Chapter 2 Solutions

2.1.

- a) 1000010
- b) 110001
- c) 100000001
- d) 1101100000
- e) 11101101001
- f) 11111011111

2.2.

- a) 3010, 368, 1E16
- b) 26, 32, 1A
- c) 291, 443, 123
- d) 91, 133, 5B
- e) 878₁₀, 1556₈, 36E₁₆
- f) 1514, 2752, 5EA

2.3.

- a) 01100110
- b) 11100011
- c) 0010111111101000
- d) 011111000010
- e) 0101101000101101
- f) 1110000010001011

2.4.

- a) 000011101010
- b) 111100010110
- c) 000010011100
- d) 101111000100
- e) 111000101000

2.5.

	Decimal	Octal	Hexadecimal
a)	-53	713	CB
b)	30	36	1E
c)	-19	55	ED
d)	-167	7531	F59
e)	428	654	1AC

2.6.

- a) 11100101; 229
- b) 10110001; 177
- c) 411010110; 214
- d) 401011101; 93

2.7.

- a) 11100101; -27
- b) 10110001; -79

- c) 411010110; -42
- d) 101011101; 93

2.8.

- a) 01101111; 111
- b) 11001001; 201 c) 11110000; 240
- d) 10110001; 177

2.9.

- a) 01101111; 111
- b) 11001001; -55
- c) 11110000; -16
- d) 10110001; -79

2.10.

Binary calculations	Unsigned decimal calculations	Signed decimal calculations
1001 + 0011 = 1100	9 + 3 = 12	-7 + 3 = -4
No overflow	No overflow error	No overflow error
0110 + 1011 = 1 0001	6 + 11 = 1	6 + (-5) = 1
Overflow	Overflow error	No overflow error
0101 + 0110 = 1011	5 + 6 = 11	5 + 6 = -5
No overflow	No overflow error	Overflow error
0101 – 0110 = 1111	5 - 6 = 15	5-6=-1
No overflow	Overflow error	No overflow error
1011 - 0101 = 0110	11 - 5 = 6	-5 - 5 = 6
No overflow	No overflow error	Overflow error

2.11.

x	y	Ζ	x'y'z'	x'yz	xy'z'	xyz	F				
0	0	0	1	0	0	0	1				
0	0	1	0	0	0	0	0				
0	1	0	0	0	0	0	0				
0	1	1	0	1	0	0	1				
1	0	0	0	0	1	0	1				
1	0	1	0	0	0	0	0				
1	1	0	0	0	0	0	0				
1	1	1	0	0	0	1	1				
	(a)										

x	y	Ζ	xy'z	x'yz'	xyz	xyz'	F
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	1	0	0	1
0	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	0	0	1
1	1	0	0	0	0	1	1
1	1	1	0	0	1	0	1
				(b)			

w	x	У	Ζ	wxy'z	w'yz'	wxz	xyz'	F
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	1	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	0	0	1	0	1	1
0	1	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	1	0	1	0	1
1	1	1	0	0	0	0	1	1
1	1	1	1	0	0	1	0	1

		-		1				
W	x	у	Ζ	w'z'	w'xy	wx'z	wxyz	F
0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	1	0	0	0	1
0	1	0	1	0	0	0	0	0
0	1	1	0	1	1	0	0	1
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	1	0	1
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1
					(f)			

w	x	у	Ζ	w'xy'z	w'xyz	wxy'z	wxyz	F
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	1
0	1	1	0	0	0	0	0	0
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	1
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1
					(c)			

x	у	Ζ	xy'	x'y'z	xyz'	F						
0	0	0	0	0	0	0						
0	0	1	0	1	0	1						
0	1	0	0	0	0	0						
0	1	1	0	0	0	0						
1	0	0	1	0	0	1						
1	0	1	1	0	0	1						
1	1	0	0	0	1	1						
1	1	1	0	0	0	0						
	(e)											

x	y	Z	<i>x</i> ′	<i>y</i> ′	x+y'	yz	(yz)'	[(x+y')(yz)']	xy'	x'y	(xy' + x'y)	F
0	0	0	1	1	1	0	1	1	0	0	0	0
0	0	1	1	1	1	0	1	1	0	0	0	0
0	1	0	1	0	0	0	1	0	0	1	1	0
0	1	1	1	0	0	1	0	0	0	1	1	0
1	0	0	0	1	1	0	1	1	1	0	1	1
1	0	1	0	1	1	0	1	1	1	0	1	1
1	1	0	0	0	1	0	1	1	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0
								(g)				

© 2018 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

N_3	N_2	N_1	N_0	$N_3'N_2'N_1N_0'$	$N_3'N_2'N_1N_0$	$N_3 N_2' N_1 N_0'$	$N_3N_2'N_1N_0$	$N_3 N_2 N_1' N_0'$	$N_3N_2N_1N_0$	F
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	1
0	0	1	1	0	1	0	0	0	0	1
0	1	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	1
1	0	1	1	0	0	0	1	0	0	1
1	1	0	0	0	0	0	0	1	0	1
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	1	1
						(h)				

2.12.

