Differential Equations An Introduction to Modern Met hods and Applications 3rd Edition Brann

Chapter 2

First Order Differential Equations

2.1 Separable Equations

1. Rewriting as ydy = x'dz, then integrating both sides, we have y*/2 = z°/5 + ¢, or
5y —22° =¢; y # 0

2. Rewriting as ydy = (z?/(1 + 2?))dx, then integrating both sides, we obtain that y?/2 =
In|1+23/3+¢c, or3y* —2In|l+ 23| =c; x # -1,y #0.

3. Rewriting as y3dy = — sin zdz, then integrating both sides, we have —y=2/2 = cosz + ¢,
or y 2+ 2cosx = cif y # 0. Also, y = 0 is a solution.

4. Rewriting as (7 + 5y)dy = (72% — 1)dx, then integrating both sides, we obtain 5y*/2 +
Ty —723/3+x = c as long as y # —7/5.

5. Rewriting as sec? ydy = sin® 2zdw, then integrating both sides, we have tany = x/2 —
(sindx)/8 + ¢, or 8tany — 4z + sindx = ¢ as long as cosy # 0. Also, y = £(2n + 1)7/2 for
any integer n are solutions.

6. Rewriting as (1 — y?)™"2dy = dx/x, then integrating both sides, we have arcsiny =
In|z| + ¢. Therefore, y = sin(In |z| 4 ¢) as long as  # 0 and |y| < 1. We also notice that
y = %1 are solutions.

7. Rewriting as (y/(1+y?))dy = xe*"dx, then integrating both sides, we obtain In(1+y?) =
2
¢** + ¢. Therefore, y2 = ce®” — 1.

8. Rewriting as (y* — e¥)dy = (22 + e~ *)dz, then integrating both sides, we have y*/3 —¢¥ =
23/3—e+c oryd — 1% —3(e¥ —e ) =cas long as y? — ¥ # 0.

9. Rewriting as (1+ y?)dy = z%dx, then integrating both sides, we have y+v3/3 = 23/3 + ¢,
or3y+y*—a=c.

10. Rewriting as (1 + y®)dy = sec? zdx, then integrating both sides, we have y + y*/4 =
tanx + c as long as y # —1.

11. Rewriting as y~'/2dy = 4/xdx, then integrating both sides, we have y'/? = 423/2/3 + ¢,
or y = (42%/2/3 + ¢)?. Also, y = 0 is a solution.

12. Rewriting as dy/(y — y?) = xdz, then integrating both sides, we have In|y| —In |1 —y| =
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222+ ¢, or y/(1 —y) = ce®/?, which gives y = /2 /(c + ¢**/?). Also, y = 0 and y = 1 are
solutions.

13.(a) Rewriting as y~2dy = (1 — 12z)dz, then integrating both sides, we have —y~! =

x — 622+ c. The initial condition y(0) = —1/8 implies ¢ = 8. Therefore, y = 1/(62? —x —38).

(b)

0.5 1

(¢) (1 —+/193)/12 < z < (1 ++/193)/12

14.(a) Rewriting as ydy = (3—2z)dx, then integrating both sides, we have y?/2 = 3z — 22 +c.
The initial condition y(1) = —6 implies ¢ = 16. Therefore, y = —v/—222 + 6z + 32.

(b)

(¢) 3—+T3)/2 <z < (3++/T3)/2

15.(a) Rewriting as ze®dx = —ydy, then integrating both sides, we have re®—e* = —y*/2+-c.
The initial condition y(0) = 1 implies ¢ = —1/2. Therefore, y = \/2(1 — x)e* — 1.
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(b)

(¢) —1.68 < z < 0.77, approximately

16.(a) Rewriting as 7—2dr = 07'df, then integrating both sides, we have —r~! = In|f| + c.
The initial condition (1) = 2 implies ¢ = —1/2. Therefore, r = 2/(1 — 21n6]).

(b)
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17.(a) Rewriting as ydy = 3z/(1 + x?)dx, then integrating both sides, we have y*/2 =
3In(1 + 2%)/2 + ¢. The initial condition y(0) = —7 implies ¢ = 49/2. Therefore, y =

—/31In(1 + 22) + 49.
(b)
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(¢) —oo < x < 00

18.(a) Rewriting as (1 + 2y)dy = 2zdx, then integrating both sides, we have y + y* = 2* +c.
The initial condition y(2) = 0 implies ¢ = —4. Therefore, y* + y = 2> — 4. Completing the
square, we have (y + 1/2)? = 2? — 15/4, and, therefore, y = —1/2 + /22 — 15/4.

(b)

0 T T T 1
2.5 3 35 4
x

(¢) V15/2 <z < 00

19.(a) Rewriting as y2dy = (2x + 423)dx, then integrating both sides, we have —y~! = 22 +
z* + ¢. The initial condition y(1) = —2 implies ¢ = —3/2. Therefore, y = 2/(3 — 2z* — 22?).

(b)

() /(=1 +V7)/2 <2< o0

20.(a) Rewriting as e*dy = z*dx, then integrating both sides, we have ¢ /3 = z3/3+c. The
initial condition y(2) = 0 implies ¢ = —7/3. Therefore, €% = z* — 7, and y = In(2® — 7) /3.
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(b)

n
25 3 35 4
f .t

(¢) V7 <z < oo

21.(a) Rewriting as dy/(1 + y?) = tan 2zdzx, then integrating both sides, we have arctany =
—In(cos 2x)/2 + c¢. The initial condition y(0) = —+/3 implies ¢ = —7/3. Therefore, y =
—tan(In(cos 2x)/2 4+ 7/3).

(b)

(c) —m/i<z<m/4
22.(a) Rewriting as 6y°dy = z(z* + 1)dx, then integrating both sides, we obtain that

yS = (22 + 1)2/4 + c¢. The initial condition y(0) = —1/+/2 implies ¢ = 0. Therefore,
y= /@D

(b)
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(¢) —oo < x < 00

23.(a) Rewriting as (2y—11)dy = (3x?—e*)dz, then integrating both sides, we have y*—11y =
23 — e® 4 ¢. The initial condition y(0) = 11 implies ¢ = 1. Completing the square, we have
(y — 11/2)? = 2% — e* + 125/4. Therefore, y = 11/2 + /a3 — e* + 125/4.

(b)

(¢) —3.14 < = < 5.10, approximately

24.(a) Rewriting as dy/y = (1/2* — 1/x)dxz, then integrating both sides, we have In |y| =
—1/z—In |z|+c. The initial condition (1) = 2 implies ¢ = 1+1In 2. Therefore, y = 2e'~/*/x.

(b)

0.5

(c)0<z< o0

25.(a) Rewriting as (3+4y)dy = (e~*—e”)dz, then integrating both sides, we have 3y+2y? =
—(e” + e ") + ¢. The initial condition y(0) = 1 implies ¢ = 7. Completing the square, we
have (y + 3/4)? = —(e” + €7%)/2 + 65/16. Therefore, y = —3/4 + (1/4)1/65 — 8= — 8e~=.




2.1. SEPARABLE EQUATIONS 23

(b)

-0.54

(¢) —In8 <z <1In8
26.(a) Rewriting as 2ydy = xdx/+/2% — 4, then integrating both sides, we have y* = Va2 — 4+
¢. The initial condition y(3) = —1 implies ¢ = 1—+/5. Therefore, y = —\/\/ 22 —4+1—+/5.

(b)

(c)2<x< o0

27.(a) Rewriting as cos 3ydy = — sin 2zdz, then integrating both sides, we have (sin 3y)/3 =
(cos2x)/2 + c¢. The initial condition y(mw/2) = 7/3 implies ¢ = 1/2. Thus we obtain that
y = (7 — arcsin(3 cos® x)) /3.

(b)

0.99
0.89
0.7q

0.6
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(¢) m/2 —0.62 < x < 7/2 + 0.62, approximately

28.(a) Rewriting as y2dy = arcsin xdz/+/1 — 22, then integrating both sides, we have 3?/3 =
(arcsinz)?/2 + ¢. The initial condition y(0) = 1 implies ¢ = 1/3. Thus we obtain that
y = /3(arcsinz)?/2 + 1.

(b)

(c) —m/2 <z <m7/2

29. Rewriting the equation as (12y* — 12y)dy = (1 + 32%)dz and integrating both sides,
we have 4y° — 6y*> = z + 23 + ¢. The initial condition y(0) = 2 implies ¢ = 8. Therefore,
4y — 692 — 2 — 2% — 8 = 0. When 12y? — 12y = 0, the integral curve will have a vertical
tangent. This happens when y = 0 or y = 1. From our solution, we see that y = 1 implies
x = —2; this is the first y value we reach on our solution, therefore, the solution is defined
for —2 < x < 0.

30. Rewriting the equation as (2y°> — 6)dy = 2z%dx and integrating both sides, we have
2y°/3 — 6y = 22%/3 + ¢. The initial condition y(1) = 0 implies ¢ = —2/3. Therefore,
y3 — 9y — 2% = —1. When 2y? — 6 = 0, the integral curve will have a vertical tangent. This
happens when y = ++/3. At these values for y, we have z = v/1 £ 6y/3. Therefore, the
solution is defined on this interval; approximately —2.11 < z < 2.25.

31. Rewriting the equation as y~2dy = (2 + z)dr and integrating both sides, we have
—y~' = 22 + 2?/2 4+ ¢. The initial condition y(0) = 1 implies ¢ = —1. Therefore, y =
—1/(2*/2 + 2z — 1). To find where the function attains it minimum value, we look where
y' = 0. We see that ¢ = 0 implies y = 0 or x = —2. But, as seen by the solution formula,
y is never zero. Further, it can be verified that y”(—2) > 0, and, therefore, the function
attains a minimum at r = —2.

32. Rewriting the equation as (3 4 2y)dy = (6 — €”)dz and integrating both sides, we have
3y+y* = 6z—e®+c. By the initial condition y(0) = 0, we have ¢ = 1. Completing the square,
it follows that y = —3/2 4+ \/6z — e* + 13/4. The solution is defined if 6z — e® + 13/4 > 0,
that is, —0.43 < = < 3.08 (approximately). In that interval, ¥’ = 0 for z = In6. It can be
verified that y”(In6) < 0, and, therefore, the function attains its maximum value at z = In 6.

33. Rewriting the equation as (10 + 2y)dy = 2 cos 2zdx and integrating both sides, we have
10y + y* = sin2x + c¢. By the initial condition y(0) = —1, we have ¢ = —9. Completing
the square, it follows that y = —5 + +/sin 2z 4+ 16. To find where the solution attains its
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maximum value, we need to check where 1y = 0. We see that 1y = 0 when 2 cos 2z = 0. This
occurs when 2z = /2 4+ 2km, or x = /4 + km, k=0,+1,£2,. ...

34. Rewriting this equation as (1 + y?)~'dy = 2(1 + z)dzr and integrating both sides, we
have arctany = 2z + 22 + c¢. The initial condition implies ¢ = 0. Therefore, the solution is
y = tan(x? + 2z). The solution is defined as long as —7/2 < 2z + 2? < 7/2. We note that
2z + 2% > —1. Further, 2z + 2% = /2 for x ~ —2.6 and 0.6. Therefore, the solution is valid
in the interval —2.6 < x < 0.6. We see that ' = 0 when = —1. Furthermore, it can be
verified that y”(z) > 0 for all  in the interval of definition. Therefore, y attains a global
minimum at z = —1.

35.(a) First, we rewrite the equation as dy/(y(4 —y)) = tdt/3. Then, using partial fractions,
after integration we obtain

Y 2t2/3
—~ | =C )
'9—4‘ ‘

From the equation, we see that yo = 0 implies that C' = 0, so y(t) = 0 for all ¢. Otherwise,
y(t) > 0 for all t or y(t) < 0 for all ¢t. Therefore, if 1, > 0 and |y/(y — 4)| = Ce2*/* — oo,
we must have y — 4. On the other hand, if yo < 0, then y — —o0 as t — oco. (In particular,
y — —oo in finite time.)

(b) For yo = 0.5, we want to find the time 7" when the solution first reaches the value
3.98. Using the fact that |y/(y — 4)| = Ce**/3 combined with the initial condition, we have
C' = 1/7. From this equation, we now need to find T such that |3.98/.02| = €27°/3/7. Solving
this equation, we obtain T ~ 3.29527.

36.(a) Rewriting the equation as y~'(4 — y)~'dy = t(1 + t)~'dt and integrating both sides,
we have In |y| —In |y — 4| = 4t — 41n|1 + ¢| + ¢. Therefore, |y/(y — 4)| = Ce* /(1 +t)* = o0
as t — oo which implies y — 4.

(b) The initial condition y(0) = 2 implies C' = 1. Therefore, y/(y —4) = —e*/(1+t)*. Now
we need to find T such that 3.99/ — 0.01 = —e*T /(1 + T)*. Solving this equation, we obtain
T ~ 2.84367.

(c) Using our results from part (b), we note that y/(y—4) = yo/(yo —4)e** /(1 +¢)*. We want
to find the range of initial values yy such that 3.99 < y < 4.01 at time ¢t = 2. Substituting
t = 2 into the equation above, we have yo/(yo—4) = (3/¢*)?y(2)/(y(2)—4). Since the function
y/(y — 4) is monotone, we need only find the values y, satisfying yo/(yo — 4) = —399(3/¢?)*
and yo/(yo — 4) = 401(3/e2)*. The solutions are yy ~ 3.6622 and yo ~ 4.4042. Therefore, we
need 3.6622 < yy < 4.4042.

37. We can write the equation as

cy +d
ay +b

)dy =duz,

which gives

cy d
dy = dx.
(ay+b+ay+b) Y v
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Now we want to rewrite these so in the first component we can simplify by ay + b:

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

cy  tcay  i(cay+be)—beja 1 be
ay+b ay+b ay +b a ay+b
so we obtain ;
c c
- dy = dx.
<a a2y+ab+ay+b) y=a

Then integrating both sides, we have

b d
fy_ —§1n|a2y+ab\ +—Injay + b =z + C.
a a a
Simplifying, we have
c be bc d
—y — —Inja] — < Injay + b+ —Infay + b| = = + C,
a a a a
which implies that
c ad — be

—Y

a

)

a?

>1n\ay+b|:x+0.

