Chapter 2

Density, Specific Gravity, Specific Weight

1. What is the specific gravity of $38^{\circ} \mathrm{API}$ oil?
$38^{\circ} \mathrm{API}$ oil sp.gr. $=\frac{141.5}{131.5+{ }^{\circ} \mathrm{API}}=\frac{141.5}{131.5+38}$

$$
\text { sp. gr. }=\frac{141.5}{169.5}=0.835
$$

2. The specific gravity of manometer gage oil is 0.826 . What is its density and its ${ }^{\circ}$ API rating?
sp. gr. $=0.826 ; \quad \rho=1000(0.826)=826 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \rho=62.4(0.826)=51.54 \mathrm{lbm} / \mathrm{ft}^{3} \\
& \text { sp. gr. }=\frac{141.5}{131.5+{ }^{\circ} \mathrm{API}} \quad 131.5+{ }^{\circ} \mathrm{API}=\frac{141.5}{0.826} \\
& { }^{\circ} \mathrm{API}=171.3-131.5 ; \quad{ }^{\circ} \mathrm{API}=39.8^{\circ} \mathrm{API} \approx 40^{\circ} \mathrm{API}
\end{aligned}
$$

3. What is the difference in density between a $50^{\circ} \mathrm{API}$ oil and a $40^{\circ} \mathrm{API}$ oil?
sp. gr. $=\frac{141.5}{131.5+{ }^{\circ} \mathrm{API}}=\frac{141.5}{131.5+50}=0.7796$ for a 50° oil
sp. gr. $=\frac{141.5}{131.5+{ }^{\circ} \mathrm{API}}=\frac{141.5}{131.5+40}=0.826$ for a 40° oil
$0.825-0.7796=0.0455$ density difference
4. A 35° API oil has a viscosity of $0.825 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. Express its viscosity in Saybolt Universal Seconds (SUS).
$35^{\circ} \mathrm{AFI}$ oil sp. gr. $=\frac{141.5}{131.5+{ }^{\circ} \mathrm{API}}=\frac{141.5}{131.5+35}=0.850$

$$
\mu=0.825 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2} \quad v=\frac{\mu g_{\mathrm{c}}}{\rho}=\frac{0.825}{0.850(1000)}=10 \times 10^{-4}
$$

Highly viscous; try

$$
\begin{aligned}
& v=0.2158 \times 10^{-6}(\text { SUS }) \quad \text { if SUS }>215 \\
& \text { SUS }=\frac{10 \times 10^{-4}}{0.2158 \times 10^{-6}}=4633 \text { SUS }
\end{aligned}
$$

5. Air is collected in a $1.2 \mathrm{~m}^{3}$ container and weighed using a balance as indicated in Figure P2.5. On the other end of the balance arm is $1.2 \mathrm{~m}^{3}$ of CO_{2}. The air and the CO_{2} are at $27^{\circ} \mathrm{C}$ and atmospheric pressure. What is the difference in weight between these two volumes?

FIGURE P2.5.

Air at $27^{\circ} \mathrm{C}=300 \mathrm{~K}$ has $\rho=1.177 \mathrm{~kg} / \mathrm{m}^{3}$
CO_{2} at $27^{\circ} \mathrm{C}=300 \mathrm{~K}$ has $\rho=1.797 \mathrm{~kg} / \mathrm{m}^{3}$
For a volume of $1.2 \mathrm{~m}^{3}$, the weight of air is

$$
\left(1.177 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1.2 \mathrm{~m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=13.86 \mathrm{~N}
$$

For CO_{2}
$\left(1.797 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1.2 \mathrm{~m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=21.15 \mathrm{~N}$
Weight difference is $21.15-13.86=7.29 \mathrm{~N}$
6. A container of castor oil is used to measure the density of a solid. The solid is cubical in shape, $30 \mathrm{~mm} \times 30 \mathrm{~mm} \times 30 \mathrm{~mm}$, and weighs 9 N in air. While submerged, the object weighs 7 N . What is the density of the liquid?

Castor Oil $\rho=960 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \frac{\text { buoyant force }}{\text { volume }}=\frac{\mathrm{mg}_{\text {in air }}-\mathrm{mg}_{\text {submerged }}}{\forall}=\rho g \\
& \rho=\frac{9-7}{(0.03)^{3}} \frac{1}{9.81}=7551 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

7. A brass cylinder $(\mathrm{Sp} . \mathrm{Gr} .=8.5)$ has a diameter of 25.4 mm and a length of 101.6 mm . It is submerged in a liquid of unknown density, as indicated in Figure P2.7. While submerged, the weight of the cylinder is measured as 3.56 N . Determine the density of the liquid.

FIGURE P2.7.

Buoyant force $=\mathrm{mg}_{\mathrm{in} \text { air }}-\mathrm{mg}_{\text {submerged }}=\mathrm{mg}-0.8$

$$
\begin{aligned}
& \frac{\text { buoyant force }}{\text { volume }}=\frac{\mathrm{mg}-0.8}{\forall}=\rho g \quad \forall=\frac{\pi D^{2}}{4} \mathrm{~h}=\frac{\pi}{4}(0.0254)^{2}(0.1016)=5.15 \times 10^{-5} \mathrm{~m}^{3} \\
& \mathrm{mg}=\rho_{\mathrm{b}} \forall \mathrm{~g}=8500\left(5.15 \times 10^{-5}\right)(9.81)=4.29 \mathrm{~N} \\
& \rho=\frac{\mathrm{mg}-0.8}{\mathrm{~g} \forall}=\frac{4.29-3.56}{9.81\left(5.15 \times 10^{-5}\right)} \\
& \rho=1454 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

(C) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Viscosity

8. Actual tests on Vaseline yielded the following data:

$$
\begin{array}{llrrr}
\tau \text { in } \mathrm{N} / \mathrm{m}^{2} & 0 & 200 & 600 & 1000 \\
d V / d y \text { in } 1 / \mathrm{s} & 0 & 500 & 1000 & 1200
\end{array}
$$

Determine the fluid type and the proper descriptive equation.

Can be done instantly with spreadsheet; hand calculations follow for comparison purposes:

$\mathrm{dV} / \mathrm{dy}$	$\ln (\mathrm{dV} / \mathrm{dy})$	τ	$\ln \tau$	$\ln (\tau) \cdot \ln (\mathrm{dV} / \mathrm{dy})$
0	-	0	-	\cdot
500	6.215	200	5.298	32.93
1000	6.908	600	6.397	44.19
1200	7.090	1000	6.908	48.98
Sum	20.21		18.60	126.1

$\mathrm{m}=3$ Summation $(\ln (\mathrm{dV} / \text { dy }))^{2}=136.6$
$\mathrm{b}_{1}=\frac{3(126.1)-20.21(18.60)}{3(136.6)-20.21^{2}}=1.766$
$b_{0}=\frac{18.60}{3}-1.766 \frac{20.21}{3}=-5.697$
$K=\exp \left(b_{0}\right)=0.00336 ; \quad n=b_{1}=1.766$
$\tau=\tau_{o}+K\left(\frac{d V}{d y}\right)^{n}=0.00336\left(\frac{d V}{d y}\right)^{1.766}$
(C) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
9. A popular mayonnaise is tested with a viscometer and the following data were obtained:

τ in $\mathrm{g} / \mathrm{cm}^{2}$	40	100	140	180
$d V / d y$ in rev/s	0	3	7	15

Determine the fluid type and the proper descriptive equation.
The topmost line is the given data, but to curve fit, we subtract 40 from all shear stress readings.