- (a) F = a'bc' + a'bc + abc'
- (b) F = w'x'yz' + w'xy'z' + w'xy'z + w'xyz + wx'y'z + wx'yz' + wxy'z' + wxy'z + wxyz

(c) $F_1 = w'x'y'z' + w'x'yz + w'xy'z + w'xyz' + wx'y'z + wx'y'z + wxy'z' + wxy'z' + wxyz \\ F_2 = w'x'y'z' + w'x'y'z + w'x'yz' + w'x'y'z + wx'y'z + wx'y'z' + wxy'z' + wxyz' + wyz' + wxyz' + wyyz' + wxyz' + wyz' + wxyz' + wxyz' + wxyz' + wxyz' + wyz' + wxyz' + w$

(d)
$$F = N_3' N_2' N_1 N_0' + N_3' N_2' N_1 N_0 + N_3' N_2 N_1 N_0' + N_3 N_2' N_1 N_0' + N_3 N_2' N_1 N_0 + N_3 N_2 N_1' N_0' + N_3 N_2 N_1 N_0$$

2.14.

(a)

w	x	y	z	w'z'	w'xy	wx'z	wxyz	Left Side
0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	1	0	0	0	1
0	1	0	1	0	0	0	0	0
0	1	1	0	1	1	0	0	1
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	1	0	1
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

w'z'	xyz	wx'y'z	wyz	Right Side
1	0	0	0	1
0	0	0	0	0
1	0	0	0	1
0	0	0	0	0
1	0	0	0	1
0	0	0	0	0
1	0	0	0	1
0	1	0	0	1
0	0	0	0	0
0	0	1	0	1
0	0	0	0	0
0	0	0	1	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	1	0	1	1

(b)

y	z	Z	<i>y</i> ′	yz'	Left Side	Right Side
0	0	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	1
1	1	1	0	0	1	1

x	у	z	xy'z'	<i>x'</i>	xyz'	Left Side
0	0	0	0	1	0	1
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	0	1
1	0	0	1	0	0	1
1	0	1	0	0	0	0
1	1	0	0	0	1	1
1	1	1	0	0	0	0

<i>x'</i>	z'	Right Side
1	1	1
1	0	1
1	1	1
1	0	1
0	1	1
0	0	0
0	1	1
0	0	0

(d)

(c)

x	У	z	xy	x'z	yz	Left Side
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	1
1	1	1	1	0	1	1

xy	x'z	Right Side
0	0	0
0	1	1
0	0	0
0	1	1
0	0	0
0	0	0
1	0	1
1	0	1

(e)

w	x	y	z	w'x'yz'	w'x'yz	wx'yz'	wx'yz	wxyz	Left Side	
0	0	0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	1	
0	0	1	1	0	1	0	0	0	1	
0	1	0	0	0	0	0	0	0	0	
0	1	0	1	0	0	0	0	0	0	
0	1	1	0	0	0	0	0	0	0	
0	1	1	1	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	
1	0	0	1	0	0	0	0	0	0	
1	0	1	0	0	0	1	0	0	1	
1	0	1	1	0	0	0	1	0	1	
1	1	0	0	0	0	0	0	0	0	
1	1	0	1	0	0	0	0	0	0	
1	1	1	0	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	1	1	

x'	wz	(x' + wz)	Right
	=	()	Side
1	0	1	0
1	0	1	0
1	0	1	1
1	0	1	1
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
1	0	1	0
1	1	1	0
1	0	1	1
1	1	1	1
0	0	0	0
0	1	1	0
0	0	0	0
0	1	1	1

(f)

w	x	y	z	w'xy'z	w'xyz	wxy'z	wxyz	Left Side	Right Side
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	1	1
0	1	1	0	0	0	0	0	0	0
0	1	1	1	0	1	0	0	1	1
1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	1	1
1	1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1	1