Note, in this calculation, since 2—5 In |a| is just a constant, we included it with the arbitrary
constant C. This solution will exist as long as a # 0 and ay + b # 0.

2.2 Linear Equations: Method of Integrating Factors
1.(a)
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(b) All solutions seem to converge to an increasing function as t — 0.

(c) The integrating factor is u(t) = e*. Then
€4ty/ + 464ty — €4t(t + G_Qt)

implies that
(e4ty>/ — t€4t + €2t’
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thus

1 1 1
at, at o2ty g ryar L oae Loy
e y—/(te +e*)dt 4t6 6¢ +26 +c,

and then ) P
o4t L2 L L
y=ce + 26 + 1716

We conclude that y is asymptotic to the linear function ¢(t) =¢/4 —1/16 as t — oo.

2.(a)
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(b) All slopes eventually become positive, so all solutions will eventually increase without

bound.
(c) The integrating factor is p(t) = e . Then

e—Zty/ o 26_2ty — 6_2t(t2€2t)

implies
(6727:3/)/ — t2,
thus .
t
e 2ty = /tZdt: —+ec
3
and then
t, 2
Y= ge b ce®.

We conclude that y increases exponentially as t — oo.
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(b) All solutions appear to converge to the function g(¢) = 1.

e'. Therefore, e'y' + e'y =t + €', thus (e'y) =t + €', so

(¢) The integrating factor is pu(t)

and then

Therefore, we conclude that y — 1 as t — oo.

4.(a)
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(b) The solutions eventually become oscillatory.

ot cos 2t,

t. Therefore, ty' + y = 5t cos 2t implies (ty)’

(c) The integrating factor is u(t)

thus

)
cos 2t + §t sin 2t + ¢,

5
4

ty:/5t0082tdt

and then

dsin 2t

5 cos 2t

We conclude that y is asymptotic to g(t) = (5sin2t)/2 as t — oc.
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5.(a)
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(b) Some of the solutions increase without bound, some decrease without bound.

(c) The integrating factor is pu(t) =

(e7?'y)’ = 3e™!, thus

and then y = —3e! + ce*
6.(a)

r
e | et e

2t, /1

e~2t. Therefore, e~ 2ty —

Ty = /3et dt = —3e*

. We conclude that y increases or decreases exponentially as ¢ — oo.
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2e 2y = 3e~t, which implies

(b) For t > 0, all solutions seem to eventually converge to the function g(t) = 0.

(c) The integrating factor is p(t) = 2. Therefore, t*y’ + 2ty = tsint, thus (t?y)’ = tsint, so

and then

sint —tcost + ¢

Y= 2

We conclude that y — 0 as t — oc.

t2y = /tsintdt =sint —tcost +c,
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dt,

1
14t

/

(arctant + ¢)/(1 + t?)%. We conclude that y — 0 as t — oo.

(14+ 3% +4t(1 + %)y
((1+¢%)%y)

(b) For ¢ > 0, all solutions seem to eventually converge to the function ¢(t) = 0.
(c) The integrating factor is u(t) = (1 + t*)%. Then

and then y

SO
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9.(a)
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(b) All solutions increase without bound.

(c) The integrating factor is u(t) = e¥/2. Therefore, 2e*/2y’ + et/?y = 3te'/?, thus
2et/2y = /Btet/2 dt = 6tet’? — 12¢'/% + ¢,

and then y = 3t — 6 + ce™"/2. We conclude that y is asymptotic to g(t) = 3t — 6 as t — oo.
10.(a)
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(b) For y > 0, the slopes are all positive, and, therefore, the corresponding solutions increase
without bound. For y < 0 almost all solutions have negative slope and therefore decrease
without bound.

(c) By dividing the equation by t, we see that the integrating factor is u(¢) = 1/t. Therefore,
Y/t —y/t? = t?et, thus (y/t) = t?e7, so

<

= /tht dt = —t?e ' —2te” ! —2e ! + ¢,

and then y = —t3e™t — 2t?et — 2e~! + c¢t. We conclude that y — oo if ¢ > 0, y — —oo if
c<0andy = 0ifc=0.
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(b) All solutions appear to converge to an oscillatory function.

(¢) The integrating factor is u(t) = e'. Therefore, €'y’ + e'y = be'sin2¢, thus (e'y) =
5e! sin 2t, which gives

ely = / 5S¢l sin 2t dt = —2¢' cos 2t + €' sin 2t + ¢,

and then y = —2cos 2t + sin 2t 4+ ce~*. We conclude that y is asymptotic to g(t) = sin 2t —
2cos2t as t — oo.

12.(a)
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(b) All solutions increase without bound.

(¢) The integrating factor is u(t) = e¥/2. Therefore, 2¢!/%y 4 e/2y = 3t2e*/?, thus (2e'/%y)" =
3t2et/? so

2et?y = /3t2€t/2 dt = 6t2et/? — 24te!’? + 48¢!/% + ¢,

and then y = 3t2 — 12t +24+ce~*/2. We conclude that y is asymptotic to g(t) = 3t> — 12t +24
as t — oo.

13. The integrating factor is u(t) = e~*. Therefore, (e~'y)" = 2te, thus

y=é' / ote! dt = 2te* — 2e*! + ce'.
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The initial condition y(0) = 1 implies —2 + ¢ = 1. Therefore, c = 3 and y = 3e! +2(t — 1)e?.
14. The integrating factor is u(t) = e*. Therefore, (e*'y)’ = t, thus

t2
y=e 2 /tdt = 56_% +ce .

The initial condition y(1) = 0 implies e 2/2 + ce~? = 0. Therefore, ¢ = —1/2, and y =
(t* —1)e~%)2.

15. Dividing the equation by ¢, we see that the integrating factor is u(t) = t*. Therefore,
(tly) = t° —t* + 3, thus

1 c

2t
=t [ —t"+ ) dt=—— -+ -+ —.
Y / ( A= T
The initial condition y(1) = 1/4 implies ¢ = 1/30, and y = (10t° — 12¢5 + 15¢* 4 2) /60t*.
16. The integrating factor is u(t) = t2. Therefore, (t%y)" = cost, thus

y = t2/costdt =t %(sint + c).

The initial condition y(7) = 0 implies ¢ = 0 and y = (sint)/¢>.
17. The integrating factor is pu(t) = e~?. Therefore, (e~ *y)’ = 1, thus

Y= th/ldt =e*(t +c).

The initial condition y(0) = 2 implies ¢ = 2 and y = (¢ + 2)e*.

18. After dividing by ¢, we see that the integrating factor is u(t) = t*. Therefore, (t*y) =
tsint, thus

=t /tsintdt = t"?(sint — tcost + c).
The initial condition y(m/2) = 3 implies ¢ = 3(72/4) — 1 and y = t3(3(7?/4) — 1 — tcost +
sint).

19. After dividing by ¢3, we see that the integrating factor is u(t) = t*. Therefore, (t1y)’ =
te™t, thus

y=t" / tetdt =t Y (~te " —e " +c).

The initial condition y(—1) = 0 implies ¢ = 0 and y = —(1 + t)e~*/t*.

20. After dividing by ¢, we see that the integrating factor is u(t) = te'. Therefore, (te'y) =
tet, thus

y=1tte" / tetdt =t tet(te —e +c) =t (t — 1 +ce).

The initial condition y(In2) = 1 implies ¢ = 2 and y = (t — 1 + 2¢7) /t.
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21.(a)
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The solutions appear to diverge from an oscillatory solution. It appears that ag ~ —1. For

a > —1, the solutions increase without bound. For a < —1, the solutions decrease without
bound.

(b) The integrating factor is p(t) = e~/3. From this, we get the equation y'e /% —ye=/3/3 =
(ye™¥/3) = 3e /3 cost. After integration, y(t) = (27sint — 9cost)/10 + ce'/?, where (using
the initial condition) ¢ = a+9/10. The solution will be sinusoidal as long as ¢ = 0. Therefore,
ao = —9/10.

(c) y oscillates for a = ay.
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All solutions eventually increase or decrease without bound. The value ay appears to be
approximately ag = —3.

(b) The integrating factor is (t) = e™*/2. From this, we get the equation y'e /2 —ye™/2/2 =

(ye™¥/2)" = 716 /2. After integration, the general solution is y(t) = —3e*/34ce?/2. The initial
condition 5(0) = a implies y = —3¢e*/3 4 (a + 3)e'/2. The solution will behave like (@ + 3)e'/2.
Therefore, ayg = —3.

(¢) y = —oo for a = ayp.
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23.(a)
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35

Solutions eventually increase or decrease without bound, depending on the initial value ay.

It appears that ag ~ —1/8.

(b) Dividing the equation by 3, we see that the integrating factor is y(t) = e~2/3. From this,
we get the equation /e /3 — 2ye™2/3/3 = (ye 2/3) = 2¢~7/272t/3 /3 After integration,
the general solution is y(t) = e*/3(—(2/3)e™™/22t/3(1/(7/2 + 2/3)) + ¢). Using the initial
condition, we get y = ((2 4 a (3 +4))e?/® — 2e7™/2) /(37 + 4). The solution will eventually

behave like (2 + a(37 + 4))e?/3 /(31 + 4). Therefore, ag = —2/(37 + 4).

(¢) y — 0 for a = ay.
24.(a)
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It appears that ag =~ .4. As t — 0, solutions increase without bound if y > ag and decrease

without bound if y < ay.

(b) The integrating factor is u(t) = te'. After multiplication by u, we obtain the equation
tely' + (t + 1)e'y = (te'y) = 2t, so after integration, we get that the general solution is
y =te '+ ce”'/t. The initial condition y(1) = a implies y = te™" + (ea — 1)e™ ' /t. Ast — 0,

the solution will behave like (ea — 1)e™"/t. From this, we see that ag = 1/e.

(c)y — 0ast— 0 for a = a.
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25.(a)
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It appears that ag ~ .4. That is, as t — 0, for y(—m/2) > ag, solutions will increase without
bound, while solutions will decrease without bound for y(—m/2) < ay.

(b) After dividing by ¢, we see that the integrating factor is u(t) = t2. After multiplication
by i, we obtain the equation %y + 2ty = (t?y)’ = sint, so after integration, we get that
the general solution is y = — cost/t? + ¢/t*. Using the initial condition, we get the solution
Yy = —Cos t/t2 + 7r2a/4t2. Since lim;_,gcost = 1, solutions will increase without bound if
a > 4/m% and decrease without bound if a < 4/72. Therefore, ag = 4/72.

(c) For ag = 4/7%, y = (1 — cost)/t* - 1/2 as t — 0.
26.(a)
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It appears that ap ~ 2. For y(1) > ag, the solution will increase without bound as t — 0,
while the solution will decrease without bound if y(1) < ay.

(b) After dividing by sint¢, we see that the integrating factor is u(t) = sint. The equation
becomes (sint)y’ + (cost)y = (ysint) = €', and then after integration, we see that the
solution is given by y = (e’ + ¢)/sint. Applying our initial condition, we see that our
solution is y = (e — e + asin1)/sin¢. The solution will increase if 1 — e +asin1 > 0 and
decrease if 1 — e 4+ asinl < 0. Therefore, we conclude that ag = (e —1)/sin 1.

(¢) If ag = (e — 1)sin1, then y = (' — 1)/sint. Ast — 0, y — 1.

27. The integrating factor is u(t) = e¥/2. Therefore, the general solution is y(t) = (4 cost +
8sint)/5 + ce*/2. Using our initial condition, we have y(t) = (4cost + 8sint — 9¢/2)/5.
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Differentiating, we obtain

— (—4sint + 8cost + 4.5¢ ) /5
(—4cost — 8sint — 2.25¢"/2) /5.

y/
y//

Setting y’ = 0, the first solution is t; &~ 1.3643, which gives the location of the first stationary
point. Since y”(t;) < 0, the first stationary point is a local maximum. The coordinates of
the point are approximately (1.3643,0.8201).

28. The integrating factor is p(t) = /3. The general solution of the differential equation is
y(t) = (57 — 12t)/64 + ce~*/3. Using the initial condition, we have y(t) = (57 — 12t)/64 +
e 4/3(yy — 57/64). This function is asymptotic to the linear function g(t) = (57 — 12t)/64
as t — oo. We will get a maximum value for this function when ¢y = 0, if ¢y’ < 0 there. Let
us identify the critical points first: y/(t) = —3/16 4+ 19e~4/3 /16 — dyge /3y, /3; thus setting
y'(t) = 0, the only solution is ¢, = 2In((57 — 64y,)/9). Substituting into the solution, the
respective value at this critical point is y(t;) = 3 — & In((57 — 64y,)/9). Setting this result
equal to zero, we obtain the required initial value yo = (57 — 9¢'%/3) /64 = —28.237. We can
check that the second derivative is indeed negative at this point, thus y(¢) has a maximum

there and it does not cross the t-axis.

29.(a) The integrating factor is u(t) = e¥/4. The general solution is y(t) = 12 + (8 cos 2t +
64sin 2t) /65 + ce~'/4.  Applying the initial condition y(0) = 0, we arrive at the specific
solution y(t) = 12 + (8 cos 2t + 64 sin 2t — 788e7%/4)/65. As t — oo, the solution oscillates
about the line y = 12.

(b) To find the value of ¢ for which the solution first intersects the line y = 12, we need to
solve the equation 8 cos 2t + 64 sin 2t — 788e~%/* = (0. The value of t is approximately 10.0658.

30. The integrating factor is z1(t) = e~*. The general solution is y(f) = —1—3 cost — 3 sint +
ce'. In order for the solution to remain finite as ¢t — oo, we need ¢ = 0. Therefore, 1, must
satisfy yo = —1 —3/2 = —5/2.

31. The integrating factor is u(t) = e~3/2 and the general solution of the equation is y(t) =
—2t—4/3—4et +ce®/2. The initial condition implies y(t) = —2t —4/3 —4e! + (yo+16/3)e®/2.
The solution will behave like (yo+16/3)e3/2 (for yoy # —16/3). For yo > —16/3, the solutions
will increase without bound, while for yg < —16/3, the solutions will decrease without bound.