$\tau=\tau_{o}+K\left(\frac{d V}{d y}\right)^{n} \quad$ which becomes $\tau^{\prime}=\tau-\tau_{o}=K\left(\frac{d V}{d y}\right)^{n}$
Can be done instantly with spreadsheet; hand calculations:

$\mathrm{dV} / \mathrm{dy}$	$\ln (\mathrm{dV} / \mathrm{dy})$	τ	τ^{\prime}	$\ln \tau^{\prime}$	$\ln \left(\tau^{\prime}\right) \cdot \ln (\mathrm{dV} / \mathrm{dy})$
0	-	40	0	-	-
3	1.099	100	60	4.094	4.499
7	1.946	140	100	4.605	8.961
15	2.708	180	140	4.942	13.38
Sum	5.753			13.64	26.84

$\mathrm{m}=3 \quad$ Summation $(\ln (\mathrm{dV} / \mathrm{dy}))^{2}=12.33$
$\mathrm{b}_{1}=\frac{3(26.84)-5.753(13.64)}{3(12.33)-5.753^{2}}=0.526$
$\mathrm{b}_{0}=\frac{13.64}{3}-0.526 \frac{5.753}{3}=3.537$
$\mathrm{K}=\exp \left(\mathrm{b}_{0}\right)=34.37 ; \quad \mathrm{n}=\mathrm{b}_{1}=0.526$
$\tau=\tau_{o}+K\left(\frac{d V}{d y}\right)^{n}=40+34.37\left(\frac{d V}{d y}\right)^{0.526}$
where $\mathrm{dV} / \mathrm{dy}$ is in $\mathrm{rev} / \mathrm{s}$ and τ in $\mathrm{g} / \mathrm{cm}^{2}$; these are not standard units.
(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
10. A cod-liver oil emulsion is tested with a viscometer and the following data were obtained:

τ in	0	40	60	80	120
$d V / d y$ in rev/s	0	0.5	1.7	3	6

Graph the data and determine the fluid type. Derive the descriptive equation.
Cod liver oil; graph excludes the first data point.

$$
\tau=K\left(\frac{d V}{d y}\right)^{n}
$$

Can be done instantly with spreadsheet; hand calculations:

dV/dy	$\ln (\mathrm{dV} / \mathrm{dy})$	τ	$\ln \tau$	$\ln (\tau) \cdot \ln (\mathrm{dV} / \mathrm{dy})$
0.5	-0.6931	40	3.689	-2.557
1.7	0.5306	60	4.094	2.172
3	1.099	80	4.382	4.816
6	1.792	120	4.787	8.578
Sum	2.729		16.95	13.01

$\mathrm{m}=4$ Summation $(\ln (\mathrm{dV} / \text { dy }))^{2}=5.181$
$\mathrm{b}_{1}=\frac{4(13.01)-2.729(16.95)}{4(5.181)-2.729^{2}}=0.4356$
$\mathrm{b}_{0}=\frac{16.95}{4}-0.4356 \frac{2.729}{4}=3.537$
$\mathrm{K}=\exp \left(\mathrm{b}_{0}\right)=51.43 ; \quad \mathrm{n}=\mathrm{b}_{1}=0.4356$
$\tau=\tau_{o}+K\left(\frac{d V}{d y}\right)^{n}=51.43\left(\frac{d V}{d y}\right)^{0.4356}$
where $\mathrm{dV} / \mathrm{dy}$ is in rev/s and τ in $\mathrm{lbf} / \mathrm{ft}^{2}$; these are not standard units.
(C) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
11. A rotating cup viscometer has an inner cylinder diameter of 50.8 mm and the gap between cups is 5.08 mm . The inner cylinder length is 63.5 mm . The viscometer is used to obtain viscosity data on a Newtonian liquid. When the inner cylinder rotates at $10 \mathrm{rev} / \mathrm{min}$, the torque on the inner cylinder is measured to be $0.01243 \mathrm{mN}-\mathrm{m}$. Calculate the viscosity of the fluid. If the fluid density is $850 \mathrm{~kg} / \mathrm{m}^{3}$, calculate the kinematic viscosity.

Rotating cup viscometer $\quad \mathrm{R}=25.4 \mathrm{~mm}$
$\delta=5.08 \mathrm{~mm} \quad \mathrm{~L}=63.5 \mathrm{~mm}$
$\omega=(10 \mathrm{rev} / \mathrm{min}) \cdot(2 \pi \mathrm{rad} / \mathrm{rev})(1 \mathrm{~min} / 60 \mathrm{~s})=1.047 \mathrm{rad} / \mathrm{s}=\frac{\mathrm{dV}}{\mathrm{dy}}$
$\mathrm{T}=0.01243 \times 10^{-3} \mathrm{~N}-\mathrm{m}$
$\rho=850 \mathrm{~kg} / \mathrm{m}^{3}$
$\mu=\frac{\mathrm{T} \delta}{2 \pi \mathrm{R}^{2}(\mathrm{R}+\delta) \mathrm{L} \omega}$
$\mu=\frac{1.243 \times 10^{-5} \times 5.08 \times 10^{-3}}{2 \pi(0.0254)^{2}\left(0.0254+5.08 \times 10^{-3}\right)(0.0635)(1.047)}$
$\mu=7.7 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$
$\mathrm{v}=\frac{7.7 \times 10^{-3}}{850}=9.762 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s} \quad 9.06 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
12. A rotating cup viscometer has an inner cylinder whose diameter is 38 mm and whose length is 80 mm . The outer cylinder has a diameter of 42 mm . The viscometer is used to measure the viscosity of a liquid. When the outer cylinder rotates at $12 \mathrm{rev} / \mathrm{min}$, the torque on the inner cylinder is measured to be $4 \times 10^{-6} \mathrm{~N} \cdot \mathrm{~m}$. Determine the kinematic viscosity of the fluid if its density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

$$
\begin{aligned}
& \mathrm{R}=38 / 2=0.019 \mathrm{~m} ; \quad \mathrm{L}=0.08 \mathrm{~m} \\
& \mathrm{R}_{\text {outside }}=42 / 2=21 \mathrm{~mm} \\
& \delta=21-19=2 \mathrm{~mm}=0.002 \mathrm{~m} \\
& \omega=(12 \mathrm{rev} / \mathrm{min})(2 \pi / 60)=1.26 \mathrm{rad} / \mathrm{s} \\
& \mathrm{~T}=3.8 \times 10^{-6} \mathrm{~N} \cdot \mathrm{~m} \quad \rho=1000 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mu=\frac{\mathrm{T} \delta}{2 \pi \mathrm{R}^{2}(\mathrm{R}+\delta)(\mathrm{L} \omega)}=\frac{3.8 \times 10^{-6}(0.002)}{2 \pi(0.019)^{2}(0.019+0.002)(0.08)(1.26)} \\
& \mu=1.58 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2} \\
& \mathrm{v}=\rho=\frac{1.58 \times 10^{-3}}{1000}=1.58 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \\
& \\
& \hline
\end{aligned}
$$

(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13. A rotating cup viscometer has an inner cylinder diameter of 57.15 mm and an outer cylinder diameter of 62.25 mm . The inner cylinder length is 76.2 mm . When the inner cylinder rotates at $15 \mathrm{rev} / \mathrm{min}$, what is the expected torque reading if the fluid is propylene glycol?
$\mathrm{D}=57.15 \mathrm{~mm} \quad \mathrm{R}=28.58 \mathrm{~mm} \quad 2(\mathrm{R}+\delta)=62.25 \mathrm{~mm}$
$\mathrm{R}+\delta=31.125$
$\delta=2.545 \mathrm{~mm} \quad \rho=968 \mathrm{~kg} / \mathrm{m}^{3} \quad \mu=0.0421 \mathrm{~Pa} \cdot \mathrm{~s}$
$\omega=(15 \mathrm{rev} / \mathrm{min})(2 \pi / 60)=1.572 \mathrm{rad} / \mathrm{s}$
$\mathrm{T}=\frac{2 \pi \mathrm{R}^{2}(\mathrm{R}+\delta)(L \omega) \mu}{\delta}=\frac{2 \pi(0.02858)^{2}(0.031125)(0.0762)(1.571)(0.0421)}{0.002545}$
$\mathrm{T}=3.16 \times 10^{-4} \mathrm{~N}-\mathrm{m}$
14. A capillary tube viscometer is used to measure the viscosity of water (density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$, viscosity is $0.89 \times 10^{3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$) for calibration purposes. The capillary tube inside diameter must be selected so that laminar flow conditions (i.e., $V D / v<2100$) exist during the test. For values of $L=76.2 \mathrm{~mm}$ and $\mathrm{z}=254 \mathrm{~mm}$, determine the maximum tube size permissible.

