in Figure Q2.6. (Note the use of the PowerPoint Crow’s Foot

template. We will start using the Visio Professional-generated Crow’s Foot ERDs in Chapter 3, but

you can, of course, continue to use the template if you do not have access to Visio Professional.)

Figure Q2.6 The Chen and Crow’s Foot ERDs for Question 6

Chapter 2 Data Models

 18

CUSTOMER PAYMENTmakes

1 M

Chen model

CUSTOMER PAYMENT
makes

Crow’s Foot model

NOTE
Remind your students again that we have not (yet) illustrated the effect of optional

relationships on the ERD’s presentation. Optional relationships and their treatment are

covered in detail in Chapter 4, “Entity Relationship (ER) Modeling.”

7. Why is an object said to have greater semantic content than an entity?

An object has greater semantic content because it embodies both data and behavior. That is, the

object contains, in addition to data, also the description of the operations that may be performed by

the object.

8. What is the difference between an object and a class in the object oriented data model

(OODM)?

An object is an instance of a specific class. It is useful to point out that the object is a run-time

concept, while the class is a more static description.

Objects that share similar characteristics are grouped in classes. A class is a collection of similar

objects with shared structure (attributes) and behavior (methods.) Therefore, a class resembles an

entity set. However, a class also includes a set of procedures known as methods.

Chapter 2 Data Models

 19

9. How would you model Question 6 with an OODM? (Use Figure 2.4 as your guide.)

The OODM that corresponds to question 6’s ERD is shown in Figure Q1.9:

Figure Q2.9 The OODM Model for Question 9

CUSTOMER

PAYMENT

M

10. What is an ERDM, and what role does it play in the modern (production) database

environment?

The Extended Relational Data Model (ERDM) is the relational data model’s response to the Object

Oriented Data Model (OODM.) Most current RDBMSes support at least a few of the ERDM’s

extensions. For example, support for large binary objects (BLOBs) is now common.

Although the "ERDM" label has frequently been used in the database literature to describe the

relational database model's response to the OODM's challenges, C. J. Date objects to the ERDM

label for the following reasons: 1

 The useful contribution of "the object model" is its ability to let users define their own --

and often very complex -- data types. However, mathematical structures known as

"domains" in the relational model also provide this ability. Therefore, a relational DBMS

that properly supports such domains greatly diminishes the reason for using the object

model. Given proper support for domains, relational database models are quite capable of

handling the complex data encountered in time series, engineering design, office

automation, financial modeling, and so on. Because the relational model can support

complex data types, the notion of an "extended relational database model" or ERDM is

"extremely inappropriate and inaccurate" and "it should be firmly resisted." (The capability

that is supposedly being extended is already there!)

 Even the label object/relational model (O/RDM) is not quite accurate, because the

relational database model's domain is not an object model structure. However, there are

already quite a few O/R products -- also known as Universal Database Servers -- on the

market. Therefore, Date concedes that we are probably stuck with the O/R label. In fact,

Date believes that "an O/R system is in everyone's future." More precisely, Date argues that

a true O/R system would be "nothing more nor less than a true relational system -- which is

to say, a system that supports the relational model, with all that such support entails."

1

 C. J. Date, "Back To the Relational Future", http://www.dbpd.com/vault/9808date.html

Chapter 2 Data Models

 20

C. J. Date concludes his discussion by observing that "We need do nothing to the relational model

achieve object functionality. (Nothing, that is, except implement it, something that doesn't yet seem

to have been tried in the commercial world.)"

11. What is a relationship, and what three types of relationships exist?

A relationship is an association among (two or more) entities. Three types of relationships exist: one-

to-one (1:1), one-to-many (1:M), and many-to-many (M:N or M:M.)

12. Give an example of each of the three types of relationships.

1:1

An academic department is chaired by one professor; a professor may chair only one academic

department.

1:M

A customer may generate many invoices; each invoice is generated by one customer.

M:N

An employee may have earned many degrees; a degree may have been earned by many employees.

13. What is a table, and what role does it play in the relational model?

Strictly speaking, the relational data model bases data storage on relations. These relations are

based on algebraic set theory. However, the user perceives the relations to be tables. In the

relational database environment, designers and users perceive a table to be a matrix consisting of a

series of row/column intersections.Tables, also called relations, are related to each other by sharing

a common entity characteristic. For example, an INVOICE table would contain a customer number

that points to that same number in the CUSTOMER table. This feature enables the RDBMS to link

invoices to the customers who generated them.

Tables are especially useful from the modeling and implementation perspecectives. Because tables

are used to describe the entities they represent, they provide ane asy way to summarize entity

characteristics and relationships among entities. And, because they are purely conceptual

constructs, the designer does not need to be concerned about the physical implementation aspects of

the database design.

Chapter 2 Data Models

 21

14. What is a relational diagram? Give an example.

A relational diagram is a visual representation of the relational database’s entities, the attributes

within those entities, and the relationships between those entities. Therefore, it is easy to see what

the entities represent and to see what types of relationships (1:1, 1:M, M:N) exist among the entities

and how those relationships are implemented. An example of a relational diagram is found in the

text’s Figure 2.2.

15. What is connectivity? (Use a Crow’s Foot ERD to illustrate connectivity.)

Connectivity is the relational term to describe the types of relationships (1:1, 1:M, M:N).

In the figure, the businesss rule that an advisor can advise many students and a student has only one

assigned advisor is shown with in a relationship with a connectivity of 1:M. The business rule that a

student can register only one vehicle to park on campus and a vehicle can be registered by only one

student is shown with a relationship with a connectivity of 1:1. Finally, the rule that a student can

register for many classes, and a class can be registered for by many students, is shown by the

relationship with a connectivity of M:N.

16. Describe the Big Data phenomenon.

Over the last few years, a new wave of data has “emerged” to the limelight. Such data have alsways

exsisted but did not recive the attention that is receiving today. These data are characterized for

being high volume (petabyte size and beyond), high frequency (data are generated almost

constantly), and mostly semi-structured. These data come from multiple and vatied sources such as

web site logs, web site posts in social sites, and machine generated information (GPS, sensors, etc.)

Such data; have been accumulated over the years and companies are now awakining to the fact that

it contains a lot of hidden information that could help the day-to-day business (such as browsing

patterns, purchasing preferences, behaivor patterns, etc.) The need to manage and leverage this data

has triggered a phenomenon labeled “Big Data”. Big Data refers to a movement to find new and

better ways to manage large amounts of web-generated data and derive business insight from it,

while, at the same time, providing high performance and scalability at a reasonable cost.

Chapter 2 Data Models

 22

17. What does the term “3 vs” refers to?

The term “3 Vs” refers to the 3 basic characteristics of Big Data databases, they are:

 Volume: Refers to the amounts of data being stored. With the adoption and growth of the

Internet and social media, companies have multiplied the ways to reach customers. Over

the years, and with the benefit of technological advances, data for millions of e-

transactions were being stored daily on company databases. Furthermore, organizations

are using multiple technologies to interact with end users and those technologies are

generating mountains of data. This ever-growing volume of data quickly reached

petabytes in size and it's still growing.

 Velocity: Refers not only to the speed with which data grows but also to the need to

process these data quickly in order to generate information and insight. With the advent

of the Internet and social media, business responses times have shrunk considerably.

Organizations need not only to store large volumes of quickly accumulating data, but also

need to process such data quickly. The velocity of data growth is also due to the increase

in the number of different data streams from which data is being piped to the organization

(via the web, e-commerce, Tweets, Facebook posts, emails, sensors, GPS, and so on).

 Variety: Refers to the fact that the data being collected comes in multiple different data

formats. A great portion of these data comes in formats not suitable to be handled by the

typical operational databases based on the relational model.

The 3 Vs framework illustrates what companies now know, that the amount of data being

collected in their databases has been growing exponentially in size and complexity. Traditional

relational databases are good at managing structured data but are not well suited to managing and

processing the amounts and types of data being collected in today's business environment.

18. What is Haddop and what are its basic components?

In order to create value from their previously unused Big Data stores, companies are using new

Big Data technologies. These emerging technologies allow organizations to process massive data

stores of multiple formats in cost-effective ways. Some of the most frequently used Big Data

technologies are Hadoop and MapReduce.

 Hadoop is a Java based, open source, high speed, fault-tolerant distributed storage and

computational framework. Hadoop uses low-cost hardware to create clusters of thousands

of computer nodes to store and process data. Hadoop originated from Google's work on

distributed file systems and parallel processing and is currently supported by the Apache

Software Foundation.2Hadoop has several modules, but the two main components are

Hadoop Distributed File System (HDFS) and MapReduce.

 Hadoop Distributed File System (HDFS) is a highly distributed, fault-tolerant file storage

system designed to manage large amounts of data at high speeds. In order to achieve high

throughput, HDFS uses the write-once, read many model. This means that once the data

is written, it cannot be modified. HDFS uses three types of nodes: a name node that stores

all the metadata about the file system; a data node that stores fixed-size data blocks (that

could be replicated to other data nodes) and a client node that acts as the interface

between the user application and the HDFS.

2 For more information about Hadoop visit hadoop.apache.org.

Chapter 2 Data Models

 23

 MapReduce is an open source application programming interface (API) that provides fast

data analytics services. MapReduce distributes the processing of the data among

thousands of nodes in parallel. MapReduce works with structured and nonstructured data.

The MapReduce framework provides two main functions, Map and Reduce. In general

terms, the Map function takes a job and divides it into smaller units of work; the Reduce

function collects all the output results generated from the nodes and integrates them into a

single result set.

19. What is sparse data? Give an example.

Sparse data refers to cases in which the number of attributes are very large, but the numbers but the

actual number of distinct value instances is relatively small. For example, if you are modeling census

data, you will have an entitty called person. This entity person can have hundred of attributes, some

of those attributes would be first name, last name, degree, employer, income, veteran status, foreign

born, etc. Although, there would be many millions of rows of data for each person, there will be

many attributes that will be left blank, for example, not all persons will have a degree, an income or

an employer. Even fewer persons will be veterans or foreign born. Every time that you have an data

entity that has many columns but the data instances for the columns are very low (many empty

attribute occurrences) it is said that you have sparse data.