If yo = —16/3, the solution will decrease without bound as the solution will be —2t—4/3—4e".
32. By equation (42), we see that the general solution is given by

t
Y= e_t2/4/ e/t ds + ce /A,
0

Applying L’Hopital’s rule,

i fot es’/4 ds ) et’/4
ti)Ig) et?/4 o tiglo (t/2)6t2/4 o

Therefore, y — 0 as t — oo.
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at

e™. First consider the case a # . Multiplying the
~Mt which implies

33. The integrating factor is u(t) =
equation by e®, we have (e®y)" = be®

y = e—at/be(a—)\)t — ot (a E )\e(a—k)t + C) _ - E )\e—)\t + ce

Since a, \ are assumed to be positive, we see that y — 0 as t — oo. Now if a = X above,
then we have (e*y) = b, which implies y = e~ (bt + ¢) and similarly y — 0 as t — oc.

34. We notice that y(t) = ce™" + 3 approaches 3 as t — oo. We just need to find a first
order linear differential equation having that solution. We notice that if y(t) = f + g, then
v+y=f+f+9g+g. Here let f =ce " and g(t) =3. Then [+ f=0and ¢+ g = 3.
Therefore, y(t) = ce™" + 3 satisfies the equation 3’ +y = 3. That is, the equation 3y +y = 3
has the desired properties.

35. We notice that y(t) = ce™* + 4 — t approaches 4 — t as t — co. We just need to find a
first order linear differential equation having that solution. We notice that if y(t) = f + ¢,
then ' +y = f'+ f+ ¢ +g. Here, let f = ce™" and g(t) =4 —¢. Then f' + f = 0 and
¢ +g=—-1+4—t=3—t. Therefore, y(t) = ce " +4 —t satisfies the equation y' +y = 3 —t.
That is, the equation ¢y +y = 3 — ¢ has the desired properties.

36. We notice that y(t) = ce™* + 2t — 5 approaches 2t — 5 as t — co. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + ¢,
then y +y = f'"+ f+ ¢ +g. Here,let f = ce”® and g(t) = 2t — 5. Then f'+ f =0
and ¢’ + g = 2+ 2t — 5 = 2t — 3. Therefore, y(t) = ce™" + 2t — 5 satisfies the equation
Yy +y =2t — 3. That is, the equation 3’ + y = 2t — 3 has the desired properties.

37. We notice that y(t) = ce™" + 2 — t* approaches 2 — t? as t — oo. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + ¢,
then ' +y = f' + f+ ¢ +g. Here, let f = ce™ and g(t) = 2 — 2. Then f'+ f = 0 and
g +g=—-2t+2—1t*=2—2t—t% Therefore, y(t) = ce”* + 2 — 2 satisfies the equation
Yy +1y =2— 2t —t2. That is, the equation 3/ +y = 2 — 2t — t? has the desired properties.

38. Multiplying the equation by e®*~%) we have e®*~t0)y 4 gelt=to)y = ealt=to)g(4), so
(e(t=t0)y) = ealt=t0) g(t) and then

t
y(t) = / e g (s) ds + ey,

to

Assuming g(t) — go as t — 0o, and using L’Hopital’s rule,

t t eas d at
g\s)as t
lim [ e % =*)g(s)ds = lim —fto t< ) — lim 2 9\Y g(t) _ %
t—o0 to t—o0 ev t—oo qe? a

For an example, let g(t) = 2 + e™". Assume a # 1. Let us look for a solution of the form

y = ce” "+ Ae '+ B. Substituting a function of this form into the differential equation leads
to the equation (—A + aA)e ™" +aB =2+ e !, thus —A + aA = 1 and aB = 2. Therefore,
A=1/(a—1), B=2/aand y =ce ™ +e'/(a— 1)+ 2/a. The initial condition y(0) = yo
implies y(t) = (yo — 1/(a — 1) = 2/a)e " +e7"/(a — 1) +2/a — 2/a as t — oo.
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39.(a) The integrating factor is e/ P dt Nultiplying by the integrating factor, we have
efp(t)dty/ + efp(t)dtp(t)y —0.

Therefore,
(e dty>’ — 0,

which implies
y(t) = Ae” IPO@

is the general solution.

(b) Let y = A(t)e~ /P4t Then in order for y to satisfy the desired equation, we need
(D) RO — At O 4 Ap(e)e KO = g(1).

That is, we need
() = (1)l 7O,

(c) From equation (iv), we see that
t
At) = / g(r)el PO qr 4
0

Therefore,

t
y(t) = e~ Jr0)d (/ g(r)el PO gr 4 C’) :

0

40. Here, p(t) = —6 and g(t) = t°5%. The general solution is given by

t t
y(t) = e~ Jp)dt (/ g(T)efp(T)dT dr + C') = ef 0t (/ 70687 —64T g7 4 C’)
0 0

t t7
= e6t(/ TGdT+C):th<—+C’).
0 7

41. Here, p(t) = 1/t and g(t) = 3 cos 2¢t. The general solution is given by

t t
y(t) = e Jrd (/ g(T)efp(T)deT—l—C):ef%dt (/ 300827'ef1d7d7+0>

0 0
1 t 1

= = /BTCOSQTCZT—i-C = - §(:os.2t+§tsir12t—i—0 )
t \Uy ¢t \4 2

42. Here, p(t) = 2/t and g(t) = sint/t. The general solution is given by

t t 2
y(t) = e fro (/ 9(7)6f”(7)d7d¢+0)=e‘f?dt (/ SmTefdeerrC)
0

0 T

1 t 3 1 t 1
_ 1 / SmTT?dr—}—C = — / rsinTdr+C | = = (sint —tcost + C).
t? 0 T t2 0 t2

39
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43. Here, p(t) = 1/2 and g(t) = 3t*/2. The general solution is given by

t t 2
y(t) = e Jr@dt (/ g(T)Gfp(T)deT—f—C) = Jadt (/ B%ef%dfdwo)
0

0
t o 2
3
= e? (/ %67—/2 dr + C’) = e~ t/? (3t26t/2 — 12te!’? + 2464% + C’)
0

= 32 12t 4+ 24+ Ce V2,

2.3 Modeling with First Order Equations
1. Let Q(t) be the quantity of dye in the tank. We know that

—rate in — rate out.

dt
Here, fresh water is flowing in. Therefore, no dye is coming in. The dye is flowing out at the
rate of (Q/150) grams/liters - 3 liters/minute = (¢/50) grams/minute. Therefore,

Q _ Q

dt 50

The solution of this equation is Q(t) = Ce /%", Since Q(0) = 450 grams, C' = 450. We
need to find the time 7" when the amount of dye present is 2% of what it is initially. That
is, we need to find the time 7 when Q(7) = 9 grams. Solving the equation 9 = 450e~7/%,
we conclude that 7" = 501n(50) ~ 195.6 minutes.

2. Let Q(t) be the quantity of salt in the tank. We know that

aQ
dt

—rate in — rate out.

Here, water containing ~ grams/liter of salt is flowing in at a rate of 4 liters/minute. The salt
is flowing out at the rate of (Q)/200) grams/liter - 4 liters/minute = (Q/50) grams/minute.
Therefore,

Q_, @

Y50
The solution of this equation is Q(t) = 200y + Ce~*/*°. Since Q(0) = 0 grams, C' = —200.
Therefore, Q(t) = 200v(1 — e~/%%). As t — o0, Q(t) — 2007.

3. Let Q(t) be the quantity of salt in the tank. We know that

dQ
dt
Here, water containing 1/4 1b/gallon of salt is flowing in at a rate of 4 gallons/minute. The

salt is flowing out at the rate of (©/160) 1b/gallon - 4 gallons/minute = (@ /40) Ib/minute.
Therefore,
Q_, 0

dt 40

—rate in — rate out.
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The solution of this equation is Q(t) = 40 + Ce™*/%°. Since Q(0) = 0 grams, C = —40.
Therefore, Q(t) = 40(1 — e7*/%) for 0 < t < 8 minutes. After 8 minutes, the amount of salt
in the tank is Q(8) = 40(1 — e~'/%) ~ 7.25 Ibs. Starting at that time (and resetting the time
variable), the new equation for d@/dt is given by

Q _ 3Q
it~ 80

since fresh water is being added. The solution of this equation is Q(t) = Ce=3!/%0. Since we
are now starting with 7.25 Ibs of salt, Q(0) = 7.25 = C. Therefore, Q(t) = 7.25¢3/50. After
8 minutes, Q(8) = 7.25¢3/10 &~ 5.37 Ibs.

4. Let Q(t) be the quantity of salt in the tank. We know that

— =rate in — rate out.

dt
Here, water containing 1 1b/gallon of salt is flowing in at a rate of 3 gallons/minute. The
salt is flowing out at the rate of (Q/(200 + ¢)) 1b/gallon - 2 gallons/minute = 2Q)/(200 + ?)
Ib/minute. Therefore,

Q_, 20

dt 2004+t

This is a linear equation with integrating factor u(t) = (200 + ¢)2. The solution of this
equation is Q(t) = 200 + ¢ + C(200 + ¢)72. Since Q(0) = 100 lbs, C = —4,000, 000.
Therefore, Q(t) = 200 + ¢ — (100(200)? /(200 +¢)?). Since the tank has a net gain of 1 gallon
of water every minute, the tank will reach its capacity after 300 minutes. When ¢ = 300, we
see that Q(300) = 484 lbs. Therefore, the concentration of salt when it is on the point of
overflowing is 121/125 lbs/gallon. The concentration of salt is given by Q(¢)/(200+t) (since
t gallons of water are added every ¢ minutes). Using the equation for ) above, we see that
if the tank had infinite capacity, the concentration would approach 1 1b/gal as t — oc.

5.(a) Let Q(t) be the quantity of salt in the tank. We know that

— —rate in — rate out.

dt

1 1
Here, water containing 1 (1 + 3 sin t) oz/gallon of salt is flowing in at a rate of 2 gal /minute.

The salt is flowing out at the rate of (¢ /100) oz/gallon-2 gallons/minute = (¢/50) oz/minute.

Therefore,

aQ_1,1_.

— = —+ —sint — —.

dt 2 4 50
This is a linear equation with integrating factor u(t) = !/°°. The solution of this equation
is Q(t) = (12.5sint — 625 cost + 63150e~/°0) /2501 + ¢. The initial condition, Q(0) = 50 oz

implies C' = 25. Therefore, Q(t) = 25 + (12.5sint — 625 cost + 63150e~*/%°) /2501 oz.
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(c) The amount of salt approaches a steady state, which is an oscillation of amplitude
25v/2501/5002 ~ 0.24995 about a level of 25 oz.

6.(a) Using the Principle of Conservation of Energy, we know that the kinetic energy of a
particle after it has fallen from a height h is equal to its potential energy at a height t.
Therefore, mv?/2 = mgh. Solving this equation for v, we have v = \/2gh.

(b) The volumetric outflow rate is (outflow cross-sectional area) x (outflow velocity): aav/2gh.
The volume of water in the tank at any instant is:

where A(u) is the cross-sectional area of the tank at height u. By the chain rule,

dVv dV  dh dh
o an w AW

Therefore,

av dh
i A<h>$ = —aa/2gh.

(c) The cross-sectional area of the cylinder is A(h) = m(1)? = . The outflow cross-sectional

area is a = m(.1)> = 0.017. From part (a), we take o = 0.6 for water. Then by part (b), we
have

dh
— = —0.0067+/2gh.
L T 29
This is a separable equation with solution h(t) = 0.000018¢gt?> — 0.0064/2gh(0)t + h(0).
Setting h(0) = 3 and g = 9.8, we have h(t) = 0.0001764¢*> — 0.046t + 3. Then h(t) = 0
implies ¢ ~ 130.4 seconds.

7.(a) The equation describing the water volume is given by V' = G — 0.0005V. Thus the
equilibrium volume is V, = 2000G. The figure shows some possible sketches for V() when
G =5.
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(b) The differential equation V’ = G — 0.0005V is linear with integrating factor y = e!/20%,
The general solution we obtain is V (t) = 2000G + ce~#/20% 1f V(0) = 1.01V,, = 2020G, then
¢ = 20G, and the solution is V = 2000G + 20Ge /200

(c) From part (a), 12000 = V, = 2000G, thus G = 6 gallons per day.

8.(a) The differential equation describing the rate of change of cholesterol is ¢ = r(¢, —c)+k,
where ¢, is the body’s natural cholesterol level. Thus ¢ = —rc—+rc, + k; this linear equation
can be solved by using the integrating factor u = €. We obtain that ¢(t) = k/r+c, +de™";
also, ¢(0) = k/r + ¢, + d, thus the integration constant is d = ¢(0) — k/r — ¢,. The solution
is c(t) = ¢, + k/r + (c(0) — ¢, — k/r)e " If ¢(0) = 150, r = 0.10, and ¢, = 100, we obtain
that c(t) = 100 + 10k + (50 — 10k)e~*/1°. Then ¢(10) = 100 + 10k + (50 — 10k)e".

(b) The limit of ¢(t) as t — oo is ¢, + k/r = 100 + 25/0.1 = 350.
(c) We need that ¢, + k/r = 180, thus k = 80r = 8.

9.(a) The differential equation for the amount of poison in the keg is given by Q' =5-0.5 —
0.5-Q/500 = 5/2 — Q/1000. Then using the initial condition Q(0) = 0 and the integrating
factor p = et/19% we obtain Q(t) = 2500 — 2500e*/1000,

(b) To reach the concentration 0.005 g/L, the amount Q(7) = 2500(1 — e7/1990) = 2.5 g
Thus 7' = 1000 1n(1000/999) ~ 1 minute.

(c) The estimate is 1 minute, because to pour in 2.5 grams of poison without removing the
mixture, we have to pour in a half liter of the liquid containing the poison. This takes 1
minute.

10.(a) The equation for S is
ds
o
with an initial condition S(0) = Sp. The solution of the equation is S(t) = Spe™. We want
to find the time T such that S(T) = 2S,. Our equation becomes 25, = Spe™’. Dividing

by Sy and applying the logarithmic function to our equation, we have r7" = In(2). That is,
T =1n(2)/r.

(b) If r = .08, then T" = In(2)/.08 ~ 8.66 years.

(c) By part (a), we also know that r = In(2)/T where T is the doubling time. If we want
the investment to double in T = 8 years, then we need r = In(2)/8 ~ 8.66%.

rS
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(d) For part (b), we get 72/8 = 9 years. For part (c), we get 72/8 = 9%. In(2) ~ 0.693, or
69.3 for the percentage calculation. A possible reason for choosing 72 is that it has several
divisors.