Capillary tube viscometer $\frac{\forall}{\mathrm{t}}=\rho g \frac{\mathrm{Z}}{\mathrm{L}} \frac{\pi R^{4}}{8 \mu} \quad \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\mu=0.89 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$
$\mathrm{z}=0.254 \mathrm{~m} \quad \mathrm{~L}=0.0762 \mathrm{~m}$
$\frac{\forall}{\mathrm{t}}=$ Volume flow rate $=\mathrm{AV}=\pi \mathrm{R}^{2} \mathrm{~V}$; substituting into the equation,
$\pi \mathrm{R}^{2} \mathrm{~V}=\rho g \frac{\mathrm{z}}{\mathrm{L}} \frac{\pi R^{4}}{8 \mu} \quad$ Rearrange and solve for $\mathrm{V}, \mathrm{V}=\rho g \frac{\mathrm{z}}{\mathrm{L}} \frac{R^{2}}{8 \mu}$
The limiting value is $\operatorname{Re}<2100$; using equality,
$\frac{\mathrm{V}(2 \mathrm{R})}{v}=2100 ; \quad \frac{\rho \mathrm{V}(2 \mathrm{R})}{\mu}=2100$ or
$\mathrm{V}=\frac{2100 \mu}{2 \rho \mathrm{R}}=\rho g \frac{\mathrm{z}}{\mathrm{L}} \frac{R^{2}}{8 \mu} \quad$ Rearrange and solve for R^{3}
$\mathrm{R}^{3}=\frac{2100 \mu^{2}(8)(\mathrm{L})}{2 \rho^{2} g \mathrm{Z}}=\frac{2100\left(0.89 \times 10^{-3}\right)^{2}(8)(0.0762)}{2(1000)^{2}(9.81)(0.254)}$
$\mathrm{R}^{3}=2.035 \times 10^{-10}$ or
$\mathrm{R}=5.88 \times 10^{-4} \mathrm{~m}=0.588 \mathrm{~mm}$ Any larger, flow no longer laminar
15. A Saybolt viscometer is used to measure oil viscosity and the time required for $6 \times 10^{-5} \mathrm{~m}^{3}$ of oil to pass through a standard orifice is 180 SUS. The specific gravity of the oil is found as $44^{\circ} \mathrm{API}$. Determine the absolute viscosity of the oil.

For 180 SUS,
$v=0.223 \times 10^{-6}(180)-\frac{155 \times 10^{-6}}{180}=3.928 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
44° API oil; \quad sp.gr. $=\frac{141.5}{131.5+44}=0.8063 ; \rho=806.3 \mathrm{~kg} / \mathrm{m}^{3}$
$\mu=\rho \nu=806.3\left(3.928 \times 10^{-2}\right)=3.167 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$
16. A $10^{4} \mathrm{~m}^{3}$ capillary tube viscometer is used to measure the viscosity of a liquid. For values of $L=40 \mathrm{~mm}, \mathrm{z}=250 \mathrm{~mm}$, and $D=0.8 \mathrm{~mm}$, determine the viscosity of the liquid. The time recorded for the experiment is 12 seconds.
$v=\left(\frac{\mathrm{z} \pi \mathrm{R}^{4} \mathrm{~g}}{8 \mathrm{LF}}\right) \mathrm{t}=\left(\frac{0.25 \pi(0.0008 / 2)^{4}(9.81)}{8(0.04)\left(10 \times 10^{-6}\right)}\right)(12)$
$v=7.39 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$
17. A Saybolt viscometer is used to obtain oil viscosity data. The time required for 60 ml of oil to pass through the orifice is 70 SUS. Calculate the kinematic viscosity of the oil. If the specific gravity of the oil is $35^{\circ} \mathrm{API}$, find also its absolute viscosity.

For 70 SUS,
$v=0.224 \times 10^{-6}(70)-\frac{185 \times 10^{-6}}{70}$
$v=1.304 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
35° API oil
sp. gr. $=\frac{141.5}{131.5+35}=0.8498 \rho=849.8 \mathrm{~kg} / \mathrm{m}^{3}$
$\mu=\frac{\rho v}{g_{c}}=849.8\left(1.304 \times 10^{-5}\right)$
$\mu=1.108 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$
(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18. A $2-\mathrm{mm}$ diameter ball bearing is dropped into a container of glycerine. How long will it take the bearing to fall a distance of 1 m ?
$\mu=\left(\frac{\rho_{s}}{\rho}-1\right) \rho g \frac{\mathrm{D}^{2}}{18 \mathrm{~V}} \quad \mathrm{~V}=\frac{\mathrm{L}}{\mathrm{t}} \quad \mathrm{L}=1 \mathrm{~m} \quad \mathrm{D}=2 \mathrm{~mm}=0.002 \mathrm{~m}$
$\rho_{\mathrm{s}}=7900 \mathrm{~kg} / \mathrm{m}^{3} \quad \rho=1263 \quad \mu=950 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$
$V=\left(\frac{\rho_{s}}{\rho}-1\right) \rho g \frac{\mathrm{D}^{2}}{18 \mu}=\left(\frac{7.9}{1.263}-1\right)(1263)(9.81)\left(0.002^{2}\right) \frac{1}{18\left(950 \times 10^{-3}\right)}$
$V=0.0152 \mathrm{~m} / \mathrm{s}$

Check on $\operatorname{Re}=\frac{\rho \mathrm{VD}}{\mu}=\frac{1263(0.0152)(0.002)}{950 \times 10^{-3}}=0.04<1 \quad \mathrm{OK}$
$\frac{\mathrm{L}}{\mathrm{t}}=0.0152 ; \quad \mathrm{t}=\frac{1}{0.0152}$
$\mathrm{t}=65.8 \mathrm{~s}$
19. A 3.175 mm diameter ball bearing is dropped into a viscous oil. The terminal velocity of the sphere is measured as $40.6 \mathrm{~mm} / \mathrm{s}$. What is the kinematic viscosity of the oil if its density is $800 \mathrm{~kg} / \mathrm{m}^{3}$?
$\mu=\left(\frac{\rho_{s}}{\rho}-1\right) \rho g \frac{\mathrm{D}^{2}}{18 \mathrm{~V}} \quad \mathrm{~V}=\frac{\mathrm{L}}{\mathrm{t}}=40.6 \times 10^{-3} \mathrm{~m} / \mathrm{s} \quad \mathrm{D}=0.003175 \mathrm{~m}$
$\rho_{s}=7900 \mathrm{~kg} / \mathrm{m}^{3}$
$v=\frac{\mu}{\rho}=\left(\frac{\rho_{s}}{\rho}-1\right) \frac{\mathrm{gD}^{2}}{18 \mathrm{~V}}=\left(\frac{7900}{800}-1\right) \frac{(9.81)(0.003175)^{2}}{18\left(40.6 \times 10^{-3}\right)}$
$v=1.204 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{s}$

Check on $\operatorname{Re}=\frac{V D}{v}=\frac{40.6 \times 10^{-3}(0.003175)}{1.204 \times 10^{-3}}=0.107<1 \quad$ OK

Pressure and Its Measurement

20. A mercury manometer is used to measure pressure at the bottom of a tank containing acetone, as shown in Figure P2.20. The manometer is to be replaced with a gage. What is the expected reading in psig if $\Delta h=127 \mathrm{~mm}$ and $x=50.8 \mathrm{~mm}$?
(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

FIGURE P2.20.

$$
\begin{aligned}
& \text { Acetone } \quad \rho_{a}=787 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{Hg} \quad \rho=13600 \mathrm{~kg} / \mathrm{m}^{3} \\
& p_{A}+\rho_{a} g \mathrm{x}=p_{a t m}+\rho g \Delta h \\
& p_{A}+787(9.81)(0.0508)(2 / 12)= \\
& \quad 1.01325 \times 10^{5}+13600(9.81)(0.127) \\
& p_{A}+392.2=1.01325 \times 10^{5}+16943.8
\end{aligned}
$$

$$
p_{A}=1.18 \times 10^{5} \mathrm{~Pa}
$$

21. Referring to Figure P2.21, determine the pressure of the water at the point where the manometer attaches to the vessel. All dimensions are in inches and the problem is to be worked using Engineering or British Gravitational units.

FIGURE P2.21.
22. Figure P2.22 shows a portion of a pipeline that conveys benzene. A gage attached to the line reads 150 kPa . It is desired to check the gage reading with a benzene-over-mercury U-tube manometer. Determine the expected reading Δh on the manometer.
open to

FIGURE P2.22.
(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$$
\begin{aligned}
& p_{D}+\rho_{H g} g \Delta h-\rho_{B} g(0.03)=p_{A} \quad p_{D}=p_{a t m}=0 \\
& 0+13.6(1000)(9.81) \Delta h-876(9.81)(0.03)=150000 \text { (which is a gage reading) } \\
& 0+133400 \Delta h-257.8=150000 \\
& \Delta h=\frac{150000+257.8}{133400} \\
& \Delta h=1.126 \mathrm{~m}
\end{aligned}
$$

23. An unknown fluid is in the manometer of Figure $P 2.23$. The pressure difference between the two air chambers is 700 kPa and the manometer reading Δh is 60 mm . Determine the density and specific gravity of the unknown fluid.