(g)

x_i	<i>y</i> _i	Ci	x_iy_i	$x_i + y_i$	$c_i(x_i+y_i)$	Left Side
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	0
0	1	1	0	1	1	1
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	1

x _i y _i C _i	$x_i y_i c_i'$	$x_i y_i c_i$	$x_i'y_ic_i$	Right Side
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	1	1
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
1	0	0	0	1

(h)

-						
x_i	y_i	c_i	x_iy_i	$x_i + y_i$	$c_i(x_i+y_i)$	Left Side
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	0
0	1	1	0	1	1	1
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	1

$x_i y_i$	$x_i \oplus y_i$	$c_i(x_i \oplus y_i)$	Right Side
0	0	0	0
0	0	0	0
0	1	0	0
0	1	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	0	1

2.19.

(a) w'z' + w'xy + wx'z + wxyz

= w'x'y'z' + w'x'yz' + w'xy'z' + w'xyz' + w'xyz' + w'xyz + wx'y'z + wx'y'z + wxyz = w'x'y'z' + w'x'yz' + w'xyz' + w'xyz' + w'xyz + wx'y'z = w'z' + w'xyz + wx'y'z +

$$= w'z' + xyz + wx'y'z + wyz$$

(b)
$$z + y' + yz' = z(y'+y) + (z'+z)y' + yz'$$

$$= zy' + zy + z'y' + zy' + yz'$$

$$= z(y'+y) + z'(y'+y)$$

$$= z + z'$$

$$= 1$$
(c) $x y' z' + x' + x y z'$

$$= x z' (y' + y) + x'$$

$$= x z' + x'$$

$$= x z' + 1 x'$$

$$= (x + 1)(x + x')(z' + 1)(z' + x')$$

$$= 1 \cdot 1 \cdot 1 (z' + x')$$

$$= x' + z'$$
(d) $xy + x'z + yz$

$$= xy(z'+z) + x'(y'+y)z + (x'+x)yz$$

$$= xy(z'+z) + x'(y'+y)z$$

$$= xy(z'+z) + x'(y'+y)z$$

$$= xy(1) + x'(1)z$$

$$= xy + x'z$$
(e) $w'x'yz' + w'x'yz + wx'yz' + wx'yz + wxyz$

$$= [w'x'yz' + w'x'yz + wx'yz' + wx'yz] + [wx'yz + wxyz]$$

$$= x'y(w'z' + w'x'yz + wx'yz' + wx'yz] + [wx'yz + wxyz]$$

$$= x'y(w'z' + w'z'yz + wx'yz' + wxyz]$$

$$= x'y(w'z' + w'z'yz + wxy'z + wxyz$$

$$= x'y(w'z' + w'z'yz + wxy'z + wxyz$$

$$= x'y'(w'z' + w'z'yz + wxy'z + wxyz$$

$$= xy'z(w' + w) + xyz(w' + w)$$

$$= xy'z + xyz$$

$$= xz(w + y')$$

$$= xz$$
(g) $xy_i + c_i(x_i + y_i)$

$$= xy_ic_i + xy_ic_i +$$

2.20.

(a)
$$x'y'z' + x'yz + xy'z' + xyz$$

= $(x + x')y'z' + (x + x')yz$
= $y'z' + yz$
= $y \odot z$

(b) xy'z + x'yz' + xyz + xyz'= (x + x')yz' + x(y + y')z= yz' + xz

(c)
$$w'xy'z + w'xyz + wxy'z + wxyz$$

= $xz(w'y' + w'y + wy' + wy)$
= xz

- (d) wxy'z + w'yz' + wxz + xyz'= wxz + yz'(x+w')
- (f) w'z' + w'xy + wx'z + wxyz = w'z' + w'xyz + w'xyz' + wx'z + wxyz = w'z' + xyz(w' + w) + w'xyz' + wx'z = w'z' + xyz + wx'z= w'z' + z(xy + wx')
- (g) [(x+y') (yz)'] (xy' + x'y)= [(x+y') (y'+z')] (xy' + x'y)= [xy' + xz' + y' + y'z'] (xy' + x'y)= [xz' + y'] (xy' + x'y)= xy'z' + xx'yz' + y'xy' + y'x'y= xy'z' + xy'= xy'
- (h) $N_3'N_2'N_1N_0' + N_3'N_2'N_1N_0 + N_3N_2'N_1N_0' + N_3N_2'N_1N_0 + N_3N_2N_1'N_0' + N_3N_2N_1N_0$

2.21.