11.(a) The equation for S is given by

s

k
This is a linear equation with solution S(t) = —(e’* — 1).
r

(b) Using the function in part (a), we need to find k so that S(42) = 1,000,000 assuming
r = 0.055. That is, we need to solve

k
1 0.055(42) _ 1y
, 000,000 = —0'055<€ -1)

The solution of this equation is k ~ $6061.

(¢) Now we assume that k& = 4000 and want to find . Our equation becomes

4
1,000, 000 = @(642’“ —1).
T

The solution of this equation is approximately 6.92%.

12.(a) Let S(t) be the balance due on the loan at time ¢. To determine the maximum amount
the buyer can afford to borrow, we will assume that the buyer will pay $800 per month. Then

as

— = 0.095 — 12(800).

o (800)
The solution is given by equation (18), S(t) = Spe®% — 106, 667(e"*% — 1). If the term of
the mortgage is 20 years, then S(20) = 0. Therefore, 0 = Spe® %% — 106, 667(*%9?% — 1)
which implies Sy = $89, 034.79.

(b) Since the homeowner pays $800 per month for 20 years, he ends up paying a total of
$192, 000 for the house. Since the house loan was $89,034.79, the rest of the amount was
interest payments. Therefore, the amount of interest was approximately $102,965.21.

13.(a) Let S(¢) be the balance due on the loan at time ¢. Taking into account that ¢ is
measured in years, we rewrite the monthly payment as 800(1+¢/10) where ¢ is now in years.
The equation for S is given by

% = 0.09S — 12(800)(1 + ¢/10).
This is a linear equation. Its solution is S(¢) = 225185.23 + 10666.67¢ + ce®**. The initial
condition S(0) = 100,000 implies ¢ = —125185.23. Therefore, the particular solution is
S(t) = 225185.23 + 10666.67t — 125185.23¢*%%. To find when the loan will be paid, we just
need to solve S(t) = 0. Solving this equation, we conclude that the loan will be paid off in
11.28 years (135.36 months).
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(b) From part (a), we know the general solution is given by S(t) = 225185.23 + 10666.67t +

ce®%. Now we want to find ¢ such that S(20) = 0. The solution of this equation is

¢ = —72486.67. Therefore, the solution of the equation will be S(t) = 225185.23+10666.67 —
72846.67¢%%% . Therefore, S(0) = 225185.23 — 72486.67 = 152, 698.56.

14.(a) If Sy is the initial balance, then the balance after one month is
Sy = initial balance 4 interest - monthly payment = Sy + Sy — k = (1 +1)Sy — k.

Similarly,
SQ = Sl—i-?”Sl — k= (1+7”)Sl —

In general,
Sn = (1 + T)Sn_l — k.

(b) R =1+r gives S,, = RS,,_1 — k. Therefore,

S; = RS,—k
S3 = RSy —k=R(R*Sy — (R+1)k) —k=RS; — (R>+ R+ 1)k.

(c) First we check the base case, n = 1. We see that

R—1
Si=RSy—k=RSg— | =—— | k
1 0 0 (R _ 1) )
which implies that that the condition is satisfied for n = 1. Then we assume that
R"—1
Sp = R"Sy — k
" R-1
to show that e
Spi1 = RSy — ————F.
+1 0 R_1

We see that
Sn—‘,—l == RSn - ]{f
n—1
= R{R”SO—R k}—k

n—+1
al >k k

(n+1

s () (12)s
<
(5

— Rn+ls

n+1 _
_ g, (B R+R 1)k

Rn—i—l
= R"S, — .
" )
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(d) We are assuming that Sy = 20,000 and r = 0.08/12. We need to find k such that Sys = 0.

Our equation becomes
S R .
® 0 ( R—-1 >

Therefore,

(140.08/12)% —1 0.08\*
k=(1+==1] -20,000
( 0.08/12 D R

which implies k ~ 488.26, which is very close to the result in Example 2.

15.(a) The general solution is Q(t) = Qe "'. If the half-life is 5730, then Qq/2 = Qpe 573
implies —5730r = In(1/2). Therefore, r = 1.2097 x 10~ per year.

(b) Therefore, Q(t) = Qe 12097x1074,

¢) Given that T) = 0 2, we have the equation 1/2 = e 1.2007x107* . Solving for T, we
q g
have T = 5, 729.91 years.

16. Let P(t) be the population of mosquitoes at any time ¢, measured in days. Then

ar =rP — 30,000.

dt
The solution of this linear equation is P(t) = Ppe — 2220 (e™ — 1). In the absence of
predators, the equation is dP;/dt = rP;. The solution of this equation is P;(t) = Pye™.
Since the population doubles after 7 days, we see that 2Py = Pye™. Therefore, r = In(2)/7 =
0.099 per day. Therefore, the population of mosquitoes at any time t is given by P(t) =
800, 00099 — 303, 030(e*09* — 1).

17.(a) The solution of this separable equation is given by y(t) = exp(2/10+¢/10—2cost/10).
The doubling-time is found by solving the equation 2 = exp(2/10 + ¢/10 — 2cost/10). The
solution of this equation is given by 7 ~ 2.9632.

(b) The differential equation will be dy/dt = y/10 with solution y(t) = y(0)e*/!°. The
doubling time is found by setting y(t) = 2y(0). In this case, the doubling time is 7 &~ 6.9315.

(c) Consider the differential equation dy/dt = (0.5+sin(27t))y/5. This equation is separable
with solution y(t) = exp((1 + 7t — cos2nt)/10m). The doubling time is found by setting
y(t) = 2. The solution is given by 7 &~ 6.3804.

(d)
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18.(a)

(b) Based on the graph, we estimate that y. ~ 0.83.

(c) We sketch the graphs below for £ = 1/10 and k = 3/10, respectively. Based on these
graphs, we estimate that y.(1/10) ~ 0.41 and y.(3/10) =~ 1.24.

2* Y

(d) From our results from above, we conclude that y. is a linear function of k.

19. Let T'(t) be the temperature of the coffee at time ¢. The governing equation is given by

T
— = —k(T —70).
= (T — 70)

This is a linear equation with solution T'(t) = 70 + ce™**. The initial condition 7'(0) = 200
implies ¢ = 130. Therefore, T'(t) = 70 + 130e~**. Using the fact that T'(1) = 190, we see
that 190 = 70 + 130e~* which implies k = — In(12/13) ~ 0.08 per minute. To find when the

temperature reaches 150 degrees, we just need to solve T'(t) = 70 + 130e™02/13)* = 150. The
solution of this equation is ¢t = In(13/8)/1In(13/12) ~ 6.07 minutes.

20.(a) The solution of this separable equation is given by
u® = U :
audt + 1
Since ug = 2000, the specific solution is

2000
u(t) =

(6t/125 4+ 1)1/3°
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(c¢) We look for 7 so that u(7) = 600. The solution of this equation is ¢ ~ 750.77 seconds.
21.(a) The differential equation for @ is

dQ Q(t)
— = pP—=—"r
0 kr + v r
Therefore,
Vd—c =kr+ P —c(t)r
dt '

The solution of this equation is ¢(t) = k+P/r+(co—k— P/r)e "V Therefore lim; ., c(t) =
k+P/r.

(b) In this case, we will have c(t) = coe™"/V. The reduction times are Tyy = In(2)V/r and
Tl[) = hl(]_O)V/T

(c) Using the results from part (b), we have: Superior, T' = 430.85 years; Michigan, T' = 71.4
years; Erie, T" = 6.05 years; Ontario, T' = 17.6 years.

22.(a) Assuming no air resistance, we have dv/dt = —9.8. Therefore, v(t) = —9.8t + vy =
—9.8t+24 and its position at time ¢ is given by s(t) = —4.9t*4-24t+26. When the ball reaches
its max height, the velocity will be zero. We see that v(t) = 0 implies t = 24/9.8 ~ 2.45
seconds. When t = 2.45, we see that s(2.45) ~ 55.4 meters.

(b) Solving s(t) = —4.9t* + 24t + 26 = 0, we see that ¢ = 5.81 seconds.

(c)

Velocity Position

204

104 40
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23.(a) We have mdv/dt = —v/30 — mg. Given the conditions from problem 22, we see
that the solution is given by v(t) = —73.5 4+ 97.5¢=/7®. The ball will reach its maximum
height when v(t) = 0. This occurs at t = 2.12 seconds. The height of the ball is given

by s(t) = 757.25 — 73.5t — 731.25¢*/7>. When t = 2.12 seconds, we have s(2.12) = 50.24
meters, the maximum height.

(b) The ball will hit the ground when s(¢) = 0. This occurs when ¢ = 5.57 seconds.

(c)

Velocity Position

204

10

-104

~204

24.(a) The equation for the upward motion is mdv/dt = —uv* — mg where u = 1/1325.
Using the data from exercise 22, and the fact that this equation is separable, we see its
solution is given by v(t) = 56.976 tan(0.399 — 0.172t). Setting v(t) = 0, we see the ball will
reach its maximum height at ¢ = 2.32 seconds. Integrating v(t), we see the position at time
t is given by s(t) = 331.256In(cos(0.399 — 0.172¢)) + 53.1. Therefore, the maximum height
is given by $(2.32) = 53.1 meters.

(b) The differential equation for the downward motion is mdv/dt = pv* —mg. The solution
of this equation is given by v(t) = 56.98(1 — e?344) /(14 ¢%344"). Integrating v(t), we see that
the position is given by s(t) = 56.98¢ — 331.279In(1 + €%314) 4 282.725. Setting s(t) = 0,
we see that the ball will spend ¢ = 3.38 seconds going downward before hitting the ground.
Combining this time with the amount of time the ball spends going upward, 2.32 seconds,
we conclude that the ball will hit the ground 5.7 seconds after being thrown upward.

(c)

Velocity Position

204

-201
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25.(a) Measure the positive direction of motion downward. Then the equation of motion is
given by
m@_{—().%v—l—mg 0<t<10

dt —12v + mg t > 10.

For the first 10 seconds, the equation becomes dv/dt = —v/7.5 + 32 which has solution
v(t) = 240(1 — e7¥/75). Therefore, v(10) = 176.7 ft/s.

(b) Integrating the velocity function from part (a), we see that the height of the skydiver at
time ¢ (0 < t < 10) is given by s(t) = 240t + 1800e~"/"> — 1800. Therefore, s(10) = 1074.5
feet.

(c) After the parachute opens, the equation for v is given by dv/dt = —32v/15 + 32 (as
discussed in part (a)). We will reset ¢ to zero. The solution of this differential equation is
given by v(t) = 15 + 161.7e 732/ As t — oo, v(t) — 15. Therefore, the limiting velocity is
v, = 15 feet/second.

(d) Integrating the velocity function from part (c), we see that the height of the sky diver
after falling ¢ seconds with his parachute open is given by s(t) = 15t — 75.8¢732/1% 4- 1150.3.
To find how long the skydiver is in the air after the parachute opens, we find T such that
s(T) = 0. Solving this equation, we have T" = 256.6 seconds.

(e)

Velocity

26.(a) The equation of motion is given by dv/dx = —puw.

(b) The speed of the sled satisfies In(v/vy) = —px. Therefore, p must satisfy In(16/160) =
—2200p. Therefore, p = In(10)/2200 ft~! &~ 5.5262 mi~*.

(¢) The solution of dv/dt = —uv? can be expressed as 1/v — 1/vy = ut. Using the fact that
1 mi/hour ~ 1.467 feet/second, the elapsed time is ¢ ~ 36.64 seconds.

27.(a) Measure the positive direction of motion upward. The equation of motion is given
by mdv/dt = —kv — mg. The solution of this equation is given by v(t) = —mg/k +
(vo + mg/k)e~*/™. Solving v(t) = 0, we see that the mass will reach its maximum height
tm = (m/k)In[(mg+kvy)/mg| seconds after being projected upward. Integrating the velocity
equation, we see that the position of the mass at this time will be given by the position
equation

muvg

s(t) = —mgt/k + {(%)29 + T} (1 — e kt/m),
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Therefore, the maximum height reached is

o () [

m — tm:__
T = 8(tn) = == — 9 g

(b) These formulas for ¢, and z,,, come from the fact that for § << 1, In(1+6) = — 362 +
- i(54 + ..., which is just Taylor’s formula.

(c) Consider the result for ¢,, in part (b). Multiplying the equation by I, we have

Lkvy 1 (kvp\?
1 ) I

2mg 3 \mg
The units on the left must match the units on the right. Since the units for t,,g/vy =
(s-m/s?)/(m/s), the units cancel. As a result, we can conclude that kvy/mg is dimensionless.

tmg

28.(a) The equation of motion is given by mdv/dt = —kv—mg. The solution of this equation
18 given by ’U(t) = —mg/k + (UO + mg/k)efkt/m.

(b) Applying L’Hopital’s rule, as k — 0, we have
lim —mg/k + (vg + mg/k)e ¥/™ = vy — gt.
k—0

(c)

lim0 —mg/k + (v + mg/k)e */™ = 0.
m—s

29.(a) The equation of motion is given by

dv 5 n 4 4
m— = —6mpav —ma’g — p=ma’yg.
yr pav + plsma’g — poma’y

We can rewrite this equation as

ot 67ruav _ dma’g

,_

Multiplying by the integrating factor e®™#/™ we have

(667r,uat/mv>/ _ éﬂ'a‘?‘g

3 m

/ eﬁwuat/m )

(P —p)

Integrating this equation, we have
v = efﬁﬂpat/m 2a2g<pl _ p) e67ruat/m +C| = 2a29(p1 _ 10) + Cef6ﬂuat/m'
I 9u
Therefore, we conclude that the limiting velocity is vy, = (2a%g(p’ — p))/9p.
(b) By the equation above, we see that the force exerted on the droplet of oil is given by

4 4
FEe = —6mpav + p’gwa3g - pgwagg.
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If v = 0, then solving the above equation for e, we have

dra’g(p’ — p)
e=————=

&
30.(a) The equation is given by mdv/dt = —kv — mg. The solution of this equation is
v(t) = —(mg/k)(1 — e /™) Integrating, we see that the position function is given by

z(t) = —(mg/k)t+ (m/k)?g(1 — e~ */™) + 25. First, by setting 2(¢) = 0, we see that the ball
will hit the ground ¢ = 2.78 seconds after it is dropped. Then v(2.78) = 14.72 m/second will
be the speed when the mass hits the ground.