FIGURE P2.23.
24. A U-tube manometer is used to measure the pressure difference between two air chambers, as shown in Figure P2.24. If the reading Δh is 152.4 mm , determine the pressure difference.

FIGURE P2.24.
25. A manometer containing mercury is used to measure the pressure increase experienced by a water pump as shown in Figure P2.25. Calculate the pressure rise if Δh is 70 mm of mercury (as shown). All dimensions are in mm.
(C) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$$
\begin{gathered}
p_{\text {outlet }}+\rho g\left(\frac{600+40+70}{1000}\right)-\rho_{H g} g(0.07) \\
-\rho g(0.04)=p_{\text {inlet }}
\end{gathered}
$$

$$
p_{\text {outlet }}+1000(9.81)(0.71)-
$$

$$
13.6(1000)(9.81)(0.07)
$$

$$
-1000(9.81)(0.04)=p_{\text {inlet }}
$$

$$
p_{\text {outlet }}+6965-9339-392.4=p_{\text {inlet }}
$$

FIGURE P2.25.

$$
p_{\text {outlet }}-p_{\text {inlet }}=2766 \mathrm{~Pa}=2.77 \mathrm{kPa}
$$

26. Determine the pressure difference between the linseed and castor oils of Figure P2.26. (All dimensions are in mm.)

$$
\begin{aligned}
& p_{A}-\rho_{L O} g(0.0762)+ \rho_{\text {air }} g(0.1016)+\rho_{H 2 O} g(0.127) \\
&-\rho_{\operatorname{CO}} g(0.1143)=p_{B} \\
& \rho_{L O}=930 \mathrm{~kg} / \mathrm{m}^{3} ; \quad \rho_{C O}=960 \mathrm{~kg} / \mathrm{m}^{3} \\
& \rho_{H 2 O}=1000 \mathrm{~kg} / \mathrm{m}^{3} \quad \rho_{\text {air }} \text { negligible } \\
& p_{A}-p_{B}= \rho_{L O} g(0.0762)+\rho_{H 2 O} g(0.127) \\
&-\rho_{\operatorname{CO}} g(0.1143) \\
& p_{A}-p_{B}= 930(9.81)(0.0762)-1000(9.81)(0.127) \\
&-960(9.81)(0.1143) \\
& p_{A}-p_{B}= 695.2-1246.3+1076.8 \\
& p_{A}-p_{B}=526 \mathrm{~Pa}
\end{aligned}
$$

FIGURE P2.26.
27. For the system of Figure P2.27, determine the pressure of the air in the tank.

FIGURE P2.27.
(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Continuity Equation

28. Figure P 2.28 shows a reducing bushing. A liquid leaves the bushing at a velocity of $4 \mathrm{~m} / \mathrm{s}$. Calculate the inlet velocity. What effect does the fluid density have?

29. Figure P 2.29 shows a reducing bushing. Liquid enters the bushing at a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. Calculate the outlet velocity.

$$
\left.\begin{array}{ll}
\longrightarrow \\
\longrightarrow
\end{array} \begin{array}{l}
D_{1}=100 \mathrm{~mm}=0.1 \mathrm{~m} ; D_{2}=40 \mathrm{~mm}=0.04 \mathrm{~m} \\
V_{1}=0.5 \mathrm{~m} / \mathrm{s}
\end{array}\right] \begin{aligned}
& Q=A_{1} V_{1}=A_{2} V_{2} \\
& \frac{\pi D_{1}{ }^{2}}{4} V_{1}=\frac{\pi D_{2}^{2}}{4} V_{2} \\
& V_{2}=V_{1} \frac{D_{1}^{2}}{D_{2}^{2}}=0.5\left(\frac{0.1^{2}}{0.04^{2}}\right) \\
& \text { FIGURE P2.28, P2.29. } \\
& \\
& V_{2}=3.13 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

30. Water enters the tank of Figure $\mathrm{P} 2.30 @ 0.00189 \mathrm{~m}^{3} / \mathrm{s}$. The inlet line is 63.5 mm in diameter. The air vent is 38 mm in diameter. Determine the air exit velocity at the instant shown.

For low pressures and temperatures, air can be treated as incompressible.

$$
Q_{\mathrm{H} 2 \mathrm{O} \text { in }}=Q_{\text {air out }}
$$

$$
Q_{\mathrm{H} 2 \mathrm{O} \text { in }}=0.00189 \mathrm{~m}^{3} / \mathrm{s}
$$

$$
P_{\mathrm{H} 2 \mathrm{O}}=1000 \mathrm{~kg} / \mathrm{m}^{3} \quad \rho_{\mathrm{air}}=1.19 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
Q_{\text {air out }}=A V=\frac{\pi D^{2}}{4} V=\frac{\pi}{4}[(0.038)]^{2}=
$$

$$
1.14 \times 10^{-3} V
$$

FIGURE P2.30.

$$
\text { So } \quad 0.00189=1.14 \times 10^{-3} V
$$

$$
V_{\mathrm{air}}=1.66 \mathrm{~m} / \mathrm{s}
$$

(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
31. An air compressor is used to pressurize a tank of volume $3 \mathrm{~m}^{3}$. Simultaneously, air leaves the tank and is used for some process downstream. At the inlet, the pressure is 350 kPa , the temperature is $20^{\circ} \mathrm{C}$, and the velocity is $2 \mathrm{~m} / \mathrm{s}$. At the outlet, the temperature is $20^{\circ} \mathrm{C}$, the velocity is $0.5 \mathrm{~m} / \mathrm{s}$, and the pressure is the same as that in the tank. Both flow lines (inlet and outlet) have internal diameters of 2.7 cm . The temperature of the air in the tank is a constant at $20^{\circ} \mathrm{C}$. If the initial tank pressure is 200 kPa , what is the pressure in the tank after 5 minutes?
$0=\frac{\partial m}{\partial t}+(\rho A V)_{\text {out }}-(\rho A V)_{\text {in }} m=\frac{p \forall}{R T} \quad \frac{\partial m}{\partial t}=\frac{\forall}{R T} \frac{d p}{d t}$
$(p A V)_{\text {out }}-(p A V)_{\text {in }}=\frac{p_{\text {out }}}{R T_{\text {out }}} A_{\text {out }} V_{\text {out }}-\frac{p_{\text {in }}}{R T_{\text {in }}} A_{\text {in }} V_{\text {in }}$
Substituting,
$0=\frac{V}{R T} \frac{d p}{d t}+\frac{p_{\text {out }}}{R T_{\text {out }}} A_{\text {out }} V_{\text {out }}-\frac{p_{\text {in }}}{R T_{\text {in }}} A_{\text {in }} V_{\text {in }}$
For constant T, all $R T$ products cancel
$\forall \frac{d p}{d t}=-p_{\text {out }} A_{\text {out }} V_{\text {out }}+p_{\text {in }} A_{\text {in }} V_{\text {in }} \quad p_{\text {out }}=p$
$A_{\text {in }}=\frac{\pi(0.027)^{2}}{4}=5.726 \times 10^{-4} \mathrm{~m}^{2}=A_{\text {out }} \quad$ Areas are equal
$3 \frac{d p}{d t}=-p\left(5.726 \times 10^{-4}\right)(0.5)+350000\left(5.726 \times 10^{-4}\right)(2)$
$3 \frac{d p}{d t}=400.8-2.863 \times 10^{-4} p \quad$ or $\frac{d p}{d t}=133.6-9.543 \times 10^{-5} p$
Separating variables,

$$
\begin{aligned}
& \int_{p}^{200} \frac{d p}{133.6-9.543 \times 10^{-5} p}=\int_{0}^{300} d t \\
& \left.\frac{\ln \left(133.6-9.543 \times 10^{-5} p\right)}{-9.543 \times 10^{-5}}\right|_{200000} ^{p}=300-0
\end{aligned}
$$

$\ln \left(133.6-9.543 \times 10^{-5} p\right)-\ln \left(133.6-9.543 \times 10^{-5}(200000)\right)=300\left(-9.543 \times 10^{-5}\right)$
$\ln \left(133.6-9.543 \times 10^{-5} p\right)-4.741=-2.863 \times 10^{-2}$
$\ln \left(133.6-9.543 \times 10^{-5} p\right)=4.712$
Exponentiating,

$$
133.6-9.543 \times 10^{-5} p=1.113 \times 10^{2} \quad \text { or } \quad-9.543 \times 10^{-5} p=-22.3
$$

$$
p=2.34 \mathrm{kPa}
$$

(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
32. Figure P 2.32 shows a cross-flow heat exchanger used to condense Freon-12. Freon-12 vapor enters the unit at a flow rate of $0.065 \mathrm{~kg} / \mathrm{s}$. Freon-12 leaves the exchanger as a liquid $(\mathrm{Sp} . \mathrm{Gr} .=1.915)$ at room temperature and pressure. Determine the exit velocity of the liquid.