There is another related terminoligy, data sparcity that refers to the number of different values a

fiven columns could have. In this case, a column such as “gender” although it will have values for

all rows, it has a low data sparcity because the number of different values is ony two: male or

female. A column such as name and birthdate will have high data sparcity because the number of

different values is high.

20. Define and describe the basic characteristics of a NoSQL database.

Every time you search for a product on Amazon, send messages to friends in Facebook, watch a

video in YouTube or search for directions in Google Maps, you are using a NoSQL database.

NoSQL refers to a new generation of databases that address the very specific challenges of the “big

data” era and have the following general characteristics:

 Not based on the relational model.

These databases are generally based on a variation of the key-value data model rather than in the

relational model, hence the NoSQL name. The key-value data model is based on a structure

composed of two data elements: a key and a value; in which for every key there is a

corresponding value (or a set of values). The key-value data model is also referred to as the

attribute-value or associative data model. In the key-value data model, each row represents one

attribute of one entity instance. The “key” column points to an attribute and the “value” column

contains the actual value for the attribute. The data type of the “value” column is generally a long

string to accommodate the variety of actual data types of the values that are placed in the

column.

 Support distributed database architectures.

One of the big advantages of NoSQL databases is that they generally use a distributed

Chapter 2 Data Models

 24

architecture. In fact, several of them (Cassandra, Big Table) are designed to use low cost

commodity servers to form a complex network of distributed database nodes

 Provide high scalability, high availability and fault tolerance.

NoSQL databases are designed to support the ability to add capacity (add database nodes to the

distributed database) when the demand is high and to do it transparently and without downtime.

Fault tolerant means that if one of the nodes in the distributed database fails, the database will

keep operating as normal.

 Support very large amounts of sparse data.

Because NoSQL databases use the key-value data model, they are suited to handle very high

volumes of sparse data; that is for cases where the number of attributes is very large but the

number of actual data instances is low.

 Geared toward performance rather than transaction consistency.

One of the biggest problems of very large distributed databases is to enforce data consistency.

Distributed databases automatically make copies of data elements at multiple nodes – to ensure

high availability and fault tolerance. If the node with the requested data goes down, the request

can be served from any other node with a copy of the data. However, what happen if the network

goes down during a data update? In a relational database, transaction updates are guaranteed to

be consistent or the transaction is rolled back. NoSQL databases sacrifice consistency in order to

attain high levels of performance. NoSQL databases provide eventual consistency. Eventual

consistency is a feature of NoSQL databases that indicates that data are not guaranteed to be

consistent immediately after an update (across all copies of the data) but rather, that updates will

propagate through the system and eventually all data copies will be consistent.

21. Using the example of a medical clinic with patients and tests, provide a simple

representation of how to model this example using the relational model and how it wold be

represented using the key-value data modeling technique.

As you can see in Figure Q2.21, the relational model stores data in a tabular format in which each

row represents a “record” for a given patient. While, the key-value data model uses three differnet

fields to represent each data element in the record. Therefore, for each patient row, there are three

Chapter 2 Data Models

 25

rows in the key-value model.

22. What is logical independence?

Logical independence exists when you can change the internal model without affecting the

conceptual model.

When you discuss logical and other types of independence, it’s worthwhile to discuss and review

some basic modeling concepts and terminology:

 In general terms, a model is an abstraction of a more complex real-world object or event. A

model’s main function is to help you understand the complexities of the real-world

environment. Within the database environment, a data model represents data structures and

their characteristics, relations, constraints, and transformations. As its name implies, a purely

conceptual model stands at the highest level of abstraction and focuses on the basic ideas

(concepts) that are explored in the model, without specifying the details that will enable the

designer to implement the model. For example, a conceptual model would include entities

and their relationships and it may even include at least some of the attributes that define the

entities, but it would not include attribute details such as the nature of the attributes (text,

numeric, etc.) or the physical storage requirements of those atttributes.

 The terms data model and database model are often used interchangeably. In the text, the

term database model is be used to refer to the implementation of a data model in a specific

database system.

 Data models (relatively simple representations, usually graphical, of more complex real-

world data structures), bolstered by powerful database design tools, have made it possible to

substantially diminish the potential for errors in database design.

Chapter 2 Data Models

 26

 The internal model is the representation of the database as “seen” by the DBMS. In other

words, the internal model requires the designer to match the conceptual model’s

characteristics and constraints to those of the selected implementation model.

 An internal schema depicts a specific representation of an internal model, using the database

constructs supported by the chosen database.

 The external model is the end users’ view of the data environment.

23. What is physical independence?

You have physical independence when you can change the physical model without affecting the

internal model. Therefore, a change in storage devices or methods and even a change in operating

system will not affect the internal model.

The terms physical model and internal model may require a bit of additional discussion:

 The physical model operates at the lowest level of abstraction, describing the way data are

saved on storage media such as disks or tapes. The physical model requires the definition of

both the physical storage devices and the (physical) access methods required to reach the data

within those storage devices, making it both software- and hardware-dependent. The storage

structures used are dependent on the software (DBMS, operating system) and on the type of

storage devices that the computer can handle. The precision required in the physical model’s

definition demands that database designers who work at this level have a detailed knowledge

of the hardware and software used to implement the database design.

 The internal model is the representation of the database as “seen” by the DBMS. In other

words, the internal model requires the designer to match the conceptual model’s

characteristics and constraints to those of the selected implementation model. An internal

schema depicts a specific representation of an internal model, using the database constructs

supported by the chosen database.

Chapter 2 Data Models

 27

Problem Solutions

Use the contents of Figure 2.1 to work problems 1-3.

1. Write the business rule(s) that governs the relationship between AGENT and CUSTOMER.

Given the data in the two tables, you can see that an AGENT – through AGENT_CODE

-- can occur many times in the CUSTOMER table. But each customer has only one

agent. Therefore, the business rules may be written as follows:

One agent can have many customers.

Each customer has only one agent.

Given these business rules, you can conclude that there is a 1:M relationship between

AGENT and CUSTOMER.

2. Given the business rule(s) you wrote in Problem 1, create the basic Crow’s Foot ERD.

The Crow’s Foot ERD is shown in Figure P2.2a.

Figure P2.2a The Crow’s Foot ERD for Problem 3

AGENT CUSTOMER
serves

For discussion purposes, you might use the Chen model shown in Figure P2.2b.

Compare the two representations of the business rules by noting the different ways in

which connectivities (1,M) are represented. The Chen ERD is shown in Figure P2.2b.

Figure P2.2b The Chen ERD for Problem 2

AGENT CUSTOMERserves

1 M

Chen model

Chapter 2 Data Models

 28

3. Using the ERD you drew in Problem 2, create the equivalent Object representation and UML

class diagram. (Use Figure 2.4 as your guide.)

The OO model is shown in Figure P2.3.

Figure P2.3a The OO Model for Problem 3

AGENT

CUSTOMER

M

Figure P.3b The UML Model for Problem 3

Using Figure P2.4 as your guide, work Problems 4–5. The DealCo relational diagram shows the

initial entities and attributes for the DealCo stores, located in two regions of the country.

Figure P2.4 The DealCo relational diagram

Chapter 2 Data Models

 29

4. Identify each relationship type and write all of the business rules.

One region can be the location for many stores. Each store is located in only one region. Therefore,

the relationship between REGION and STORE is 1:M.

Each store employs one or more employees. Each employee is employed by one store. (In this case,

we are assuming that the business rule specifies that an employee cannot work in more than one

store at a time.) Therefore, the relationship between STORE and EMPLOYEE is 1:M.

A job – such as accountant or sales representative -- can be assigned to many employees. (For

example, one would reasonably assume that a store can have more than one sales representative.

Therefore, the job title “Sales Representative” can be assigned to more than one employee at a

time.) Each employee can have only one job assignment. (In this case, we are assuming that the

business rule specifies that an employee cannot have more than one job assignment at a time.)

Therefore, the relationship between JOB and EMPLOYEE is 1:M.

5. Create the basic Crow’s Foot ERD for DealCo.

The Crow’s Foot ERD is shown in Figure P2.5a.

Figure P2.5a The Crow’s Foot ERD for DealCo

REGION STORE
is location for

JOB EMPLOYEE
is assigned to

employs

The Chen model is shown in Figure P2.5b. (Note that you always read the relationship from the “1”

to the “M” side.)

Chapter 2 Data Models

 30

Figure P2.5b The Chen ERD for DealCo

REGION STOREis location for

1 M

JOB EMPLOYEEis assigned to

1 M

employs

1

M

Using Figure P2.6 as your guide, work Problems 6−8 The Tiny College relational diagram shows

the initial entities and attributes for Tiny College.

Figure P2.6 The Tiny College relational diagram

6. Identify each relationship type and write all of the business rules.

The simplest way to illustrate the relationship between ENROLL, CLASS, and STUDENT is to

discuss the data shown in Table P2.6. As you examine the Table P2.6 contents and compare the

attributes to relational schema shown in Figure P2.6, note these features:

 We have added an attribute, ENROLL_SEMESTER, to identify the enrollment period.

 Naturally, no grade has yet been assigned when the student is first enrolled, so we have

entered a default value “NA” for “Not Applicable.” The letter grade – A, B, C, D, F, I

(Incomplete), or W (Withdrawal) -- will be entered at the conclusion of the enrollment

period, the SPRING-12 semester.

 Student 11324 is enrolled in two classes; student 11892 is enrolled in three classes, and

student 10345 is enrolled in one class.

Chapter 2 Data Models

 31

Table P2.6 Sample Contents of an ENROLL Table

STU_NUM CLASS_CODE ENROLL_SEMESTER ENROLL_GRADE

11324 MATH345-04 SPRING-14 NA

11324 ENG322-11 SPRING-14 NA

11892 CHEM218-05 SPRING-14 NA

11892 ENG322-11 SPRING-14 NA

11892 CIS431-01 SPRING-14 NA

10345 ENG322-07 SPRING-14 NA

All of the relationships are 1:M. The relationships may be written as follows:

COURSE generates CLASS. One course can generate many classes. Each class is generated by one

course.