(b) In terms of displacement, we have mvdv/dx = —kv + mg. This equation comes from
applying the chain rule: dv/dt = dv/dx - dx/dt = vdv/dzx. The solution of this differential
equation is given by

mv  m?g LM - kv

#(v) = kR mg

Plugging in the given values for k,m, g, we have z(v) = —2v — 39.21n |0.051v — 1|. If v = 8§,
then #(8) = 4.55 meters.

(c) Using the equation for z(v) above, we set xz(v) = 25, v = 8, m = 0.4, g = 9.8. Then
solving for k, we have k = 0.49.

31.(a) The equation of motion is given by mdv/dt = —GMm/(R + x)?. By the chain rule,

o do . Mm
de dt (R+x)%
Therefore,
dv Mm
e T el

This equation is separable with solution v? = 2GM (R + x)~! + 2gR — 2GM/R. Here we
have used the initial condition vy = v/2gR. From physics, we know that ¢ = GM/R?. Using
this substitution, we conclude that v(z) = /29 R/ R + «.

(b) By part (a), we know that dz/dt = v(z) = /29 R/v/R+ x. We want to solve this
differential equation with the initial condition z(0) = 0. This equation is separable with
solution z(t) = [2(v/2gRt + 2R*?)]** — R. We want to find the time T such that z(T") =
240, 000. Solving this equation, we conclude that T' =~ 50.6 hours.

32.(a) dv/dt = 0 implies v is constant, and so using the initial condition we see that v =
ucos A. dw/dt = —g implies w = —gt+c¢, but also by the initial condition w = —gt+usin A.
(b) The equation dx/dt = v = ucos A along with the initial condition implies z(t) =
(ucos A)t. The equation dy/dt = w = —gt + usin A along with the initial condition implies
y(t) = —gt?/2 + (usin A)t + h.

(c) Below we have plotted the trajectory of the ball in the cases 7/6, 7/5, m/4, and /3,
respectively.
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(d) First, let T" be the time it takes for the ball to travel L feet horizontally. Using the
equation for z, we know that x(7T) = (ucos A)T = L implies T' = L/ucos A. Then, when
the ball reaches this wall, we need the height of the ball to be at least H feet. That is, we
need y(T) > H. Now y(t) = —16t? + (usin A)t + 3 implies we need

2

L
T)=—-16———-—+ Ltan A+ 3 > H.
y() u? cos? A thtanAts 2

(e) If L =350 and H = 10, then our inequality becomes

1,960, 000

~ u2cos? A

Now if v = 110, then our inequality turns into
162

cos? A

Solving this inequality, we conclude that 0.63 rad < A < 0.96 rad.

+ 350tan A + 3 > 10.

+350tan A > 7.

(f) We rewrite the inequality in part (e) as
1,960, 000

cos? A(350tan A —7) > 5
u

In order to determine the minimum value necessary, we will maximize the function on the
left side. Letting f(A) = cos® A(350tan A — 7), we see that f/(A) = 350 cos2A + Tsin2A.
Therefore, f'(A) = 0 implies tan2A4 = —50. For 0 < A < 7/2, we see that this occurs at
A = 0.7954 radians. Substituting this value for A into the inequality above, we conclude that
u? > 11426.24. Therefore, the minimum velocity necessary is 106.89 ft/s and the optimal
angle necessary is 0.7954 radians.

33.(a) The initial conditions are v(0) = ucos A and w(0) = usin A. Therefore, the solutions
of the two equations are v(t) = (ucos A)e ™ and w(t) = —g/r + (usin A+ g/r)e .

(b) Now z(t) = [v(t)dt = “(cos A)(1 — e~ "), and

r

gt u . 9 —rt
)= [ wtydt =2 (— A —)1— ) +
o) = [wiyar= 24 (“smat L)oo
(c) Below we have plotted the trajectory of the ball in the cases 7/6, 7/5, m/4, and /3,
respectively.
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(d) Let T be the time it takes the ball to go 350 feet horizontally. Then from above,
we see that e”7/5 = 1 — 70/ucos A. At the same time, the height of the ball is given by
y(T) = —160T+(800+5u sin A)70/u cos A+3. Therefore, v and A must satisfy the inequality

70

U Cos

26000

U COs

800 In <1— A> + 350 tan A + + 3 > 10.

Using graphical techniques, we identify the minimum velocity necessary is 145.3 ft/s and the
optimal angle necessary is 0.644 radians.

34.(a) Solving equation (i), we have y/(z) = [(k* — y)/y]'/2. The positive answer is chosen
since y is an increasing function of z.

(b) y = k?sin?t, thus dy/dt = 2k®sint cost. Substituting this into the equation in part (a),

we have " .
CoS

2k?sintcost— = ——.
T sint

Therefore, 2k?sin® tdt = dx.

(c) Letting @ = 2t, we have k?sin?(6/2)df = dz. Integrating both sides, we have z(f) =
k*(0—sin 0) /2. Further, using the fact that y = k2 sin® ¢, we conclude that y(6) = k?sin?(6/2) =
k*(1 — cos(0))/2.

(d) From part (c), we see that y/z = (1 —cosf)/(6 —sinf). If x = 1 and y = 2, the solution

of the equation is 6 =~ 1.401. Substituting that value of # into either of the equations in part
(c), we conclude that k ~ 2.193.

2.4 Differences between Linear and Nonlinear Equa-
tions

1. Rewriting the equation as
, Int 2t

T3V T3
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0<t<3.
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2. Rewriting the equation as

y +

=0
1t —4)”
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval

0<t<d4.

3. By Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
T/2 <t < 3m/2.

4. Rewriting the equation as
20 3¢
- T e
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
—00 <t < —2.

y +

5. Rewriting the equation as
2t 3t?

- T g
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
—2<t <2

y +

6. Rewriting the equation as

n I cott
4 lnty_ Int

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
1<t <.

7. Using the fact that

t—vy Tt

— d S
/ 2t + 5y and —J, (2t + 5y)?’

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as 2t + 5y # 0.
8. Using the fact that

Y
(1— 2 —y2)1/2

f=0—-=y)"? and f,=-

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as t* + y* < 1.
9. Using the fact that

1—t*+y*—2y%In |ty|

f= In |ty|
y(I =t +y2)? 7

_—1—t2+y2 and f, =

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as vy, t # 0 and 1—t24y2 # 0.
10. Using the fact that

f — (t2 + y2)3/2 and fy — 3y<t2 + y2>1/2,
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we see that the hypotheses of Theorem 2.4.2 are satisfied for all ¢ and y values.
11. Using the fact that

1+t N (4B -2y
R VR

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as y # 0, 3.
12. Using the fact that

f:3y—y2

(cott)y 1

N

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as y # —1,t # nn for
n=0,1,2...

13.(a) We know that the family of solutions given by equation (19) are solutions of this
initial-value problem. We want to determine if one of these passes through the point (1, 1).
That is, we want to find to > 0 such that if y = [2(t —¢,)]*/%, then (t,y) = (1,1). That is, we
need to find ¢y > 0 such that 1 = 2(1 — #y). But, the solution of this equation is to = —1/2.
Therefore the solution does not pass through (1,1).

(b) From the analysis in part (a), we find a solution passing through (2, 1) by solving 1 =
2(2 — tp). We obtain ¢y = 1/2, and the solution is y = [2(t — 1/2)]%/2.

(c) Since we need yo = £[2(2 — ¢5)]*/%, we must have [yo| < (5)%2.
14.(a) First, it is clear that y;(2) = —1 = y»(2). Further,
(P A1)~ (- 2)7Y2

!
p— —]_ pr— p—
h 9 9

and
, —t + (t2 _ t2>1/2

The function y; is a solution for ¢t > 2. The function y, is a solution for all ¢.

(b) Theorem 2.4.2 requires that f and df/Jy be continuous in a rectangle about the point
(to,Y0) = (2, —1). Since f, is not continuous if ¢ < 2 and y < —1, the hypotheses of Theorem
2.4.2 are not satisfied.

(c) If y = ct + 2, then

. —t+[(t +2c)2]% —t + (2 + det + 42)Y?
y = C = == .
2 2

Therefore, y satisfies the equation for ¢t > —2c.

15. The equation is separable, ydy = —4tdt. Integrating both sides, we conclude that
y?/2 = —2t* + y2/2 for yo # 0. The solution is defined for y2 — 4t* > 0.

16. The equation is separable and can be written as dy/y? = 2tdt. Integrating both sides,
we arrive at the solution y = yo/(1 — yot?). For yo > 0, solutions exist as long as t* < 1/yo.
For yy < 0, solutions exist for all ¢.
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17. The equation is separable and can be written as dy/y> = —dt. Integrating both sides,
we arrive at the solution y = yo/(1/2ty? + 1). Solutions exist as long as 2yt + 1 > 0. If
Yo # 0, the solution exists for ¢ > —ﬁ and if yo = 0, y(t) = 0 for all ¢.

0

18. The equation is separable and can be written as ydy = t2dt/(1 + t3). Integrating both
sides, we arrive at the solution y = +(2 In[1 + ¢*| + y3)"/2. The sign of the solution depends
on the sign of the initial data yy. Solutions exist as long as §1n |1+ t3 +y2 > 0; that is, as
long as y2 > —21In |1 + ¢*|. We can rewrite this inequality as |1 + ¢3| > e=3%/2. In order for
the solution to exist, we need ¢ > —1 (since the term ¢?/(1+¢3) has a singularity at t = —1).
Therefore, we can conclude that our solution will exist for [e=2%6/2 — 1]'/3 < t < 0.

19.

& e e —e—s

5}

s | Vi P s

Eam et et bl NSNS NN P e o
—a—a—a—e—eo Y v ea—a~an Yy
P e e gy RS N P
e a—aa e f e e e e e e
D e e R e R P

R A G Sy
B I P T A e e
B e e | T I G G

— s —s—s—aa

If yg > 0, then y — 3. If yg = 0, then y = 0. If yy < 0, then y — —o0.
20.

Y o e
o e e i oo
o e a—a——
o e a—a——a—
e a——a—

v _v_v_v_v_>

/|

e aaka o st

I S I

| s S
s
<-<-<-<-4—4-y4//m/
i e—a—aa
e
P e
e ]
e i

If yg > 0, then y — 0. If yg < 0, then y — —o0.



CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

o8

21.

If yo > 9, then y — oco. If yg <9, then y — 0.

22.

B atata ol N S N N e

If yg < y. = —0.019, then y — —oo. Otherwise, y is asymptotic to v/t — 1.

c¢’, we see that

0. Since (co)’

Therefore, ¢ — 2¢

e?t thus ¢/ = 2¢e2t.
(co) — 2c¢ = 0. Therefore, c¢ is also a solution.

23.(a) o(t)

—c/t?.

0orc=1.

Therefore, ¢/ + ¢? = 0. If y = ¢/t, then ¢/

Therefore, y' + y> = —c/t> + ¢*/t> = 0 if and only if ¢ — ¢ = 0; that is, if ¢

(b) ¢(t) = 1/t, thus ¢/ = —1/t%

24. If y = ¢ satisfies ¢’ + p(t)¢p = 0, then y = co satisfies v/ + p(t)y = ¢’ + cp(t)p =

c(¢' + p(t)¢)

0.

+ () (1 +y2) = y1 +p(t)y1 + 5 + p(t)y2 = 0.

1T

=Y

Y

)

25. Let y = y1 + yo, then 3/ + p(t

26.(a)

pu(t)

t
o Jio 1(5)g(s) ds.
e~ JPdt e have

Therefore, y; = 1/u(t) and yso

(b) For y1 = 1/pu(t)

0.

_p<t>effp(t) dt +p(t)€ffp(t) dt _

v+ o)y
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(c) For
1 t t
o= [ uo)gleyds = e IO [0y ) as,
lu’(t) to to
we have
t
v+ p(t)ys = —p(t)e JrO / el P g(s) ds + e TPl PO g ()
to

t
+ p(t)e IO / el Py (s) ds = g(1).
to

27. The solution of the initial value problem ' + 2y = 1is y = 1/2 + ce”?. For
we see that ¢ = —1/2. Therefore, y(t) = 3(1 — e ) for 0 < ¢ < 1. Then y(1) = 3

(
Next, the solution of y' 42y = 0 is given by y = ce~?. The initial condition y(1) = 1(1—e7?)
implies ce? = 1(1—e2). Therefore, ¢ = 1(e*— 1) and we conclude that y(t) = 2(e*—1)e
for ¢t > 1.

28. The solution of 3 + 2y = 0 with y(0) = 1 is given by y(t) = e for 0 < ¢ < 1. Then
y(1) = e72. Then, for t > 1, the solution of the equation ¢/ +y = 0 is y = ce™*. Since we
want y(1) = e72, we need ce™! = e2. Therefore, ¢ = e~!. Therefore, y(t) = e le™t = ¢~ 171
for t > 1.

t
29.(a) Multiplying the equation by elio P % e have
/
(ef:o p(s) dsy) — el PO s 4.

Integrating this we obtain

t t s
ey o) =+ [ o g(s)ds
to

which implies

" t
y(t) — yoe_ftop(s)ds +/ e—fstp(r)dv’g(s) ds.

to

(b) Assume p(t) > po > 0 for all t > ¢, and |g(t)| < M for all ¢t > t,. Therefore,

[rsras = [ pods = mit ~ 10

to to
which implies
e ftto p(s)ds <e ftto pods _ e_pO(t_tO) <1fort> to.

Also,

t t t
/e‘fsp(’”)d’“g(s)ds < /e—fsp(r)dr|g(s)|d5§/ e~ Po(t=9) \ T s

to to to
{ 1 e—Po(t—to) } M

< —.
Do Po Po

e Po (t—s) t

< M

Po

to
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(c) Let p(t) = 2t +1 > 1 for all t > 0 and let g(t) = e~*". Therefore, |g(t)| < 1 for all t > 0.
By the answer to part (a),

¢ t
y(t) = e~ Ji@2s+1)ds +/ - f:(2r+1)dr6—52 ds — e—(E+t) + e_tz_t/ S ds — et
0 0

We see that y satisfies the property that y is bounded for all time ¢ > 0.

