
Chapter 2

First Order Differential Equations

2.1 Separable Equations

1. Rewriting as ydy = x4dx, then integrating both sides, we have y2/2 = x5/5 + c, or
5y2 − 2x5 = c; y 6= 0

2. Rewriting as ydy = (x2/(1 + x3))dx, then integrating both sides, we obtain that y2/2 =
ln |1 + x3|/3 + c, or 3y2 − 2 ln |1 + x3| = c; x 6= −1, y 6= 0.

3. Rewriting as y−3dy = − sinxdx, then integrating both sides, we have −y−2/2 = cos x+ c,
or y−2 + 2 cosx = c if y 6= 0. Also, y = 0 is a solution.

4. Rewriting as (7 + 5y)dy = (7x2 − 1)dx, then integrating both sides, we obtain 5y2/2 +
7y − 7x3/3 + x = c as long as y 6= −7/5.

5. Rewriting as sec2 ydy = sin2 2xdx, then integrating both sides, we have tan y = x/2 −
(sin 4x)/8 + c, or 8 tan y − 4x+ sin 4x = c as long as cos y 6= 0. Also, y = ±(2n+ 1)π/2 for
any integer n are solutions.

6. Rewriting as (1 − y2)−1/2dy = dx/x, then integrating both sides, we have arcsin y =
ln |x| + c. Therefore, y = sin(ln |x| + c) as long as x 6= 0 and |y| < 1. We also notice that
y = ±1 are solutions.

7. Rewriting as (y/(1 + y2))dy = xex
2
dx, then integrating both sides, we obtain ln(1 + y2) =

ex
2

+ c. Therefore, y2 = cee
x2 − 1.

8. Rewriting as (y2− ey)dy = (x2 + e−x)dx, then integrating both sides, we have y3/3− ey =
x3/3− e−x + c, or y3 − x3 − 3(ey − e−x) = c as long as y2 − ey 6= 0.

9. Rewriting as (1 + y2)dy = x2dx, then integrating both sides, we have y+ y3/3 = x3/3 + c,
or 3y + y3 − x3 = c.

10. Rewriting as (1 + y3)dy = sec2 xdx, then integrating both sides, we have y + y4/4 =
tanx+ c as long as y 6= −1.

11. Rewriting as y−1/2dy = 4
√
xdx, then integrating both sides, we have y1/2 = 4x3/2/3 + c,

or y = (4x3/2/3 + c)2. Also, y = 0 is a solution.

12. Rewriting as dy/(y− y2) = xdx, then integrating both sides, we have ln |y| − ln |1− y| =

17

Differential Equations An Introduction to Modern Methods and Applications 3rd Edition Brannan Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/differential-equations-an-introduction-to-modern-methods-and-applications-3rd-edition-brannan-solutions-manual/


18 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

x2/2 + c, or y/(1− y) = cex
2/2, which gives y = ex

2/2/(c+ ex
2/2). Also, y = 0 and y = 1 are

solutions.

13.(a) Rewriting as y−2dy = (1 − 12x)dx, then integrating both sides, we have −y−1 =
x−6x2 + c. The initial condition y(0) = −1/8 implies c = 8. Therefore, y = 1/(6x2−x−8).

(b)

(c) (1−
√

193)/12 < x < (1 +
√

193)/12

14.(a) Rewriting as ydy = (3−2x)dx, then integrating both sides, we have y2/2 = 3x−x2+c.
The initial condition y(1) = −6 implies c = 16. Therefore, y = −

√
−2x2 + 6x+ 32.

(b)

(c) (3−
√

73)/2 < x < (3 +
√

73)/2

15.(a) Rewriting as xexdx = −ydy, then integrating both sides, we have xex−ex = −y2/2+c.
The initial condition y(0) = 1 implies c = −1/2. Therefore, y =

√
2(1− x)ex − 1.
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(b)

(c) −1.68 < x < 0.77, approximately

16.(a) Rewriting as r−2dr = θ−1dθ, then integrating both sides, we have −r−1 = ln |θ| + c.
The initial condition r(1) = 2 implies c = −1/2. Therefore, r = 2/(1− 2 ln |θ|).
(b)

(c) 0 < θ <
√
e

17.(a) Rewriting as ydy = 3x/(1 + x2)dx, then integrating both sides, we have y2/2 =
3 ln(1 + x2)/2 + c. The initial condition y(0) = −7 implies c = 49/2. Therefore, y =
−
√

3 ln(1 + x2) + 49.

(b)
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(c) −∞ < x <∞
18.(a) Rewriting as (1 + 2y)dy = 2xdx, then integrating both sides, we have y+ y2 = x2 + c.
The initial condition y(2) = 0 implies c = −4. Therefore, y2 + y = x2 − 4. Completing the
square, we have (y + 1/2)2 = x2 − 15/4, and, therefore, y = −1/2 +

√
x2 − 15/4.

(b)

(c)
√

15/2 < x <∞
19.(a) Rewriting as y−2dy = (2x+4x3)dx, then integrating both sides, we have −y−1 = x2 +
x4 + c. The initial condition y(1) = −2 implies c = −3/2. Therefore, y = 2/(3− 2x4− 2x2).

(b)

(c)
√

(−1 +
√

7)/2 < x <∞

20.(a) Rewriting as e3ydy = x2dx, then integrating both sides, we have e3y/3 = x3/3+c. The
initial condition y(2) = 0 implies c = −7/3. Therefore, e3y = x3 − 7, and y = ln(x3 − 7)/3.
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(b)

(c) 3
√

7 < x <∞
21.(a) Rewriting as dy/(1 + y2) = tan 2xdx, then integrating both sides, we have arctan y =
− ln(cos 2x)/2 + c. The initial condition y(0) = −

√
3 implies c = −π/3. Therefore, y =

− tan(ln(cos 2x)/2 + π/3).

(b)

(c) −π/4 < x < π/4

22.(a) Rewriting as 6y5dy = x(x2 + 1)dx, then integrating both sides, we obtain that
y6 = (x2 + 1)2/4 + c. The initial condition y(0) = −1/ 3

√
2 implies c = 0. Therefore,

y = − 3
√

(x2 + 1)/2.

(b)
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(c) −∞ < x <∞
23.(a) Rewriting as (2y−11)dy = (3x2−ex)dx, then integrating both sides, we have y2−11y =
x3 − ex + c. The initial condition y(0) = 11 implies c = 1. Completing the square, we have
(y − 11/2)2 = x3 − ex + 125/4. Therefore, y = 11/2 +

√
x3 − ex + 125/4.

(b)

(c) −3.14 < x < 5.10, approximately

24.(a) Rewriting as dy/y = (1/x2 − 1/x)dx, then integrating both sides, we have ln |y| =
−1/x−ln |x|+c. The initial condition y(1) = 2 implies c = 1+ln 2. Therefore, y = 2e1−1/x/x.

(b)

(c) 0 < x <∞
25.(a) Rewriting as (3+4y)dy = (e−x−ex)dx, then integrating both sides, we have 3y+2y2 =
−(ex + e−x) + c. The initial condition y(0) = 1 implies c = 7. Completing the square, we
have (y + 3/4)2 = −(ex + e−x)/2 + 65/16. Therefore, y = −3/4 + (1/4)

√
65− 8ex − 8e−x.
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(b)

(c) − ln 8 < x < ln 8

26.(a) Rewriting as 2ydy = xdx/
√
x2 − 4, then integrating both sides, we have y2 =

√
x2 − 4+

c. The initial condition y(3) = −1 implies c = 1−
√

5. Therefore, y = −
√√

x2 − 4 + 1−
√

5.

(b)

(c) 2 < x <∞
27.(a) Rewriting as cos 3ydy = − sin 2xdx, then integrating both sides, we have (sin 3y)/3 =
(cos 2x)/2 + c. The initial condition y(π/2) = π/3 implies c = 1/2. Thus we obtain that
y = (π − arcsin(3 cos2 x))/3.

(b)
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(c) π/2− 0.62 < x < π/2 + 0.62, approximately

28.(a) Rewriting as y2dy = arcsinxdx/
√

1− x2, then integrating both sides, we have y3/3 =
(arcsinx)2/2 + c. The initial condition y(0) = 1 implies c = 1/3. Thus we obtain that
y = 3

√
3(arcsinx)2/2 + 1.

(b)

(c) −π/2 < x < π/2

29. Rewriting the equation as (12y2 − 12y)dy = (1 + 3x2)dx and integrating both sides,
we have 4y3 − 6y2 = x + x3 + c. The initial condition y(0) = 2 implies c = 8. Therefore,
4y3 − 6y2 − x − x3 − 8 = 0. When 12y2 − 12y = 0, the integral curve will have a vertical
tangent. This happens when y = 0 or y = 1. From our solution, we see that y = 1 implies
x = −2; this is the first y value we reach on our solution, therefore, the solution is defined
for −2 < x <∞.

30. Rewriting the equation as (2y2 − 6)dy = 2x2dx and integrating both sides, we have
2y3/3 − 6y = 2x3/3 + c. The initial condition y(1) = 0 implies c = −2/3. Therefore,
y3 − 9y − x3 = −1. When 2y2 − 6 = 0, the integral curve will have a vertical tangent. This

happens when y = ±
√

3. At these values for y, we have x =
3
√

1± 6
√

3. Therefore, the
solution is defined on this interval; approximately −2.11 < x < 2.25.

31. Rewriting the equation as y−2dy = (2 + x)dx and integrating both sides, we have
−y−1 = 2x + x2/2 + c. The initial condition y(0) = 1 implies c = −1. Therefore, y =
−1/(x2/2 + 2x − 1). To find where the function attains it minimum value, we look where
y′ = 0. We see that y′ = 0 implies y = 0 or x = −2. But, as seen by the solution formula,
y is never zero. Further, it can be verified that y′′(−2) > 0, and, therefore, the function
attains a minimum at x = −2.

32. Rewriting the equation as (3 + 2y)dy = (6− ex)dx and integrating both sides, we have
3y+y2 = 6x−ex+c. By the initial condition y(0) = 0, we have c = 1. Completing the square,
it follows that y = −3/2 +

√
6x− ex + 13/4. The solution is defined if 6x− ex + 13/4 ≥ 0,

that is, −0.43 ≤ x ≤ 3.08 (approximately). In that interval, y′ = 0 for x = ln 6. It can be
verified that y′′(ln 6) < 0, and, therefore, the function attains its maximum value at x = ln 6.

33. Rewriting the equation as (10 + 2y)dy = 2 cos 2xdx and integrating both sides, we have
10y + y2 = sin 2x + c. By the initial condition y(0) = −1, we have c = −9. Completing
the square, it follows that y = −5 +

√
sin 2x+ 16. To find where the solution attains its
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maximum value, we need to check where y′ = 0. We see that y′ = 0 when 2 cos 2x = 0. This
occurs when 2x = π/2 + 2kπ, or x = π/4 + kπ, k = 0,±1,±2, . . ..

34. Rewriting this equation as (1 + y2)−1dy = 2(1 + x)dx and integrating both sides, we
have arctan y = 2x + x2 + c. The initial condition implies c = 0. Therefore, the solution is
y = tan(x2 + 2x). The solution is defined as long as −π/2 < 2x + x2 < π/2. We note that
2x+ x2 ≥ −1. Further, 2x+ x2 = π/2 for x ≈ −2.6 and 0.6. Therefore, the solution is valid
in the interval −2.6 < x < 0.6. We see that y′ = 0 when x = −1. Furthermore, it can be
verified that y′′(x) > 0 for all x in the interval of definition. Therefore, y attains a global
minimum at x = −1.

35.(a) First, we rewrite the equation as dy/(y(4− y)) = tdt/3. Then, using partial fractions,
after integration we obtain ∣∣∣∣ y

y − 4

∣∣∣∣ = Ce2t2/3.

From the equation, we see that y0 = 0 implies that C = 0, so y(t) = 0 for all t. Otherwise,
y(t) > 0 for all t or y(t) < 0 for all t. Therefore, if y0 > 0 and |y/(y − 4)| = Ce2t2/3 → ∞,
we must have y → 4. On the other hand, if y0 < 0, then y → −∞ as t→∞. (In particular,
y → −∞ in finite time.)

(b) For y0 = 0.5, we want to find the time T when the solution first reaches the value
3.98. Using the fact that |y/(y − 4)| = Ce2t2/3 combined with the initial condition, we have
C = 1/7. From this equation, we now need to find T such that |3.98/.02| = e2T 2/3/7. Solving
this equation, we obtain T ≈ 3.29527.

36.(a) Rewriting the equation as y−1(4 − y)−1dy = t(1 + t)−1dt and integrating both sides,
we have ln |y| − ln |y − 4| = 4t− 4 ln |1 + t|+ c. Therefore, |y/(y − 4)| = Ce4t/(1 + t)4 →∞
as t→∞ which implies y → 4.

(b) The initial condition y(0) = 2 implies C = 1. Therefore, y/(y− 4) = −e4t/(1 + t)4. Now
we need to find T such that 3.99/− 0.01 = −e4T/(1 + T )4. Solving this equation, we obtain
T ≈ 2.84367.

(c) Using our results from part (b), we note that y/(y−4) = y0/(y0−4)e4t/(1+t)4. We want
to find the range of initial values y0 such that 3.99 < y < 4.01 at time t = 2. Substituting
t = 2 into the equation above, we have y0/(y0−4) = (3/e2)4y(2)/(y(2)−4). Since the function
y/(y − 4) is monotone, we need only find the values y0 satisfying y0/(y0 − 4) = −399(3/e2)4

and y0/(y0− 4) = 401(3/e2)4. The solutions are y0 ≈ 3.6622 and y0 ≈ 4.4042. Therefore, we
need 3.6622 < y0 < 4.4042.

37. We can write the equation as (
cy + d

ay + b

)
dy = dx,

which gives (
cy

ay + b
+

d

ay + b

)
dy = dx.
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Now we want to rewrite these so in the first component we can simplify by ay + b:

cy

ay + b
=

1
a
cay

ay + b
=

1
a
(cay + bc)− bc/a

ay + b
=

1

a
c−

bc
a

ay + b
,

so we obtain (
c

a
− bc

a2y + ab
+

d

ay + b

)
dy = dx.

Then integrating both sides, we have

c

a
y − bc

a2
ln |a2y + ab|+ d

a
ln |ay + b| = x+ C.

Simplifying, we have

c

a
y − bc

a2
ln |a| − bc

a2
ln |ay + b|+ d

a
ln |ay + b| = x+ C,

which implies that
c

a
y +

(
ad− bc
a2

)
ln |ay + b| = x+ C.

Note, in this calculation, since bc
a2

ln |a| is just a constant, we included it with the arbitrary
constant C. This solution will exist as long as a 6= 0 and ay + b 6= 0.

2.2 Linear Equations: Method of Integrating Factors

1.(a)

(b) All solutions seem to converge to an increasing function as t→∞.