CLASS is referenced in ENROLL. One class can be referenced in enrollment many times. Each

individual enrollment references one class. Note that the ENROLL entity is also related to

STUDENT. Each entry in the ENROLL entity references one student and the class for which that

student has enrolled. A student cannot enroll in the same class more than once. If a student enrolls

in four classes, that student will appear in the ENROLL entity four times, each time for a different

class.

STUDENT is shown in ENROLL. One student can be shown in enrollment many times. (In

database design terms, “many” simply means “more than once.”) Each individual enrollment entry

shows one student.

7. Create the basic Crow’s Foot ERD for Tiny College.

The Crow’s Foot model is shown in Figure P2.7a.

Figure P2.7a The Crow’s Foot Model for Tiny College

COURSE CLASS
generates

STUDENT ENROLL
is shown in

is referenced in

The Chen model is shown in Figure P2.7b.

Chapter 2 Data Models

 32

Figure P2.7b The Chen Model for Tiny College

COURSE CLASSgenerates

1 M

STUDENT ENROLLis shown in

1 M

is referenced in

1

M

8. Create the UML class diagram that reflects the entities and relationships you identified in

the relational diagram.

The OO model is shown in Figure P2.8.

Figure P2.8a The OO Model for Tiny College

CRS_CODE C

CRS_DESCRIPTION C

CRS_CREDIT N

COURSE

CLASSES:

CLASS
M

STU_NUM C

STU_LNAME C

STU_FNAME C

STU_INITIAL C

STU_DOB D

STUDENT

Note: C = Character

D = Date

N = Numeric

ENROLL_SEMESTER C

ENROLL_GRADE C

ENROLL

STUDENTS:

STUDENT
M

CLASS
M

CLASSES:

CLASS_CODE C

CLASS_DAYS C

CLASS_TIME C

CLASS_ROOM C

CLASS

ENROLLMENT:

ENROLL

COURSE

COURSES:
1

M

ENROLL
M

ENROLLMENT:

Figure P2.8b The UML Model for Tiny College

Chapter 2 Data Models

 33

9. Typically, a patient staying in a hospital receives medications that have been ordered by a

particular doctor. Because the patient often receives several medications per day, there is a

1:M relationship between PATIENT and ORDER. Similarly, each order can include several

medications, creating a 1:M relationship between ORDER and MEDICATION.

a. Identify the business rules for PATIENT, ORDER, and MEDICATION.

The business rules reflected in thePATIENT description are:

A patient can have many (medical) orders written for him or her.

Each (medical) order is written for a single patient.

The business rules refected in the ORDER description are:

Each (medical) order can prescribe many medications.

Each medication can be prescribed in many orders.

The business rules refected in the MEDICATION description are:

Each medication can be prescribed in many orders.

Each (medical) order can prescribe many medications.

b. Create a Crow's Foot ERD that depicts a relational database model to capture these

business rules.

Figure P2.9 Crow's foot ERD for Problem 9

10. United Broke Artists (UBA) is a broker for not-so-famous painters. UBA maintains a small

network database to track painters, paintings, and galleries. A painting is painted by a

particular artist, and that painting is exhibited in a particular gallery. A gallery can exhibit

many paintings, but each painting can be exhibited in only one gallery. Similarly, a painting

is painted by a single painter, but each painter can paint many paintings. Using PAINTER,

PAINTING, and GALLERY, in terms of a relational database:

 a. What tables would you create, and what would the table components be?

We would create the three tables shown in Figure P2.10a. (Use the teacher’s Ch02_UBA

database in your instructor's resources to illustrate the table contents.)

Chapter 2 Data Models

 34

FIGURE P2.10a The UBA Database Tables

As you discuss the UBA database contents, note in particular the following business rules that

are reflected in the tables and their contents:

 A painter can paint may paintings.

 Each painting is painted by only one painter.

 A gallery can exhibit many paintings.

 A painter can exhibit paintings at more than one gallery at a time. (For example, if a

painter has painted six paintings, two may be exhibited in one gallery, one at another, and

three at the third gallery. Naturally, if galleries specify exclusive contracts, the database

must be changed to reflect that business rule.)

 Each painting is exhibited in only one gallery.

The last business rule reflects the fact that a painting can be physically located in only one

gallery at a time. If the painter decides to move a painting to a different gallery, the database

must be updated to remove the painting from one gallery and add it to the different gallery.

b. How might the (independent) tables be related to one another?

Figure P2.10b shows the relationships.

Chapter 2 Data Models

 35

FIGURE P2.10b The UBA Relational Model

11. Using the ERD from Problem 10, create the relational schema. (Create an appropriate collection of

attributes for each of the entities. Make sure you use the appropriate naming conventions to name

the attributes.)

The relational diagram is shown in Figure P2.11.

FIGURE P2.11 The Relational Diagram for Problem 11

12. Convert the ERD from Problem 10 into the corresponding UML class diagram.

The basic UML solution is shown in Figure P2.12.

FIGURE P2.12 The UML for Problem 12

Chapter 2 Data Models

 36

13. Describe the relationships (identify the business rules) depicted in the Crow’s Foot ERD shown

in Figure P2.13.

Figure P2.13 The Crow’s Foot ERD for Problem 13

The business rules may be written as follows:

 A professor can teach many classes.

 Each class is taught by one professor.

 A professor can advise many students.

 Each student is advised by one professor.

14. Create a Crow’s Foot ERD to include the following business rules for the ProdCo company:

a. Each sales representative writes many invoices.

b. Each invoice is written by one sales representative.

c. Each sales representative is assigned to one department.

d. Each department has many sales representatives.

e. Each customer can generate many invoices.

f. Each invoice is generated by one customer.

The Crow’s Foot ERD is shown in Figure P2.23. Note that a 1:M relationship is always read from

the one (1) to the many (M) side. Therefore, the customer-invoice relationship is read as “one

customer generates many invoices.”

Chapter 2 Data Models

 37

Figure P2.14 Crow’s Foot ERD for the ProdCo Company

15. Write the business rules that are reflected in the ERD shown in Figure P2.15. (Note that the

ERD reflects some simplifying assumptions. For example, each book is written by only one

author. Also, remember that the ERD is always read from the “1” to the “M” side, regardless

of the orientation of the ERD components.)

FIGURE P2.15 The Crow’s Foot ERD for Problem 15

The relationships are best described through a set of business rules:

 One publisher can publish many books.

 Each book is published by one publisher.

 A publisher can submit many (book) contracts.

 Each (book) contract is submitted by one publisher.

 One author can sign many contracts.

 Each contract is signed by one author.

 One author can write many books.

 Each book is written by one author.

Chapter 2 Data Models

 38

This ERD will be a good basis for a discussion about what happens when more realistic assumptions

are made. For example, a book – such as this one – may be written by more than one author.

Therefore, a contract may be signed by more than one author. Your students will learn how to model

such relationships after they have become familiar with the material in Chapter 3.

16. Create a Crow’s Foot ERD for each of the following descriptions. (Note: The word many

merely means “more than one” in the database modeling environment.)

a. Each of the MegaCo Corporation’s divisions is composed of many departments. Each of

those departments has many employees assigned to it, but each employee works for only

one department. Each department is managed by one employee, and each of those

managers can manage only one department at a time.

The Crow’s Foot ERD is shown in Figure P2.16a.

FIGURE P2.16a The MegaCo Crow’s Foot ERD

EMPLOYEE

is assigned to

DEPARTMENT

manages

As you discuss the contents of Figure P2.16a, note the 1:1 relationship between the EMPLOYEE

and the DEPARTMENT in the “manages” relationship and the 1:M relationship between the

DEPARTMENT and the EMPLOYEE in the “is assigned to” relationship.

Chapter 2 Data Models

 39

b. During some period of time, a customer can download many ebooks from BooksOnline.

Each of the ebooks can be downloaded by many customers during that period of time.

The solution is presented in Figure P2.16b. Note the M:N relationship between CUSTOMER and

EBOOK. Such a relationship is not implementable in a relational model.

FIGURE P2.16b The BigVid Crow’s Foot ERD

If you want to let the students convert Figure P2.16b’s ERD into an implementable ERD, add a

third DOWNLOAD entity to create a 1:M relationship between CUSTOMER and DOWNLOAD

and a 1:M relationship between EBOOK and DOWNLOAD. (Note that such a conversion has

been shown in the next problem solution.)

c. An airliner can be assigned to fly many flights, but each flight is flown by only one

airliner.

FIGURE P2.16c The Airline Crow’s Foot ERD

AIRCRAFT
flies

FLIGHT

AIRCRAFT
is assigned to

ASSIGNMENT FLIGHT
shows in

Initial M:N Solution

Implementable Solution

We have created a small Ch02_Airline database to let you explore the implementation of the

model. (Check the data files available for Instructors at www.cengagebrain.com.) The tables

and the relational diagram are shown in the following two figures.

Chapter 2 Data Models

 40

 FIGURE P2.16c The Airline Database Tables

 FIGURE P2.16c The Airline Relational Diagram

Chapter 2 Data Models

 41

d. The KwikTite Corporation operates many factories. Each factory is located in a region.

Each region can be “home” to many of KwikTite’s factories. Each factory employs many

employees, but each of those employees is employed by only one factory.

The solution is shown in Figure P2.16d.

FIGURE P2.16d The KwikTite Crow’s Foot ERD

REGION

EMPLOYEE

contains
FACTORY

employs

Remember that a 1:M relationship is always read from

the “1” side to the “M” side. Therefore, the relationship

between FACTORY and REGION is properly read as

“factory employs employee.”

e. An employee may have earned many degrees, and each degree may have been earned by

many employees.

The solution is shown in Figure P2.16e.

FIGURE P2.16e The Earned Degree Crow’s Foot ERD

EMPLOYEE
earns

DEGREE

Note that this M:N relationship must be broken up into two 1:M relationships before it can be

implemented in a relational database. Use the Airline ERD’s decomposition in Figure P2.16c as

the focal point in your discussion.