2.5 Autonomous Equations and Population Dynamics

1.(a) The equation is separable. Using partial fractions, it can be written as

1 1/K )
— ) dy = rdt.
(y l—y/K
Integrating both sides and using the initial condition yy = K/3, we know the solution y
satisfies

In =7rt+In

_Yy
1—y/K 2
To find the time 7 such that y = 2yy = 2K/3, we substitute y = 2K/3 and ¢t = 7 into the

equation above. Using the properties of logarithmic functions, we conclude that 7 = (In4)/r.
If » = 0.025, then 7 =~ 55.452 years.

(b) Using the analysis from part (a), we know the general solution satisfies

In =rt+ec.

Y
1—y/K
The initial condition yy = oK implies ¢ = In |aK/(1 — «)|. Therefore,

aK

=rt+1 )
7"—|—n1_a

In

=i

In order to find the time 7" at which y(7T") = BK, we use the equation above. We conclude
that

T = (1/r) 0 |8(1 - a)/a(1 - B)|.
When a = 0.1,  =0.9, r = 0.025, 7 = 175.78 years.
2.(a) Below we sketch the graph of f for r =1 = K.

r=1, K=1
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The critical points occur at y* = 0, K. Since f'(0) > 0, y* = 0 is unstable. Since f'(K) < 0,
y* = K is asymptotically stable.

(b) We calculate y”. Using the chain rule, we see that

-se(3)-]

We see that y” = 0 when ¢ = 0 (meaning y = 0, K') or when In(K/y) — 1 = 0, meaning
y = K/e. Looking at the sign of " in the intervals 0 < y < K/e and K/e < y < K, we
conclude that y is concave up in the interval 0 < y < K/e and concave down in the interval

Kle<y< K.

3.(a) Using the substitution v = In(y/K) and differentiating both sides with respect to t,
we conclude that v’ = y'/y. Substitution into the Gompertz equation yields v’ = —ru. The
solution of this equation is u = upge™"". Therefore,

= = explIn(yo/K)e ™).

(b) For K = 80.5 x 10°, yo/K = 0.25 and r = 0.71, we conclude that y(2) ~ 57.58 x 10°.

(¢) Solving the equation in part (a) for ¢, we see that

Plugging in the given values, we conclude that 7 ~ 2.21 years.

4.(a) The surface area of the cone is given by

2h
S = maVi?+ @ +71a® =wa’(\/(hfa) +1+1) = 22

3
ra2h\?? [/ 3a\?? 30\ %3
— . o — o V2/3.
«(75) () = ()

Therefore, if the rate of evaporation is proportional to the surface area, then rate out =
am(3a/mh)*3V?/3, Thus

d 2/3 2/3 2/3
—V =rate in —rate out = k — ar 3_a (za2h> =k—arm 3_a V23,
dt 7h 3 7h

(Vi +1+1)

SN

(b) The equilibrium volume can be found by setting dV/dt = 0. We see that the equilibrium

volume is
vk 2 h
\ar 3a )

To find the equilibrium height, we use the fact that the height and radius of the conical
pond maintain a constant ratio. Therefore, if h,., a. represent the equilibrium values for the
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h and a, we must have h./a. = h/a. Further, we notice that the equilibrium volume can be

written as 12
V = T ﬁ i ﬁ = Za? hz’
3 \ar T a 3

where h, = (k/am)'/?(h/a) and a. = (kam)'?. f(V) = —2am(3a/mh)**V =13 < 0, thus
the equilibrium is asymptotically stable.

(c) In order to guarantee that the pond does not overflow, we need the rate of water in to
be less than or equal to the rate of water out. Therefore, we need k — ama? < 0.

5.(a) The rate of increase of the volume is given by

d
d_‘t/ =k — aar/2gh.
Since the cross-section is constant, dV/dt = Adh/dt. Therefore,

= (k— aay/2gh) /A

(b) Setting dh/dt = 0, we conclude that the equilibrium height of water is

2
hezi(£> .
2g \ aa

Since f'(h.) < 0, the equilibrium height is stable.

6.(a) The equilibrium points are y* = 0,1. Since f'(0) = a > 0, the equilibrium solution
y* = 0 is unstable. Since f'(1) = —a < 0, the equilibrium solution y* = 1 is asymptotically
stable.

(b) The equation is separable. The solution is given by

y(t) _ Yo _ Yo
efozt _ yoefozt + Yo 6fat + yO(l _ efozt)

We see that lim;, y(t) = 1.
7.(a) The solution of the separable equation is y(t) = yoe L.

(b) Using the result from part (a), we see that dz/dt = —axyse . This equation is separable
with solution x(t) = xeexp[—ayo(1 — eP)/3].

(c) Ast — 00, y — 0 and x — g exp(—ayo/f).
8.(a) Letting ' = d/dt, we have

, na' —xn’  —fBnx — pnx +vpr? + unx
z = =

= 62408 () = —patupa? = —Ba(1-v2).

n? n?2

(b) First, we rewrite the equation as 2’ + 8z = Bvz?. This is a Bernoulli equation with
n = 2. Let w = 27" = 271, Then, our equation can be written as w’ — Bw = —pBv. This
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is a linear equation with solution w = v + ce”*. Then, using the fact that z = 1/w, we see
that z = 1/(v + ce”?). Finally, the initial condition 2(0) = 1 implies ¢ = 1 — v. Therefore,
2(t) =1/(v+ (1 —v)eh).

(c) Evaluating 2z(20) for v = = 1/8, we conclude that z(20) = 0.0927.

9.(a) Since the critical points are x* = p,q, we will look at their stability. Since f'(z) =
—aq—ap+2ax?, we see that f/(p) = a(2p? —q—p) and f'(¢) = a(2¢* —q—p). Now if p > ¢,
then —p < —q, and, therefore, f'(q) = a(2¢*> — ¢ — p) < a(2¢* — 2q) = 2aq(q — 1) < 0 since
0 < ¢ < 1. Therefore, if p > ¢, f'(q) < 0, and, therefore, z* = ¢ is asymptotically stable.
Similarly, if p < ¢, then x* = p is asymptotically stable, and therefore, we can conclude that
x(t) — min{p, ¢} as t — 0.

The equation is separable. It can be solved by using partial fractions as follows. We can

rewrite the equation as
1/(q — 1/(p —
( fla—p) /(P Q))dx:&dt
p—x q—x

which implies

In [E—7) = (p—q)at + C.
q—
The initial condition ¢y = 0 implies C' = In |p/q|, and, therefore,
q(p — )
In|—=| = (p—q)at.
‘p(q — ) =)

Applying the exponential function and simplifying, we conclude that

_ pg(em 0t —1)
N p@(P*fI)at —q '

x(t)

(b) In this case, z* = p is the only critical point. Since f(z) = a(p — x)? is concave up,

we conclude that z* = p is semistable. Further, if o = 0, we can conclude that x — p as
t — oo. The phase line is shown below.

>p >

This equation is separable. Its solution is given by

2
t
oty = L2
pat + 1

10.(a) The critical points occur when a — y? = 0. If a < 0, there are no critical points. If
a = 0, then y* = 0 is the only critical point. If @ > 0, then y* = +./a are the two critical
points.

(b) We note that f'(y) = —2y. Therefore, f'(y/a) < 0 which implies that y/a is asymptoti-
cally stable; f'(—+/a) > 0 which implies —/a is unstable; the behavior of f" around y* =0
implies that y* = 0 is semistable. The phase lines are shown below.
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a<0 a=0 a>0

a=1

11.(a) First, for a < 0, the only critical point is y* = 0. Second, for a = 0, the only critical
point is y* = 0. Third, for a > 0, the critical points are at y* = 0, ++/a. Here, f'(y) = a—3y>.
If a <0, then f'(y) < 0 for all y, and, therefore, y* = 0 will be asymptotically stable. If
a = 0, then f/(0) = 0. From the behavior on either side of y* = 0, we see that y* = 0 will
be asymptotically stable. If a > 0, then f’(0) = a > 0 which implies that y* = 0 is unstable
for a > 0. Further, f'(++/a) = —2a < 0. Therefore, y* = ++/a are asymptotically stable for
a > 0. The phase lines are shown below.

a<0 a=20 a>0
—— - - > . - -
0 0 a0 Va
(b) Below, we graph solutions in the case a = —1, a = 0, and a = 1, respectively.
a=-1 a=0 a=1

| \
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(c)

vy o054

12.(a) For a < 0, the critical points are y* = 0,a. Since f'(y) = a — 2y, f'(0) = a < 0 and
f'(a) = —a > 0. Therefore, y* = 0 is asymptotically stable and y* = a is unstable for a < 0.
For a = 0, the only critical point is y* = 0. which is semistable since f(y) = —y? is concave
down. For a > 0, the critical points are y* = 0,a. Since f'(0) =a > 0 and f'(a) = —a < 0,
the critical point y* = 0 is unstable while the critical point y* = a is asymptotically stable
for a > 0. The phase lines are shown below.

a<0 a=0 a>0
- . - - - ————— . -
a 0 0 0 a
(b) Below, we graph solutions in the case a = —1, a = 0, and a = 1, respectively.
a=-1 a=0 a=1

\
.

\

N

-1 -0.5 0 0.5 1

I
~

0.5 1
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2.6 Exact Equations and Integrating Factors

1.(a) Here M(x,y) = 22 + 3 and N(x,y) = 2y — 2. Since M, = N, = 0, the equation is
exact.

(b) Since 1, = M = 2x + 3, to solve for ¢, we integrate M with respect to x. We conclude
that ¢ = 2% + 3z + h(y). Then ¢, = h'(y) = N = 2y — 2 implies h(y) = y* — 2y. Therefore,
Yz, y) =2 +3v+y* -2y =c.

(c)

\

N

2.(a) Here M(x,y) = 2z + 4y and N(x,y) = 2z — 2y. Since M, # N,, the equation is not
exact.

3.(a) Here M (x,y) = 32® — 2zy + 2 and N(z,y) = 6y* — 2* + 3. Since M,, = —2x = N,, the
equation is exact.

(b) Since ¢, = M = 32? — 2zy + 2, to solve for 1), we integrate M with respect to x. We
conclude that ¢ = 2® — 2%y + 2z + h(y). Then ¢, = —2? + h'(y) = N = 6y* — 2> 4+ 3 implies
h'(y) = 6y? + 3. Therefore, h(y) = 2y> + 3y and Y(x,y) = 2* — 2%y + 2z + 24° + 3y = c.
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(c)
S

J)

I

4.(a) Here M(z,y) = 2zy* + 2y and N(z,y) = 22y + 2. Since M, = dzy + 2 = N,, the
equation is exact.

(b) Since ¥, = M = 2xy* + 2y, to solve for 1), we integrate M with respect to z. We
conclude that ¢ = 2%y* + 22y + h(y). Then ¢, = 22%y + 22+ W' (y) = N = 22%y + 2x implies
h'(y) = 0. Therefore, h(y) = c and ¥ (x,y) = z%y* + 22y = c.

(c)

N
7

|

o
[
o
o
[

?\

N }

5.(a) Here M(z,y) = 4o + 2y and N(z,y) = 2z + 3y. Since M, = 2 = N,, the equation is
exact.

(b) Since ¥, = M = 4x + 2y, to solve for ¢, we integrate M with respect to . We conclude
that ¢ = 22% + 22y + h(y). Then ¢, = 2z 4+ K (y) = N = 2z + 3y implies 1/'(y) = 3y.
Therefore, h(y) = 3y*/2 and ¥(x,y) = 22 + 22y + 3y*/2 = k.
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N
6.(a) Here M = 4z — 2y and N = 2z — 3y. Since M, = —2 and N, = 2, the equation is not
exact.

7.(a) Here M(z,y) = e”siny—2ysinz and N(x,y) = e” cosy+2cosz. Since M, = e* cosy—
sinx = N,, the equation is exact.

(b) Since ¥, = M = €”siny — 2y sin z, to solve for ¥, we integrate M with respect to z. We
conclude that ¢ = e*siny + 2y cosz + h(y). Then ¢, = e"cosy + 2cosxz + h'(y) = N =
e” cosy + 2 cosx implies h/(y) = 0. Therefore, h(y) = ¢ and (z,y) = e"siny + 2y cosx = c.

(c)
N A

8.(a) Here M = e®siny + 3y and N = —3z + e"siny. Therefore, M, = e®cosy + 3 and
N, = =3+ e"siny. Since M, # N,, therefore, the equation is not exact.
9

(a) Here M(z,y) = ye™ cos2x — 2¢™sin 2z + 2z and N(z,y) = xe™ cos2x — 3. Since
M, = e™ cos 2z + xye®™ cos 2o — 2xe™ sin 2x = N,, the equation is exact.

(b) Since ¥, = M = ye®™ cos 2z — 2e™ sin 2x+ 2z, to solve for ¢, we integrate M with respect
to x. We conclude that 1) = €™ cos 2z + z* + h(y). Then ¢, = ze™ cos2z + h'(y) = N =
ze™ cos 2o —3 implies 1/ (y) = —3. Therefore, h(y) = —3y and ¢ (z,y) = €™ cos 2z+x?—3y =
c.
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\\—/j \\%\:

A
NS

10.(a) Here M (z,y) = y/x + 62 and N(z,y) = Inx — 2. Since M, = 1/x = N,, the equation
is exact.

(b) Since ¥, = M = y/z+6x, to solve for ¢, we integrate M with respect to z. We conclude
that ¢ = ylnz + 32> 4+ h(y). Then ¢, = Inz + A'(y) = N = Inz — 2 implies /' (y) = —2.
Therefore, h(y) = —2y and ¢ (z,y) = yInx + 32* — 2y = .

oy
=

11.(a) Here M(z,y) = xlny + zy and N(z,y) = ylnx + zy. Since M, = z/y + x and
N, = y/x + y, we conclude that the equation is not exact.

12.(a) Here M(z,y) = /(2% + y?)3% and N(x,y) = y/(z*> + y*)*2. Since M, = N,, the
equation is exact.