(c) The integrating factor is µ(t) = e4t. Then

e4ty′ + 4e4ty = e4t(t+ e−2t)

implies that
(e4ty)′ = te4t + e2t,
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thus

e4ty =

∫
(te4t + e2t) dt =

1

4
te4t − 1

16
e4t +

1

2
e2t + c,

and then

y = ce−4t +
1

2
e−2t +

t

4
− 1

16
.

We conclude that y is asymptotic to the linear function g(t) = t/4− 1/16 as t→∞.

2.(a)

(b) All slopes eventually become positive, so all solutions will eventually increase without
bound.

(c) The integrating factor is µ(t) = e−2t. Then

e−2ty′ − 2e−2ty = e−2t(t2e2t)

implies
(e−2ty)′ = t2,

thus

e−2ty =

∫
t2 dt =

t3

3
+ c,

and then

y =
t3

3
e2t + ce2t.

We conclude that y increases exponentially as t→∞.
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3.(a)

(b) All solutions appear to converge to the function g(t) = 1.

(c) The integrating factor is µ(t) = et. Therefore, ety′ + ety = t+ et, thus (ety)′ = t+ et, so

ety =

∫
(t+ et) dt =

t2

2
+ et + c,

and then

y =
t2

2
e−t + 1 + ce−t.

Therefore, we conclude that y → 1 as t→∞.

4.(a)

(b) The solutions eventually become oscillatory.

(c) The integrating factor is µ(t) = t. Therefore, ty′ + y = 5t cos 2t implies (ty)′ = 5t cos 2t,
thus

ty =

∫
5t cos 2t dt =

5

4
cos 2t+

5

2
t sin 2t+ c,

and then

y =
5 cos 2t

4t
+

5 sin 2t

2
+
c

t
.

We conclude that y is asymptotic to g(t) = (5 sin 2t)/2 as t→∞.
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5.(a)

(b) Some of the solutions increase without bound, some decrease without bound.

(c) The integrating factor is µ(t) = e−2t. Therefore, e−2ty′ − 2e−2ty = 3e−t, which implies
(e−2ty)′ = 3e−t, thus

e−2ty =

∫
3e−t dt = −3e−t + c,

and then y = −3et+ce2t. We conclude that y increases or decreases exponentially as t→∞.

6.(a)

(b) For t > 0, all solutions seem to eventually converge to the function g(t) = 0.

(c) The integrating factor is µ(t) = t2. Therefore, t2y′ + 2ty = t sin t, thus (t2y)′ = t sin t, so

t2y =

∫
t sin t dt = sin t− t cos t+ c,

and then

y =
sin t− t cos t+ c

t2
.

We conclude that y → 0 as t→∞.
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7.(a)

(b) For t > 0, all solutions seem to eventually converge to the function g(t) = 0.

(c) The integrating factor is µ(t) = et
2
. Therefore,

(et
2

y)′ = et
2

y′ + 2tyet
2

= 16t,

thus

et
2

y =

∫
16t dt = 8t2 + c,

and then y(t) = 8t2e−t
2

+ ce−t
2
. We conclude that y → 0 as t→∞.

8.(a)

(b) For t > 0, all solutions seem to eventually converge to the function g(t) = 0.

(c) The integrating factor is µ(t) = (1 + t2)2. Then

(1 + t2)2y′ + 4t(1 + t2)y =
1

1 + t2
,

so

((1 + t2)2y) =

∫
1

1 + t2
dt,

and then y = (arctan t+ c)/(1 + t2)2. We conclude that y → 0 as t→∞.
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9.(a)

(b) All solutions increase without bound.

(c) The integrating factor is µ(t) = et/2. Therefore, 2et/2y′ + et/2y = 3tet/2, thus

2et/2y =

∫
3tet/2 dt = 6tet/2 − 12et/2 + c,

and then y = 3t− 6 + ce−t/2. We conclude that y is asymptotic to g(t) = 3t− 6 as t→∞.

10.(a)

(b) For y > 0, the slopes are all positive, and, therefore, the corresponding solutions increase
without bound. For y < 0 almost all solutions have negative slope and therefore decrease
without bound.

(c) By dividing the equation by t, we see that the integrating factor is µ(t) = 1/t. Therefore,
y′/t− y/t2 = t2e−t, thus (y/t)′ = t2e−t, so

y

t
=

∫
t2e−t dt = −t2e−t − 2te−t − 2e−t + c,

and then y = −t3e−t − 2t2e−t − 2e−t + ct. We conclude that y → ∞ if c > 0, y → −∞ if
c < 0 and y → 0 if c = 0.
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11.(a)

(b) All solutions appear to converge to an oscillatory function.

(c) The integrating factor is µ(t) = et. Therefore, ety′ + ety = 5et sin 2t, thus (ety)′ =
5et sin 2t, which gives

ety =

∫
5et sin 2t dt = −2et cos 2t+ et sin 2t+ c,

and then y = −2 cos 2t + sin 2t + ce−t. We conclude that y is asymptotic to g(t) = sin 2t−
2 cos 2t as t→∞.

12.(a)

(b) All solutions increase without bound.

(c) The integrating factor is µ(t) = et/2. Therefore, 2et/2y′ + et/2y = 3t2et/2, thus (2et/2y)′ =
3t2et/2, so

2et/2y =

∫
3t2et/2 dt = 6t2et/2 − 24tet/2 + 48et/2 + c,

and then y = 3t2−12t+24+ce−t/2. We conclude that y is asymptotic to g(t) = 3t2−12t+24
as t→∞.

13. The integrating factor is µ(t) = e−t. Therefore, (e−ty)′ = 2tet, thus

y = et
∫

2tet dt = 2te2t − 2e2t + cet.
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The initial condition y(0) = 1 implies −2 + c = 1. Therefore, c = 3 and y = 3et + 2(t−1)e2t.

14. The integrating factor is µ(t) = e2t. Therefore, (e2ty)′ = t, thus

y = e−2t

∫
t dt =

t2

2
e−2t + ce−2t.

The initial condition y(1) = 0 implies e−2/2 + ce−2 = 0. Therefore, c = −1/2, and y =
(t2 − 1)e−2t/2.

15. Dividing the equation by t, we see that the integrating factor is µ(t) = t4. Therefore,
(t4y)′ = t5 − t4 + t3, thus

y = t−4

∫
(t5 − t4 + t3) dt =

t2

6
− t

5
+

1

4
+
c

t4
.

The initial condition y(1) = 1/4 implies c = 1/30, and y = (10t6 − 12t5 + 15t4 + 2)/60t4.

16. The integrating factor is µ(t) = t2. Therefore, (t2y)′ = cos t, thus

y = t−2

∫
cos t dt = t−2(sin t+ c).

The initial condition y(π) = 0 implies c = 0 and y = (sin t)/t2.

17. The integrating factor is µ(t) = e−2t. Therefore, (e−2ty)′ = 1, thus

y = e2t

∫
1 dt = e2t(t+ c).

The initial condition y(0) = 2 implies c = 2 and y = (t+ 2)e2t.

18. After dividing by t, we see that the integrating factor is µ(t) = t2. Therefore, (t2y)′ =
t sin t, thus

y = t−2

∫
t sin t dt = t−2(sin t− t cos t+ c).

The initial condition y(π/2) = 3 implies c = 3(π2/4)− 1 and y = t−2(3(π2/4)− 1− t cos t+
sin t).

19. After dividing by t3, we see that the integrating factor is µ(t) = t4. Therefore, (t4y)′ =
te−t, thus

y = t−4

∫
te−t dt = t−4(−te−t − e−t + c).

The initial condition y(−1) = 0 implies c = 0 and y = −(1 + t)e−t/t4.

20. After dividing by t, we see that the integrating factor is µ(t) = tet. Therefore, (tety)′ =
tet, thus

y = t−1e−t
∫
tet dt = t−1e−t(tet − et + c) = t−1(t− 1 + ce−t).

The initial condition y(ln 2) = 1 implies c = 2 and y = (t− 1 + 2e−t)/t.
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21.(a)

The solutions appear to diverge from an oscillatory solution. It appears that a0 ≈ −1. For
a > −1, the solutions increase without bound. For a < −1, the solutions decrease without
bound.

(b) The integrating factor is µ(t) = e−t/3. From this, we get the equation y′e−t/3−ye−t/3/3 =
(ye−t/3)′ = 3e−t/3 cos t. After integration, y(t) = (27 sin t − 9 cos t)/10 + cet/3, where (using
the initial condition) c = a+9/10. The solution will be sinusoidal as long as c = 0. Therefore,
a0 = −9/10.

(c) y oscillates for a = a0.

22.(a)

All solutions eventually increase or decrease without bound. The value a0 appears to be
approximately a0 = −3.

(b) The integrating factor is µ(t) = e−t/2. From this, we get the equation y′e−t/2−ye−t/2/2 =
(ye−t/2)′ = e−t/6/2. After integration, the general solution is y(t) = −3et/3+cet/2. The initial
condition y(0) = a implies y = −3et/3 + (a+ 3)et/2. The solution will behave like (a+ 3)et/2.
Therefore, a0 = −3.

(c) y → −∞ for a = a0.
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23.(a)

Solutions eventually increase or decrease without bound, depending on the initial value a0.
It appears that a0 ≈ −1/8.

(b) Dividing the equation by 3, we see that the integrating factor is µ(t) = e−2t/3. From this,
we get the equation y′e−2t/3 − 2ye−2t/3/3 = (ye−2t/3)′ = 2e−πt/2−2t/3/3. After integration,
the general solution is y(t) = e2t/3(−(2/3)e−πt/2−2t/3(1/(π/2 + 2/3)) + c). Using the initial
condition, we get y = ((2 + a(3π + 4))e2t/3 − 2e−πt/2)/(3π + 4). The solution will eventually
behave like (2 + a(3π + 4))e2t/3/(3π + 4). Therefore, a0 = −2/(3π + 4).

(c) y → 0 for a = a0.

24.(a)

It appears that a0 ≈ .4. As t→ 0, solutions increase without bound if y > a0 and decrease
without bound if y < a0.

(b) The integrating factor is µ(t) = tet. After multiplication by µ, we obtain the equation
tety′ + (t + 1)ety = (tety)′ = 2t, so after integration, we get that the general solution is
y = te−t + ce−t/t. The initial condition y(1) = a implies y = te−t + (ea− 1)e−t/t. As t→ 0,
the solution will behave like (ea− 1)e−t/t. From this, we see that a0 = 1/e.

(c) y → 0 as t→ 0 for a = a0.
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25.(a)

It appears that a0 ≈ .4. That is, as t→ 0, for y(−π/2) > a0, solutions will increase without
bound, while solutions will decrease without bound for y(−π/2) < a0.

(b) After dividing by t, we see that the integrating factor is µ(t) = t2. After multiplication
by µ, we obtain the equation t2y′ + 2ty = (t2y)′ = sin t, so after integration, we get that
the general solution is y = − cos t/t2 + c/t2. Using the initial condition, we get the solution
y = − cos t/t2 + π2a/4t2. Since limt→0 cos t = 1, solutions will increase without bound if
a > 4/π2 and decrease without bound if a < 4/π2. Therefore, a0 = 4/π2.

(c) For a0 = 4/π2, y = (1− cos t)/t2 → 1/2 as t→ 0.

26.(a)

It appears that a0 ≈ 2. For y(1) > a0, the solution will increase without bound as t → 0,
while the solution will decrease without bound if y(1) < a0.

(b) After dividing by sin t, we see that the integrating factor is µ(t) = sin t. The equation
becomes (sin t)y′ + (cos t)y = (y sin t)′ = et, and then after integration, we see that the
solution is given by y = (et + c)/ sin t. Applying our initial condition, we see that our
solution is y = (et − e + a sin 1)/ sin t. The solution will increase if 1 − e + a sin 1 > 0 and
decrease if 1− e+ a sin 1 < 0. Therefore, we conclude that a0 = (e− 1)/ sin 1.

(c) If a0 = (e− 1) sin 1, then y = (et − 1)/ sin t. As t→ 0, y → 1.

27. The integrating factor is µ(t) = et/2. Therefore, the general solution is y(t) = (4 cos t +
8 sin t)/5 + ce−t/2. Using our initial condition, we have y(t) = (4 cos t + 8 sin t − 9et/2)/5.
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Differentiating, we obtain

y′ = (−4 sin t+ 8 cos t+ 4.5e−t/2)/5

y′′ = (−4 cos t− 8 sin t− 2.25et/2)/5.

Setting y′ = 0, the first solution is t1 ≈ 1.3643, which gives the location of the first stationary
point. Since y′′(t1) < 0, the first stationary point is a local maximum. The coordinates of
the point are approximately (1.3643, 0.8201).

28. The integrating factor is µ(t) = e4t/3. The general solution of the differential equation is
y(t) = (57 − 12t)/64 + ce−4t/3. Using the initial condition, we have y(t) = (57 − 12t)/64 +
e−4t/3(y0 − 57/64). This function is asymptotic to the linear function g(t) = (57 − 12t)/64
as t→∞. We will get a maximum value for this function when y′ = 0, if y′′ < 0 there. Let
us identify the critical points first: y′(t) = −3/16 + 19e−4t/3/16− 4y0e

−4t/3y0/3; thus setting
y′(t) = 0, the only solution is t1 = 3

4
ln((57 − 64y0)/9). Substituting into the solution, the

respective value at this critical point is y(t1) = 3
4
− 9

64
ln((57− 64y0)/9). Setting this result

equal to zero, we obtain the required initial value y0 = (57− 9e16/3)/64 = −28.237. We can
check that the second derivative is indeed negative at this point, thus y(t) has a maximum
there and it does not cross the t-axis.

29.(a) The integrating factor is µ(t) = et/4. The general solution is y(t) = 12 + (8 cos 2t +
64 sin 2t)/65 + ce−t/4. Applying the initial condition y(0) = 0, we arrive at the specific
solution y(t) = 12 + (8 cos 2t + 64 sin 2t − 788e−t/4)/65. As t → ∞, the solution oscillates
about the line y = 12.

(b) To find the value of t for which the solution first intersects the line y = 12, we need to
solve the equation 8 cos 2t+64 sin 2t−788e−t/4 = 0. The value of t is approximately 10.0658.

30. The integrating factor is µ(t) = e−t. The general solution is y(t) = −1− 3
2

cos t− 3
2

sin t+
cet. In order for the solution to remain finite as t→∞, we need c = 0. Therefore, y0 must
satisfy y0 = −1− 3/2 = −5/2.

31. The integrating factor is µ(t) = e−3t/2 and the general solution of the equation is y(t) =
−2t−4/3−4et+ce3t/2. The initial condition implies y(t) = −2t−4/3−4et+(y0 +16/3)e3t/2.
The solution will behave like (y0+16/3)e3t/2 (for y0 6= −16/3). For y0 > −16/3, the solutions
will increase without bound, while for y0 < −16/3, the solutions will decrease without bound.
If y0 = −16/3, the solution will decrease without bound as the solution will be−2t−4/3−4et.

32. By equation (42), we see that the general solution is given by

y = e−t
2/4

∫ t

0

es
2/4 ds+ ce−t

2/4.