Chapter 2 Data Models

 42

17. Write the business rules that are reflected in the ERD shown in Figure P2.17.

A theater show many movies.

A movie can be shown in many theaters.

A movie can receive many reviews.

Each review is for a single movie.

A reviewer can write many reviews.

Each review is written by a single reviewer.

Note that the M:N relationship between theater and movie must be broken into two 1:M

relationships using a bridge table before it can be implemented in a relational database.

Appendix B The University Lab: Conceptual Design

 507

Appendix B

The University Lab: Conceptual Design

Discussion Focus

What actions are taken during the database initial study, and why are those actions important to the

database designer?

NOTE
We recommend that you use Appendix B’s Table B.1, “A Database Design Map for the University

Computer Lab (UCL),” in this and all subsequent discussions about the design process. The design

procedure summary should be used as a template in all design and implementation exercises, too.

Student feedback indicates that this blueprint is especially helpful when it is used in conjunction

with class projects. Use Appendix B’s Figure B.4, “The ER Model Segment for Business Rule 1,” to

illustrate how the database design map was used to generate the initial ER diagram.

The database initial study is essentially a process based on data gathering and analysis. Carefully conducted

and systematic interviews usually constitute an important part of this process.

The initial study must take its cues from an organization's key end users. Therefore, one of the first initial

study tasks is to establish who the organization's key end users are. Once the key end users are identified, the

initial study must be conducted to establish the following outputs:

 objectives

 organizational structure

 description of operations

 definition of problems and constraints

 description of system objectives

 definition of system scope and boundaries

The database designer cannot expect to develop a usable design unless these outputs are carefully defined

and delineated. The importance of having such a list of outputs is self-explanatory. For example, a database

design is not likely to be useful unless and until it accomplishes specific objectives and helps solve an

organization's problems. The inherent assumption is that those problems are usually based on the lack of

useful and timely information.

The value of having such a list of required outputs is clear, too, because this list constitutes a checklist to be

used by the database designer. The designer should not proceed with the database design until all the items

on this list have been completed.

Appendix B The University Lab: Conceptual Design

 508

What is the purpose of the conceptual design phase, and what is its end product?

The conceptual design phase is the first of three database design phases: conceptual, logical, and physical.

The purpose of the conceptual design phase is to develop the following outputs:

 information sources and users

 Information needs: user requirements

 the initial ER model

 the definition of attributes and domains

The conceptual design's end product is the initial ER diagram, which constitutes the preliminary database

blueprint. It is very unlikely that useful logical and physical designs can be produced unless and until this

blueprint has been completed.

Too much "design" activity takes place without the benefit of a carefully developed database blueprint.

Implementing a database without a good database blueprint almost invariably produces a lack of data

integrity based on various data anomalies. In fact, it may easily be argued that implementing a successful

database without a good database blueprint is just as likely as writing a great book by stringing randomly

selected words together.

Why is an initial ER model not likely to be the basis for the implementation of the database?

ER modeling is an iterative process. The initial ER model may establish many of the appropriate entities and

relationships, but it may be impossible to implement such relationships. Also, given the nature of the ER

modeling process, it is very likely that the end users begin to develop a greater understanding of their

organization's operations, thus making it possible to establish additional entities and relationships. In fact, it

may be argued that one very important benefit of ER modeling is based on the fact that it is an outstanding

communications tool. In any case, before the ER model can be implemented, it must be carefully verified

with respect to the business transactions and information requirements. (Note that students will learn how to

develop the verification process in Appendix C.)

Clearly, unless and until the ER model accurately reflects an organization's operations and requirements, the

development of logical and physical designs is premature. After all, the database implementation is only as

good as the final ER blueprint allows it to be!

Appendix B The University Lab: Conceptual Design

 509

Answers to Review Questions

1. What factors relevant to database design are uncovered during the initial study phase?

The database initial study phase yields the information required to determine an organization's needs, as

well as the factors that influence data generation, collection, and processing. Students must understand

that this phase is generally concurrent with the planning phase of the SDLC and that, therefore, several

of the initial study activities are common to both.

The most important discovery of the initial study phase is the set of the company's objectives. Once the

designer has a clear understanding of the company's main goals and its mission, (s)he can use this as the

guide to making all subsequent decisions concerning the analysis, design, and implementation of the

database and the information system.

The initial study phase also establishes the company's organizational structure; the description of

operations, problems and constraints, alternate solutions; system objectives; and the proposed system

scope and boundaries.

The organizational structure and the description of operations are interdependent because operations are

usually a function of the company's organizational structure. The determination of structure and

operations allows the designer to analyze the existing system and to describe a set of problems,

constraints, and possible solutions.

Naturally, the designer must find a feasible solution within the existing constraints. In most cases, the

best solution is not necessarily the most feasible one. The constraints also force the designer to narrow

the focus on very specific problems that must be solved.

In short, the combination of all the factors we have just discussed help the designer to put together a set

of realistic, achievable, and measurable system objectives within the system's required scope and

boundaries.

2. Why is the organizational structure relevant to the database designer?

The delivery of information must be timely, it must reach the right people, and the delivered information

must be accurate. Since the proper use of timely and accurate information is the key factor in the success

of any system, the reports and queries drawn from the database must reach the key decision makers

within the organization. Clearly, understanding the organization structure helps the designer to define the

organization's lines of communication and to establish reporting requirements.

3. What is the difference between the database design scope and its boundaries? Why is the scope

and boundary statement so important to the database designer?

The system's boundaries are the limits imposed on the database design by external constraints such as

available budget and time, the current level of technology, end-user resistance to change, and so on. The

scope of a database defines the extent of the database design coverage and reflects a conscious decision

Appendix B The University Lab: Conceptual Design

 510

to include some things and exclude others. Note that the existence of boundaries usually has an effect on

the system's scope.

For legal and practical design reasons, the designer cannot afford to work on an unbounded system. If the

system's limits have not been adequately defined, the designer may be legally required to expand the

system indefinitely. Moreover, an unbounded system will not contain the built-in constraints that make

its use practical in a real-world environment. For example, a completely unbounded system will never be

completed, nor may it ever be ready for reasonable use. Even a system with an "optimistic" set of bounds

may drag the design out over many years and may cost too much. Keep in mind that company managers

almost invariably want least-cost solutions to specific problems.

4. What business rule(s) and relationships can be described for the ERD in Figure QB.4?

Figure QB.4 The ERD for Question 4

The business rules and relationships are summarized in Table QB.4

Table QB.4 Business Rules and Relationships Summary

Business rules Relationships
A supplier supplies many parts.

Each part is supplied by many suppliers.

many to many

PART - SUPPLIER

A part is used in many products.

Each product is composed of many parts.

many to many

PRODUCT - PART

A product is bought by many customers.

Each customer buys many products.

many to many

PRODUCT - CUSTOMER

Appendix B The University Lab: Conceptual Design

 511

Note that the ERD in Figure QB.4 uses the PART_PROD, PROD_VEND and PROD_CUST entities to

convert the M:N relationships to a series of 1:M relationships. Also, note the use of two composite

entities:

 The PART_VEND entity’s composite PK is VEND_ID + PART_CODE.

 The PART_PROD entity’s composite PK is, PART_CODE + PROD_CODE.

The use of these composite PKs means that the relationship between PART and PART_VEND is strong,

as is the relationship between VENDOR and PART_VEND. These strong relationships are indicated

through the use of a solid relationship line.

No PK has been indicated for the PROD_CUST entity, but the existence of weak relationships – note the

dashed relationship lines – lets you assume that the PROD_CUST entity’s PK is not a composite one. In

this case, a revision of the ERD might include the establishment of a composite PK (PROD_CODE +

CUST_NUM) for the PROD_CUST entity. (If you are using Microsoft Visio Professional, declaring the

relationships between CUSTOMER and PROD_CUST and between PRODUCT and PROD_CUST to

be strong will automatically generate the composite PK (PROD_CODE + CUST_NUM.)

5. Write the connectivity and cardinality for each of the entities shown in Question 4.

We have indicated the connectivities and cardinalities in Figure QB.5. (The Crow’s Foot ERD combines

the connectivity and cardinality depiction through the use of the relationship symbols. Therefore, the use

of text boxes – we have created those with the Visio text tool -- to indicate connectivities and

cardinalities is technically redundant.)

Figure QB.5 Connectivities and Cardinalities

Appendix B The University Lab: Conceptual Design

 512

Figure QB.5’s connectivities and cardinalities are reflected in the business rules:

 One part can be supplied by one or more suppliers, and a supplier can supply many parts.

 A product is made up of several parts, and a part can be a component of different products.

 A product can be bought by several customers, and a customer can purchase several products.

6. What is a module, and what role does a module play within the system?

A module is a separate and independent collection of application programs that covers a given

operational area within an information system. A module accomplishes a specific system function, and it

is, therefore, a component of the overall system. For example, a system designed for a retail company

may be composed of the modules shown in Figure QB.6.

Figure QB.6 The Retail Company System Modules

Inventory Accounting Sales Purchasing

Retail System

Within Figure QB.6’s Retail System, each module addresses specific functions. For example:

 The inventory module registers any new item, monitors quantity on hand, reorder quantity,

location, etc.

 The purchasing module registers the orders sent to the suppliers, any supplier information, order

status, etc.

 The sales module covers the sales of items to customers, generates the sales slips (invoices), credit

sales checks, etc.

 The accounting module covers accounts payable, accounts receivable, and generates appropriate

financial status reports.

The example demonstrates that each module has a specific purpose and operates on a database subset

(external view). Each external view represents the entities of interest for the specific module. However,

an entity set may be shared by several modules.

7. What is a module interface, and what does it accomplish?

A module interface is the method through which modules are connected and by which they interact with

one another to exchange data and status information. The definition of proper module interfaces is

critical for systems development, because such interfaces establish an ordered way through which system

components (modules) interchange information. If the module interfaces are not properly defined, even a

Appendix B The University Lab: Conceptual Design

 513

collection of properly working modules will not yield a useful working system.