$$
\begin{aligned}
& \dot{m}_{\text {in }}=\rho_{\text {ov } \tau} A_{\text {out }} V_{\text {out }} \\
& \dot{m}_{\text {in }}=0.065 \mathrm{~kg} / \mathrm{s} \\
& \rho=1.915(1000) \mathrm{kg} / \mathrm{m}^{3} \\
& A=\frac{\pi D^{2}}{4}=\frac{\pi(0.25 / 12)^{2}}{4}=3.41 \times 10^{-4} \mathrm{ft}^{2} \\
& A=3.41 \times 10^{-4}\left(9.29 \times 10^{-2}\right)= \\
& 3.17 \times 10^{-5} \mathrm{~m}^{2} \\
& \text { Substituting, } \\
& \left.0.065=1.915(1000) 3.17 \times 10^{-5}\right) V_{\text {out }} \\
& V_{\text {out }}=1.07 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

FIGURE P2.32.
33. Nitrogen enters a pipe at a flow rate of $90.7 \mathrm{~g} / \mathrm{s}$. The pipe has an inside diameter of 101.6 mm . At the inlet, the nitrogen temperature is $26.7^{\circ} \mathrm{C}\left(\rho=1.17 \mathrm{~kg} / \mathrm{m}^{3}\right)$ and at the outlet, the nitrogen temperature is $727^{\circ} \mathrm{C}\left(\rho=0.34 \mathrm{~kg} / \mathrm{m}^{3}\right)$. Calculate the inlet and outlet velocities of the nitrogen. Are they equal? Should they be?
$\dot{m}=0.0907 \mathrm{~kg} \quad D=0.1016 \mathrm{~m} \quad \rho_{1}=1.17 \mathrm{~kg} / \mathrm{m}^{3}$
$\rho_{2}=0.34 \mathrm{~kg} / \mathrm{m}^{3}$
$A=\frac{\pi D^{2}}{4}=\frac{\pi(0.1016)^{2}}{4}=8.11 \times 10^{-3} \mathrm{~m}^{2} \quad \dot{m}=\rho A V$
$V_{1}=\frac{\dot{m}}{\rho_{1} A}=\frac{0.0907}{1.17\left(8.11 \times 10^{-3}\right)}$
$V_{1}=9.56 \mathrm{~m} / \mathrm{s}$

$$
V_{2}=\frac{0.0907}{0.34\left(8.11 \times 10^{-3}\right)}
$$

$V_{2}=32.8 \mathrm{~m} / \mathrm{s}$

Momentum Equation

34. A garden hose is used to squirt water at someone who is protecting herself with a garbage can lid. Figure P2.34 shows the jet in the vicinity of the lid. Determine the restraining force F for the conditions shown.
(C) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$\Sigma F=\dot{m}\left(V_{\text {out }}-V_{\text {in }}\right) \quad \dot{m}_{\text {in }}=\dot{m}_{\text {out }}$ frictionless
flow magnitude of $V_{\text {in }}=$ magnitude of $V_{\text {out }}$
$F=[\rho A V]_{\text {inlet }}\left(-V_{\text {in }}-V_{\text {in }}\right)$
$F=2 \rho A V^{2} \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$A=\frac{\pi(0.02)^{2}}{4}=3.14 \times 10^{-4} \mathrm{~m}^{2} \quad V=3 \mathrm{~m} / \mathrm{s}$
$F=2(1000)\left(3.14 \times 10^{-4}\right)(3)^{2}$
$F=5.65 \mathrm{~N}$
FIGURE P2.34.
35. A two-dimensional, liquid jet strikes a concave semicircular object, as shown in Figure P2.35. Calculate the restraining force F.

$\Sigma F=\dot{m}\left(V_{\text {out }}-V_{\text {in }}\right)$
$\dot{m}_{\text {in }}=\dot{m}_{\text {out }}$ frictionless flow
magnitude of $V_{\text {in }}=$ magnitude of $V_{\text {out }}$
$F=[\rho A V]_{\text {inlet }}\left(-V_{i n}-V_{i n}\right)$
FIGURE P2.35.

$$
F=2 \rho A V^{2}
$$

36. A two-dimensional, liquid jet strikes a concave semicircular object, as shown in Figure P2.36. Calculate the restraining force F.

FIGURE P2.36.

$$
F=\frac{2 \rho A V^{2}}{g_{c}}
$$

37. A two-dimensional liquid jet is turned through an angle $\theta\left(0^{\circ}<\theta<90^{\circ}\right)$ by a curved vane, as shown in Figure P 2.37 . The forces are related by $F_{2}=3 F_{1}$. Determine the angle θ through which the liquid jet is turned.
(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

$$
\Sigma F=\frac{\dot{m}}{g_{c}}\left(V_{\text {out }}-V_{\text {in }}\right) ; \dot{m}_{\text {in }}=\dot{m}_{\text {out }} \text { frictionless flow }
$$

magnitude of $V_{\text {in }}=$ magnitude of $V_{\text {out }}$

$$
\begin{aligned}
& -F_{1}=\frac{[\rho A V]_{\text {inlet }}}{g_{c}}\left(V_{\text {outx }}-V_{\text {inx }}\right) \\
& V_{\text {outx }}=V \cos \theta ; \quad V_{\text {inx }}=V \\
& -F 1=\frac{[\rho A V]_{\text {inlet }}}{g_{c}}(V \cos \theta-V)=\frac{\rho A V^{2}}{g_{c}}(\cos \theta-1) \\
& F_{1}=\frac{\rho A V_{2}}{g_{c}}(1-\cos \theta) \\
& F_{2}=\frac{[\rho A V]_{\text {inlet }}}{g_{c}}\left(V_{\text {outy }}-V_{\text {iny }}\right) \\
& V_{\text {outy }}=V \sin \theta ; \quad V_{\text {iny }}=0 \\
& F_{2}=\frac{[\rho A V]_{\text {inlet }}}{g_{c}}(V \sin \theta)=\frac{\rho A V^{2}}{g_{c}}(\sin \theta) \quad F_{2}=3 F_{1} ; \quad \sin \theta=3(1-\cos \theta) \\
& \frac{1}{3} \sin \theta=1-\cos \theta \quad \text { T\&E solution is quickest } \\
& \theta=36.8^{\circ}
\end{aligned}
$$

38. A two-dimensional liquid jet is turned through an angle $\theta\left(0^{\circ}<\theta<90^{\circ}\right)$ by a curved vane as shown in Figure P2.38. The forces are related by $F_{1}=2 F_{2}$. Determine the angle θ through which the liquid jet is turned.
$\Sigma F=\frac{\dot{m}}{g_{c}}\left(V_{\text {out }}-V_{\text {in }}\right) ; \quad \dot{m}_{\text {in }}=\dot{m}_{\text {out }}$ frictionless flow
magnitude of $V_{\text {in }}=$ magnitude of $V_{\text {out }}$
$-F_{1}=\frac{[\rho A V]_{\text {inlet }}}{g_{c}}\left(V_{\text {outx }}-V_{\text {inx }}\right)$
$V_{\text {outx }}=-V \cos \theta ; \quad V_{\text {inx }}=V$
$-F_{1}=\frac{[\rho A V]_{\text {inlet }}}{g_{c}}(-V \cos \theta-V)=-\frac{\rho A V^{2}}{g_{c}}(\cos \theta+1)$
$F_{1}=\frac{\rho A V^{2}}{g_{c}}(1+\cos \theta)$

FIGURE P2.39.

$$
\begin{aligned}
& F_{2}=\frac{[\rho A V]_{\text {inlet }}}{g_{c}}\left(V_{\text {outy }}-V_{\text {iny }}\right) \\
& V_{\text {outy }}=V \sin \theta ; \quad V_{\text {iny }}=0 \\
& F_{2}=\frac{[\rho A V]_{\text {inlet }}}{g_{c}}(V \sin \theta)==\frac{\rho A V^{2}}{g_{c}}(\sin \theta) \\
& F_{1}=2 F_{2} ; \quad 1+\cos \theta=2 \sin \theta
\end{aligned}
$$

$T \& E$ solution is quickest

θ	$1-\cos \theta$	$2 \sin \theta$
45°	1.707	1.414
50°	1.643	1.532
55°	1.574	1.638
53°	1.602	1.597
54°	1.588	1.618
53.5°	1.595	1.608
53.4°	1.596	1.606
53.2°	1.599	1.601
53.1°	1.600	1.599

$$
\theta=53.1^{\circ}
$$

Energy Equation

39. Figure P 2.39 shows a water turbine located in a dam. The volume flow rate through the system is $0.315 \mathrm{~m}^{3} / \mathrm{s}$. The exit pipe diameter is 1.22 m . Calculate the work done by (or power received from) the water as it flows through the dam. (Compare to the results of the example problem in this chapter.)