Applying L’Hôpital’s rule,

lim
t→∞

∫ t
0
es

2/4 ds

et2/4
= lim

t→∞

et
2/4

(t/2)et2/4
= 0.

Therefore, y → 0 as t→∞.
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33. The integrating factor is µ(t) = eat. First consider the case a 6= λ. Multiplying the
equation by eat, we have (eaty)′ = be(a−λ)t, which implies

y = e−at
∫
be(a−λ)t = e−at

(
b

a− λ
e(a−λ)t + c

)
=

b

a− λ
e−λt + ce−at.

Since a, λ are assumed to be positive, we see that y → 0 as t → ∞. Now if a = λ above,
then we have (eaty)′ = b, which implies y = e−at(bt+ c) and similarly y → 0 as t→∞.

34. We notice that y(t) = ce−t + 3 approaches 3 as t → ∞. We just need to find a first
order linear differential equation having that solution. We notice that if y(t) = f + g, then
y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 3. Then f ′ + f = 0 and g′ + g = 3.
Therefore, y(t) = ce−t + 3 satisfies the equation y′ + y = 3. That is, the equation y′ + y = 3
has the desired properties.

35. We notice that y(t) = ce−t + 4 − t approaches 4 − t as t → ∞. We just need to find a
first order linear differential equation having that solution. We notice that if y(t) = f + g,
then y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 4 − t. Then f ′ + f = 0 and
g′+g = −1+4− t = 3− t. Therefore, y(t) = ce−t+4− t satisfies the equation y′+y = 3− t.
That is, the equation y′ + y = 3− t has the desired properties.

36. We notice that y(t) = ce−t + 2t− 5 approaches 2t− 5 as t→∞. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + g,
then y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 2t − 5. Then f ′ + f = 0
and g′ + g = 2 + 2t − 5 = 2t − 3. Therefore, y(t) = ce−t + 2t − 5 satisfies the equation
y′ + y = 2t− 3. That is, the equation y′ + y = 2t− 3 has the desired properties.

37. We notice that y(t) = ce−t + 2− t2 approaches 2− t2 as t→∞. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + g,
then y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 2 − t2. Then f ′ + f = 0 and
g′ + g = −2t + 2 − t2 = 2 − 2t − t2. Therefore, y(t) = ce−t + 2 − t2 satisfies the equation
y′ + y = 2− 2t− t2. That is, the equation y′ + y = 2− 2t− t2 has the desired properties.

38. Multiplying the equation by ea(t−t0), we have ea(t−t0)y + aea(t−t0)y = ea(t−t0)g(t), so
(ea(t−t0)y)′ = ea(t−t0)g(t) and then

y(t) =

∫ t

t0

e−a(t−s)g(s) ds+ e−a(t−t0)y0.

Assuming g(t)→ g0 as t→∞, and using L’Hôpital’s rule,

lim
t→∞

∫ t

t0

e−a(t−s)g(s) ds = lim
t→∞

∫ t
t0
easg(s) ds

eat
= lim

t→∞

eatg(t)

aeat
=
g0

a
.

For an example, let g(t) = 2 + e−t. Assume a 6= 1. Let us look for a solution of the form
y = ce−at+Ae−t+B. Substituting a function of this form into the differential equation leads
to the equation (−A + aA)e−t + aB = 2 + e−t, thus −A + aA = 1 and aB = 2. Therefore,
A = 1/(a− 1), B = 2/a and y = ce−at + e−t/(a− 1) + 2/a. The initial condition y(0) = y0

implies y(t) = (y0 − 1/(a− 1)− 2/a)e−at + e−t/(a− 1) + 2/a→ 2/a as t→∞.
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39.(a) The integrating factor is e
∫
p(t) dt. Multiplying by the integrating factor, we have

e
∫
p(t) dty′ + e

∫
p(t) dtp(t)y = 0.

Therefore, (
e
∫
p(t) dty

)′
= 0,

which implies
y(t) = Ae−

∫
p(t) dt

is the general solution.

(b) Let y = A(t)e−
∫
p(t) dt. Then in order for y to satisfy the desired equation, we need

A′(t)e−
∫
p(t) dt − A(t)p(t)e−

∫
p(t) dt + A(t)p(t)e−

∫
p(t) dt = g(t).

That is, we need
A′(t) = g(t)e

∫
p(t) dt.

(c) From equation (iv), we see that

A(t) =

∫ t

0

g(τ)e
∫
p(τ) dτ dτ + C.

Therefore,

y(t) = e−
∫
p(t) dt

(∫ t

0

g(τ)e
∫
p(τ) dτ dτ + C

)
.

40. Here, p(t) = −6 and g(t) = t6e6t. The general solution is given by

y(t) = e−
∫
p(t) dt

(∫ t

0

g(τ)e
∫
p(τ) dτ dτ + C

)
= e

∫
6 dt

(∫ t

0

τ 6e6τe
∫
−6 dτ dτ + C

)
= e6t

(∫ t

0

τ 6 dτ + C

)
= e6t

(
t7

7
+ C

)
.

41. Here, p(t) = 1/t and g(t) = 3 cos 2t. The general solution is given by

y(t) = e−
∫
p(t) dt

(∫ t

0

g(τ)e
∫
p(τ) dτ dτ + C

)
= e−

∫
1
t
dt

(∫ t

0

3 cos 2τ e
∫

1
τ
dτ dτ + C

)
=

1

t

(∫ t

0

3τ cos 2τ dτ + C

)
=

1

t

(
3

4
cos 2t+

3

2
t sin 2t+ C

)
.

42. Here, p(t) = 2/t and g(t) = sin t/t. The general solution is given by

y(t) = e−
∫
p(t) dt

(∫ t

0

g(τ)e
∫
p(τ) dτ dτ + C

)
= e−

∫
2
t
dt

(∫ t

0

sin τ

τ
e
∫

2
τ
dτ dτ + C

)
=

1

t2

(∫ t

0

sin τ

τ
τ 2 dτ + C

)
=

1

t2

(∫ t

0

τ sin τ dτ + C

)
=

1

t2
(sin t− t cos t+ C) .
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43. Here, p(t) = 1/2 and g(t) = 3t2/2. The general solution is given by

y(t) = e−
∫
p(t) dt

(∫ t

0

g(τ)e
∫
p(τ) dτ dτ + C

)
= e−

∫
1
2
dt

(∫ t

0

3τ 2

2
e
∫

1
2
dτ dτ + C

)
= e−t/2

(∫ t

0

3τ 2

2
eτ/2 dτ + C

)
= e−t/2

(
3t2et/2 − 12tet/2 + 24et/2 + C

)
= 3t2 − 12t+ 24 + Ce−t/2.

2.3 Modeling with First Order Equations

1. Let Q(t) be the quantity of dye in the tank. We know that

dQ

dt
= rate in − rate out.

Here, fresh water is flowing in. Therefore, no dye is coming in. The dye is flowing out at the
rate of (Q/150) grams/liters · 3 liters/minute = (Q/50) grams/minute. Therefore,

dQ

dt
= −Q

50
.

The solution of this equation is Q(t) = Ce−t/50. Since Q(0) = 450 grams, C = 450. We
need to find the time T when the amount of dye present is 2% of what it is initially. That
is, we need to find the time T when Q(T ) = 9 grams. Solving the equation 9 = 450e−T/50,
we conclude that T = 50 ln(50) ≈ 195.6 minutes.

2. Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.

Here, water containing γ grams/liter of salt is flowing in at a rate of 4 liters/minute. The salt
is flowing out at the rate of (Q/200) grams/liter · 4 liters/minute = (Q/50) grams/minute.
Therefore,

dQ

dt
= 4γ − Q

50
.

The solution of this equation is Q(t) = 200γ + Ce−t/50. Since Q(0) = 0 grams, C = −200γ.
Therefore, Q(t) = 200γ(1− e−t/50). As t→∞, Q(t)→ 200γ.

3. Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.

Here, water containing 1/4 lb/gallon of salt is flowing in at a rate of 4 gallons/minute. The
salt is flowing out at the rate of (Q/160) lb/gallon · 4 gallons/minute = (Q/40) lb/minute.
Therefore,

dQ

dt
= 1− Q

40
.
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The solution of this equation is Q(t) = 40 + Ce−t/40. Since Q(0) = 0 grams, C = −40.
Therefore, Q(t) = 40(1− e−t/40) for 0 ≤ t ≤ 8 minutes. After 8 minutes, the amount of salt
in the tank is Q(8) = 40(1− e−1/5) ≈ 7.25 lbs. Starting at that time (and resetting the time
variable), the new equation for dQ/dt is given by

dQ

dt
= −3Q

80
,

since fresh water is being added. The solution of this equation is Q(t) = Ce−3t/80. Since we
are now starting with 7.25 lbs of salt, Q(0) = 7.25 = C. Therefore, Q(t) = 7.25e−3t/80. After
8 minutes, Q(8) = 7.25e−3/10 ≈ 5.37 lbs.

4. Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.

Here, water containing 1 lb/gallon of salt is flowing in at a rate of 3 gallons/minute. The
salt is flowing out at the rate of (Q/(200 + t)) lb/gallon · 2 gallons/minute = 2Q/(200 + t)
lb/minute. Therefore,

dQ

dt
= 3− 2Q

200 + t
.

This is a linear equation with integrating factor µ(t) = (200 + t)2. The solution of this
equation is Q(t) = 200 + t + C(200 + t)−2. Since Q(0) = 100 lbs, C = −4, 000, 000.
Therefore, Q(t) = 200 + t− (100(200)2/(200 + t)2). Since the tank has a net gain of 1 gallon
of water every minute, the tank will reach its capacity after 300 minutes. When t = 300, we
see that Q(300) = 484 lbs. Therefore, the concentration of salt when it is on the point of
overflowing is 121/125 lbs/gallon. The concentration of salt is given by Q(t)/(200 + t) (since
t gallons of water are added every t minutes). Using the equation for Q above, we see that
if the tank had infinite capacity, the concentration would approach 1 lb/gal as t→∞.

5.(a) Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.

Here, water containing
1

4

(
1 +

1

2
sin t

)
oz/gallon of salt is flowing in at a rate of 2 gal/minute.

The salt is flowing out at the rate of (Q/100) oz/gallon·2 gallons/minute = (Q/50) oz/minute.
Therefore,

dQ

dt
=

1

2
+

1

4
sin t− Q

50
.

This is a linear equation with integrating factor µ(t) = et/50. The solution of this equation
is Q(t) = (12.5 sin t− 625 cos t+ 63150e−t/50)/2501 + c. The initial condition, Q(0) = 50 oz
implies C = 25. Therefore, Q(t) = 25 + (12.5 sin t− 625 cos t+ 63150e−t/50)/2501 oz.
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(b)

(c) The amount of salt approaches a steady state, which is an oscillation of amplitude
25
√

2501/5002 ≈ 0.24995 about a level of 25 oz.

6.(a) Using the Principle of Conservation of Energy, we know that the kinetic energy of a
particle after it has fallen from a height h is equal to its potential energy at a height t.
Therefore, mv2/2 = mgh. Solving this equation for v, we have v =

√
2gh.

(b) The volumetric outflow rate is (outflow cross-sectional area)× (outflow velocity): αa
√

2gh.
The volume of water in the tank at any instant is:

V (h) =

∫ h

0

A(u) du

where A(u) is the cross-sectional area of the tank at height u. By the chain rule,

dV

dt
=
dV

dh
· dh
dt

= A(h)
dh

dt
.

Therefore,
dV

dt
= A(h)

dh

dt
= −αa

√
2gh.

(c) The cross-sectional area of the cylinder is A(h) = π(1)2 = π. The outflow cross-sectional
area is a = π(.1)2 = 0.01π. From part (a), we take α = 0.6 for water. Then by part (b), we
have

π
dh

dt
= −0.006π

√
2gh.

This is a separable equation with solution h(t) = 0.000018gt2 − 0.006
√

2gh(0)t + h(0).
Setting h(0) = 3 and g = 9.8, we have h(t) = 0.0001764t2 − 0.046t + 3. Then h(t) = 0
implies t ≈ 130.4 seconds.

7.(a) The equation describing the water volume is given by V ′ = G − 0.0005V . Thus the
equilibrium volume is Ve = 2000G. The figure shows some possible sketches for V (t) when
G = 5.
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(b) The differential equation V ′ = G− 0.0005V is linear with integrating factor µ = et/2000.
The general solution we obtain is V (t) = 2000G+ ce−t/2000. If V (0) = 1.01Ve = 2020G, then
c = 20G, and the solution is V = 2000G+ 20Ge−t/2000.

(c) From part (a), 12000 = Ve = 2000G, thus G = 6 gallons per day.

8.(a) The differential equation describing the rate of change of cholesterol is c′ = r(cn−c)+k,
where cn is the body’s natural cholesterol level. Thus c′ = −rc+rcn+k; this linear equation
can be solved by using the integrating factor µ = ert. We obtain that c(t) = k/r+cn+de−rt;
also, c(0) = k/r + cn + d, thus the integration constant is d = c(0)− k/r − cn. The solution
is c(t) = cn + k/r + (c(0)− cn − k/r)e−rt. If c(0) = 150, r = 0.10, and cn = 100, we obtain
that c(t) = 100 + 10k + (50− 10k)e−t/10. Then c(10) = 100 + 10k + (50− 10k)e−1.

(b) The limit of c(t) as t→∞ is cn + k/r = 100 + 25/0.1 = 350.

(c) We need that cn + k/r = 180, thus k = 80r = 8.

9.(a) The differential equation for the amount of poison in the keg is given by Q′ = 5 · 0.5−
0.5 ·Q/500 = 5/2−Q/1000. Then using the initial condition Q(0) = 0 and the integrating
factor µ = et/1000 we obtain Q(t) = 2500− 2500e−t/1000.

(b) To reach the concentration 0.005 g/L, the amount Q(T ) = 2500(1 − eT/1000) = 2.5 g.
Thus T = 1000 ln(1000/999) ≈ 1 minute.

(c) The estimate is 1 minute, because to pour in 2.5 grams of poison without removing the
mixture, we have to pour in a half liter of the liquid containing the poison. This takes 1
minute.

10.(a) The equation for S is
dS

dt
= rS

with an initial condition S(0) = S0. The solution of the equation is S(t) = S0e
rt. We want

to find the time T such that S(T ) = 2S0. Our equation becomes 2S0 = S0e
rT . Dividing

by S0 and applying the logarithmic function to our equation, we have rT = ln(2). That is,
T = ln(2)/r.

(b) If r = .08, then T = ln(2)/.08 ≈ 8.66 years.

(c) By part (a), we also know that r = ln(2)/T where T is the doubling time. If we want
the investment to double in T = 8 years, then we need r = ln(2)/8 ≈ 8.66%.
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(d) For part (b), we get 72/8 = 9 years. For part (c), we get 72/8 = 9%. ln(2) ≈ 0.693, or
69.3 for the percentage calculation. A possible reason for choosing 72 is that it has several
divisors.

11.(a) The equation for S is given by

dS

dt
= rS + k.

This is a linear equation with solution S(t) =
k

r
(ert − 1).