Problem Solutions

1. Modify the initial ER diagram presented in Figure B.19 to include the following entity supertype

and subtypes: The University Computer Lab USER may be a student or a faculty member.

The answer to problem 1 is included in the answer to problem 2.

2. Using an ER diagram, illustrate how the change you made in problem 1 affects the relationship of

the USER entity to the following entities:

LAB_USE_LOG

RESERVATION

CHECK_OUT

WITHDRAW

The new ER diagram segment will contain the supertype USER and the subtypes FACULTY and

STUDENT. How the use of this supertype/subtype relationships affect the entities shown here is

illustrated in the ER diagram shown in Figure PB.2a.

Appendix B The University Lab: Conceptual Design

 514

Figure PB.2a The Crow’s Foot ERD with Supertypes and Subtypes

The ER segment shown in Figure PB.2a reflects the following conditions:

 Not all users are faculty members, so FACULTY is optional to USER.

 Not all users are students, so STUDENT is optional to USER.

 The conditions in the first two bullets are typical of the supertype/subtype implementation.

 Not all faculty members withdraw items, so a faculty member may not ever show up in the

WITHDRAW table. Therefore, WITHDRAW is optional to FACULTY.

 Not all items are necessarily withdrawn; some are never used. Therefore WITHDRAW is

optional to ITEM. (An item that is never withdrawn will never show up in the WITHDRAW

table.)

 Not all items are checked out, so an ITEM may never show up in the CHECK_OUT table.

Therefore, CHECK_OUT is optional to ITEM.

 Not all users check out items, so it is possible that a USER – a faculty member or a student --

never shows up in the CHECK_OUT table. Therefore, CHECK_OUT is optional to USER.

 Not all faculty members place reservations, so RESERVATION is optional to FACULTY.

 Not all students use the lab, i.e., some students will never sign the log to check in. Therefore,

LOG is optional to STUDENT.

Given the text’s initial development of the UCL Management System’s ERD, the USER entity was

Appendix B The University Lab: Conceptual Design

 515

related to both the WITHDRAW and CHECK_OUT entities. Therefore, there was no way of knowing

whether a STUDENT or a FACULTY member was related to WITHDRAW or CHECK_OUT. Although

the business rules were quite specific about the relationships, the ER diagram did not reflect them.

By adding a new USER supertype and two STUDENT and FACULTY subtypes, the ERD more closely

represents the business rules. The supertype/subtype relationship in Figure PB.2a lets us see that

STUDENT is related to LOG, and that only FACULTY members can make a RESERVATION and

WITHDRAW items. However, both STUDENT and FACULTY can CHECK_OUT items.

While this supertype/subtype solution conforms to the problem solution requirements, the design is far

from complete. For example, one would suppose that FACULTY is already a subtype to EMPLOYEE.

Also, can a faculty member also be a student? In other words, are the supertypes/subtypes overlapping or

disjoint? In this initial ERD, we have assumed overlapping subtypes; that is, a user can be a faculty

member and a student at the same time.

Another solution -- which would eliminate the USER/FACULTY and USER/STUDENT

supertype/subtypes in the ERD – is to add an attribute, such as USER_TYPE, to the USER entity to

identify the user as faculty or student. The application software can then be used to enforce the

restrictions on various user types. Actually, that approach was used in the final (verified)

Computerlab.mdb database on your CD. (The verified database is provided for Appendix C.)

3. Create the initial ER diagram for a car dealership. The dealership sells both new and used cars,

and it operates a service facility. Base your design on the following business rules:

a. A salesperson can sell many cars but each car is sold by only one salesperson.

b. A customer can buy many cars but each car is sold to only one customer.

c. A salesperson writes a single invoice for each car sold.

d. A customer gets an invoice for each car (s)he buys.

e. A customer might come in just to have a car serviced; that is, one need not buy a car to be

classified as a customer.

f. When a customer takes one or more cars in for repair or service, one service ticket is

written for each car.

g. The car dealership maintains a service history for each car serviced. The service records

are referenced by the car's serial number.

h. A car brought in for service can be worked on by many mechanics, and each mechanic may

work on many cars.

i. A car that is serviced may or may not need parts. (For example, parts are not necessary to

adjust a carburetor or to clean a fuel injector nozzle.)

As you examine the initial ERD in Figure PB.3a, note that business rules (a) through (d) refer to the

relationships of four main entities in the database: SALESPERSON, INVOICE, CUSTOMER, and

CAR. Note also that an INVOICE requires a SALESPERSON, a CUSTOMER, and a CAR. Business

rule (e) indicates that INVOICE is optional to CUSTOMER and CAR because a CAR is not necessarily

sold to a CUSTOMER. (Some customers only have their cars serviced.)

The position of the CAR entity and its relationships to the CUSTOMER and INV_LINE entities is

subject to discussion. If the dealer sells the CAR, the CAR entity is clearly related to the INV_LINE that

Appendix B The University Lab: Conceptual Design

 516

is related to the INVOICE. (If the car is sold, it generates one invoice line on the invoice. However, the

invoice is likely to contain additional invoice lines, such as a dealer preparation charge, destination

charge, and so on.) At this point, the discussion can proceed in different directions:

 The sold car can be linked to the customer through the invoice. Therefore, the relationship

between CUSTOMER and CAR shown in Figures PB.3a and PB.3b is not necessary.

 If the customer brings a car in for service – whether or not that car was bought at the dealer – the

relationship between CUSTOMER and CAR is desirable. After all, when a service ticket is

written in the SERVICE_LOG, it would be nice to be able to link the customer to the subsequent

transaction. More important, it is the customer who gets the invoice for the service charge.

However, if the CUSTOMER-CAR relationship is to be retained, it will be appropriate to make a

distinction between the cars in the dealership’s inventory – which are not related to a customer at

that point – and the cars that are owned by customers. If no distinction is made between

customer-owned cars and cars still in the dealership inventory, Figure PB.3a’s CAR entity will

either have a null CUST_NUM or the customer entity must contain a dummy record to indicate a

“no customer – dealer-owned” condition.

Figure PB.3a The Car Dealership Initial Crow’s Foot ERD

Regardless of which argument “wins” in the presentation of the various scenarios, remind the students

that the ERD to be developed in this exercise is to reflect the initial design. More important, such

discussions clearly indicate the need for very detailed descriptions of operations and the development of

Appendix B The University Lab: Conceptual Design

 517

precisely written business rules. (It may be useful to review that business rules, which are derived from

the description of operations, are written to help define entities, relationships, constraints, connectivities,

and cardinalities.)

The dealer’s service function is likely to be crucial to the dealer – good service helps generate future

sales and the service function is very likely an important cash flow generator. Therefore, the CAR entity

plays an important role. If a customer brings in a car for service and the car was not bought at the

dealership, it must be added to the CAR table in order to enable the system to keep a record of the

service. This is why we have depicted the CUSTOMER – owns - CAR relationship in Figures PB.3a and

PB.3b. Also, note that the optionality next to CAR reflects the fact that not all cars are owned by a

customer: Some cars belong to the dealership.

Because Figure PB.3a shows the initial ERD, that ERD will be subject to revision as the description of

operations becomes more detailed and accurate, thus modifying some of the existing business rules and

creating additional business rules. Therefore, additional entities and relationships are likely to be

developed and some optional relationships may become mandatory, while some mandatory relationships

may become optional. Additional changes are likely to be generated by normalization procedures.

Finally, the initial design includes some features that require fine-tuning. For example, a

SALESPERSON is just another kind of EMPLOYEE – perhaps the main difference between “general”

employee and a sales person is that the latter requires tracking of sales performance for commission

and/or bonus purposes. Therefore, EMPLOYEE would be the supertype and SALESPERSON the

subtype. All these issues must be addressed in the verification and logical design phases addressed in

Appendix E.

Incidentally, your students may ask why the design does not show a HISTORY entity. The reason for is

absence is that the car’s history can be traced through the SERVICE entity.

NOTE
Although we are generally reluctant to make forward references, you may find it very useful to

look ahead to the ERD shown in Appendix C’s Figure PC.1a. The discussion that precedes the

presentation of the modified ERD is especially valuable – students often find such sample data

to be the key to understanding a complex design. In any case, the modified ERD in Figure PC.1a

provides ample evidence that the initial ERD is only a starting point for the design process.

As you discuss the design shown in Figure PB.3a, note that it is far from implementation-ready. For

example,

 The INVOICE is likely to contain multiple charges, yet it is only capable of handling one charge

at a time at this point. The addition of an INV_LINE entity is clearly an excellent idea.

 The SERVICE entity has some severe limitations caused by the lack of a SERVICE_LINE entity.

(Note the previous point.) Given this design, it is impossible to store and track all the individual

service (maintenance) procedures that are generated by a single service request. For example, a

50,000 mile check may involve multiple procedures such as belt replacements, tire rotation, tire

balancing, brake service, and so on. Therefore, the SERVICE entity, like the INVOICE entity,

must be related to service lines, each one of which details a specific maintenance procedure.

Appendix B The University Lab: Conceptual Design

 518

 The PART_USAGE entity’s function is rather limited. For example, its depiction as a composite

entity does properly translate the notion that a part can be used in many service procedures and a

service procedure can use many parts. Unfortunately, the lack of a SERVICE_LINE entity means

that we cannot track the parts use to a particular maintenance procedure.

 According to business rule (d), the relationship between CAR and INVOICE would be 1:1.

However, if it is possible for the dealer to take the car in trade at a later date and subsequently

sells it again, the same CAR_VIN value may appear in INVOICE more than once. We have

depicted the latter scenario.

The initial design does have one very nice feature at this point: The existence of the WORK_LOG

entity’s WORKLOG_ACTION attribute makes it possible to record which mechanic started the service

procedure and which one ended the procedure. (The WORKLOG_ACTION attribute has only two

values, open and close.) Note that this feature eliminates the need for a null ending date in the SERVICE

entity while the car is being serviced. Better yet, if we need to be able to track which mechanics opened

and closed the service procedure, the WORK_LOG entity’s presence eliminates the need for synonyms

in the SERVICE entity. Note, for example, that the following few sample entries in the WORK_LOG

table lets us conclude that service number 12345 was opened by mechanic 104 on 10-Mar-2014 and

closed by the same mechanic on 11-Mar-2014.