$$F = (x' + y' + x'y' + xy) (x' + yz)$$

$$= (x' + y' + x'y' + xy) (x' + yz)$$
by Theorem 6a

$$= (x' (y + y') + y' (x + x') + x'y' + xy) (x' + yz)$$
by Theorem 9b

$$= (x'y + x'y' + y'x + y'x' + x'y' + xy) (x' + yz)$$
by Theorem 12a

$$= (x'y + x'y' + y'x + y'x' + x'y' + xy) (x' + yz)$$
by Theorem 7b

$$= (x' (y + y') + x (y + y')) (x' + yz)$$
by Theorem 12a

$$= (x' + x) (x' + yz)$$
by Theorem 9b

$$= (x' + x) (x' + yz)$$
by Theorem 6a

$$= 1 (x' + yz)$$
by Theorem 6a

2.22.

For three variables (x, y, z), there is a total of eight (2^3) minterms. The function has five minterms, therefore, the inverted function will have three (8-5=3) minterms. Hence, implementing the inverted function and then adding a NOT gate at the final output will result in a smaller circuit. The circuit requires 3 AND gates, 1 OR gate, and 1 NOT gate.

2.23.

W	x	y	Ζ	4	4	4	4	4	v	W	x	у	Ζ	5	5
				AND	NAND	NOR	XOR	XNOR						XOR	XNOR
0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0
0	0	0	1	0	1	0	1	0	0	0	0	0	1	1	1

12

0	0	1	0	0	1	0	1	0
0	0	1	1	0	1	0	0	1
0	1	0	0	0	1	0	1	0
0	1	0	1	0	1	0	0	1
0	1	1	0	0	1	0	0	1
0	1	1	1	0	1	0	1	0
1	0	0	0	0	1	0	1	0
1	0	0	1	0	1	0	0	1
1	0	1	0	0	1	0	0	1
1	0	1	1	0	1	0	1	0
1	1	0	0	0	1	0	0	1
1	1	0	1	0	1	0	1	0
1	1	1	0	0	1	0	1	0
1	1	1	1	1	0	0	0	1
				(a)	(b)	(c)	(d)	(e)

0	0	0	1	0	1	1
0	0	0	1	1	0	0
0	0	1	0	0	1	1
0	0	1	0	1	0	0
0	0	1	1	0	0	0
0	0	1	1	1	1	1
0	1	0	0	0	1	1
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	0	1	1	1	1
0	1	1	0	0	0	0
0	1	1	0	1	1	1
0	1	1	1	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	1
1	0	0	0	1	0	0
1	0	0	1	0	0	0
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	0	1	0	1	1	1
1	0	1	1	0	1	1
1	0	1	1	1	0	0
1	1	0	0	0	0	0
1	1	0	0	1	1	1
1	1	0	1	0	1	1
1	1	0	1	1	0	0
1	1	1	0	0	1	1
1	1	1	0	1	0	0
1	1	1	1	0	0	0
1	1	1	1	1	1	1
					(f)	(g)

2.24.

w	x	у	Ζ	$(x \odot$	(xyz)'	$(x \odot y)' +$	(w' + x +	F
				y)'		(xyz)'	<i>z</i>)	
0	0	0	0	0	1	1	1	1
0	0	0	1	0	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	0	0	1	1	1	1
0	1	1	1	0	0	0	1	0
1	0	0	0	0	1	1	0	0
1	0	0	1	0	1	1	1	1
1	0	1	0	1	1	1	0	0
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	1	1	0	0	1	1	1	1
1	1	1	1	0	0	0	1	0
					(a)			

x	y	Ζ	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(b)

13 © 2018 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

W	x	у	Z	w'xy'z	$(x \oplus y)$	$w'z(y \oplus x)$	$[w'xy'z + w'z (y \oplus x)]$	F
0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	1
0	0	1	0	0	1	0	0	1
0	0	1	1	0	1	1	1	0
0	1	0	0	0	1	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	0	0	0	0	0	1
0	1	1	1	0	0	0	0	1
1	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	1
1	0	1	0	0	1	0	0	1
1	0	1	1	0	1	0	0	1
1	1	0	0	0	1	0	0	1
1	1	0	1	0	1	0	0	1
1	1	1	0	0	0	0	0	1
1	1	1	1	0	0	0	0	1

(c)

2.25.