(b) Using the function in part (a), we need to find k so that S(42) = 1, 000, 000 assuming
r = 0.055. That is, we need to solve

1, 000, 000 =
k

0.055
(e0.055(42) − 1).

The solution of this equation is k ≈ $6061.

(c) Now we assume that k = 4000 and want to find r. Our equation becomes

1, 000, 000 =
4000

r
(e42r − 1).

The solution of this equation is approximately 6.92%.

12.(a) Let S(t) be the balance due on the loan at time t. To determine the maximum amount
the buyer can afford to borrow, we will assume that the buyer will pay $800 per month. Then

dS

dt
= 0.09S − 12(800).

The solution is given by equation (18), S(t) = S0e
0.09t − 106, 667(e0.09t − 1). If the term of

the mortgage is 20 years, then S(20) = 0. Therefore, 0 = S0e
0.09(20) − 106, 667(e0.09(20) − 1)

which implies S0 = $89, 034.79.

(b) Since the homeowner pays $800 per month for 20 years, he ends up paying a total of
$192, 000 for the house. Since the house loan was $89, 034.79, the rest of the amount was
interest payments. Therefore, the amount of interest was approximately $102, 965.21.

13.(a) Let S(t) be the balance due on the loan at time t. Taking into account that t is
measured in years, we rewrite the monthly payment as 800(1+ t/10) where t is now in years.
The equation for S is given by

dS

dt
= 0.09S − 12(800)(1 + t/10).

This is a linear equation. Its solution is S(t) = 225185.23 + 10666.67t + ce0.09t. The initial
condition S(0) = 100, 000 implies c = −125185.23. Therefore, the particular solution is
S(t) = 225185.23 + 10666.67t− 125185.23e0.09t. To find when the loan will be paid, we just
need to solve S(t) = 0. Solving this equation, we conclude that the loan will be paid off in
11.28 years (135.36 months).
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(b) From part (a), we know the general solution is given by S(t) = 225185.23 + 10666.67t+
ce0.09t. Now we want to find c such that S(20) = 0. The solution of this equation is
c = −72486.67. Therefore, the solution of the equation will be S(t) = 225185.23+10666.67−
72846.67e0.09t. Therefore, S(0) = 225185.23− 72486.67 = 152, 698.56.

14.(a) If S0 is the initial balance, then the balance after one month is

S1 = initial balance + interest - monthly payment = S0 + rS0 − k = (1 + r)S0 − k.

Similarly,
S2 = S1 + rS1 − k = (1 + r)S1 − k.

In general,
Sn = (1 + r)Sn−1 − k.

(b) R = 1 + r gives Sn = RSn−1 − k. Therefore,

S1 = RS0 − k
S2 = RS1 − k = R(RS0 − k)− k = R2S0 − (R + 1)k

S3 = RS2 − k = R(R2S0 − (R + 1)k)− k = R3S0 − (R2 +R + 1)k.

(c) First we check the base case, n = 1. We see that

S1 = RS0 − k = RS0 −
(
R− 1

R− 1

)
k,

which implies that that the condition is satisfied for n = 1. Then we assume that

Sn = RnS0 −
Rn − 1

R− 1
k

to show that

Sn+1 = Rn+1S0 −
Rn+1 − 1

R− 1
k.

We see that

Sn+1 = RSn − k

= R

[
RnS0 −

Rn − 1

R− 1
k

]
− k

= Rn+1S0 −
(
Rn+1 −R
R− 1

)
k − k

= Rn+1S0 −
(
Rn+1 −R
R− 1

)
k −

(
R− 1

R− 1

)
k

= Rn+1S0 −
(
Rn+1 −R +R− 1

R− 1

)
k

= Rn+1S0 −
(
Rn+1 − 1

R− 1

)
k.
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(d) We are assuming that S0 = 20, 000 and r = 0.08/12. We need to find k such that S48 = 0.
Our equation becomes

S48 = R48S0 −
(
R48 − 1

R− 1

)
k = 0.

Therefore, (
(1 + 0.08/12)48 − 1

0.08/12

)
k =

(
1 +

0.08

12

)48

· 20, 000,

which implies k ≈ 488.26, which is very close to the result in Example 2.

15.(a) The general solution is Q(t) = Q0e
−rt. If the half-life is 5730, then Q0/2 = Q0e

−5730r

implies −5730r = ln(1/2). Therefore, r = 1.2097× 10−4 per year.

(b) Therefore, Q(t) = Q0e
−1.2097×10−4t.

(c) Given that Q(T ) = Q0/2, we have the equation 1/2 = e−1.2097×10−4T . Solving for T , we
have T = 5, 729.91 years.

16. Let P (t) be the population of mosquitoes at any time t, measured in days. Then

dP

dt
= rP − 30, 000.

The solution of this linear equation is P (t) = P0e
rt − 30,000

r
(ert − 1). In the absence of

predators, the equation is dP1/dt = rP1. The solution of this equation is P1(t) = P0e
rt.

Since the population doubles after 7 days, we see that 2P0 = P0e
7r. Therefore, r = ln(2)/7 =

0.099 per day. Therefore, the population of mosquitoes at any time t is given by P (t) =
800, 000e0.099t − 303, 030(e0.099t − 1).

17.(a) The solution of this separable equation is given by y(t) = exp(2/10+t/10−2 cos t/10).
The doubling-time is found by solving the equation 2 = exp(2/10 + t/10− 2 cos t/10). The
solution of this equation is given by τ ≈ 2.9632.

(b) The differential equation will be dy/dt = y/10 with solution y(t) = y(0)et/10. The
doubling time is found by setting y(t) = 2y(0). In this case, the doubling time is τ ≈ 6.9315.

(c) Consider the differential equation dy/dt = (0.5+sin(2πt))y/5. This equation is separable
with solution y(t) = exp((1 + πt − cos 2πt)/10π). The doubling time is found by setting
y(t) = 2. The solution is given by τ ≈ 6.3804.

(d)
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18.(a)

(b) Based on the graph, we estimate that yc ≈ 0.83.

(c) We sketch the graphs below for k = 1/10 and k = 3/10, respectively. Based on these
graphs, we estimate that yc(1/10) ≈ 0.41 and yc(3/10) ≈ 1.24.

(d) From our results from above, we conclude that yc is a linear function of k.

19. Let T (t) be the temperature of the coffee at time t. The governing equation is given by

dT

dt
= −k(T − 70).

This is a linear equation with solution T (t) = 70 + ce−kt. The initial condition T (0) = 200
implies c = 130. Therefore, T (t) = 70 + 130e−kt. Using the fact that T (1) = 190, we see
that 190 = 70 + 130e−k which implies k = − ln(12/13) ≈ 0.08 per minute. To find when the
temperature reaches 150 degrees, we just need to solve T (t) = 70 + 130eln(12/13)t = 150. The
solution of this equation is t = ln(13/8)/ ln(13/12) ≈ 6.07 minutes.

20.(a) The solution of this separable equation is given by

u3 =
u3

0

3αu3
0t+ 1

.

Since u0 = 2000, the specific solution is

u(t) =
2000

(6t/125 + 1)1/3
.
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(b)

(c) We look for τ so that u(τ) = 600. The solution of this equation is t ≈ 750.77 seconds.

21.(a) The differential equation for Q is

dQ

dt
= kr + P − Q(t)

V
r.

Therefore,

V
dc

dt
= kr + P − c(t)r.

The solution of this equation is c(t) = k+P/r+(c0−k−P/r)e−rt/V . Therefore limt→∞ c(t) =
k + P/r.

(b) In this case, we will have c(t) = c0e
−rt/V . The reduction times are T50 = ln(2)V/r and

T10 = ln(10)V/r.

(c) Using the results from part (b), we have: Superior, T = 430.85 years; Michigan, T = 71.4
years; Erie, T = 6.05 years; Ontario, T = 17.6 years.

22.(a) Assuming no air resistance, we have dv/dt = −9.8. Therefore, v(t) = −9.8t + v0 =
−9.8t+24 and its position at time t is given by s(t) = −4.9t2+24t+26. When the ball reaches
its max height, the velocity will be zero. We see that v(t) = 0 implies t = 24/9.8 ≈ 2.45
seconds. When t = 2.45, we see that s(2.45) ≈ 55.4 meters.

(b) Solving s(t) = −4.9t2 + 24t+ 26 = 0, we see that t = 5.81 seconds.

(c)
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23.(a) We have mdv/dt = −v/30 − mg. Given the conditions from problem 22, we see
that the solution is given by v(t) = −73.5 + 97.5e−t/7.5. The ball will reach its maximum
height when v(t) = 0. This occurs at t = 2.12 seconds. The height of the ball is given
by s(t) = 757.25 − 73.5t − 731.25e−t/7.5. When t = 2.12 seconds, we have s(2.12) = 50.24
meters, the maximum height.

(b) The ball will hit the ground when s(t) = 0. This occurs when t = 5.57 seconds.

(c)

24.(a) The equation for the upward motion is mdv/dt = −µv2 − mg where µ = 1/1325.
Using the data from exercise 22, and the fact that this equation is separable, we see its
solution is given by v(t) = 56.976 tan(0.399− 0.172t). Setting v(t) = 0, we see the ball will
reach its maximum height at t = 2.32 seconds. Integrating v(t), we see the position at time
t is given by s(t) = 331.256 ln(cos(0.399 − 0.172t)) + 53.1. Therefore, the maximum height
is given by s(2.32) = 53.1 meters.

(b) The differential equation for the downward motion is mdv/dt = µv2−mg. The solution
of this equation is given by v(t) = 56.98(1−e0.344t)/(1+e0.344t). Integrating v(t), we see that
the position is given by s(t) = 56.98t − 331.279 ln(1 + e0.344t) + 282.725. Setting s(t) = 0,
we see that the ball will spend t = 3.38 seconds going downward before hitting the ground.
Combining this time with the amount of time the ball spends going upward, 2.32 seconds,
we conclude that the ball will hit the ground 5.7 seconds after being thrown upward.

(c)
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25.(a) Measure the positive direction of motion downward. Then the equation of motion is
given by

m
dv

dt
=

{
−0.75v +mg 0 < t < 10
−12v +mg t > 10.

For the first 10 seconds, the equation becomes dv/dt = −v/7.5 + 32 which has solution
v(t) = 240(1− e−t/7.5). Therefore, v(10) = 176.7 ft/s.

(b) Integrating the velocity function from part (a), we see that the height of the skydiver at
time t (0 < t < 10) is given by s(t) = 240t + 1800e−t/7.5 − 1800. Therefore, s(10) = 1074.5
feet.

(c) After the parachute opens, the equation for v is given by dv/dt = −32v/15 + 32 (as
discussed in part (a)). We will reset t to zero. The solution of this differential equation is
given by v(t) = 15 + 161.7e−32t/15. As t→∞, v(t)→ 15. Therefore, the limiting velocity is
vl = 15 feet/second.

(d) Integrating the velocity function from part (c), we see that the height of the sky diver
after falling t seconds with his parachute open is given by s(t) = 15t− 75.8e−32t/15 + 1150.3.
To find how long the skydiver is in the air after the parachute opens, we find T such that
s(T ) = 0. Solving this equation, we have T = 256.6 seconds.

(e)

26.(a) The equation of motion is given by dv/dx = −µv.

(b) The speed of the sled satisfies ln(v/v0) = −µx. Therefore, µ must satisfy ln(16/160) =
−2200µ. Therefore, µ = ln(10)/2200 ft−1 ≈ 5.5262 mi−1.

(c) The solution of dv/dt = −µv2 can be expressed as 1/v − 1/v0 = µt. Using the fact that
1 mi/hour ≈ 1.467 feet/second, the elapsed time is t ≈ 36.64 seconds.

27.(a) Measure the positive direction of motion upward. The equation of motion is given
by mdv/dt = −kv − mg. The solution of this equation is given by v(t) = −mg/k +
(v0 + mg/k)e−kt/m. Solving v(t) = 0, we see that the mass will reach its maximum height
tm = (m/k) ln[(mg+kv0)/mg] seconds after being projected upward. Integrating the velocity
equation, we see that the position of the mass at this time will be given by the position
equation

s(t) = −mgt/k +

[(m
k

)2

g +
mv0

k

]
(1− e−kt/m).
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Therefore, the maximum height reached is

xm = s(tm) =
mv0

k
− g

(m
k

)2

ln

[
mg + kv0

mg

]
.

(b) These formulas for tm and xm come from the fact that for δ << 1, ln(1 + δ) = δ− 1
2
δ2 +

1
3
δ3 − 1

4
δ4 + . . ., which is just Taylor’s formula.

(c) Consider the result for tm in part (b). Multiplying the equation by g
v0

, we have

tmg

v0

=

[
1− 1

2

kv0

mg
+

1

3

(
kv0

mg

)2

− . . .

]
.

The units on the left must match the units on the right. Since the units for tmg/v0 =
(s ·m/s2)/(m/s), the units cancel. As a result, we can conclude that kv0/mg is dimensionless.

28.(a) The equation of motion is given by mdv/dt = −kv−mg. The solution of this equation
is given by v(t) = −mg/k + (v0 +mg/k)e−kt/m.

(b) Applying L’Hôpital’s rule, as k → 0, we have

lim
k→0
−mg/k + (v0 +mg/k)e−kt/m = v0 − gt.

(c)
lim
m→0
−mg/k + (v0 +mg/k)e−kt/m = 0.

29.(a) The equation of motion is given by

m
dv

dt
= −6πµav + ρ′

4

3
πa3g − ρ4

3
πa3g.

We can rewrite this equation as

v′ +
6πµa

m
v =

4

3

πa3g

m
(ρ′ − ρ).

Multiplying by the integrating factor e6πµat/m, we have

(e6πµat/mv)′ =
4

3

πa3g

m
(ρ′ − ρ)e6πµat/m.

Integrating this equation, we have

v = e−6πµat/m

[
2a2g(ρ′ − ρ)

9µ
e6πµat/m + C

]
=

2a2g(ρ′ − ρ)

9µ
+ Ce−6πµat/m.

Therefore, we conclude that the limiting velocity is vL = (2a2g(ρ′ − ρ))/9µ.

(b) By the equation above, we see that the force exerted on the droplet of oil is given by

Ee = −6πµav + ρ′
4

3
πa3g − ρ4

3
πa3g.
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If v = 0, then solving the above equation for e, we have

e =
4πa3g(ρ′ − ρ)

3E
.

30.(a) The equation is given by mdv/dt = −kv − mg. The solution of this equation is
v(t) = −(mg/k)(1 − e−kt/m). Integrating, we see that the position function is given by
x(t) = −(mg/k)t+ (m/k)2g(1− e−kt/m) + 25. First, by setting x(t) = 0, we see that the ball
will hit the ground t = 2.78 seconds after it is dropped. Then v(2.78) = 14.72 m/second will
be the speed when the mass hits the ground.