FIGURE P2.39.

We apply the energy equation between any two sections. Section $1=$ the free surface upstream, and Section 2 = the outlet downstream.

$$
p_{2}=p_{1}=p_{a t m}
$$

$V_{1} \approx 0$ (reservoir surface velocity)
$\mathrm{z}_{2}=1.83 \mathrm{~m} ; \mathrm{z}_{1}=36.6 \mathrm{~m}$

$$
A_{2}=\frac{\pi D^{2}}{4}=\frac{\pi(1.22)^{2}}{4}=1.169 \mathrm{~m}^{2}
$$

$Q=0.315 \mathrm{~m}^{3} / \mathrm{s}$
$V_{2}=\frac{Q}{A}=\frac{0.315}{1.169}=0.27 \mathrm{~m} / \mathrm{s} \quad \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\rho V A=\dot{m}=1000(1.169)(0.27)=315.25 \mathrm{~kg} / \mathrm{s}$ evaluated at outlet
(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Substituting,

$$
\begin{aligned}
& -\frac{\partial W}{\partial t}=\left\{\left.\left(\frac{p}{\rho}+\frac{V^{2}}{2}+g \mathrm{z}\right)\right|_{2}-\left.\left(\frac{p}{\rho}+\frac{V^{2}}{2}+g \mathrm{z}\right)\right|_{1}\right\} \rho V A \\
& -\frac{\partial W}{\partial t}=\left\{\left(0+\frac{0.27}{2}+9.81(1.83)-(0+0+9.81(36.6))\right\} 315.25\right. \\
& -\frac{\partial W}{\partial t}=\{(0+0.03645+17.95-0-0-359.05\} 315.25 \\
& +\frac{\partial W}{\partial t}=1.075 \times 10^{5} \mathrm{~W}
\end{aligned}
$$

40. Air flows through a compressor at a mass flow rate of $0.0438 \mathrm{~kg} / \mathrm{s}$. At the inlet, the air velocity is negligible. At the outlet, air leaves through an exit pipe of diameter 50.8 mm . The inlet properties are 101.3 kPa and $23.9^{\circ} \mathrm{C}$. The outlet pressure is 827 kPa . For an isentropic (reversible and adiabatic) compression process, we have

$$
\frac{T_{2}}{T_{1}}=\left\{\frac{p_{2}}{P_{1}}\right\}^{(\gamma-1) / \gamma}
$$

Determine the outlet temperature of the air and the power required. Assume that air behaves as an ideal gas $\left(d h=c_{p} d T, d u=c_{v} d T\right.$, and $\left.\rho=p / R T\right)$.

$$
\frac{T_{2}}{T_{1}}=\left\{\frac{p_{2}}{P_{1}}\right\}^{(\gamma-1) / \gamma}
$$

Determine the outlet temperature of the air and the power required. Assume that air behaves as an ideal gas $\left(d h=c_{p} d T, d u=c_{v} d T\right.$, and $\left.\rho=p / R T\right)$.

Solution:

$$
\begin{aligned}
& \dot{m}=0.0438 \mathrm{~kg} \quad V_{\text {in }}=0 \\
& p_{\text {in }}=101.3 \times 10^{3} \mathrm{~Pa} \quad p_{\text {out }}=\text { unknown } \\
& D_{\text {out }}=0.0508 \times 10^{3} \mathrm{~Pa} \\
& R_{\text {air }}=8.314 \mathrm{~J} / \mathrm{K} \text { mole } \\
& c_{\text {pair }}=1004 \mathrm{~J} / \mathrm{kg} \mathrm{~K} \\
& \frac{T_{\text {out }}}{T_{\text {in }}}=\left\{\frac{p_{\text {out }}}{p_{\text {in }}}\right\}^{(\gamma-1) / \gamma} \\
& \frac{T_{\text {out }}}{(273+23.9)}=\left\{\frac{827 \times 10^{3}}{101.3 \times 10^{3}}\right\}^{(1.4-1) / 1.4}=0.00203 \mathrm{~m}^{2} \quad \gamma=1.4 \\
& =1.822 \quad T_{\text {out }}=296.9(1.822)
\end{aligned}
$$

$$
T_{\text {out }}=540.95 \mathrm{k}=268^{\circ} \mathrm{C}
$$

$\rho_{\text {out }} \frac{p}{R T}=\frac{827 \times 10^{3} \times 29}{8314(540.95)}=5.33 \mathrm{~kg} / \mathrm{m}^{3}$
$V_{\text {out }}=\frac{\dot{m}}{\rho A_{\text {out }}}=\frac{0.0438}{5.33(0.00203)}=4.05 \mathrm{~m} / \mathrm{s} \quad \frac{V_{\text {out }}{ }^{2}}{2}=\frac{4.05}{2}=8.2$
$-\frac{\partial W}{\partial t}=\left\{\left.\left(h+\frac{V^{2}}{2}+g z\right)\right|_{\text {out }}-\left.\left(h+\frac{V^{2}}{2}+g z\right)\right|_{\text {in }}\right\} \rho V A$
$-\frac{\partial W}{\partial t}=\left(h_{\text {out }}-h_{\text {in }}+\frac{V_{\text {out }}{ }^{2}}{2}\right) \rho V A \quad \Delta P E=0$
$\left(h_{\text {out }}-h_{\text {in }}\right)=c_{\mathrm{p}}\left(T_{\text {out }}-T_{\text {in }}\right)=1004(268-23.9)=2.45 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
$\left(h_{\text {out }}-h_{\text {in }}\right)=2.45 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
$-\frac{\partial W}{\partial t}=\left(2.45 \times 10^{5}+8.2\right)(0.0438)=10735 \mathrm{~W}$
or $\quad-\frac{\partial W}{\partial t}=14.4 \mathrm{HP} \quad$ Assuming no losses
41. An air turbine is used with a generator to generate electricity. Air at the turbine inlet is at 700 kPa and $25^{\circ} \mathrm{C}$. The turbine discharges air to the atmosphere at a temperature of $11^{\circ} \mathrm{C}$. Inlet and outlet air velocities are $100 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$, respectively. Determine the work per unit mass delivered to the turbine from the air.

$$
\begin{aligned}
& p_{\text {in }}=700 \mathrm{kPa} \quad p_{\text {out }}=101.3 \mathrm{kPa} \\
& T_{\text {in }}=25^{\circ} \mathrm{C} \quad T_{\text {out }}=11^{\circ} \mathrm{C} \\
& V_{\text {in }}=100 \mathrm{~m} / \mathrm{s} \quad V_{\text {out }}=2 \mathrm{~m} / \mathrm{s} \\
& c_{p}=1005.7 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \\
& -\frac{\partial W}{\partial t}=\left\{\left.\left(h+\frac{V^{2}}{2 g_{c}}+\frac{g \mathrm{z}}{g_{c}}\right)\right|_{\text {out }}-\left.\left(h+\frac{V^{2}}{2 g_{c}}+\frac{g \mathrm{Z}}{g_{c}}\right)\right|_{\text {in }}\right\} \rho V A \\
& -\frac{\partial W / \partial t}{\dot{m}}=\left(h_{\text {out }}-h_{\text {in }}\right)+\left(\frac{V_{\text {out }}{ }^{2}}{23_{c}}+\frac{V_{\text {in }}^{2}}{2 g_{c}}\right)+\frac{g}{g_{c}}\left(\mathrm{z}_{\text {out }}-\mathrm{z}_{\text {in }}\right) \\
& \left(h_{\text {out }}-h_{\text {in }}\right)=c_{p}\left(T_{\text {out }}-T_{\text {in }}\right) \quad \mathrm{z}_{\text {out }}=\mathrm{z}_{\text {in }} \\
& -\frac{\partial W / \partial t}{\dot{m}}=1005.7(25-11)+\left(\frac{2^{2}}{2}+\frac{100^{2}}{2}\right)=1.4 \times 10^{4}-5 \times 10^{3} \\
& \\
& -\frac{\partial W / \partial t}{\dot{m}}=9 \times 10^{3} \mathrm{~J} / \mathrm{kg} \\
& \hline
\end{aligned}
$$

(C) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
42. A pump moving hexane is illustrated in Figure $P 2.42$. The flow rate is $0.02 \mathrm{~m}^{3} / \mathrm{s}$; inlet and outlet gage pressure readings are -4 kPa and 190 kPa , respectively. Determine the required power input to the fluid as it flows through the pump.