a)									
	W	x	у	Ζ	$(x \odot$	(xyz)'	$(x \odot y)' +$	(w' + x +	F
					<i>y</i>)'		(xyz)'	<i>z</i>)	
	0	0	0	0	0	1	1	1	1
	0	0	0	1	0	1	1	1	1
	0	0	1	0	1	1	1	1	1
	0	0	1	1	1	1	1	1	1
	0	1	0	0	1	1	1	1	1
	0	1	0	1	1	1	1	1	1
	0	1	1	0	0	1	1	1	1
	0	1	1	1	0	0	0	1	0
	1	0	0	0	0	1	1	0	0
	1	0	0	1	0	1	1	1	1
	1	0	1	0	1	1	1	0	0
	1	0	1	1	1	1	1	1	1
	1	1	0	0	1	1	1	1	1
	1	1	0	1	1	1	1	1	1
	1	1	1	0	0	1	1	1	1
	1	1	1	1	0	0	0	1	0
-						(a)			

x	y	Ζ	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(b)

14

 $F = x \oplus y \oplus z$

(b)

- = (xy' + x'y)z' + (xy' + x'y)'z $= [w+x'+y+z'] [w+z'+(y \oplus x)']$ = xy'z' + x'yz' + xy'z + x'y'z= [w+x'+y+z'][w+z'+xy+x'y']= (x+y+z)(x+y'+z')(x'+y'+z)(x'+y'+z')= [w + x' + y + z'] [w + x + y' + z'] [w + x' + y + z'] $= \Pi (M_0 + M_3 + M_6 + M_7)$ $= \Pi(M_3 + M_5)$ (b) (c) $F = [(x \odot y)' + (xyz)'] (w' + x + z)$
- 2.26.

b)

 $F = [(x \odot y)' + (xyz)'] (w' + x + z)$

= (x' + y' + z') (w' + x + z)

= [xy' + x'y + x' + y' + z')](w' + x + z)

= [xy' + x'y + x' + y' + z')](w' + x + z)

= w'x' + x'z + w'y' + xy' + y'z + w'z' + xz'

 $= x'w' + \frac{x'x}{x} + x'z + y'w' + y'x + y'z + z'w' + z'x + \frac{z'z}{z'z}$

(a)

= (x' + y' + z') (w' + x + z)

 $= (x \oplus z) + xy' + w'x'$ or $(x \oplus z) + xy' + w'z'$ or $(x \oplus z) + y'z + w'x'$ or $(x \oplus z) + y'z + w'z'$

= (ww' + x' + y' + z') (w' + x + yy' + z)= (w + x' + y' + z') (w' + x' + y' + z') (w' + x + y + z) (w' + x + y' + z) $= \Pi (M_7 + M_8 + M_{10} + M_{15})$ (a) $F = [w'xy'z + w'z (y \oplus x)]'$ $= [w'xy'z]' [w'z (y \oplus x)]'$ $F = x \oplus y \oplus z$

x v z

w

w'xy'z

 $(x \oplus y)$

0 1 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0

 $w'z (y \oplus x)$

F

 $[w'xy'z + w'z (y \oplus x)]$

(c)

 $F = [w'xy'z + w'z (y \oplus x)]'$

- $= [w'xy'z]' [w'z (y \oplus x)]'$

- $= [w+x'+y+z'] [w+z'+(y \oplus x)']$ = [w+x'+y+z'] [w+z'+xy+x'y'] = w+wz'+wxy+wx'y'+wx' + x'z'+x'y'+wy+yz'+xy+wz'+z'+xyz'+x'y'z']
- = w + z' + x'y' + xy
- $= w + z' + (x \odot y)$

(c)

2.27.

x	у	Lę	ft Sia :⊕v	de	<i>x</i>	y	Right Side			-	x	y	<i>y</i> ′	Left Si $x \oplus y$	ide ,'	$\begin{array}{c} \text{Right Side} \\ x \odot y \end{array}$
			, e y				$(x \odot y)'$			-	0	0	1	1		1
0	0		0		1		0				1	1	1	0		0
0	1		1		0		1			·	1	1	1	1		0
1	0		1		0		1			L	1	1	0	(h)		1
1	1		0		1		0							(0)		
				_	(a)											
W	y x	y y	Z	ı	v⊕x	y⊕	z Left Side	' V	v ⊙ x	$y \odot z$	R	igh	t S	ide	Ri	ght Side
							$(w \oplus x) \odot (y$	v⊕z)			(v	vOx	e) 🖸	$(y \odot z)$	(((1	$w \odot x) \odot y) \odot z)$
0	0) ()	0		0	0	1		1	1			1			1
0	0) 0	1		0	1	0		1	0			0			0
0	0) 1	0		0	1	0		1	0			0			0
0	0) 1	1		0	0	1		1	1			1		_	1
0	1	0	0		1	0	0		0	1			0		-	0
0	1	0	1		1	1	1		0	0			1			1
0	1	1	0		1	1	1		0	0			1			1
0	1	1	1		1	0	0		0	1			0			0
1	0) ()	0		1	0	0		0	1		0			0	
1	0) ()	1		1	1	1		0	0			1		-	1
1	0) 1	0		1	1	1		0	0		1			-	1
1	0) 1	1		1	0	0		0	1			0			0
1	1	0	0		0	0	1		1	1			1			1
1	1	0	1		0	1	0		1	0			0			0
1	1	1	0		0	1	0		1	0		0		0		
1	1	1	1		0	0	1		1	1			1			1