(b) In terms of displacement, we have mvdv/dx = −kv + mg. This equation comes from
applying the chain rule: dv/dt = dv/dx · dx/dt = vdv/dx. The solution of this differential
equation is given by

x(v) = −mv
k
− m2g

k2
ln

∣∣∣∣mg − kvmg

∣∣∣∣ .
Plugging in the given values for k,m, g, we have x(v) = −2v − 39.2 ln |0.051v − 1|. If v = 8,
then x(8) = 4.55 meters.

(c) Using the equation for x(v) above, we set x(v) = 25, v = 8, m = 0.4, g = 9.8. Then
solving for k, we have k = 0.49.

31.(a) The equation of motion is given by mdv/dt = −GMm/(R + x)2. By the chain rule,

m
dv

dx
· dx
dt

= −G Mm

(R + x)2
.

Therefore,

mv
dv

dx
= −G Mm

(R + x)2
.

This equation is separable with solution v2 = 2GM(R + x)−1 + 2gR − 2GM/R. Here we
have used the initial condition v0 =

√
2gR. From physics, we know that g = GM/R2. Using

this substitution, we conclude that v(x) =
√

2g R/
√
R + x.

(b) By part (a), we know that dx/dt = v(x) =
√

2g R/
√
R + x. We want to solve this

differential equation with the initial condition x(0) = 0. This equation is separable with
solution x(t) = [3

2
(
√

2gRt + 2
3
R3/2)]2/3 − R. We want to find the time T such that x(T ) =

240, 000. Solving this equation, we conclude that T ≈ 50.6 hours.

32.(a) dv/dt = 0 implies v is constant, and so using the initial condition we see that v =
u cosA. dw/dt = −g implies w = −gt+c, but also by the initial condition w = −gt+u sinA.

(b) The equation dx/dt = v = u cosA along with the initial condition implies x(t) =
(u cosA)t. The equation dy/dt = w = −gt+ u sinA along with the initial condition implies
y(t) = −gt2/2 + (u sinA)t+ h.

(c) Below we have plotted the trajectory of the ball in the cases π/6, π/5, π/4, and π/3,
respectively.
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(d) First, let T be the time it takes for the ball to travel L feet horizontally. Using the
equation for x, we know that x(T ) = (u cosA)T = L implies T = L/u cosA. Then, when
the ball reaches this wall, we need the height of the ball to be at least H feet. That is, we
need y(T ) ≥ H. Now y(t) = −16t2 + (u sinA)t+ 3 implies we need

y(T ) = −16
L2

u2 cos2A
+ L tanA+ 3 ≥ H.

(e) If L = 350 and H = 10, then our inequality becomes

−1, 960, 000

u2 cos2A
+ 350 tanA+ 3 ≥ 10.

Now if u = 110, then our inequality turns into

− 162

cos2A
+ 350 tanA ≥ 7.

Solving this inequality, we conclude that 0.63 rad ≤ A ≤ 0.96 rad.

(f) We rewrite the inequality in part (e) as

cos2A(350 tanA− 7) ≥ 1, 960, 000

u2
.

In order to determine the minimum value necessary, we will maximize the function on the
left side. Letting f(A) = cos2A(350 tanA − 7), we see that f ′(A) = 350 cos 2A + 7 sin 2A.
Therefore, f ′(A) = 0 implies tan 2A = −50. For 0 < A < π/2, we see that this occurs at
A = 0.7954 radians. Substituting this value for A into the inequality above, we conclude that
u2 ≥ 11426.24. Therefore, the minimum velocity necessary is 106.89 ft/s and the optimal
angle necessary is 0.7954 radians.

33.(a) The initial conditions are v(0) = u cosA and w(0) = u sinA. Therefore, the solutions
of the two equations are v(t) = (u cosA)e−rt and w(t) = −g/r + (u sinA+ g/r)e−rt.

(b) Now x(t) =
∫
v(t) dt = u

r
(cosA)(1− e−rt), and

y(t) =

∫
w(t) dt = −gt

r
+
(u
r

sinA+
g

r2

)
(1− e−rt) + h.

(c) Below we have plotted the trajectory of the ball in the cases π/6, π/5, π/4, and π/3,
respectively.
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(d) Let T be the time it takes the ball to go 350 feet horizontally. Then from above,
we see that e−T/5 = 1 − 70/u cosA. At the same time, the height of the ball is given by
y(T ) = −160T+(800+5u sinA)70/u cosA+3. Therefore, u and A must satisfy the inequality

800 ln

(
1− 70

u cosA

)
+ 350 tanA+

56000

u cosA
+ 3 ≥ 10.

Using graphical techniques, we identify the minimum velocity necessary is 145.3 ft/s and the
optimal angle necessary is 0.644 radians.

34.(a) Solving equation (i), we have y′(x) = [(k2 − y)/y]1/2. The positive answer is chosen
since y is an increasing function of x.

(b) y = k2 sin2 t, thus dy/dt = 2k2 sin t cos t. Substituting this into the equation in part (a),
we have

2k2 sin t cos t
dt

dx
=

cos t

sin t
.

Therefore, 2k2 sin2 tdt = dx.

(c) Letting θ = 2t, we have k2 sin2(θ/2)dθ = dx. Integrating both sides, we have x(θ) =
k2(θ−sin θ)/2. Further, using the fact that y = k2 sin2 t, we conclude that y(θ) = k2 sin2(θ/2) =
k2(1− cos(θ))/2.

(d) From part (c), we see that y/x = (1− cos θ)/(θ− sin θ). If x = 1 and y = 2, the solution
of the equation is θ ≈ 1.401. Substituting that value of θ into either of the equations in part
(c), we conclude that k ≈ 2.193.

2.4 Differences between Linear and Nonlinear Equa-

tions

1. Rewriting the equation as

y′ +
ln t

t− 3
y =

2t

t− 3

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0 < t < 3.
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2. Rewriting the equation as

y′ +
1

t(t− 4)
y = 0

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0 < t < 4.

3. By Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
π/2 < t < 3π/2.

4. Rewriting the equation as

y′ +
2t

4− t2
y =

3t2

4− t2

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
−∞ < t < −2.

5. Rewriting the equation as

y′ +
2t

4− t2
y =

3t2

4− t2

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
−2 < t < 2.

6. Rewriting the equation as

y′ +
1

ln t
y =

cot t

ln t

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
1 < t < π.

7. Using the fact that

f =
t− y

2t+ 5y
and fy = − 7t

(2t+ 5y)2
,

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as 2t+ 5y 6= 0.

8. Using the fact that

f = (1− t2 − y2)1/2 and fy = − y

(1− t2 − y2)1/2
,

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as t2 + y2 < 1.

9. Using the fact that

f =
ln |ty|

1− t2 + y2
and fy =

1− t2 + y2 − 2y2 ln |ty|
y(1− t2 + y2)2

,

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as y, t 6= 0 and 1−t2+y2 6= 0.

10. Using the fact that

f = (t2 + y2)3/2 and fy = 3y(t2 + y2)1/2,
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we see that the hypotheses of Theorem 2.4.2 are satisfied for all t and y values.

11. Using the fact that

f =
1 + t2

3y − y2
and fy = −(1 + t2)(3− 2y)

(3y − y2)2
,

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as y 6= 0, 3.

12. Using the fact that

f =
(cot t)y

1 + y
and fy =

1

(1 + y)2
,

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as y 6= −1, t 6= nπ for
n = 0, 1, 2 . . ..

13.(a) We know that the family of solutions given by equation (19) are solutions of this
initial-value problem. We want to determine if one of these passes through the point (1, 1).
That is, we want to find t0 > 0 such that if y = [2

3
(t− t0)]3/2, then (t, y) = (1, 1). That is, we

need to find t0 > 0 such that 1 = 2
3
(1− t0). But, the solution of this equation is t0 = −1/2.

Therefore the solution does not pass through (1, 1).

(b) From the analysis in part (a), we find a solution passing through (2, 1) by solving 1 =
2
3
(2− t0). We obtain t0 = 1/2, and the solution is y = [2

3
(t− 1/2)]3/2.

(c) Since we need y0 = ±[2
3
(2− t0)]3/2, we must have |y0| ≤ (4

3
)3/2.

14.(a) First, it is clear that y1(2) = −1 = y2(2). Further,

y′1 = −1 =
−t+ (t2 + 4(1− t))1/2

2
=
−t+ [(t− 2)2]1/2

2

and

y′2 =
−t+ (t2 − t2)1/2

2
.

The function y1 is a solution for t ≥ 2. The function y2 is a solution for all t.

(b) Theorem 2.4.2 requires that f and ∂f/∂y be continuous in a rectangle about the point
(t0, y0) = (2,−1). Since fy is not continuous if t < 2 and y < −1, the hypotheses of Theorem
2.4.2 are not satisfied.

(c) If y = ct+ c2, then

y′ = c =
−t+ [(t+ 2c)2]1/2

2
=
−t+ (t2 + 4ct+ 4c2)1/2

2
.

Therefore, y satisfies the equation for t ≥ −2c.

15. The equation is separable, ydy = −4tdt. Integrating both sides, we conclude that
y2/2 = −2t2 + y2

0/2 for y0 6= 0. The solution is defined for y2
0 − 4t2 ≥ 0.

16. The equation is separable and can be written as dy/y2 = 2tdt. Integrating both sides,
we arrive at the solution y = y0/(1− y0t

2). For y0 > 0, solutions exist as long as t2 < 1/y0.
For y0 ≤ 0, solutions exist for all t.
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17. The equation is separable and can be written as dy/y3 = −dt. Integrating both sides,
we arrive at the solution y = y0/(

√
2ty2

0 + 1). Solutions exist as long as 2y0t + 1 > 0. If
y0 6= 0, the solution exists for t > − 1

2y20
and if y0 = 0, y(t) = 0 for all t.

18. The equation is separable and can be written as ydy = t2dt/(1 + t3). Integrating both
sides, we arrive at the solution y = ±(2

3
ln |1 + t3|+ y2

0)1/2. The sign of the solution depends
on the sign of the initial data y0. Solutions exist as long as 2

3
ln |1 + t3|+ y2

0 ≥ 0; that is, as

long as y2
0 ≥ −2

3
ln |1 + t3|. We can rewrite this inequality as |1 + t3| ≥ e−3y20/2. In order for

the solution to exist, we need t > −1 (since the term t2/(1+ t3) has a singularity at t = −1).
Therefore, we can conclude that our solution will exist for [e−3y20/2 − 1]1/3 < t <∞.

19.

If y0 > 0, then y → 3. If y0 = 0, then y = 0. If y0 < 0, then y → −∞.

20.

If y0 ≥ 0, then y → 0. If y0 < 0, then y → −∞.
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21.

If y0 > 9, then y →∞. If y0 ≤ 9, then y → 0.

22.

If y0 < yc ≈ −0.019, then y → −∞. Otherwise, y is asymptotic to
√
t− 1.

23.(a) φ(t) = e2t, thus φ′ = 2e2t. Therefore, φ′ − 2φ = 0. Since (cφ)′ = cφ′, we see that
(cφ)′ − 2cφ = 0. Therefore, cφ is also a solution.

(b) φ(t) = 1/t, thus φ′ = −1/t2. Therefore, φ′ + φ2 = 0. If y = c/t, then y′ = −c/t2.
Therefore, y′ + y2 = −c/t2 + c2/t2 = 0 if and only if c2 − c = 0; that is, if c = 0 or c = 1.

24. If y = φ satisfies φ′ + p(t)φ = 0, then y = cφ satisfies y′ + p(t)y = cφ′ + cp(t)φ =
c(φ′ + p(t)φ) = 0.

25. Let y = y1 + y2, then y′ + p(t)y = y′1 + y′2 + p(t)(y1 + y2) = y′1 + p(t)y1 + y′2 + p(t)y2 = 0.

26.(a)

y =
1

µ(t)

[∫ t

t0

µ(s)g(s) ds+ c

]
=

1

µ(t)

∫ t

t0

µ(s)g(s) ds+
c

µ(t)
.

Therefore, y1 = 1/µ(t) and y2 = 1
µ(t)

∫ t
t0
µ(s)g(s) ds.

(b) For y1 = 1/µ(t) = e−
∫
p(t) dt, we have

y′1 + p(t)y1 = −p(t)e−
∫
p(t) dt + p(t)e−

∫
p(t) dt = 0.
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(c) For

y2 =
1

µ(t)

∫ t

t0

µ(s)g(s) ds = e−
∫
p(t) dt

∫ t

t0

e
∫
p(s) dsg(s) ds,

we have

y′2 + p(t)y2 = −p(t)e−
∫
p(t) dt

∫ t

t0

e
∫
p(s) dsg(s) ds+ e−

∫
p(t) dte

∫
p(t) dtg(t)

+ p(t)e−
∫
p(t) dt

∫ t

t0

e
∫
p(s) dsg(s) ds = g(t).

27. The solution of the initial value problem y′ + 2y = 1 is y = 1/2 + ce−2t. For y(0) = 0,
we see that c = −1/2. Therefore, y(t) = 1

2
(1− e−2t) for 0 ≤ t ≤ 1. Then y(1) = 1

2
(1− e−2).

Next, the solution of y′+2y = 0 is given by y = ce−2t. The initial condition y(1) = 1
2
(1−e−2)

implies ce−2 = 1
2
(1−e−2). Therefore, c = 1

2
(e2−1) and we conclude that y(t) = 1

2
(e2−1)e−2t

for t > 1.

28. The solution of y′ + 2y = 0 with y(0) = 1 is given by y(t) = e−2t for 0 ≤ t ≤ 1. Then
y(1) = e−2. Then, for t > 1, the solution of the equation y′ + y = 0 is y = ce−t. Since we
want y(1) = e−2, we need ce−1 = e−2. Therefore, c = e−1. Therefore, y(t) = e−1e−t = e−1−t

for t > 1.

29.(a) Multiplying the equation by e
∫ t
t0
p(s) ds

, we have(
e
∫ t
t0
p(s) ds

y
)′

= e
∫ t
t0
p(s) ds

g(t).

Integrating this we obtain

e
∫ t
t0
p(s) ds

y(t) = y0 +

∫ t

t0

e
∫ s
t0
p(r) dr

g(s) ds,

which implies

y(t) = y0e
−

∫ t
t0
p(s) ds

+

∫ t

t0

e−
∫ t
s p(r) drg(s) ds.

(b) Assume p(t) ≥ p0 > 0 for all t ≥ t0 and |g(t)| ≤M for all t ≥ t0. Therefore,∫ t

t0

p(s) ds ≥
∫ t

t0

p0 ds = p0(t− t0),

which implies

e
−

∫ t
t0
p(s) ds ≤ e

−
∫ t
t0
p0 ds = e−p0(t−t0) ≤ 1 for t ≥ t0.

Also, ∫ t

t0

e−
∫ t
s p(r) drg(s) ds ≤

∫ t

t0

e−
∫ t
s p(r) dr|g(s)| ds ≤

∫ t

t0

e−p0(t−s)M ds

≤ M
e−p0(t−s)

p0

∣∣∣∣t
t0

= M

[
1

p0

− e−p0(t−t0)

p0

]
≤ M

p0

.
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(c) Let p(t) = 2t+ 1 ≥ 1 for all t ≥ 0 and let g(t) = e−t
2
. Therefore, |g(t)| ≤ 1 for all t ≥ 0.