(b) Since v, = M = x/(2® + y*)*2, to solve for 9, we integrate M with respect to z.
We conclude that ¢ = —1/(2? + y*)Y/2 + h(y). Then ¥, = y/(z*> + y*)*? + h'(y) = N =
y/ (2% + y*)3/? implies h'(y) = 0. Therefore, h(y) = 0 and ¥(z,y) = —1/(2®> + y*)"/2 = c or
22+ =k

(c)
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13. Here M(z,y) = 2o —y and N(z,y) = 2y — x. Therefore, M, = N, = —1 which
implies that the equation is exact. Integrating M with respect to x, we conclude that
Y =2® —xy+ h(y). Then ¢, = —z + I/(y) = N = 2y — x implies h'(y) = 2y. Therefore,
h(y) = y? and we conclude that ¢ = 2* — zy +3* = c. The initial condition y(1) = 3 implies
¢ = 7. Therefore, 2> — zy + y*> = 7. Solving for y, we conclude that y = (z + /28 — 322)/2.
Therefore, the solution is valid for 3z% < 28, i.e. for —/28/3 < x < /28/3.

14. Here M(z,y) = 92 + y — 1 and N(x,y) = —4y + x. Therefore, M, = N, = 1 which
implies that the equation is exact. Integrating M with respect to x, we conclude that
Y = 32® + 2y — x + h(y). Then ¢, = x + W' (y) = N = —4y + x implies h'(y) = —4y.
Therefore, h(y) = —2y? and we conclude that ¢ = 32® + zy —  — 2y*> = c. The initial
condition y(1) = 0 implies ¢ = 2. Therefore, 323 + zy — x — 2y> = 2. Solving for y, we
conclude that y = (z — (2423 + 22 — 87 — 16)'/2) /4. The solution is valid for z > 0.9846.

15. Here M(z,y) = zy* + baz*y and N(z,y) = 2 + 2*y. Therefore, M, = 2zy + bz* and
N, = 322 4+ 2zy. In order for the equation to be exact, we need b = 3. Taking this value
for b, we integrating M with respect to x. We conclude that v = z%y*/2 + 23y + h(y).
Then ¢, = 2%y + 23 + W (y) = N = 2 + 2%y implies 1/(y) = 0. Therefore, h(y) = ¢ and
Y(z,y) = 2*y*/2 + 23y = c. That is, the solution is given implicitly as x%y* + 223y = k.

16. Here M(x,y) = ye**¥ + x and N(z,y) = bze*¥. Then M, = e**¥ + 2zye*¥ and
N, = be*™ + 2bxye®¥. The equation will be exact as long as b = 1. Integrating M with
respect to x, we conclude that ¢ = €**¥ /2422 /24+h(y). Then ¢, = ze**¥+h'(y) = N = ze**¥
implies A'(y) = 0. Therefore, h(y) = 0 and we conclude that the solution is given implicitly
by the equation e?*¥ + 22 = c.

17. We notice that ¢(x,y) = f(z) + g(y). Therefore, ¢, = f'(z) and ¢, = ¢'(y). That is,
Y, = M(z,yo), and ¢, = N(xg,y). Furthermore, ¢, = M, and ¢, = N,. Based on the
hypothesis, 1., = 1y, and M, = N,.

18. We notice that (M(z)), = 0= (N(y)),. Therefore, the equation is exact.

19.(a) Here M (z,y) = z*y® and N(z,y) = x +zy®. Therefore, M, = 3z?y* and N, = 1+ y>.
We see that the equation is not exact. Now, multiplying the equation by w(z,y) = 1/zy3,
the equation becomes zdx + (1 + y?)/y3dy = 0. Now we see that for this equation M = x
and N = (1 +y?)/y>. Therefore, M, =0 = N,.
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(b) Integrating M with respect to z, we see that ¥ = 2*/2 + h(y). Further, ¢, = h/(y) =
N = (1+y?*/y*> = 1/y>+ 1/y. Therefore, h(y) = —1/2y* + Iny and we conclude that the
solution of the equation is given implicitly by 2 — 1/y? + 2lny = c and y = 0.

(c)

0.030

20.(a) We see that M, = (ycosy — siny)/y? while N, = 2e *sinxz — 2¢~* cos x. Therefore,
M, # N,. However, multiplying the equation by p(x,y) = ye”®, the equation becomes
(e*siny — 2ysinz)dx + (e” cosy + 2cosz)dy = 0. Now we see that for this equation M =
e’siny — 2ysinx and N = e” cosy + 2cosx. Therefore, M, = e” cosy — 2sinx = N,.

(b) Integrating M with respect to z, we see that ¢ = e*siny + 2ycosx + h(y). Further,
, = e cosy+2cosxz+ h'(y) = N = e cosy + 2cosz. Therefore, h(y) = 0 and we conclude
that the solution of the equation is given implicitly by e”siny + 2y cosz = c.

(c)

;—?ﬁ

21.(a) We see that M, = 1 while N, = 2. Therefore, M, # N,. However, multiplying the
equation by u(z,y) =y, the equation becomes y*dx + (2xy — y?e¥)dy = 0. Now we see that
for this equation M = y* and N = 2zy — y?e?. Therefore, M, = 2y = N,.

(b) Integrating M with respect to z, we see that ¢ = zy*+h(y). Further, ¢, = 2zy+h'(y) =
N = 2xy — y?e¥. Therefore, I/(y) = —y?e¥ which implies that h(y) = —e¥(y*> — 2y + 2), and
we conclude that the solution of the equation is given implicitly by zy* —e¥(y? — 2y +2) = c.




72 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

v \\\\\\§
NN

22.(a) We see that M, = (r + 2)cosy while N, = cosy. Therefore, M, # N,. However,
multiplying the equation by u(z,y) = xe®, the equation becomes (z? + 2x)e” sinydzr +
z?e” cosydy = 0. Now we see that for this equation M, = (2% + 2x)e” cosy = N,.

—~

(b) Integrating M with respect to x, we see that ¢ = z?¢"siny + h(y). Further, ¢, =
x?e®cosy + N (y) = N = x%e* cosy. Therefore, I/(y) = 0 which implies that the solution of
the equation is given implicitly by z2e®siny = c.

(c)

23. Suppose p is an integrating factor which will make the equation exact. Then multiplying
the equation by p, we have pMdx + pNdy = 0. Then we need (M), = (uN),. That is, we
need 1, M +puM, = pi; N+ pN,. Then we rewrite the equation as pu(N, —M,) = p, M — ji, N.
Suppose p does not depend on z. Then p, = 0. Therefore, u(N, — M,) = pu,M. Using the
assumption that (N, — M,)/M = Q(y), we can find an integrating factor p by choosing
which satisfies y1,,/p1 = Q. We conclude that u(y) = exp [ Q(y) dy is an integrating factor of
the differential equation.

24. Suppose p is an integrating factor which will make the equation exact. Then multiplying
the equation by p, we have pMdx + pNdy = 0. Then we need (M), = (uN),. That is, we
need 1, M +puM, = p1; N+ pN,. Then we rewrite the equation as pu(N, —M,) = p, M — j1,N.
By the given assumption, we need p to satisty pR(xM —yN) = p,M — p1, N. This equation
is satisfied if p,, = (puz)R and p, = (py)R. Consider p = p(xy). Then p, = p'y and p, = p'x
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where ' = d/dz for z = xy. Therefore, we need to choose p to satisfy y/ = puR. This equation
is separable with solution p = exp( [ R(z) dz).

25.(a) Since (M, — N, )/N = 3 is a function of z only, we know that ;1 = €3* is an integrating
factor for this equation. Multiplying the equation by u, we have

e 3%y + 2xy + y*)dx + e (2* + y*)dy = 0.

Then M, = €3*(32% 4 2x + 3y*) = N,. Therefore, this new equation is exact. Integrating M
with respect to z, we conclude that ¢ = (2®y + y*/3)e** + h(y). Then ¢, = (2? 4+ y*)e>* +
R (y) = N = ¥ (2? + y?). Therefore, h'(y) = 0 and we conclude that the solution is given
implicitly by (3z%y + y3)e** = c.

(b)

26.(a) Since (M, — N,)/N = —1 is a function of = only, we know that y = e * is an
integrating factor for this equation. Multiplying the equation by u, we have

(e7" —e" —ye ")dx + e “dy = 0.

Then M, = —e™® = N,. Therefore, this new equation is exact. Integrating M with respect
to z, we conclude that ¢ = —e ™ — e + ye ™ + h(y). Then ¢, = e *+ M (y) = N =e ™.
Therefore, h'(y) = 0 and we conclude that the solution is given implicitly by —e™® — e +
ye * =c.

(b)
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27.(a) Since (N, — M,)/M = 1/y is a function of y only, we know that u(y) = e/ /4% =y
is an integrating factor for this equation. Multiplying the equation by u, we have

ydr + (z — ysiny)dy = 0.

Then for this equation, M, = 1 = N,. Therefore, this new equation is exact. Integrating M
with respect to z, we conclude that ¢ = xy + h(y). Then ¢, =z + h'(y) = N =z — ysiny.
Therefore, h'(y) = —ysiny which implies that h(y) = —siny 4y cosy, and we conclude that
the solution is given implicitly by xy — siny + ycosy = c.

(b)
Q

2

\\1¢

28.(a) Since (N, — M,)/M = (2y — 1)/y is a function of y only, we know that u(y) =
e/ 271/vdy — ¢2¥ /y is an integrating factor for this equation. Multiplying the equation by g,
we have

I\

=)

//// |

e*dx + (2ze* — 1/y)dy = 0.

Then for this equation, M, = N,. Therefore, this new equation is exact. Integrating M with
respect to z, we conclude that ¢ = ze® + h(y). Then ¢, = 2ze* +h'(y) = N = 2ze® —1/y.
Therefore, h'(y) = —1/y which implies that h(y) = —Iny, and we conclude that the solution
is given implicitly by ze? —Iny = c or y = €2z + ce® + 1.

29.(a) Since (N, — M,)/M = coty is a function of y only, we know that u(y) = e/ <t dy —
siny is an integrating factor for this equation. Multiplying the equation by u, we have

-3 -2 -1 0

e”sinydx + (e cosy + 2y)dy = 0.
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Then for this equation, M, = N,. Therefore, this new equation is exact. Integrating M
with respect to x, we conclude that ¢ = e*siny + h(y). Then 1, = e"cosy + h'(y) = N =
e cosy + 2y. Therefore, h'(y) = 2y which implies that h(y) = y?, and we conclude that the
solution is given implicitly by e®siny + y* = c.

(b)

)

I
/

30. Since (N, — M,)/M = 2/y is a function of y only, we know that u(y) = e/ 2/¥% = ¢? is
an integrating factor for this equation. Multiplying the equation by u, we have

(42® + 3y)dx + (3z + 4y°)dy = 0.

Then for this equation, M, = N,. Therefore, this new equation is exact. Integrating M with
respect to z;, we conclude that ¢ = a* + 3zy + h(y). Then ¢, = 3z + h'(y) = N = 3z + 4y
Therefore, h'(y) = 4y* which implies that h(y) = y*, and we conclude that the solution is
given implicitly by z* + 3xy + y* = c.

(b)

31. Since (N, — M,)/(xM —yN) = 1/zy is a function of zy only, we know that p(zy) =
el 1/7vdy — gy is an integrating factor for this equation. Multiplying the equation by u, we
have
(32%y + 6x)dz + (° + 3y*)dy = 0.

Then for this equation, M, = N,. Therefore, this new equation is exact. Integrating M with
respect to z, we conclude that ¢ = 23y + 322 4+ h(y). Then ¢, = 2* + h'(y) = N = 2 4 3%
Therefore, h'(y) = 3y* which implies that h(y) = y3, and we conclude that the solution is
given implicitly by 23y + 322 +9® = c.
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N
32. Using the integrating factor u = [ry(2z + y)] ™!, this equation can be rewritten as
2 2 1 1
- d - dy = 0.
(x * Zx—i-y) v (y * 2x—|—y) Y
Integrating M with respect to x, we see that ¢ = 2In|z| + In |2z + y| + h(y). Then ¢, =
2z +y)' +HW(y) = N = (22 +y)~! + 1/y. Therefore, h'(y) = 1/y which implies that

h(y) = In|y|. Therefore, ¥ = 2In|z| + In|2x + y| + In|y| = ¢. Applying the exponential
function, we conclude that the solution is given implicitly be 223y + 22y = c.

y o1

2.7 Substitution Methods

L.(a) f(z,y) = (x + 1)/y, thus f(Ax,\y) = (Ax + 1)/ \y # (x + 1)/y. The equation is not
homogeneous.

2.(a) f(z,y) = (2" +1)/(y* +1), thus f(Az, \y) = M2 +1)/(My* +1) # (" +1)/(y* +1).
The equation is not homogeneous.

3.(a) f(x,y) = (32%y + y3)/(32® — xy?) satisfies f(A\x, \y) = f(z,y). The equation is homo-
geneous.

(b) The equation is ¥ = (3z°y + y°)/(32° — 2y?) = (3(y/x) + (y/2)*)/(3 — (y/2)?). Let
y = uz. Then v = vz + u, thus v’z = 3u+v?)/(3 — u?) — u = 2u®/(3 — u?). We obtain

3 — u? 3 1 1
/ u du———u_Z——1n|u|—/—dx—1n|x|+c.
T

2u3 4 2

Therefore, the solution is given implicitly by —(3/4)z?/y? — (1/2) In|y/z| = In |z| + c. Also,
u = 0 solves the equation, thus y = 0 is a solution as well.
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(c)

N\

4.(a) f(z,y) = y(y+1)/z(x—1), thus f(Ax, \y) = A\y(Ay+1)/ Ae(Ax+1) # y(y+1)/z(x—1).
The equation is not homogeneous.

5.(a) f(z,y) = (/2% — y*+y)/z satisfies f(Ax, \y) = f(x,y). The equation is homogeneous.
(b) The equation is ¥/ = (/22 —y> +y)/x = /1 — (y/x)?> + y/x. Let y = uzx. Then

y =u'r+ u, thus v’z = V1 —u?> 4+ u—u=+1—wu? We obtain

/ L 4 ' /1d In |z| +
—— AU = arcsinu = —ar = 1n (T C.
N .

Therefore, the solution is given implicitly by arcsin(y/x) = In |z|+¢, thus y = xsin(In |z|+c¢).
Also, y = x and y = —x are solutions.

