2.1. The specified concrete strength f'_c for a new building is 5000 psi. Calculate the required average f_{cr} for the concrete (*a*) if there are no prior test results for concrete with a compressive strength within 1000 psi of f'_c made with similar materials, (*b*) if 20 test results for concrete with f'_c = 5500 psi made with similar materials produce a sample standard deviation s_s of 560 psi, and (*c*) if

30 tests with $f_c = 4500$ psi made with similar materials produce a sample standard deviation s_s of 540 psi.

Solution: f'_c = 5000 psi **a)** No prior results $f'_{cr} = f'_c + 1200$ psi = 5000+1200= 6200 psi

b) 20 prior tests for concrete with f_c within 1000 psi of f_c of the project and $s_s = 560$ psi. From Table 2.1, k = 1.08 and ks_s is 1.08*560 = 605 psi. Because $f_c = 5000$ psi, use eqs (2.1) and (2.2a)

 $f'_{cr} = f'_{c} + 1.34 \text{ ks}_{s} = 5000 + 1.34*605 = 5810 \text{ psi}$

 $f'_{cr} = f'_{c} + 2.33 \text{ ks}_{s}$ -500= 5000 + 2.33*605 - 500= 5910 psi USE $f'_{cr} = 5910 \text{ psi}$

c) 30 prior tests for concrete with f'_c within 1000 psi of f'_c for the project. $s_s = 590$ psi and k is 1.0.

 $f'_{cr} = f'_{c} + 1.34 s_s = 5000 + 1.34*590 = 5790 psi$

 $f'_{cr} = f'_{c} + 2.33 \text{ s}_{s}$ -500= 5000 + 2.33*590 -500= 5870 psi USE $f'_{cr} = 5790$ psi

COMMENT: in cases b) and c) the f'_{cr} would reasonably be taken as 6000 psi.

2.2. Ten consecutive strength tests are available for a new concrete mixture with $f_c = 4000$ psi: 4830, 4980, 3840, 4370, 4410, 4890, 4450, 3970, 4780, and 4040 psi.

(a) Do the strength results represent concrete of satisfactory quality? Explain your reasoning.

(b) If f'_{cr} has been selected based on 30 consecutive test results from an earlier project with a sample standard deviation s_s of 570 psi, must the mixture proportions be adjusted? Explain.

Solution:

- a) For $f'_c = 4000$ psi, the strength results indicate satisfactory concrete quality because (1) no individual test I below $f'_c 500$ psi = 3500 psi, and (2) every arithmetic average of any three consecutive tests equals or exceeds f'_c .
- **b)** For $s_s = 570$ psi, for 30 consecutive tests calculate f'_{cr} using equations 2.1 and 2.2a.

f'_{cr} = f'_c + 1.34 ks_s = 4000 + 1.34*1*570 = 4760 psi

 $f'_{cr} = f'_{c} + 2.33 \text{ ks}_{s} -500 = 4000 + 2.33^{*}1^{*}570 - 500 = 4830 \text{ psi}$

USE f'_{cr} = 4830 psi

The average of the above tests is (4830+4980+3840+4370+4410, 4890+4450+3970+4780+4040)/10 = 4460

Because the average strength is less than the target strength, the water/cement ratio must be adjusted by adding cement or reducing water to increase the strength. If the water is reduced, a water reducer admixture would be required to maintain workability.

2.3. The specified concrete strength f_c for the columns in a high-rise building is 12,000 psi. Calculate the required average f_{cr} for the concrete (*a*) if there are no prior test results for concrete with a compressive strength within 1000 psi of f_c made with similar materials, (*b*) if 15 test results for concrete with $f'_c = 11,000$ psi made with similar materials produce a sample standard deviation s^s

of 930 psi, and (*c*) if 30 tests with f'_c = 12,000 made with similar materials produce a sample standard deviation *s* s of 950 psi.

Solution: $f_c= 12000 \text{ psi}$ a) No prior results $f_{cr} = f_c + 0.1 f_c + 700 \text{ psi} = 12000 + 0.1*12000 + 700= 13,900 \text{ psi}$

b) 15 prior tests for concrete with f_c within 1000 psi of f_c of the project and $s_s = 930$ psi. From Table 2.1, k = 1.16 and ks_s is 1.16*930 = 1079 psi. Because $f_c > 5000$ psi, use eqs (2.1) and (2.2b)

 $f'_{cr} = f'_{c} + 1.34 \text{ ks}_{s} = 12000 + 1.34*1079 = 13,450 \text{ psi}$

$$f'_{cr} = 0.9f'_{c} + 2.33 \text{ ks}_{s} = 0.9*12000 + 2.33*1709 = 13,310 \text{ psi}$$

USE f'_{cr} = 13,450 psi

c) 30 prior tests for concrete with f'_c within 1000 psi of f'_c for the project. $s_s = 950$ psi and k is 1.0.

 $f'_{cr} = f'_{c} + 1.34 s_s = 12000 + 1.34*950 = 13,270 psi$

 $f'_{cr} = 0.9f'_{c} + 2.33 \text{ ks}_{s} = 0.9^{*}12000 + 2.33^{*}950 = 13,010 \text{ psi}$

USE f'_{cr} = 13,270 psi