By the answer to part (a),

y(t) = e−
∫ t
0 (2s+1) ds +

∫ t

0

e−
∫ t
s (2r+1) dre−s

2

ds = e−(t2+t) + e−t
2−t
∫ t

0

es ds = e−t
2

.

We see that y satisfies the property that y is bounded for all time t ≥ 0.

2.5 Autonomous Equations and Population Dynamics

1.(a) The equation is separable. Using partial fractions, it can be written as(
1

y
+

1/K

1− y/K

)
dy = rdt.

Integrating both sides and using the initial condition y0 = K/3, we know the solution y
satisfies

ln

∣∣∣∣ y

1− y/K

∣∣∣∣ = rt+ ln

∣∣∣∣K2
∣∣∣∣ .

To find the time τ such that y = 2y0 = 2K/3, we substitute y = 2K/3 and t = τ into the
equation above. Using the properties of logarithmic functions, we conclude that τ = (ln 4)/r.
If r = 0.025, then τ ≈ 55.452 years.

(b) Using the analysis from part (a), we know the general solution satisfies

ln

∣∣∣∣ y

1− y/K

∣∣∣∣ = rt+ c.

The initial condition y0 = αK implies c = ln |αK/(1− α)|. Therefore,

ln

∣∣∣∣ y

1− y/K

∣∣∣∣ = rt+ ln

∣∣∣∣ αK1− α

∣∣∣∣ .
In order to find the time T at which y(T ) = βK, we use the equation above. We conclude
that

T = (1/r) ln |β(1− α)/α(1− β)|.
When α = 0.1, β = 0.9, r = 0.025, τ ≈ 175.78 years.

2.(a) Below we sketch the graph of f for r = 1 = K.
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The critical points occur at y∗ = 0, K. Since f ′(0) > 0, y∗ = 0 is unstable. Since f ′(K) < 0,
y∗ = K is asymptotically stable.

(b) We calculate y′′. Using the chain rule, we see that

y′′ = ry′
[
ln

(
K

y

)
− 1

]
.

We see that y′′ = 0 when y′ = 0 (meaning y = 0, K) or when ln(K/y) − 1 = 0, meaning
y = K/e. Looking at the sign of y′′ in the intervals 0 < y < K/e and K/e < y < K, we
conclude that y is concave up in the interval 0 < y < K/e and concave down in the interval
K/e < y < K.

3.(a) Using the substitution u = ln(y/K) and differentiating both sides with respect to t,
we conclude that u′ = y′/y. Substitution into the Gompertz equation yields u′ = −ru. The
solution of this equation is u = u0e

−rt. Therefore,

y

K
= exp[ln(y0/K)e−rt].

(b) For K = 80.5× 106, y0/K = 0.25 and r = 0.71, we conclude that y(2) ≈ 57.58× 106.

(c) Solving the equation in part (a) for t, we see that

t = −1

r
ln

[
ln(y/K)

ln(y0/K)

]
.

Plugging in the given values, we conclude that τ ≈ 2.21 years.

4.(a) The surface area of the cone is given by

S = πa
√
h2 + a2 + πa2 = πa2(

√
(h/a)2 + 1 + 1) =

πa2h

3
· 3

h

(√
(h/a)2 + 1 + 1

)
= cπ

(
πa2h

3

)2/3

·
(

3a

πh

)2/3

= cπ

(
3a

πh

)2/3

V 2/3.

Therefore, if the rate of evaporation is proportional to the surface area, then rate out =
απ(3a/πh)2/3V 2/3. Thus

dV

dt
= rate in− rate out = k − απ

(
3a

πh

)2/3 (π
3
a2h
)2/3

= k − απ
(

3a

πh

)2/3

V 2/3.

(b) The equilibrium volume can be found by setting dV/dt = 0. We see that the equilibrium
volume is

V =

(
k

απ

)3/2(
πh

3a

)
.

To find the equilibrium height, we use the fact that the height and radius of the conical
pond maintain a constant ratio. Therefore, if he, ae represent the equilibrium values for the
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h and a, we must have he/ae = h/a. Further, we notice that the equilibrium volume can be
written as

V =
π

3

(
k

απ

)(
k

απ

)1/2(
h

a

)
=
π

3
a2
eh

2
e,

where he = (k/απ)1/2(h/a) and ae = (kαπ)1/2. f ′(V ) = −2
3
απ(3a/πh)2/3V −1/3 < 0, thus

the equilibrium is asymptotically stable.

(c) In order to guarantee that the pond does not overflow, we need the rate of water in to
be less than or equal to the rate of water out. Therefore, we need k − απa2 ≤ 0.

5.(a) The rate of increase of the volume is given by

dV

dt
= k − αa

√
2gh.

Since the cross-section is constant, dV/dt = Adh/dt. Therefore,

dh

dt
= (k − αa

√
2gh)/A.

(b) Setting dh/dt = 0, we conclude that the equilibrium height of water is

he =
1

2g

(
k

αa

)2

.

Since f ′(he) < 0, the equilibrium height is stable.

6.(a) The equilibrium points are y∗ = 0, 1. Since f ′(0) = α > 0, the equilibrium solution
y∗ = 0 is unstable. Since f ′(1) = −α < 0, the equilibrium solution y∗ = 1 is asymptotically
stable.

(b) The equation is separable. The solution is given by

y(t) =
y0

e−αt − y0e−αt + y0

=
y0

e−αt + y0(1− e−αt)
.

We see that limt→∞ y(t) = 1.

7.(a) The solution of the separable equation is y(t) = y0e
−βt.

(b) Using the result from part (a), we see that dx/dt = −αxy0e
−βt. This equation is separable

with solution x(t) = x0exp[−αy0(1− e−βt)/β].

(c) As t→∞, y → 0 and x→ x0 exp(−αy0/β).

8.(a) Letting ′ = d/dt, we have

z′ =
nx′ − xn′

n2
=
−βnx− µnx+ νβx2 + µnx

n2
= −β x

n
+νβ

(x
n

)2

= −βz+νβz2 = −βz(1−νz).

(b) First, we rewrite the equation as z′ + βz = βνz2. This is a Bernoulli equation with
n = 2. Let w = z1−n = z−1. Then, our equation can be written as w′ − βw = −βν. This
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is a linear equation with solution w = ν + ceβt. Then, using the fact that z = 1/w, we see
that z = 1/(ν + ceβt). Finally, the initial condition z(0) = 1 implies c = 1 − ν. Therefore,
z(t) = 1/(ν + (1− ν)eβt).

(c) Evaluating z(20) for ν = β = 1/8, we conclude that z(20) = 0.0927.

9.(a) Since the critical points are x∗ = p, q, we will look at their stability. Since f ′(x) =
−αq−αp+2αx2, we see that f ′(p) = α(2p2−q−p) and f ′(q) = α(2q2−q−p). Now if p > q,
then −p < −q, and, therefore, f ′(q) = α(2q2 − q − p) < α(2q2 − 2q) = 2αq(q − 1) < 0 since
0 < q < 1. Therefore, if p > q, f ′(q) < 0, and, therefore, x∗ = q is asymptotically stable.
Similarly, if p < q, then x∗ = p is asymptotically stable, and therefore, we can conclude that
x(t)→ min{p, q} as t→∞.
The equation is separable. It can be solved by using partial fractions as follows. We can
rewrite the equation as (

1/(q − p)
p− x

+
1/(p− q)
q − x

)
dx = αdt,

which implies

ln

∣∣∣∣p− xq − x

∣∣∣∣ = (p− q)αt+ C.

The initial condition x0 = 0 implies C = ln |p/q|, and, therefore,

ln

∣∣∣∣q(p− x)

p(q − x)

∣∣∣∣ = (p− q)αt.

Applying the exponential function and simplifying, we conclude that

x(t) =
pq(e(p−q)αt − 1)

pe(p−q)αt − q
.

(b) In this case, x∗ = p is the only critical point. Since f(x) = α(p − x)2 is concave up,
we conclude that x∗ = p is semistable. Further, if x0 = 0, we can conclude that x → p as
t→∞. The phase line is shown below.

p

This equation is separable. Its solution is given by

x(t) =
p2αt

pαt+ 1
.

10.(a) The critical points occur when a − y2 = 0. If a < 0, there are no critical points. If
a = 0, then y∗ = 0 is the only critical point. If a > 0, then y∗ = ±

√
a are the two critical

points.

(b) We note that f ′(y) = −2y. Therefore, f ′(
√
a) < 0 which implies that

√
a is asymptoti-

cally stable; f ′(−
√
a) > 0 which implies −

√
a is unstable; the behavior of f ′ around y∗ = 0

implies that y∗ = 0 is semistable. The phase lines are shown below.
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a < 0 a = 0 a > 0

0 √a√a

(c) Below, we graph solutions in the case a = −1, a = 0, and a = 1, respectively.

11.(a) First, for a < 0, the only critical point is y∗ = 0. Second, for a = 0, the only critical
point is y∗ = 0. Third, for a > 0, the critical points are at y∗ = 0,±

√
a. Here, f ′(y) = a−3y2.

If a < 0, then f ′(y) < 0 for all y, and, therefore, y∗ = 0 will be asymptotically stable. If
a = 0, then f ′(0) = 0. From the behavior on either side of y∗ = 0, we see that y∗ = 0 will
be asymptotically stable. If a > 0, then f ′(0) = a > 0 which implies that y∗ = 0 is unstable
for a > 0. Further, f ′(±

√
a) = −2a < 0. Therefore, y∗ = ±

√
a are asymptotically stable for

a > 0. The phase lines are shown below.

a < 0 a = 0 a > 0

0 0 √a√a 0

(b) Below, we graph solutions in the case a = −1, a = 0, and a = 1, respectively.
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(c)

12.(a) For a < 0, the critical points are y∗ = 0, a. Since f ′(y) = a − 2y, f ′(0) = a < 0 and
f ′(a) = −a > 0. Therefore, y∗ = 0 is asymptotically stable and y∗ = a is unstable for a < 0.
For a = 0, the only critical point is y∗ = 0. which is semistable since f(y) = −y2 is concave
down. For a > 0, the critical points are y∗ = 0, a. Since f ′(0) = a > 0 and f ′(a) = −a < 0,
the critical point y∗ = 0 is unstable while the critical point y∗ = a is asymptotically stable
for a > 0. The phase lines are shown below.

a < 0 a = 0 a > 0

a 0 0 a0

(b) Below, we graph solutions in the case a = −1, a = 0, and a = 1, respectively.
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(c)

2.6 Exact Equations and Integrating Factors

1.(a) Here M(x, y) = 2x + 3 and N(x, y) = 2y − 2. Since My = Nx = 0, the equation is
exact.

(b) Since ψx = M = 2x+ 3, to solve for ψ, we integrate M with respect to x. We conclude
that ψ = x2 + 3x+ h(y). Then ψy = h′(y) = N = 2y − 2 implies h(y) = y2 − 2y. Therefore,
ψ(x, y) = x2 + 3x+ y2 − 2y = c.

(c)

2.(a) Here M(x, y) = 2x + 4y and N(x, y) = 2x − 2y. Since My 6= Nx, the equation is not
exact.

3.(a) Here M(x, y) = 3x2 − 2xy + 2 and N(x, y) = 6y2 − x2 + 3. Since My = −2x = Nx, the
equation is exact.

(b) Since ψx = M = 3x2 − 2xy + 2, to solve for ψ, we integrate M with respect to x. We
conclude that ψ = x3− x2y+ 2x+ h(y). Then ψy = −x2 + h′(y) = N = 6y2− x2 + 3 implies
h′(y) = 6y2 + 3. Therefore, h(y) = 2y3 + 3y and ψ(x, y) = x3 − x2y + 2x+ 2y3 + 3y = c.



2.6. EXACT EQUATIONS AND INTEGRATING FACTORS 67

(c)

4.(a) Here M(x, y) = 2xy2 + 2y and N(x, y) = 2x2y + 2x. Since My = 4xy + 2 = Nx, the
equation is exact.

(b) Since ψx = M = 2xy2 + 2y, to solve for ψ, we integrate M with respect to x. We
conclude that ψ = x2y2 + 2xy+h(y). Then ψy = 2x2y+ 2x+h′(y) = N = 2x2y+ 2x implies
h′(y) = 0. Therefore, h(y) = c and ψ(x, y) = x2y2 + 2xy = c.

(c)

5.(a) Here M(x, y) = 4x + 2y and N(x, y) = 2x + 3y. Since My = 2 = Nx, the equation is
exact.

(b) Since ψx = M = 4x+ 2y, to solve for ψ, we integrate M with respect to x. We conclude
that ψ = 2x2 + 2xy + h(y). Then ψy = 2x + h′(y) = N = 2x + 3y implies h′(y) = 3y.
Therefore, h(y) = 3y2/2 and ψ(x, y) = 2x2 + 2xy + 3y2/2 = k.
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(c)

6.(a) Here M = 4x− 2y and N = 2x− 3y. Since My = −2 and Nx = 2, the equation is not
exact.

7.(a) Here M(x, y) = ex sin y−2y sinx and N(x, y) = ex cos y+2 cos x. Since My = ex cos y−
sinx = Nx, the equation is exact.

(b) Since ψx = M = ex sin y− 2y sinx, to solve for ψ, we integrate M with respect to x. We
conclude that ψ = ex sin y + 2y cosx + h(y). Then ψy = ex cos y + 2 cosx + h′(y) = N =
ex cos y + 2 cosx implies h′(y) = 0. Therefore, h(y) = c and ψ(x, y) = ex sin y + 2y cosx = c.

(c)

8.(a) Here M = ex sin y + 3y and N = −3x + ex sin y. Therefore, My = ex cos y + 3 and
Nx = −3 + ex sin y. Since My 6= Nx, therefore, the equation is not exact.

9.(a) Here M(x, y) = yexy cos 2x − 2exy sin 2x + 2x and N(x, y) = xexy cos 2x − 3. Since
My = exy cos 2x+ xyexy cos 2x− 2xexy sin 2x = Nx, the equation is exact.

(b) Since ψx = M = yexy cos 2x−2exy sin 2x+2x, to solve for ψ, we integrate M with respect
to x. We conclude that ψ = exy cos 2x + x2 + h(y). Then ψy = xexy cos 2x + h′(y) = N =
xexy cos 2x−3 implies h′(y) = −3. Therefore, h(y) = −3y and ψ(x, y) = exy cos 2x+x2−3y =
c.
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(c)

10.(a) Here M(x, y) = y/x+ 6x and N(x, y) = ln x− 2. Since My = 1/x = Nx, the equation
is exact.

(b) Since ψx = M = y/x+6x, to solve for ψ, we integrate M with respect to x. We conclude
that ψ = y lnx + 3x2 + h(y). Then ψy = lnx + h′(y) = N = lnx − 2 implies h′(y) = −2.
Therefore, h(y) = −2y and ψ(x, y) = y lnx+ 3x2 − 2y = c.