We apply the energy equation between any two sections. Section 1 = inlet pressure gage (actually the centerline of the pipe where the pressure gage is attached), and Section 2 outlet pressure gage.
$p_{2}=190000 \mathrm{~Pa} \quad \mathrm{z}_{2}=1.5 \mathrm{~m}$
$p_{1}=-4000 \mathrm{~Pa} \quad \mathrm{z}_{1}=1.0 \mathrm{~m}$
$A V=0.02 \mathrm{~m}^{3} / \mathrm{s}$
$A_{1}=\frac{\pi D_{1}^{2}}{4}=\frac{\pi(0.10)^{2}}{4}=7.854 \times 10^{-3} \mathrm{~m}^{2}$
$A_{2}=\frac{\pi D_{2}{ }^{2}}{4}=\frac{\pi(0.075)^{2}}{4}=4.42 \times 10^{-3} \mathrm{~m}^{2}$

FIGURE P2.42.
$V_{1}=\frac{Q}{A_{1}}=\frac{0.02}{7.854 \times 10^{-3}}=2.55 \mathrm{~m} / \mathrm{s} \quad V_{2}=\frac{Q}{A_{2}}=\frac{0.02}{4.42 \times 10^{-3}}=4.52 \mathrm{~m} / \mathrm{s}$
$\rho=0.657(1000)$ for hexane
$-\frac{\partial W}{\partial t}=\left\{\left.\left(\frac{p}{\rho}+\frac{V^{2}}{2 g_{c}}+\frac{g \mathrm{Z}}{g_{c}}\right)\right|_{2}-\left.\left(\frac{p}{\rho}+\frac{V^{2}}{2 g_{c}}+\frac{g \mathrm{Z}}{g_{c}}\right)\right|_{1}\right\} \rho V A$
$-\frac{\partial W}{\partial t}=\left\{\frac{190000}{657}+\frac{4.52^{2}}{2}+1.5(9.81)-\left(\frac{-4000}{657}+\frac{2.55^{2}}{2}+1.0(9.81)\right)\right\} 657(0.02)$
$-\frac{\partial W}{\partial t}=\{289.2+10.22+14.72+6.088-3.25-9.81\}(13.14)$
$-\frac{\partial W}{\partial t}=4.04 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}=4.0 \mathrm{~kW}$

Bernoulli Equation

43. Figure 2.15 shows a venturi meter. Show that the Bernoulli and continuity equations when applied combine to become
$Q=A_{2} \sqrt{\frac{2 g \Delta h}{1-\left(D_{2}^{4} / D_{1}{ }^{4}\right)}}$
Hydrostatic equation for manometer; all measurements are from the centerline
$p_{1}-\rho_{1} g x-\rho_{1} g \Delta h=p_{2}-\rho_{1} g x-\rho_{2} g \Delta h \quad$ or $\quad p_{1}-p_{2}=-\rho_{1} g \Delta h$
$\dot{m}_{1}=\dot{m}_{2} \quad \rho_{1} A_{1} V_{1}=\rho_{2} A_{2} V_{2} \quad$ or $\quad A_{1} V_{1}=A_{2} V_{2}$
In terms of diameter, $\quad \frac{\pi D_{1}^{2}}{4} V_{1}=\frac{\pi D_{2}^{2}}{4} V_{2}=Q$
Bernoulli Equation
$\frac{p_{1}}{\rho_{1} g}+\frac{V_{1}^{2}}{2 g}+\mathrm{z}_{1}=\frac{p_{2}}{\rho_{1} g}+\frac{V_{2}^{2}}{2 g}+\mathrm{z}_{2} \quad$ With $\mathrm{z}_{1}=\mathrm{z}_{2}$,
$\frac{\left(p_{1}-p_{2}\right)}{\rho_{1} g}=\frac{1}{2 g}\left(V_{2}^{2}-V_{1}^{2}\right)$ Substitute for V in terms of Q
$\frac{\left(p_{1}-p_{2}\right)}{\rho_{1} g} 2 g=Q^{2}\left(1 / A_{2}^{2}-1 / A_{1}{ }^{2}\right)$
$\frac{2 \rho_{1} g \Delta h}{\rho_{1} g_{c}}=\frac{Q^{2}}{A_{2}{ }^{2}}\left(1-\frac{A_{2}{ }^{2}}{A_{1}{ }^{2}}\right)=\frac{Q^{2}}{A_{2}{ }^{2}}\left(1-\frac{D_{2}^{4}}{D_{1}{ }^{4}}\right)$
$A_{2} \sqrt{2 g \Delta h}=Q \sqrt{1-D_{2}{ }^{4} / D_{1}{ }^{4}} \quad$ or finally,

$$
Q=A_{2} \sqrt{\frac{2 g \Delta h}{1-D_{2}^{4} / D_{1}^{4}}}
$$

44. A jet of water issues from a kitchen faucet and falls vertically downward at a flow rate of $4.44 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$. At the faucet, which is 355.6 mm above the sink bottom, the jet diameter is 15.88 mm . Determine the diameter of the jet where it strikes the sink.
$Q=4.44 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$
$D_{1}=0.01588 \mathrm{~m} \quad A_{1}=1.98 \times 10^{-4} \mathrm{~m}^{2}$
$V_{1}=\frac{Q}{A_{1}}=0.222 \mathrm{~m} / \mathrm{s} \quad h=\mathrm{z}_{1}=0.3556 \mathrm{~m}$
Bernoulli Equation
$\frac{p_{1}}{\rho_{1} g}+\frac{V_{1}^{2}}{2 g}+\mathrm{z}_{1}=\frac{p_{2}}{\rho_{1} g}+\frac{V_{2}^{2}}{2 g}+\mathrm{z}_{2}$
$p_{1}=p_{2} \quad \mathrm{z}_{1}=0.3556 \mathrm{~m} \quad \mathrm{z}_{2}=0$
Substituting,
$0+\frac{0.222}{2(9.81)}+\frac{1}{9.81} 0.3556=0+\frac{V_{2}{ }^{2}}{2(9.81)}+0$

which becomes

$$
\left(2.512 \times 10^{-3}+0.3556\right)(2(9.81))=V_{2}^{2} \text { or }
$$

$V_{2}=2.65 \mathrm{~m} / \mathrm{s}$

$$
A_{2}=\frac{Q}{V_{2}}=\frac{4.44 \times 10^{-5}}{2.65}=1.675 \times 10^{-5} \mathrm{~m}^{2}
$$

$$
\frac{\pi D_{2}^{2}}{4}=1.675 \times 10^{-5} \quad D_{2}=\sqrt{\frac{4}{\pi}\left(1.675 \times 10^{-5}\right)} \quad \text { or }
$$

$$
D_{2}=4.62 \times 10^{-3} \mathrm{~m}=4.62 \mathrm{~mm}
$$

45. A jet of water issues from a valve and falls vertically downward at a flow rate of $3 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$. The valve exit is 50 mm above the ground; the jet diameter at the ground is 5 mm . Determine the diameter of the jet at the valve exit.

Section 1 is the exit; section 2 is the ground.

$$
\begin{aligned}
& \frac{p_{1}}{\rho_{1} g}+\frac{V_{1}^{2}}{2 g}+\mathrm{z}_{1}=\frac{p_{2}}{\rho_{1} g}+\frac{V_{2}^{2}}{2 g}+\mathrm{z}_{2} \\
& Q=3 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s} ; p_{1}=p_{2}=p_{a t m} ; \mathrm{z}_{2}=0 ; \mathrm{z}_{1}=0.05 \mathrm{~m} \\
& D_{2}=5 \mathrm{~mm} ; A_{2}=\frac{\pi(0.005)^{2}}{4}=1.963 \times 10^{-5} \mathrm{~m}^{2} \\
& V_{2}=\frac{Q}{A_{2}}=\frac{30 \times 10^{-6}}{1.963 \times 10^{-5}}=1.53 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Bernoulli Equation becomes

$$
\begin{aligned}
& \frac{V_{1}^{2}}{2 g}+\mathrm{z}_{1}=\frac{V_{2}^{2}}{2 g} \\
& \frac{V_{1}^{2}}{2(9.81)}=\frac{1.53^{2}}{2(9.81)}-0.05=0.06931 \\
& V_{1}^{2}=1.36 ; V_{1}=1.17 \mathrm{~m} / \mathrm{s} \\
& Q=A_{1} V_{1}=\frac{\pi D_{1}^{2}}{4} V_{1} \quad D_{1}=\sqrt{\frac{4 Q}{\pi V_{1}}} \\
& D_{1}=\sqrt{\frac{4\left(30 \times 10^{-6}\right)}{\pi(1.17)}}=5.7 \times 10^{-3} \mathrm{~m} \\
& D_{1}=5.7 \mathrm{~mm}
\end{aligned}
$$

(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
46. A garden hose is used as a siphon to drain a pool, as shown in Figure P2.46. The garden hose has a 19 mm inside diameter. Assuming no friction, calculate the flow rate of water through the hose if the hose is 25 ft long.