(c)

6.(a) f(x,y) = (z +y)?/xy satisfies f(Az,\y) = f(z,y). The equation is homogeneous.

(b) The equation is y = (22 + 22y +y?) /2y = x/y+2+y/x. Let y = ux. Then iy = v’z +u,
thus v/ = 1/u+24+u—u=1/u+2= (14 2u)/u. We obtain

1 1
/1f2udu:%—Zln|1—|—2u|:/de:1n|m|+c.

Therefore, the solution is given implicitly by y/2x — (1/4)In|1 + 2y/z| = In|z| + ¢. Also,
y = —x/2 is a solution.
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7.(a) f(z,y) = (dy—"Tx)/(bx—y) satisfies f(Azx, \y) = f(z,y). The equation is homogeneous.

(b) The equation is ¢ = (dy — 7z)/(bx — y) = (4y/x — 7)/(5b — y/x). Let y = ux. Then
v =ur+u, thusv'z = (4u—T7)/(5—u) —u= (u* —u—"T7)/(5—u). We obtain

du = In|—14+v29+2u| =In|z|+c.

5— 9v29 — 29 29—1—9\/
/% g R[l+V29-2u| - ——
u —u—-"17 I

The solution is given implicitly by substituting back u = y/z. Also, y = x(1 £ 1/29)/2 are
solutions.

(c)

8.(a) f(x,y) = (4y/y* — 2% + y)/x satisfies f(Az,\y) = f(x,y). The equation is homoge-

neous.

(b) The equation is y' = (4y/y* —2? +y)/x = 4\/(y/x)> =1+ y/x. Let y = ur. Then

Yy =u'r+ u, thus v’z = 4v/u? — 1 + u — u = 4v/u? — 1. We obtain

1 1 1
————du=-In|lu+ u2—1:/—dx:1nx+c.
| g du= gl V=1 = [ 2

Therefore, the solution is given implicitly by In |y/x + /(y/z)2 — 1| = Inz* +c. Also, y = x
and y = —x are solutions.
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(c)

08
0.6
04

02

9.(a) f(z,y) = (y* +2zy® — 322y? — 223y) / (222y? — 223y — 22) satisfies f(Az, \y) = f(x, ).
The equation is homogeneous.

(b) The equation is ¥ = (y* + 2zy® — 32%y? — 22%y)/(22%y? — 223y — 22%) = ((y/x)* +
2(y/x)® — 3(y/x)* — 2(y/x))/(2(y/x)? — 2(y/x) — 2). Let y = ux. Then y' = v'x + u, thus
wr = (ut 4 2u3 — 3u? — 2u)/(2u* — 2u — 2) —u = (u* — u?)/(2u* — 2u — 2). We obtain

2u? — 2u — 2 2
/%du:——+21n|u|—ln|l—u2|:ln|x|+c.
ut —u u

The solution is given implicitly by In |1 — y?/2?| + 2z/y + In|x| = ¢. Also, y =z, y = —x
and y = 0 are solutions.

(c)

10.(a) f(z,y) = (y+xe®¥) /ye*/V satisfies f(Az, \y) = f(x,%). The equation is homogeneous.

(b) The equation is dz/dy = (y+ze®/¥) /ye®/V = /Y + 2 /y. Let x = uy. Then 2’ = v'y+u,
thus 'y = e ™ 4+ u —u = e *. We obtain

1
/e“du:e“:/—dy:1n|y|+c.
)

Therefore, the solution is given by z/y = In(In |y| + ¢), i.e. * = yIn(Iln|y| + ¢). Also, y =0
is a solution.
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11. The equation is homogeneous. Let y = wuz; we obtain ' = vz +u = 1/u + u,
thus udu = (1/x)dr and we obtain (y/x)? = u? = 2(Inz + ¢). The initial condition gives
1/4 = 2(In2 + ¢), thus ¢ = 1/8 — In2 and the solution is y = zy/2Inz + 1/4 —In4. The
solution exists on the interval (2e~1/%, o).

12. The equation is homogeneous. Let y = ux; we obtain ¢y = v'z +u = (1 +u)/(1 — u),
ie. v'r = (1+wu?)/(1 —u). Integration gives

1-— 1 1
/ 1+52 du = arctan u — §ln(1+u2) :/;da: =In|z| +c.
The initial condition implies that arctan(8/5) — In /1 + 64/25 = In5 + ¢. The solution is

given implicitly by arctan(y/x) — In\/1 + y?/2?2 — In|x| = ¢. The solution exists on the
interval (—128.1, 5.3), approximately.

13.(a) y' + (1/t)y = ty?
(b) Here n = 2, thus we set u = y~!. The equation becomes u' — (1/t)u = —t; the integrating

[

factor is 4 = 1/t and we obtain (u/t)’ = —1. After integration, we get u/t = —t + ¢, thus
u = —t?+ ct and then y = 1/(ct — t?). Also, y = 0 is a solution.

/|

14.(a) ¥ +y =ty'
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(b) Here n = 4, thus we set u = y~. The equation becomes v’ — 3u = —t; the integrating
factor is u = ™3 and we obtain (ue™3)" = —te™3'. After integration, ue™3" = (t/3)e™3 +
e /9 + ¢, thus u = t/3 + 1/9 + ce* and then y = (t/3 +1/9 + ce3)~Y/3. Also, y = 0 is a
solution.

(c)

15.(a) y' + (3/t)y = t*y*

(b) Here n = 2, thus we set u = y~*. The equation becomes v’ —(3/t)u = —t?; the integrating
factor is u = 1/t* and we obtain (u/t?) = —1/t. After integration, we get u/t3> = —Int + ¢,
thus u = —t*Int + ct® and then y = 1/(ct® — t3Int). Also, y = 0 is a solution.

(c)

16.(a) y' + (2/t)y = (1/1%)y°

(b) Here n = 3, thus we set u = y~2. The equation becomes v’ — (4/t)u = —2/t*; the
integrating factor is u = 1/t* and we obtain (u/t') = —2/t%. After integration, u/t* =
2t7° /5 + ¢, thus v = 2t71 /5 + ct* and then y = (2t7!/5 + ct*)~Y/2. Also, y = 0 is a solution.
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17.(a) y' + (4t/5(1 + 1))y = (4t/5(1 + *))y*

(b) Here n = 4, thus we set u = y~>. The equation becomes v’ —12t/5(1+t*)u = —12¢/5(1+
t?); the integrating factor is p = (1 + ¢2)7%° and we obtain (up) = —12¢(1 + t2)~11/5/5,
After integration, u = 1 + ¢(1 4+ 2)%/°, thus y = (1 + ¢(1 + t2)%/5)71/3, Also, y = 0 is a
solution.

(c)

D

18.(a) y' + (3/t)y = (2/3)y°"

(b) Here n = 5/3, thus we set u = y~2/3. The equation becomes u' — (2/t)u = —4/9;
the integrating factor is p = 1/t* and we obtain (u/t?)’ = —4/9t*. After integration,
u/t? = 4/9t + c, thus u = 4t/9 + ct? and then y = (4¢/9 + ct?)~3/2. Also, y = 0 is a solution.
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(c)

19.(a) y —y = y'/?

(b) Here n = 1/2, thus we set u = y'/2. The equation becomes 1’ —u/2 = 1/2; the integrating
factor is pu = e~*/? and we obtain (ue™¥/2)’ = e7%/2/2. After integration, ue ™"? = —e~*/2 4 ¢,
thus u = ce’/? — 1 and then y = (ce’/? — 1)2. Also, y = 0 is a solution.

(c)

20.(a) v/ — ry = —ky?

(b) Here, n = 2. Therefore, let u = y~!. Making this substitution, we see that u satisfies the
equation v’ + ru = k. This equation is linear with integrating factor . Therefore, we have
(e"u)" = ke™. The solution of this equation is given by u = (k + cre™")/r. Then, using the
fact that y = 1/u, we conclude that y = r/(k + cre™""). Also, y = 0 is a solution.

(c) The figure shows the solutions for r = 1, k = 1.
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/
I/

|
\\\

|
)

21.(a) v — ey = —oy?

(b) Here n = 3. Therefore, u = y~? satisfies v’ 4+ 2eu = 20. This equation is linear with
integrating factor e2. Its solution is given by u = (o + cee>?) /e. Then, using the fact that

y* = 1/u, we see that y = +/¢/v 0 + cee 2.

(c) The figure shows the solutions for e =1, 0 = 1.

\g

ol

22.(a) v — (Tcost + T)y = —y?

(b) Here n = 3. Therefore, u = y~2 satisfies v’ + 2(I" cost + T)u = 2. This equation is linear
with integrating factor e +7% Therefore, (eI ”Tt)u)/ = 2e2sint+Th) which implies

t
u = 2 2(Usint+TY) / exp(2(T'sin s + T's)) ds + ce2sint+Tt),

to

Then u = y~2 implies y = ++/1/u.
(c) The figure shows the solutions for I' = 1, "= 1.
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23.(a) Assume y; solves the equation: y} = A + By, + Cy?. Let y = y; + v; we obtain
yi+v =y = A+ By+Cy* = A+ B(y1+v)+C(y1+v)?> = A+ By, + Bv+Cyi +2Cy, v+ Cv?.
Then v' = Bv + 2Cyv + Cv?, ie. v/ — (B + 2Cy;)v = Cv? which is a Bernoulli equation
with n = 2.

(b) If y; = 4¢, then y; = 4 and 4+3t-4t = 4—4t>+(4t)?. Using the previous idea, let y = y;+v;
we obtain 4 +v' =y +v =y =4 — 4% + y* — 3ty = 4 — 4> + (4t + v)? — 3t(4t + v),
ie. v = —4t% + 16t% + Stv + v? — 12t> — 3tv = 5tv + v2. Let w = v~ !, then we obtain
u' + 5tu = —1. The integrating factor is u = ¢*°/2, and we obtain u = —e5%"/2 fg e55°/2 .
Thus y = 4t — (e /2 [} e¥*/2 ds) .

24.(a) Homogeneous.

(b) Setting y = wz, we obtain ¢ = v’z +u = (u — 3)/(9u — 2), ie. vz = 3(—1+u —
3u?)/(9u—2). After integration, we obtain the implicit solution (3/2) In(1 —y/z + 3y*/z?) —

arctan((—1+ 6y/x)/v11)/v/11 4+ 31Inz = ¢,
25.(a) Linear.

(b) Consider the equation so that z = z(y). Then dx/dy = —2x + 3¢¥; the integrating factor
is 1 = €%Y, we obtain (e*z) = 3e3. After integration, e*z = % + ¢, thus z = ¥ + ce™ .

26.(a) Bernoulli.

(b) Let uw = y~!. The equation turns into v’ + u = —4e%; integrating factor is u = e®. We
obtain (ue®)’ = —4e?®, after integration ue® = —2e** + ¢, thus u = —2¢® + ce™® and then
y=1/(ce™ — 2e").

27.(a) Linear.

(b) The integrating factor is p = e**"% = ze®; the equation turns into (ze®y)’ = ze®, after
integration xe®y = xe® — e” + ¢, and then y =1 — 1/x + ce™*/x.

28.(a) Exact.
(b) The equation is (1 sin 2z — zy?)dz + (1 — 2%)ydy. We need ¢(z,y) so that ¢, = $ sin2z —

zy?; thus ¥ (z,y) = —3 cos2z — sz + h(y). Now ¢, = —2%y + W (y) = —2’y + y, thus

h(y) = y*/2. We obtain the implicitly defined solution cos 2z + 2x%y* — 2y* = c.
29.(a) Separable, linear.
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(b) Separation of variables gives dy/y = dx/+/x; after integration, we get Iny = 2/ + ¢
and then y = ce?v®.

30.(a) Separable, exact.

(b) Write (5xy? + 5y)dx + (5x%y + 5x)dy = 0. We need 9(z,y) so that 1, = 5zy? + 5y; thus
Y(x,y) = ba?y?/2 + bxy + h(y). Now ¢, = ba*y + 5x + h/(y) = Sz?y + Sz, thus we obtain

that the solution is given implicitly as 5z%y* + 10zy = dzy(ry + 2) = c¢. We can see that
this is the same as xy = C.

31.(a) Exact, Bernoulli.

(b) Write (y? + 1 + Inz)dz + 2xydy = 0. We need ¢ (z,y) so that ¥, = y?> + 1 + Inx; thus
Y(x,y) = y*x+axInx + h(y). Now ¢, = 2zy + I'(y) = 22y, thus we obtain that the solution
is given implicitly as y?z + zInz = c.

32.(a) Linear, exact.

(b) Write (—y —2(2 — 2)°)dz + (2 — x)dy = 0. We need ¢(z,y) so that ¢, = 2(2—

z)%;
thus ¥ (z,y) = —yz + (2 —2)%/3+ h(y). Now ¥, = —x + h'(y) = 2 — z, and then h(y) = 2y.
We obtain that the solution is given implicitly as —3yx + (2 — z)% + 6y = c.

33.(a) Separable, autonomous (if viewed as dz/dy).

(b) dy/dx = —x/Inx, thus after integration, y = —Inlnz + C.

34.(a) Homogeneous.

(b) Setting y = uz, we obtain ¥ = vz +u = (3u? + 2u)/(2u + 1). This implies that
vz = (u+u?)/(1+ 2u). After integration, we obtain that the implicit solution is given by
In(y/z) +In(l +y/x) =Inz +c, ie y/a? +y*/2* =C

35.(a) Bernoulli, homogeneous.

(b) Let u = y?. Then ' = 2yy’ = 4z + (5/2x)y* = 4z + (5/2x)u; we get the linear
equation u' — (5/27)u = 4x. The integrating factor is u = #7>/2, and the equation turns into
(ux=>/?) = 4273/2. After integration, we get u = y?> = —8x% + ca®/?.

36.(a) Autonomous, separable, Bernoulli.

(b) Let u = y**. Then v/ = (3/4)y~ Y4/ = (3/4)y ' 4(y*/* —y) = 3/4 — 3u/4. The
integrating factor is p = €3/1, and we get (ue’*/*) = 3¢3%/1 /4. After integration, ue3*/* =
e3/* 4 ¢, and then u = y3/* = 1 + ce /4. We get y = (1 + ce™3%/4)4/3,
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