(c)

11.(a) Here M(x, y) = x ln y + xy and N(x, y) = y lnx + xy. Since My = x/y + x and
Nx = y/x+ y, we conclude that the equation is not exact.

12.(a) Here M(x, y) = x/(x2 + y2)3/2 and N(x, y) = y/(x2 + y2)3/2. Since My = Nx, the
equation is exact.

(b) Since ψx = M = x/(x2 + y2)3/2, to solve for ψ, we integrate M with respect to x.
We conclude that ψ = −1/(x2 + y2)1/2 + h(y). Then ψy = y/(x2 + y2)3/2 + h′(y) = N =
y/(x2 + y2)3/2 implies h′(y) = 0. Therefore, h(y) = 0 and ψ(x, y) = −1/(x2 + y2)1/2 = c or
x2 + y2 = k.
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(c)

13. Here M(x, y) = 2x − y and N(x, y) = 2y − x. Therefore, My = Nx = −1 which
implies that the equation is exact. Integrating M with respect to x, we conclude that
ψ = x2 − xy + h(y). Then ψy = −x + h′(y) = N = 2y − x implies h′(y) = 2y. Therefore,
h(y) = y2 and we conclude that ψ = x2−xy+ y2 = c. The initial condition y(1) = 3 implies
c = 7. Therefore, x2 − xy + y2 = 7. Solving for y, we conclude that y = (x+

√
28− 3x2)/2.

Therefore, the solution is valid for 3x2 ≤ 28, i.e. for −
√

28/3 < x <
√

28/3.

14. Here M(x, y) = 9x2 + y − 1 and N(x, y) = −4y + x. Therefore, My = Nx = 1 which
implies that the equation is exact. Integrating M with respect to x, we conclude that
ψ = 3x3 + xy − x + h(y). Then ψy = x + h′(y) = N = −4y + x implies h′(y) = −4y.
Therefore, h(y) = −2y2 and we conclude that ψ = 3x3 + xy − x − 2y2 = c. The initial
condition y(1) = 0 implies c = 2. Therefore, 3x3 + xy − x − 2y2 = 2. Solving for y, we
conclude that y = (x− (24x3 + x2 − 8x− 16)1/2)/4. The solution is valid for x > 0.9846.

15. Here M(x, y) = xy2 + bx2y and N(x, y) = x3 + x2y. Therefore, My = 2xy + bx2 and
Nx = 3x2 + 2xy. In order for the equation to be exact, we need b = 3. Taking this value
for b, we integrating M with respect to x. We conclude that ψ = x2y2/2 + x3y + h(y).
Then ψy = x2y + x3 + h′(y) = N = x3 + x2y implies h′(y) = 0. Therefore, h(y) = c and
ψ(x, y) = x2y2/2 + x3y = c. That is, the solution is given implicitly as x2y2 + 2x3y = k.

16. Here M(x, y) = ye2xy + x and N(x, y) = bxe2xy. Then My = e2xy + 2xye2xy and
Nx = be2xy + 2bxye2xy. The equation will be exact as long as b = 1. Integrating M with
respect to x, we conclude that ψ = e2xy/2+x2/2+h(y). Then ψy = xe2xy+h′(y) = N = xe2xy

implies h′(y) = 0. Therefore, h(y) = 0 and we conclude that the solution is given implicitly
by the equation e2xy + x2 = c.

17. We notice that ψ(x, y) = f(x) + g(y). Therefore, ψx = f ′(x) and ψy = g′(y). That is,
ψx = M(x, y0), and ψy = N(x0, y). Furthermore, ψxy = My and ψyx = Nx. Based on the
hypothesis, ψxy = ψyx and My = Nx.

18. We notice that (M(x))y = 0 = (N(y))x. Therefore, the equation is exact.

19.(a) Here M(x, y) = x2y3 and N(x, y) = x+xy2. Therefore, My = 3x2y2 and Nx = 1 + y2.
We see that the equation is not exact. Now, multiplying the equation by µ(x, y) = 1/xy3,
the equation becomes xdx + (1 + y2)/y3dy = 0. Now we see that for this equation M = x
and N = (1 + y2)/y3. Therefore, My = 0 = Nx.
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(b) Integrating M with respect to x, we see that ψ = x2/2 + h(y). Further, ψy = h′(y) =
N = (1 + y2)/y3 = 1/y3 + 1/y. Therefore, h(y) = −1/2y2 + ln y and we conclude that the
solution of the equation is given implicitly by x2 − 1/y2 + 2 ln y = c and y = 0.

(c)

20.(a) We see that My = (y cos y − sin y)/y2 while Nx = 2e−x sinx − 2e−x cosx. Therefore,
My 6= Nx. However, multiplying the equation by µ(x, y) = yex, the equation becomes
(ex sin y − 2y sinx)dx + (ex cos y + 2 cosx)dy = 0. Now we see that for this equation M =
ex sin y − 2y sinx and N = ex cos y + 2 cosx. Therefore, My = ex cos y − 2 sinx = Nx.

(b) Integrating M with respect to x, we see that ψ = ex sin y + 2y cosx + h(y). Further,
ψy = ex cos y+ 2 cos x+ h′(y) = N = ex cos y+ 2 cos x. Therefore, h(y) = 0 and we conclude
that the solution of the equation is given implicitly by ex sin y + 2y cosx = c.

(c)

21.(a) We see that My = 1 while Nx = 2. Therefore, My 6= Nx. However, multiplying the
equation by µ(x, y) = y, the equation becomes y2dx+ (2xy − y2ey)dy = 0. Now we see that
for this equation M = y2 and N = 2xy − y2ey. Therefore, My = 2y = Nx.

(b) Integrating M with respect to x, we see that ψ = xy2 +h(y). Further, ψy = 2xy+h′(y) =
N = 2xy − y2ey. Therefore, h′(y) = −y2ey which implies that h(y) = −ey(y2 − 2y + 2), and
we conclude that the solution of the equation is given implicitly by xy2−ey(y2−2y+2) = c.
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(c)

22.(a) We see that My = (x + 2) cos y while Nx = cos y. Therefore, My 6= Nx. However,
multiplying the equation by µ(x, y) = xex, the equation becomes (x2 + 2x)ex sin ydx +
x2ex cos ydy = 0. Now we see that for this equation My = (x2 + 2x)ex cos y = Nx.

(b) Integrating M with respect to x, we see that ψ = x2ex sin y + h(y). Further, ψy =
x2ex cos y + h′(y) = N = x2ex cos y. Therefore, h′(y) = 0 which implies that the solution of
the equation is given implicitly by x2ex sin y = c.

(c)

23. Suppose µ is an integrating factor which will make the equation exact. Then multiplying
the equation by µ, we have µMdx+ µNdy = 0. Then we need (µM)y = (µN)x. That is, we
need µyM+µMy = µxN+µNx. Then we rewrite the equation as µ(Nx−My) = µyM−µxN .
Suppose µ does not depend on x. Then µx = 0. Therefore, µ(Nx −My) = µyM . Using the
assumption that (Nx −My)/M = Q(y), we can find an integrating factor µ by choosing µ
which satisfies µy/µ = Q. We conclude that µ(y) = exp

∫
Q(y) dy is an integrating factor of

the differential equation.

24. Suppose µ is an integrating factor which will make the equation exact. Then multiplying
the equation by µ, we have µMdx+ µNdy = 0. Then we need (µM)y = (µN)x. That is, we
need µyM+µMy = µxN+µNx. Then we rewrite the equation as µ(Nx−My) = µyM−µxN .
By the given assumption, we need µ to satisfy µR(xM − yN) = µyM −µxN . This equation
is satisfied if µy = (µx)R and µx = (µy)R. Consider µ = µ(xy). Then µx = µ′y and µy = µ′x
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where ′ = d/dz for z = xy. Therefore, we need to choose µ to satisfy µ′ = µR. This equation
is separable with solution µ = exp(

∫
R(z) dz).

25.(a) Since (My−Nx)/N = 3 is a function of x only, we know that µ = e3x is an integrating
factor for this equation. Multiplying the equation by µ, we have

e3x(3x2y + 2xy + y3)dx+ e3x(x2 + y2)dy = 0.

Then My = e3x(3x2 + 2x+ 3y2) = Nx. Therefore, this new equation is exact. Integrating M
with respect to x, we conclude that ψ = (x2y + y3/3)e3x + h(y). Then ψy = (x2 + y2)e3x +
h′(y) = N = e3x(x2 + y2). Therefore, h′(y) = 0 and we conclude that the solution is given
implicitly by (3x2y + y3)e3x = c.

(b)

26.(a) Since (My − Nx)/N = −1 is a function of x only, we know that µ = e−x is an
integrating factor for this equation. Multiplying the equation by µ, we have

(e−x − ex − ye−x)dx+ e−xdy = 0.

Then My = −e−x = Nx. Therefore, this new equation is exact. Integrating M with respect
to x, we conclude that ψ = −e−x − ex + ye−x + h(y). Then ψy = e−x + h′(y) = N = e−x.
Therefore, h′(y) = 0 and we conclude that the solution is given implicitly by −e−x − ex +
ye−x = c.

(b)
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27.(a) Since (Nx −My)/M = 1/y is a function of y only, we know that µ(y) = e
∫

1/y dy = y
is an integrating factor for this equation. Multiplying the equation by µ, we have

ydx+ (x− y sin y)dy = 0.

Then for this equation, My = 1 = Nx. Therefore, this new equation is exact. Integrating M
with respect to x, we conclude that ψ = xy + h(y). Then ψy = x+ h′(y) = N = x− y sin y.
Therefore, h′(y) = −y sin y which implies that h(y) = − sin y+ y cos y, and we conclude that
the solution is given implicitly by xy − sin y + y cos y = c.

(b)

28.(a) Since (Nx − My)/M = (2y − 1)/y is a function of y only, we know that µ(y) =
e
∫

2−1/y dy = e2y/y is an integrating factor for this equation. Multiplying the equation by µ,
we have

e2ydx+ (2xe2y − 1/y)dy = 0.

Then for this equation, My = Nx. Therefore, this new equation is exact. Integrating M with
respect to x, we conclude that ψ = xe2y +h(y). Then ψy = 2xe2y +h′(y) = N = 2xe2y−1/y.
Therefore, h′(y) = −1/y which implies that h(y) = − ln y, and we conclude that the solution
is given implicitly by xe2y − ln y = c or y = e2x+ cex + 1.

(b)

29.(a) Since (Nx −My)/M = cot y is a function of y only, we know that µ(y) = e
∫

cot(y) dy =
sin y is an integrating factor for this equation. Multiplying the equation by µ, we have

ex sin ydx+ (ex cos y + 2y)dy = 0.
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Then for this equation, My = Nx. Therefore, this new equation is exact. Integrating M
with respect to x, we conclude that ψ = ex sin y + h(y). Then ψy = ex cos y + h′(y) = N =
ex cos y + 2y. Therefore, h′(y) = 2y which implies that h(y) = y2, and we conclude that the
solution is given implicitly by exsiny + y2 = c.

(b)

30. Since (Nx −My)/M = 2/y is a function of y only, we know that µ(y) = e
∫

2/y dy = y2 is
an integrating factor for this equation. Multiplying the equation by µ, we have

(4x3 + 3y)dx+ (3x+ 4y3)dy = 0.

Then for this equation, My = Nx. Therefore, this new equation is exact. Integrating M with
respect to x, we conclude that ψ = x4 + 3xy + h(y). Then ψy = 3x+ h′(y) = N = 3x+ 4y3.
Therefore, h′(y) = 4y3 which implies that h(y) = y4, and we conclude that the solution is
given implicitly by x4 + 3xy + y4 = c.

(b)

31. Since (Nx −My)/(xM − yN) = 1/xy is a function of xy only, we know that µ(xy) =
e
∫

1/xy dy = xy is an integrating factor for this equation. Multiplying the equation by µ, we
have

(3x2y + 6x)dx+ (x3 + 3y2)dy = 0.

Then for this equation, My = Nx. Therefore, this new equation is exact. Integrating M with
respect to x, we conclude that ψ = x3y+ 3x2 + h(y). Then ψy = x3 + h′(y) = N = x3 + 3y2.
Therefore, h′(y) = 3y2 which implies that h(y) = y3, and we conclude that the solution is
given implicitly by x3y + 3x2 + y3 = c.
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(b)

32. Using the integrating factor µ = [xy(2x+ y)]−1, this equation can be rewritten as(
2

x
+

2

2x+ y

)
dx+

(
1

y
+

1

2x+ y

)
dy = 0.

Integrating M with respect to x, we see that ψ = 2 ln |x| + ln |2x + y| + h(y). Then ψy =
(2x + y)−1 + h′(y) = N = (2x + y)−1 + 1/y. Therefore, h′(y) = 1/y which implies that
h(y) = ln |y|. Therefore, ψ = 2 ln |x| + ln |2x + y| + ln |y| = c. Applying the exponential
function, we conclude that the solution is given implicitly be 2x3y + x2y2 = c.

2.7 Substitution Methods

1.(a) f(x, y) = (x + 1)/y, thus f(λx, λy) = (λx + 1)/λy 6= (x + 1)/y. The equation is not
homogeneous.

2.(a) f(x, y) = (x4 + 1)/(y4 + 1), thus f(λx, λy) = (λ4x4 + 1)/(λ4y4 + 1) 6= (x4 + 1)/(y4 + 1).
The equation is not homogeneous.

3.(a) f(x, y) = (3x2y + y3)/(3x3 − xy2) satisfies f(λx, λy) = f(x, y). The equation is homo-
geneous.

(b) The equation is y′ = (3x2y + y3)/(3x3 − xy2) = (3(y/x) + (y/x)3)/(3 − (y/x)2). Let
y = ux. Then y′ = u′x+ u, thus u′x = (3u+ u3)/(3− u2)− u = 2u3/(3− u2). We obtain∫

3− u2

2u3
du = −3

4
u−2 − 1

2
ln |u| =

∫
1

x
dx = ln |x|+ c.

Therefore, the solution is given implicitly by −(3/4)x2/y2 − (1/2) ln |y/x| = ln |x|+ c. Also,
u = 0 solves the equation, thus y = 0 is a solution as well.
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(c)

4.(a) f(x, y) = y(y+1)/x(x−1), thus f(λx, λy) = λy(λy+1)/λx(λx+1) 6= y(y+1)/x(x−1).
The equation is not homogeneous.

5.(a) f(x, y) = (
√
x2 − y2 +y)/x satisfies f(λx, λy) = f(x, y). The equation is homogeneous.

(b) The equation is y′ = (
√
x2 − y2 + y)/x =

√
1− (y/x)2 + y/x. Let y = ux. Then

y′ = u′x+ u, thus u′x =
√

1− u2 + u− u =
√

1− u2. We obtain∫
1√

1− u2
du = arcsinu =

∫
1

x
dx = ln |x|+ c.

Therefore, the solution is given implicitly by arcsin(y/x) = ln |x|+c, thus y = x sin(ln |x|+c).
Also, y = x and y = −x are solutions.