Table PB.3 Sample Data Entries in the WORK_LOG Entity

EMP_NUM SERVICE_NUM WORKLOG_ACTION WORKLOG_DATE

104 12345 OPEN 10-Mar-2014

107 12346 OPEN 10-Mar-2014

104 12345 CLOSE 11-Mar-2014

104 12346 CLOSE 11-Mar-2014

112 12347 OPEN 11-Mar-2014

The format you see in Table PB.3 is based on a standard we developed for aviation maintenance

databases. Because almost all aspects of aviation are tightly regulated, accountability is always close to

the top of the list of design requirements. (In this case, we must be able to find out who opened the

maintenance procedure and who closed it.) You will discover in Chapter 9, “Database Design,” that we

will apply the accountability standard to other aspects of the design, too. (Who performed each

maintenance procedure? Who signed out the part(s) used in each maintenance procedure? And so on.)

It is worth repeating that a discussion of the shortcomings of the initial design will set

an excellent stage for the introduction of Appendix C’s verification process.

Strict accountability standards are becoming the rule in many areas outside aviation. Such standards may

be triggered by legislation or by company operations in an increasingly litigious environment.

Appendix B The University Lab: Conceptual Design

 519

4. Create the initial ER diagram for a video rental shop. Use (at least) the following description of

operations on which to base your business rules.

The video rental shop classifies movie titles according to their type: Comedy, Western, Classical,

Science Fiction, Cartoon, Action, Musical, and New Release. Each type contains many possible

titles, and most titles within a type are available in multiple copies. For example, note the summary

presented in Table PB.4:

Table PB.4 The Video Rental Type and Title Relationship

TYPE TITLE COPY

Musical My Fair Lady

My Fair Lady

Oklahoma!

Oklahoma!

Oklahoma!

1

2

1

2

3

Cartoon Dilly Dally & Chit Chat Cat

Dilly Dally & Chit Chat Cat

Dilly Dally & Chit Chat Cat

1

2

3

Action Amazon Journey

Amazon Journey

1

2

Keep the following conditions in mind as you design the video rental database:

 The movie type classification is standard; not all types are necessarily in stock.

 The movie list is updated as necessary; however, a movie on that list might not be ordered if

the video shop owner decides that it the movie is not desirable for some reason.

 The video rental shop does not necessarily order movies from all of the vendor list; some

vendors on the vendor list are merely potential vendors from whom movies may be ordered in

the future.

 Movies classified as new releases are reclassified to an appropriate type after they have been in

stock for more than 30 days. The video shop manager wants to have an end-of- period (week,

month, year) report for the number of rentals by type.

 If a customer requests a title, the clerk must be able to find it quickly. When a customer selects

one or more titles, an invoice is written. Each invoice may thus contain charges for one or more

titles. All customers pay in cash.

 When the customer checks out a title, a record is kept of the checkout date and time and the

expected return date and time. Upon the return of rented titles, the clerk must be able to check

quickly whether the return is late and to assess the appropriate late return fee.

 The video-store owner wants to be able to generate periodic revenue reports by title and by

type. The owner also wants to be able to generate periodic inventory reports and to keep track

of titles on order.

 The video-store owner, who employs two (salaried) full-time and three (hourly) part-time

employees, wants to keep track of all employee work time and payroll data. Part-time

employees must arrange entries in a work schedule, while all employees sign in and out on a

work log.

Appendix B The University Lab: Conceptual Design

 520

NOTE
The description of operations not only establishes the operational aspects of the business; it also

establishes some specific system objectives we have listed next.

As you design this database, remember that transaction and information requirements help drive the

design by defining required entities, relationships, and attributes. Also, keep in mind that the description

provided by the problem leaves many possibilities for design differences. For example, consider the

EMPLOYEE classification as full-time or part-time. If there are few distinguishing characteristics

between the two, the situation may be handled by using an attribute EMP_CLASS (whose values might

be F or P) in the EMPLOYEE table. If full-time employees earn a base salary and part-time employees

earn only an hourly wage, that problem can be handled by having two attributes, EMP_HOURPAY and

EMP_BASE_PAY, in EMPLOYEE. Using this approach, the HOUR_PAY would be $0.00 for the

salaried full-time employees, while the EMP_BASE_PAY would be $0.00 for the part-time employees.

(To ensure correct pay computations, the application software would select either F or P, depending on

the employee classification.) On the other hand, if part-time employees are handled quite differently

from full-time employees in terms of work scheduling, benefits, and so on, it would be better to use a

supertype/subtype classification for FULL_TIME and PART_TIME employees. (The more unique

variables exist, the more sense a supertype/subtype relationship makes.)

For discussion purposes, examine the following requirements:

 The clerk must be able to find customer's requests quickly.

 This requirement is met by creating an easy way to query the MOVIE data (by name, type, etc.)

while entering the RENTAL data.

 The clerk must be able to check quickly whether or not the return is late and to assess the

appropriate “late return” fee. This requirement is met by adding attributes such as expected return

date, actual return date, and late fees to the RENTAL entity. Note that there is no need to add a

new entity, nor do we need to create an additional relationship. Keep in mind that some

requirements are easily met by including the appropriate attributes in the tables and by combining

those attributes through an application program that enforces the business rule. Remember that

not all business rules can be represented in the database conceptual diagram.

 The (store owner) wants to be able to keep track of all employee work time and payroll data.

 Here we must create two new entities: WORK_SCHEDULE and WORK_LOG, which will show

the employee's work schedule and the actual times worked, respectively. These entities will also

help us generate the payroll report.

The description also specifies some of the expected reports:

 End-of-period report for the number of rentals by type. This report will use the RENTAL,

MOVIE, and TYPE entities to generate all rental data for some specified period of time.

 Revenue report by title and by type. This report will use the RENTAL, MOVIE, and TYPE

entities to generate all the rental data.

 Periodic inventory reports. This report will use the MOVIE and TYPE entities.

 Titles on order. This report will use the ORDER, MOVIE, and TYPE entities.

 Employee work times and payroll data. This report will use the EMPLOYEE,

Appendix B The University Lab: Conceptual Design

 521

WORK_SCHEDULE, and WORK_LOG entities.

This summary sets the stage for the ERD shown in Figure PB.4a. Note that the WORK_SCHEDULE

and WORK_LOG entities are optional to EMPLOYEE. The optionalities reflect the following

conditions:

 Only part-time employees have corresponding records in the work log table.

 Only full-time employees have corresponding records in the work schedule table.

Although there is a temptation to create FULL_TIME and PART_TIME entities, which are then related

to WORK_LOG and WORK_SCHEDULE, respectively, such a decision reflects a substitution of an

entity for an attribute. It is far better to simply create an attribute, perhaps named EMP_TYPE, in the

EMPLOYEE entity. The EMP_TYPE attribute values would then be P = part-time or F = full-time. The

applications software can then be used to force an entry into the WORK_LOG and WORK_SCHEDULE

entities, depending on the EMP_TYPE attribute value.

Student question: Using the argument just presented, what other entity might be replaced by an

attribute? Answer: The TYPE entity can be represented by a TITLE_TYPE attribute in the

TITLE entity. The TITLE_TYPE values would then be “Western”, “Adventure”, and so on. This

approach works fine, as long as the type values don’t require additional descriptive material. In

the latter case, the TYPE would be better represented by an entity in order to avoid data

redundancy problems.

Figure PB.4a The Initial Crow’s Foot ERD for the Video Rental Store

Appendix B The University Lab: Conceptual Design

 522

Additional discussion: At this point, the ERD has not yet been verified against the transaction

requirements. For example, there is no way to check which specific video has been rented by a customer.

(If five customers rent copies of the same video, you don’t know which customer has which copy.)

Therefore, the design requires additional work triggered by the verification process.

In addition, the work log entity’s LOG_DATE is incapable of tracking when the part-time employees

logged in or out. Therefore, two dates must be used, perhaps named LOG_DATE_IN and

LOG_DATE_OUT. In addition, if you want to determine the hours worked by each part-time employee,

it will be necessary to record the time in and time out.

Similarly, the work schedule cannot yet be used to track the full-time employees’ schedules. Who has

worked and when? Clearly, the verification process discussed in Appendix C is not a luxury!

5. Suppose a manufacturer produces three high-cost, low-volume products: P1, P2, and P3. Product

P1 is assembled with components C1 and C2; product P2 is assembled with components C1, C3,

and C4; and product P3 is assembled with components C2 and C3. Components may be purchased

from several vendors, as shown in Table PB.5:

Table PB.5 The Component/Vendor Summary

VENDOR COMPONENTS SUPPLIED

V1 C1, C2

V2 C1, C2, C3, C4

V3 C1, C2, C4

Each product has a unique serial number, as does each component. To keep track of product

performance, careful records are kept to ensure that each product's components can be traced to

the component supplier.

Products are sold directly to final customers; that is, no wholesale operations are permitted. The

sales records include the customer identification and the product serial number.

Using the preceding information, do the following:

a. Write the business rules governing the production and sale of the products.

The business rules are summarized in Figure PB.5A.

Appendix B The University Lab: Conceptual Design

 523

Figure PB.5A The Business Rule Summary

Business RulePRODUCT COMPONENTS

P1 C1 C2

P2 C1 C3 C4

P3 C2 C3

1. A component can be part of several products,

and a product is made up of several components.

VENDOR COMPONENTS SUPPLIED

V1 C1 C2

V2 C1 C2 C3 C4

V3 C1 C2 C3

2. A component can be supplied by several

vendors, and a vendor supplies several

components.

Business Rule

b. Create an ER diagram capable of supporting the manufacturer's product/component

tracking requirements.

The two business rules shown in Figure PB.5A allow the designer to generate the ERD Shown in

Figure PB.5B1. (Note the M:N relationships between PRODUCT and COMPONENT and

between COMPONENT and VENDOR that have been converted through the composite entities

PROD_COMP and COMP_VENB.)