Section 1 is the free surface; section 2 is the hose outlet.

$$
\frac{p_{1}}{\rho_{1} g}+\frac{V_{1}^{2}}{2 g}+\mathrm{z}_{1}=\frac{p_{2}}{\rho_{1} g}+\frac{V_{2}^{2}}{2 g}+\mathrm{z}_{2} \quad p_{1}=p_{2}=p_{a t m} ; \quad V_{1}=0 ; \quad \mathrm{z}_{1}=1.22 \mathrm{~m}
$$

Substituting,

$$
\begin{aligned}
& 0+0+(1.22)=0+\frac{V_{2}^{2}}{2(9.81)}+0 \\
& V_{2}=\sqrt{2(9.81)(1.22)}=4.89 \mathrm{~m} / \mathrm{s} \\
& D=19 \mathrm{~mm} \quad A=\frac{\pi D^{2}}{4}=2.835 \times 10^{-4} \mathrm{~m}^{2} \\
& Q=A V=2.835 \times 10^{-4}(4.89) \\
& Q=1.386 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Miscellaneous Problems

47. A pump draws castor oil from a tank, as shown in Figure P2.47. A venturi meter with a throat diameter 50.8 mm is located in the discharge line. For the conditions shown, calculate the expected reading on the manometer of the meter. Assume that frictional effects are negligible and that the pump delivers 186.5 W to the liquid. If all that is available is a 1.83 m tall manometer, can it be used in the configuration shown? If not, suggest an alternative way to measure pressure difference. (All measurements are in mm .)

FIGURE P2.47.
$p_{1}-\rho g x-\rho_{\text {air }} g(0.559)+\rho g(0.559+x-0.178)=p_{2}$
$\rho_{\text {air }}$ is negligible $\quad x$ terms cancel; $\quad \rho=960 \mathrm{~kg} / \mathrm{m}^{3}$
$p_{2}-p_{1}=\rho g(0.559-0.178)=960(9.81)(0.381)=3588 \mathrm{~Pa}$
Energy equation, 1 to 2 :
$-\frac{\partial W}{\partial t}=\left\{\left.\left(\frac{p}{\rho}+\frac{V^{2}}{2}+g \mathrm{z}\right)\right|_{2}-\left.\left(\frac{p}{\rho}+\frac{V^{2}}{2}+g \mathrm{z}\right)\right|_{1}\right\} \rho V A$
$D_{1}=D_{2}=0.0762 \mathrm{~m} \quad A_{1} V_{1}=A_{2} V_{2} \quad$ so $\quad V_{1}=V_{2}$
$z_{1}=0 \quad z_{2}=0.178 \mathrm{~m} \quad \rho A V=\rho Q$
The power was given as
$-\frac{\partial W}{\partial t}=186.5 \mathrm{~W} \quad$ Substituting,
$186.5=\rho Q\left(\frac{\left(p_{2}-p_{1}\right)}{\rho}+g \mathrm{z}_{2}\right)=960 Q\left(\frac{3588}{960}+9.81(0.178)\right)$
Solving for Q
$\underline{Q}=0.0354 \mathrm{~m}^{3} / \mathrm{s}$
Now for the venturi meter, the throat diameter is $D_{\text {th }}=0.0508 \mathrm{~m}$

$$
\begin{aligned}
& D=0.0762 \mathrm{~m} \quad A_{t h}=\frac{\pi D_{t h}^{2}}{4}=2.03 \times 10^{-3} \mathrm{~m}^{2} \\
& Q=A_{t h} \sqrt{\frac{2 g \Delta h}{1-D_{t h}^{4} / D^{4}}} \\
& 0.0354=2.03 \times 10^{-3} \sqrt{\frac{2(9.81) \Delta h}{1-(0.0508 / 0.0762)^{4}}}
\end{aligned}
$$

```
\Deltah=12.44 m of castor oil
```

A 1.83 m tall air-over-oil manometer is not tall enough. A Hg manometer will work; pressure transducers will also work.
48. A 42 mm ID pipe is used to drain a tank, as shown in Figure P2.48. Simultaneously, a 52 mm ID inlet line fills the tank. The velocity in the inlet line is $1.5 \mathrm{~m} / \mathrm{s}$. Determine the equilibrium height h of the liquid in the tank if it is octane. How does the height change if the liquid is ethyl alcohol? Assume in both cases that frictional effects are negligible, and that z is 40 mm .

FIGURE P2.48.
$Q_{i n}=A V \quad A=\frac{\pi(0.052)^{2}}{4}=2.124 \times 10^{-3} \mathrm{~m}^{2}$
$Q_{\text {in }}=2.124 \times 10^{-3}(1.5)=3.19 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$

Section 1 is the free surface in the tank, and 2 is at the exit of the pipe. Apply the Bernoulli equation, 1 to 2:
$\frac{p_{1}}{\rho_{1} g}+\frac{V_{1}^{2}}{2 g}+\mathrm{z}_{1}=\frac{p_{2}}{\rho_{1} g}+\frac{V_{2}^{2}}{2 g}+\mathrm{z}_{2}$
$p_{1}=p_{2}=p_{\text {atm }} ; \quad V_{1}=0 ; \mathrm{z}_{1}=h ; \mathrm{z}_{2}=0.04 \mathrm{~m} ;$ the Bernoulli equation becomes
$h=\frac{V_{2}{ }^{2}}{2 g}+\mathrm{z}_{2} ; \quad$ At equilibrium, $Q_{\text {out }}=Q_{\text {in }}=3.19 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
$A_{\text {out }}=\frac{\pi(0.042)^{2}}{4}=1.39 \times 10^{-3} \mathrm{~m}^{2} ; \quad$ and $\quad \mathrm{V}_{2}=\frac{Q}{A_{\text {out }}}=\frac{3.19 \times 10^{-3}}{1.39 \times 10^{-3}}=2.3 \mathrm{~m} / \mathrm{s}$
$h=\frac{V_{2}{ }^{2}}{2 g}+\mathrm{z}_{2}=\frac{2.3^{2}}{2(9.81)}+0.04$
$h=0.309 \mathrm{~m}$ which is independent of fluid properties, and with no friction
(c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Computer Problems

49. One of the examples in this chapter dealt with the following impact problem, with the result that the ratio of forces is given by:
$\frac{F_{x}}{F_{y}}=\frac{\left(\cos \theta_{1}-\cos \theta_{2}\right)}{\left(\sin \theta_{2}+\sin \theta_{2}\right)}$

For an angle of $\theta_{1}=0$, produce a graph of the force ratio as a function of the angle θ_{2}.

FIGURE P2.49.
50. One of the examples in this chapter involved calculations made to determine the power output of a turbine in a dam (see Figure P2.50). When the flow through the turbine was $3.15 \mathrm{~m}^{3} / \mathrm{s}$, and the upstream height is 36.6 m , the power was found to be 1.06 kW . The relationship between the flow through the turbine and the upstream height is linear. Calculate the work done by (or power received from) the water as it flows through the dam for upstream heights that range from 18.3 to 36.6 m .

FIGURE P2.50.

FIGURE P2.51.

[^0]

51. One of the examples in this chapter dealt with a water jet issuing from a faucet. The water flow rate was $3.125 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$, the jet diameter at faucet exit is 3.5 mm , and the faucet is 280 mm above the sink. Calculations were made to find the jet diameter at impact on the sink surface. Repeat the calculations for volumes per time that range from $1.25 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$ to $6.25 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$, and graph jet diameter at 2 as a function of the volume flow rate.

[^0]: (c) 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