(c)

6.(a) f(x, y) = (x+ y)2/xy satisfies f(λx, λy) = f(x, y). The equation is homogeneous.

(b) The equation is y′ = (x2 +2xy+y2)/xy = x/y+2+y/x. Let y = ux. Then y′ = u′x+u,
thus u′x = 1/u+ 2 + u− u = 1/u+ 2 = (1 + 2u)/u. We obtain∫

u

1 + 2u
du =

u

2
− 1

4
ln |1 + 2u| =

∫
1

x
dx = ln |x|+ c.

Therefore, the solution is given implicitly by y/2x − (1/4) ln |1 + 2y/x| = ln |x| + c. Also,
y = −x/2 is a solution.
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(c)

7.(a) f(x, y) = (4y−7x)/(5x−y) satisfies f(λx, λy) = f(x, y). The equation is homogeneous.

(b) The equation is y′ = (4y − 7x)/(5x − y) = (4y/x − 7)/(5 − y/x). Let y = ux. Then
y′ = u′x+ u, thus u′x = (4u− 7)/(5− u)− u = (u2 − u− 7)/(5− u). We obtain∫

5− u
u2 − u− 7

du =
9
√

29− 29

58
ln |1+

√
29−2u|− 29 + 9

√
29

58
ln |−1+

√
29+2u| = ln |x|+ c.

The solution is given implicitly by substituting back u = y/x. Also, y = x(1 ±
√

29)/2 are
solutions.

(c)

8.(a) f(x, y) = (4
√
y2 − x2 + y)/x satisfies f(λx, λy) = f(x, y). The equation is homoge-

neous.

(b) The equation is y′ = (4
√
y2 − x2 + y)/x = 4

√
(y/x)2 − 1 + y/x. Let y = ux. Then

y′ = u′x+ u, thus u′x = 4
√
u2 − 1 + u− u = 4

√
u2 − 1. We obtain∫

1

4
√
u2 − 1

du =
1

4
ln |u+

√
u2 − 1| =

∫
1

x
dx = ln |x|+ c.

Therefore, the solution is given implicitly by ln |y/x+
√

(y/x)2 − 1| = lnx4 + c. Also, y = x
and y = −x are solutions.
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(c)

9.(a) f(x, y) = (y4 + 2xy3− 3x2y2− 2x3y)/(2x2y2− 2x3y− 2x4) satisfies f(λx, λy) = f(x, y).
The equation is homogeneous.

(b) The equation is y′ = (y4 + 2xy3 − 3x2y2 − 2x3y)/(2x2y2 − 2x3y − 2x4) = ((y/x)4 +
2(y/x)3 − 3(y/x)2 − 2(y/x))/(2(y/x)2 − 2(y/x) − 2). Let y = ux. Then y′ = u′x + u, thus
u′x = (u4 + 2u3 − 3u2 − 2u)/(2u2 − 2u− 2)− u = (u4 − u2)/(2u2 − 2u− 2). We obtain∫

2u2 − 2u− 2

u4 − u2
du = −2

u
+ 2 ln |u| − ln |1− u2| = ln |x|+ c.

The solution is given implicitly by ln |1 − y2/x2| + 2x/y + ln |x| = c. Also, y = x, y = −x
and y = 0 are solutions.

(c)

10.(a) f(x, y) = (y+xex/y)/yex/y satisfies f(λx, λy) = f(x, y). The equation is homogeneous.

(b) The equation is dx/dy = (y+xex/y)/yex/y = e−x/y+x/y. Let x = uy. Then x′ = u′y+u,
thus u′y = e−u + u− u = e−u. We obtain∫

eu du = eu =

∫
1

y
dy = ln |y|+ c.

Therefore, the solution is given by x/y = ln(ln |y| + c), i.e. x = y ln(ln |y| + c). Also, y = 0
is a solution.
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(c)

11. The equation is homogeneous. Let y = ux; we obtain y′ = u′x + u = 1/u + u,
thus udu = (1/x)dx and we obtain (y/x)2 = u2 = 2(lnx + c). The initial condition gives
1/4 = 2(ln 2 + c), thus c = 1/8 − ln 2 and the solution is y = x

√
2 lnx+ 1/4− ln 4. The

solution exists on the interval (2e−1/8,∞).

12. The equation is homogeneous. Let y = ux; we obtain y′ = u′x + u = (1 + u)/(1 − u),
i.e. u′x = (1 + u2)/(1− u). Integration gives∫

1− u
1 + u2

du = arctanu− 1

2
ln(1 + u2) =

∫
1

x
dx = ln |x|+ c.

The initial condition implies that arctan(8/5) − ln
√

1 + 64/25 = ln 5 + c. The solution is

given implicitly by arctan(y/x) − ln
√

1 + y2/x2 − ln |x| = c. The solution exists on the
interval (−128.1, 5.3), approximately.

13.(a) y′ + (1/t)y = ty2

(b) Here n = 2, thus we set u = y−1. The equation becomes u′−(1/t)u = −t; the integrating
factor is µ = 1/t and we obtain (u/t)′ = −1. After integration, we get u/t = −t + c, thus
u = −t2 + ct and then y = 1/(ct− t2). Also, y = 0 is a solution.

(c)

14.(a) y′ + y = ty4
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(b) Here n = 4, thus we set u = y−3. The equation becomes u′ − 3u = −t; the integrating
factor is µ = e−3t and we obtain (ue−3t)′ = −te−3t. After integration, ue−3t = (t/3)e−3t +
e−3t/9 + c, thus u = t/3 + 1/9 + ce3t and then y = (t/3 + 1/9 + ce3t)−1/3. Also, y = 0 is a
solution.

(c)

15.(a) y′ + (3/t)y = t2y2

(b) Here n = 2, thus we set u = y−1. The equation becomes u′−(3/t)u = −t2; the integrating
factor is µ = 1/t3 and we obtain (u/t3)′ = −1/t. After integration, we get u/t3 = − ln t+ c,
thus u = −t3 ln t+ ct3 and then y = 1/(ct3 − t3 ln t). Also, y = 0 is a solution.

(c)

16.(a) y′ + (2/t)y = (1/t2)y3

(b) Here n = 3, thus we set u = y−2. The equation becomes u′ − (4/t)u = −2/t2; the
integrating factor is µ = 1/t4 and we obtain (u/t4)′ = −2/t6. After integration, u/t4 =
2t−5/5 + c, thus u = 2t−1/5 + ct4 and then y = (2t−1/5 + ct4)−1/2. Also, y = 0 is a solution.



82 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

(c)

17.(a) y′ + (4t/5(1 + t2))y = (4t/5(1 + t2))y4

(b) Here n = 4, thus we set u = y−3. The equation becomes u′−12t/5(1+t2)u = −12t/5(1+
t2); the integrating factor is µ = (1 + t2)−6/5 and we obtain (uµ)′ = −12t(1 + t2)−11/5/5.
After integration, u = 1 + c(1 + t2)6/5, thus y = (1 + c(1 + t2)6/5)−1/3. Also, y = 0 is a
solution.

(c)

18.(a) y′ + (3/t)y = (2/3)y5/3

(b) Here n = 5/3, thus we set u = y−2/3. The equation becomes u′ − (2/t)u = −4/9;
the integrating factor is µ = 1/t2 and we obtain (u/t2)′ = −4/9t2. After integration,
u/t2 = 4/9t+ c, thus u = 4t/9 + ct2 and then y = (4t/9 + ct2)−3/2. Also, y = 0 is a solution.
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(c)

19.(a) y′ − y = y1/2

(b) Here n = 1/2, thus we set u = y1/2. The equation becomes u′−u/2 = 1/2; the integrating
factor is µ = e−t/2 and we obtain (ue−t/2)′ = e−t/2/2. After integration, ue−t/2 = −e−t/2 + c,
thus u = cet/2 − 1 and then y = (cet/2 − 1)2. Also, y = 0 is a solution.

(c)

20.(a) y′ − ry = −ky2

(b) Here, n = 2. Therefore, let u = y−1. Making this substitution, we see that u satisfies the
equation u′+ ru = k. This equation is linear with integrating factor ert. Therefore, we have
(ertu)′ = kert. The solution of this equation is given by u = (k + cre−rt)/r. Then, using the
fact that y = 1/u, we conclude that y = r/(k + cre−rt). Also, y = 0 is a solution.

(c) The figure shows the solutions for r = 1, k = 1.
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21.(a) y′ − εy = −σy3

(b) Here n = 3. Therefore, u = y−2 satisfies u′ + 2εu = 2σ. This equation is linear with
integrating factor e2εt. Its solution is given by u = (σ+ cεe−2εt)/ε. Then, using the fact that
y2 = 1/u, we see that y = ±

√
ε/
√
σ + cεe−2εt.

(c) The figure shows the solutions for ε = 1, σ = 1.

22.(a) y′ − (Γ cos t+ T )y = −y3

(b) Here n = 3. Therefore, u = y−2 satisfies u′+ 2(Γ cos t+ T )u = 2. This equation is linear

with integrating factor e2(Γ sin t+Tt). Therefore,
(
e2(Γ sin t+Tt)u

)′
= 2e2(Γ sin t+Tt), which implies

u = 2e−2(Γ sin t+Tt)

∫ t

t0

exp(2(Γ sin s+ Ts)) ds+ ce−2(Γ sin t+Tt).

Then u = y−2 implies y = ±
√

1/u.

(c) The figure shows the solutions for Γ = 1, T = 1.
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23.(a) Assume y1 solves the equation: y′1 = A + By1 + Cy2
1. Let y = y1 + v; we obtain

y′1+v′ = y′ = A+By+Cy2 = A+B(y1+v)+C(y1+v)2 = A+By1+Bv+Cy2
1 +2Cy1v+Cv2.

Then v′ = Bv + 2Cy1v + Cv2, i.e. v′ − (B + 2Cy1)v = Cv2 which is a Bernoulli equation
with n = 2.

(b) If y1 = 4t, then y′1 = 4 and 4+3t·4t = 4−4t2+(4t)2. Using the previous idea, let y = y1+v;
we obtain 4 + v′ = y′1 + v′ = y′ = 4 − 4t2 + y2 − 3ty = 4 − 4t2 + (4t + v)2 − 3t(4t + v),
i.e. v′ = −4t2 + 16t2 + 8tv + v2 − 12t2 − 3tv = 5tv + v2. Let u = v−1, then we obtain
u′ + 5tu = −1. The integrating factor is µ = e5t2/2, and we obtain u = −e−5t2/2

∫ t
0
e5s2/2 ds.

Thus y = 4t− (e−5t2/2
∫ t

0
e5s2/2 ds)−1.

24.(a) Homogeneous.

(b) Setting y = ux, we obtain y′ = u′x + u = (u − 3)/(9u − 2), i.e. u′x = 3(−1 + u −
3u2)/(9u−2). After integration, we obtain the implicit solution (3/2) ln(1−y/x+3y2/x2)−
arctan((−1 + 6y/x)/

√
11)/
√

11 + 3 lnx = c.

25.(a) Linear.

(b) Consider the equation so that x = x(y). Then dx/dy = −2x+ 3ey; the integrating factor
is µ = e2y, we obtain (e2yx)′ = 3e3y. After integration, e2yx = e3y + c, thus x = ey + ce−2y.

26.(a) Bernoulli.

(b) Let u = y−1. The equation turns into u′ + u = −4ex; integrating factor is µ = ex. We
obtain (uex)′ = −4e2x, after integration uex = −2e2x + c, thus u = −2ex + ce−x and then
y = 1/(ce−x − 2ex).

27.(a) Linear.

(b) The integrating factor is µ = ex+lnx = xex; the equation turns into (xexy)′ = xex, after
integration xexy = xex − ex + c, and then y = 1− 1/x+ ce−x/x.

28.(a) Exact.

(b) The equation is (1
2

sin 2x−xy2)dx+(1−x2)ydy. We need ψ(x, y) so that ψx = 1
2

sin 2x−
xy2; thus ψ(x, y) = −1

4
cos 2x − 1

2
x2y2 + h(y). Now ψy = −x2y + h′(y) = −x2y + y, thus

h(y) = y2/2. We obtain the implicitly defined solution cos 2x+ 2x2y2 − 2y2 = c.

29.(a) Separable, linear.
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(b) Separation of variables gives dy/y = dx/
√
x; after integration, we get ln y = 2

√
x + c

and then y = ce2
√
x.

30.(a) Separable, exact.

(b) Write (5xy2 + 5y)dx+ (5x2y+ 5x)dy = 0. We need ψ(x, y) so that ψx = 5xy2 + 5y; thus
ψ(x, y) = 5x2y2/2 + 5xy + h(y). Now ψy = 5x2y + 5x + h′(y) = 5x2y + 5x, thus we obtain
that the solution is given implicitly as 5x2y2 + 10xy = 5xy(xy + 2) = c. We can see that
this is the same as xy = C.

31.(a) Exact, Bernoulli.

(b) Write (y2 + 1 + lnx)dx + 2xydy = 0. We need ψ(x, y) so that ψx = y2 + 1 + lnx; thus
ψ(x, y) = y2x+x lnx+h(y). Now ψy = 2xy+h′(y) = 2xy, thus we obtain that the solution
is given implicitly as y2x+ x lnx = c.

32.(a) Linear, exact.

(b) Write (−y− 2(2−x)5)dx+ (2−x)dy = 0. We need ψ(x, y) so that ψx = −y− 2(2−x)5;
thus ψ(x, y) = −yx+ (2− x)6/3 + h(y). Now ψy = −x+ h′(y) = 2− x, and then h(y) = 2y.
We obtain that the solution is given implicitly as −3yx+ (2− x)6 + 6y = c.

33.(a) Separable, autonomous (if viewed as dx/dy).

(b) dy/dx = −x/ lnx, thus after integration, y = − ln lnx+ C.

34.(a) Homogeneous.

(b) Setting y = ux, we obtain y′ = u′x + u = (3u2 + 2u)/(2u + 1). This implies that
u′x = (u + u2)/(1 + 2u). After integration, we obtain that the implicit solution is given by
ln(y/x) + ln(1 + y/x) = lnx+ c, i.e. y/x2 + y2/x3 = C.

35.(a) Bernoulli, homogeneous.

(b) Let u = y2. Then u′ = 2yy′ = 4x + (5/2x)y2 = 4x + (5/2x)u; we get the linear
equation u′− (5/2x)u = 4x. The integrating factor is µ = x−5/2, and the equation turns into
(ux−5/2)′ = 4x−3/2. After integration, we get u = y2 = −8x2 + cx5/2.

36.(a) Autonomous, separable, Bernoulli.

(b) Let u = y3/4. Then u′ = (3/4)y−1/4y′ = (3/4)y−1/4(y1/4 − y) = 3/4 − 3u/4. The
integrating factor is µ = e3x/4, and we get (ue3x/4)′ = 3e3x/4/4. After integration, ue3x/4 =
e3x/4 + c, and then u = y3/4 = 1 + ce−3x/4. We get y = (1 + ce−3x/4)4/3.
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