Figure PB.5B1 The Initial Crow’s Foot ERD for Problem B.5B

As you examine Figure PD5.B1, note that we have use default optionalities in the composite

entities named PROD_COMP and COMP_VENB. Naturally, these optionalities must be verified

against the business rules before the design is implemented. However, at this point the

optionalities make sense – after all, various version of a PRODUCT do not necessarily contain

all available COMPONENTs, not do all VENDORs supply all COMPONENTs. Quite aside

Appendix B The University Lab: Conceptual Design

 524

from the likely existence of the relationships we just pointed out, optionalities are generally

desirable from an operational point of view – at least from the database management angle. Yet,

no matter how “obvious” a relationship may appear to be, it is worth repeating that the existence

of the optionalities must be verified. Designs that do not reflect the actual data environment are

not likely to be useful at the end user level.

Given the ERDs in Figures PB.5B1 and PB.B2, you can see that each PRODUCT entry actually

represents a product line, i.e., a collection of products belonging to the same product type or

line, rather than a specific product occurrence with a unique serial number. Therefore, this

model will not enable us to identify the serial number for each component used in, for example, a

product with serial number 348765. Therefore, this solution does not allow us to track the

provider of a part that was used in a specific PRODUCT occurrence. (Note the example in Figure

PB.5C.)

Figure PB.5C An Initial Implementation

PRODUCT

P1

P2

P3

PROD_COMP

P1 C1

P1 C2

P2 C1

P2 C3

P2 C4

P3 C2

P3 C3

COMPONENT

C1

C2

C3

C4

COMP_VEND

C1 V1

C1 V2

C1 V3

C2 V1

C2 V2

C2 V3

C3 V2

C4 V2

C4 V3

VENDOR

V1

V2

V3

As you examine Figure PB.5C, note that there are no serial numbers for the components, nor are

there any for the products produced. In other words, we do not meet the requirements imposed

by:

BUSINESS RULE 3

Each product has a unique serial number. For example, there will be several products P1, each

with a unique serial number. Each unique product will be composed of several components, and

each of those components has a unique serial number.

The implementation of business rule 3 will allow us to keep track of the supplier of each

component.

One way to produce the tracking capability required by business rule 3 is to use a ternary

relationship between PRODUCT, COMPONENT, and VENDOR, shown in Figure P5.5D1:

Appendix B The University Lab: Conceptual Design

 525

Figure PB.5D1 The Crow’s Foot Ternary Relationship between PRODUCT,

COMPONENT, and VENDOR

The ER diagram we have just shown represents a many-to-many-to-many TERNARY

relationship, expressed by M:N:P. This ternary relationship indicates that:

 A product is composed of many components and a component appears in many products.

 A component is provided by many vendors and a vendor provides many products.

 A product contains components of many vendors and a vendor's components appear in

many products.

Assigning attributes to the SERIALS entity, we may draw the dependency diagram shown in

Figure P7-5E.

Appendix B The University Lab: Conceptual Design

 526

Figure P7-5E The Initial Dependency Diagram

P_SERIAL

partial dependency

transitive dependencies

C_SERIAL PROD_TYPE COMP_TYPE VEND_CODE

We may safely assume that all serial numbers are unique. If we make this assumption, we can

conclude that the product serial number will identify the product type and that the component

serial number will identify the component type and the vendor. Using the standard normalization

procedures, we may thus decompose the entity as shown in the dependency diagrams in Figure

PB.5F.

Figure PB.5F The Normalized Structure

P_SERIAL PROD_TYPE

C_SERIAL

P_SERIAL

COMP_TYPE

C_SERIAL

VEND_CODE

Table name: P_SERIAL

Table name: C_SERIAL

Table name: SERIAL

The Original Dependency Diagram

P_SERIAL

partial dependency

transitive dependencies

C_SERIAL PROD_TYPE COMP_TYPE VEND_CODE

The Normalized Dependency Diagrams

As you examine the dependency diagrams in Figure PB.5F, note the following:

Appendix B The University Lab: Conceptual Design

 527

 P_SERIAL has a 1:M relationship with PRODUCT, because one product has many

product serial numbers.

 C_SERIAL has a 1:M relationship with COMPONENT, because one component has

many component serial numbers.

 SERIAL is the composite entity that connects P_SERIAL and C_SERIAL, thus reflecting

the fact that one product has many components and a component can be found in many

products.

To illustrate the relationships we have just described, let's take a look at some data in Figure P7-

5G:

Figure PB.5G Sample Data

P_SERIAL PROD_TYPE

X0D101 P1

X0C102 P1

200201 P2

200202 P2

200203 P2

200204 P2

300301 P3

300302 P3

P_SERIAL C_SERIAL

X0D101 C90001

X0C101 C80976

X0C102 C90002

X0C102 C80002

200201 C90002

200201 C76894

200201 C45678

…….. …..

etc. etc.

C_SERIAL COMP_TYPE VENDOR

C90001 C1 V1

C90002 C1 V2

C90003 C1 V3

C80003 C2 V1

C80002 C2 V1

C80909 C2 V2

C80976 C2 V3

C80908 C2 V2

C80965 C3 V2

C76894 C3 V2

C40097 C4 V2

C45096 C4 V2

C67673 C4 V3

C45679 C4 V3

The new ER diagram will enable us to identify the product by a unique serial number, and each

of the product's components will have a unique serial number, too. Therefore, the new ER

diagram will look like Figure PB.5H1.

Appendix B The University Lab: Conceptual Design

 528

Figure PB.5H1 The Revised (Final) Crow’s Foot ERD

As you examine Figure PB.5H1’s ERD, note that the COMP_VEND composite entity seems

redundant, because the CSERIAL entity already depicts the many-to-many relationship between

VENDOR and COMPONENT. However, COMP_VEND represents a more general relationship

that enables us to determine who the likely providers of the general component are (what vendors

supply component C1?), rather than letting us determine a specific component's vendor (which

vendor supplied the component C1 with a serial number C90003?). The designer must confer

with the end user to decide whether such a general relationship is necessary or if it can be

removed from the database without affecting its semantic contents.

Appendix B The University Lab: Conceptual Design

 529

6. Create an ER diagram for a hardware store. Make sure that you cover (at least) store

transactions, inventory, and personnel. Base your ER diagram on an appropriate set of business

rules that you develop. (Note: It would be useful to visit a hardware store and conduct interviews

to discover the type and extent of the store's operations.)

Since the problem does not specify a set of business rules, we will create some that will enable us to

develop an initial ER diagram.

NOTE
Please take into consideration that, depending on the assumptions made and on the selection of

business rules, students are likely to create quite different solutions to this problem. You may

find it quite useful to study each student solution and to incorporate the most interesting parts of

each solution into a common ER diagram. We know that this is not an easy job, but your

students will benefit because you will thus enable them to develop very important analytical

skills. You should stress that:

 A problem may be examined from many different angles.

 Similar organizations, using different business rules, will generate design problems that

may be solved through the use of quite different solutions.

To get the class discussion started, we will assume these business rules:

1. A product is provided by many suppliers, and a supplier can provide several products.

2. An employee has many dependents, but a dependent can be claimed by only one employee.

3. An employee can write many invoices, but each invoice is written by only one employee.

4. Each invoice belongs to only one customer, and each customer owns many invoices.

5. A customer makes several payments, and each payment belongs to only one customer.

6. Each payment may be applied partially or totally to one or more invoices, and each invoice can

be paid off in one or more payments.

Using these business rules, we may generate the ERD shown in Figure PB.6A.

Appendix B The University Lab: Conceptual Design

 530

Figure PB.6A The Crow’s Foot ERD for Problem 6 (The Hardware Store)

Appendix B The University Lab: Conceptual Design

 531

The ERD shown in Figure PB.6A requires less tweaking than the previous ERDs to get it ready for

implementation. For example, given the presence of the INV_LINE entity, the customer can buy more

than one product per invoice. Similarly, the ORD_LINE entity makes it possible for more than one

product to be ordered per order.

However, as you examine the PAYMENT entity in Figure PB.6A, note that the current PK definition

limits the payments for a given customer and invoice number to one per day. (Two payments by the same

customer for the same invoice number on the same date would violate the entity integrity rules, because

the two composite PK values would be identical in that scenario.) Therefore, the design shown in Figure

PB.6A still requires additional work, to be completed during the verification process.

7. Use the following brief description of operations as the source for the next database design:

All aircraft owned by ROBCOR require periodic maintenance. When maintenance is required, a

maintenance log form is used to enter the aircraft identification number, the general nature of the

maintenance, and the maintenance starting date. A sample maintenance log form is shown in

Figure PB.7A.

FIGURE PB.7A The Maintenance Log Form

Appendix B The University Lab: Conceptual Design

 532

Note that the maintenance log form shown in Figure PB.7A contains a space used to enter the

maintenance completion date and a signature space for the supervising mechanic who releases the

aircraft back into service. Each maintenance log form is numbered sequentially. Note: A

supervising mechanic is one who holds a special Federal Aviation Administration (FAA)

Inspection Authorization (IA). Three of ROBCOR’s ten mechanics hold such an IA.

Once the maintenance log form is initiated, the maintenance log form’s number is written on a

maintenance specification sheet, also known as a maintenance line form. When completed, the

specification sheet contains the details of each maintenance action, the time required to complete

the maintenance, parts (if any) used in the maintenance action, and the identification of the

mechanic who performed the maintenance action. The maintenance specification sheet is the

billing source (time and parts for each of the maintenance actions), and it is one of the sources

through which parts use may be audited. A sample maintenance specification sheet (line form) is

shown in Figure PB.7B.

FIGURE PB.7B The Maintenance Line Form

Log #: 2155

page 1 of 1

7

6

8

1160None1.7Cleaned and checked

gear strut seals

5

1121GR/311109S1.7Replaced left main gear

door oleo strut seal

4

1031P-213342A1.3Replaced nose gear

shimmy dampener

3

1120None0.9Cleaned #2 bottom plug,

left engine

2

1120None0.8Performed run-up.

Rough mag reset

1

MechanicUnitsPartTimeAction descriptionItem

Parts used in any maintenance action must be signed out by the mechanic who used them, thus

allowing ROBCOR to track its parts inventory. Each sign-out form contains a listing of all the

parts associated with a given maintenance log entry. Therefore, a parts sign-out form contains the

maintenance log number against which the parts are charged. In addition, the parts sign-out

procedure is used to update the ROBCOR parts inventory. A sample parts sign-out form is shown

Appendix B The University Lab: Conceptual Design

 533

in Figure PB.7C.

FIGURE PB.7C The Parts Sign-out Form

Form sequence #: 24226

page 1 of 1

103$59.761Left main gear door oleo strut

seal, PA31-350/1973

GR/311109S

112$189.451Nose gear shimmy dampener,

PA31-350/1973

P-213342A

MechanicUnit PriceUnitsDescriptionPart

Log #: 2155

Mechanics are highly specialized ROBCOR employees, and their qualifications are quite different

from those of an accountant or a secretary, for example.

Given this brief description of operations, draw the fully labeled ER diagram. Make sure you

include all the appropriate relationships, connectivities, and cardinalities.

Before drawing the ER diagram, note the following relationships:

 Not all employees are mechanics, but all mechanics are employees. Therefore, the MECHANIC

entity is optional to EMPLOYEE. The EMPLOYEE is the supertype to MECHANIC.

 All mechanics must sign off work on the MAINTENANCE they performed and they must sign

out for the PART(s) used.

 Only some mechanics (the IAs) may sign off the LOG. Therefore, LOG is optional to

MECHANIC.

 Because not all MAINTENANCE entries are associated with a PART --- some maintenance

doesn't require parts --- PART is optional to MAINTENANCE.

These relationships are all reflected in the ER diagrams shown in Figure PB.7.

Appendix B The University Lab: Conceptual Design

 534

Figure PB.7D1 The Initial Crow’s Foot ERD for Problem 7

(ROBCOR Aircraft Service)

Appendix B The University Lab: Conceptual Design

 535

As you discuss the ERD shown in Figure PB.7D1, note its similarity to the car dealership’s maintenance

section of the ERD presented in Figure PB.3a. However, the ROBCOR Aircraft Service ERD has been

developed at a much higher detail level, thus requiring fewer modifications during the verification

process. Figure PB.7D1 shows that:

 Each LOG entity occurrence will yield one or more maintenance procedures.

 Each of the individual maintenance procedures will be listed in the LOG_LINE entity.

 A mechanic must sign off on each of the LOG_LINE entity occurrences.

 The possible parts use in each LOG_LINE entity occurrence is now traceable.

 A part can be accounted for from the moment it is signed out by the mechanic to the point at

which it is installed during the maintenance procedure.

The “references” relationship between LOG and PART is subject to discussion. After all, you can always

trace each part’s use to the LOG through the LOG_LINE entity. Therefore, the relationship is redundant.

Such redundancies are – or should be – picked up during the verification process.

We have shown the MECHANIC to be a subtype of the EMPLOYEE supertype. Whether the

supertype/subtype relationship makes sense depends on the type and extent of the attributes that are to be

associated with the MECHANIC entity. There may be externally imposed requirements – often imposed

through the government’s regulatory process -- that can best be met through a supertype/subtype

relationship. However, in the absence of such externally imposed requirements, it is usually better to use

an attribute in EMPLOYEE – such as the employee’s primary job code – and link the employees to their

various qualifications through a composite entity. The applications software will then be used to enforce

the requirement that the person doing maintenance work is, in fact, a mechanic.

8. You have just been employed by the ROBCOR Trucking Company to develop a database. To gain

a sense of the database’s intended functions, you have spent some time talking to ROBCOR’s

employees and you’ve examined some of the forms used to track driver assignments and truck

maintenance. Your notes include the following observations:

 Some drivers are qualified to drive more than one type of truck operated

by ROBCOR. A driver may, therefore, be assigned to drive more than one

truck type during some period of time. ROBCOR operates several trucks of

a given type. For example, ROBCOR operates two panel trucks, four half-

ton pick-up trucks, two single-axle dump trucks, one double-axle truck,

and one 16-wheel truck. A driver with a chauffeur’s license is qualified to

drive only a panel truck and a half-ton pick-up truck and, thus, may be

assigned to drive any one of six trucks. A driver with a commercial license

with an appropriate heavy equipment endorsement may be assigned to

drive any of the nine trucks in the ROBCOR fleet. Each time a driver is

assigned to drive a truck, an entry is made in a log containing the employee

number, the truck identification, and the sign-out (departure) date. Upon

the driver’s return, the log is updated to include the sign-in (return) date

and the number of driver duty hours.

 If trucks require maintenance, a maintenance log is filled out. The

maintenance log includes the date on which the truck was received by the

maintenance crew. The truck cannot be released for service until the

Appendix B The University Lab: Conceptual Design

 536

maintenance log release date has been entered and the log has been signed

off by an inspector.

 All inspectors are qualified mechanics, but not all mechanics are

qualified inspectors.

 Once the maintenance log entry has been made, the maintenance log

number is transferred to a service log in which all service log transactions

are entered. A single maintenance log entry can give rise to multiple service

log entries. For example, a truck might need an oil change as well as a fuel

injector replacement, a brake adjustment, and a fender repair.

 Each service log entry is signed off by the mechanic who performed the

work. To track the maintenance costs for each truck, the service log entries

include the parts used and the time spent to install the part or to perform

the service. (Not all service transactions involve parts. For example,

adjusting a throttle linkage does not require the use of a part.)

 All employees are automatically covered by a standard health insurance

policy. However, ROBCOR’s benefits include optional co-paid term life

insurance and disability insurance. Employees may select both options, one

option, or no options.

Given those brief notes, create the ER diagram. Make sure you include all appropriate entities and

relationships, and define all connectivities and cardinalities.

The ERD in Figure PB.8a contains a maintenance portion that has become our standard, given that it

enables the end user to track all activities and parts for all vehicles. In fact, given its ability to support

high accountability standards, we first developed the "basics" of this design for aviation maintenance

tracking.

Appendix B The University Lab: Conceptual Design

 537

Figure PB.8a The Initial Crow’s Foot ERD for the ROBCOR Trucking Service

Appendix B The University Lab: Conceptual Design

 538

As you examine the ERD in Figure PB.8a, note that the driver assignment to drive trucks is a M:N

relationship: Given the passage of time, a driver can be assigned to drive a truck many times and a truck

can be assigned to a driver many times. We have implemented this relationship through the use of a

composite entity named ASSIGN.

The M:N relationship between EMPLOYEE and BENEFIT – that is, the insurance package mentioned in

problem 8’s last bullet -- has been implemented through the composite entity named EMP_BEN. (An

employee can select many benefit packages and each insurance package may be selected by many

employees.) The reason for the optionality is based on the fact that not all of the insurance packages are

necessarily selected by the employee. For example, using the BENEFIT table contents shown in Table

PB.8A, an employee may decide to select option 2 or options 2 and 3, or neither option. (The standard

health insurance package is assigned automatically.)

Table PB.8A Table name: BENEFIT

BEN_CODE BEN_DESCRIPTION BEN_CHARGE

1 Standard health $0.00

2 Co-paid term life insurance, $100,000 $35.00

3 Co-paid disability insurance $42.50

Incidentally, we have used a BENEFIT entity, rather than an INSURANCE entity to anticipate the

likelihood that benefits may include items other than insurance. For example, employees might be given

a benefit such as an investment plan, a flextime option, child care, and so on.

The decomposition of M:N relationships continues to be a good subject for discussion. For example, we

have shown many of the decompositions as composite entities. However, while such an approach is

perfectly acceptable at the initial design stage, caution your students that composite PKs cannot be

referenced easily by subsequent additions of entities that must reference those PKs. Therefore, we would

note that the composite PK used in the LOG_ACTION entity -- EMP_ID + LOG_NUM +

LOGACT_TYPE – should be replaced by an “artificial” single-attribute PK named LOGACT_NUM.

The EMP_ID and LOG_NUM attributes would continue to be used as FKs to the MECHANIC and LOG

entities. (Naturally, the EMP_ID and LOG_NUM attributes should be indexed to avoid duplication of

records and to speed up queries.) A few sample entries are shown in Table

Table PB.8B Table name: LOG_ACTION

LOGACT_NUM LOG_NUM EMP_ID LOGACT_TYPE LOGACT_DATE

1000 5023 409 Open 14-May-2014

1001 5024 409 Open 15-May-2014

1002 5023 411 Close 15-May-2014

1003 5025 378 Open 15-May-2014

1004 5024 411 Close 15-May-2014

1005 5026 409 Open 16-May-2014

Appendix B The University Lab: Conceptual Design

 539

Finally, we have used supertype/subtype relationships between EMPLOYEE and DRIVER and

MECHANIC. If drivers and mechanics are assumed to have many characteristics (such as special

certifications at different levels) that are not common to EMPLOYEE, this approach eliminates nulls.

However, keep in mind the discussion about the use of supertypes/subtypes in Problem B. (The use of

the supertype/subtype approach may be dictated by external factors … but the use of supertypes and

subtypes must be approached with some caution. For example, if drivers have multiple license types, it

would be far better to create a LICENSE entity and relate it to DRIVER through a composite entity,

perhaps named DRIVER_LICENSE. The composite entity may then be designed to include the date on

which the license was earned and other pertinent facts pertaining to licenses. (Such flexibility is not

available in a subtype, unless you are willing to tolerate the possible occurrence of nulls as more

pertinent data about the (multiple) licenses are kept – if some of the drivers do not have all of those

licenses.)

Database Systems Design Implementation and Management 12th Edition Coronel Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/database-systems-design-implementation-and-management-12th-edition-coronel-solutions-manual/

	IM-Ch02-Data-Models-Ed12.pdf
	IM-Appendix-B-UCL-Conceptual-Design-Ed12.pdf