(c)

x	y	z	(<i>xy</i>)'	((xy)'x)'	((<i>xy</i>)' <i>y</i>)'	[((xy)'x)'((xy)'y)']	Left Side $[((xy)'x)'((xy)'y)']'$	$\begin{array}{c} Right \ Side \\ x \oplus y \end{array}$
0	0	0	1	1	1	1	0	0
0	0	1	1	1	1	1	0	0
0	1	0	1	1	0	0	1	1
0	1	1	1	1	0	0	1	1
1	0	0	1	0	1	0	1	1
1	0	1	1	0	1	0	1	1
1	1	0	0	1	1	1	0	0
1	1	1	0	1	1	1	0	0

 $(x \oplus y) = xy' + x'y$ = xx' + xy' + x'y + yy'= (x + y) (x' + y')= (x'y')' (xy)'= [(x'y') + (xy)]'= $(x \odot y)'$ (a) [((xy)'x)'((xy)'y)']'= ((xy)'x) + ((xy)'y)= (x' + y')x + (x' + y')y= $xx' + xy' + x'y + \frac{y'y}{y'y'}$ = xy' + x'y= $x \oplus y$ (d)

2.29.

$$\begin{array}{l} x \oplus y \oplus z \\ &= (x \oplus y) \oplus z \\ &= (x'y + xy') \oplus z \\ &= (x'y + xy')z' + (x'y + xy')'z \\ &= x'yz' + xy'z' + (x'y)'(xy')'z \\ &= x'yz' + xy'z' + (x+y')(x'+y)z \\ &= x'yz' + xy'z' + xx'z + xyz + x'y'z + \frac{y'yz}{y'z} \\ &= x'y'z + x'yz' + xy'z' + xyz \end{array}$$

2.30.

$$\begin{aligned} x \oplus y \oplus z &= (x \oplus y) \oplus z \\ &= (x'y + xy') \oplus z \\ &= (x'y + xy')'z + (x'y + xy')z' \\ &= (x'y)' \cdot (xy')'z + x'yz' + xy'z' \\ &= (x + y') \cdot (x' + y)z + x'yz' + xy'z' \\ &= xx'z + xyz + x'y'z + y'yz + x'yz' + xy'z' \\ &= (xy + x'y')z + (x'y + xy')z' \\ &= (xy + x'y')z + (xy + x'y')'z' \\ &= (x \odot y)z + (x \odot y)'z' \end{aligned}$$

2.31.

- (a) $F(x,y,z) = \Sigma(m_0, m_3, m_4, m_7)$
- (b) $F(x,y,z) = \Sigma(m_2, m_5, m_6, m_7)$
- (c) $F(w,x,y,z) = \Sigma(m_5, m_7, m_{13}, m_{15})$
- (d) $F(w,x,y,z) = \Sigma(m_2, m_6, m_{13}, m_{14}, m_{15})$
- (e) $F(x,y,z) = \Sigma(m_1, m_4, m_5, m_6)$
- (f) $F(w,x,y,z) = \Sigma(m_0, m_2, m_4, m_6, m_7, m_9, m_{11}, m_{15})$
- (g) $F(x,y,z) = \Sigma(m_4, m_5)$
- (h) $F(N_3, N_2, N_1, N_0) = \Sigma(m_2, m_3, m_{10}, m_{11}, m_{12}, m_{15})$ (a)

(a) $F(x,y,z) = \Pi(M_1, M_2, M_5, M_6)$

 $\begin{array}{l} x \oplus y' = xy + x'y' \\ = x \odot y \end{array}$

(b)

- (b) $F(x,y,z) = \Pi(M_0, M_1, M_3, M_4)$
- (c) $F(w,x,y,z) = \Pi(M_0, M_1, M_2, M_3, M_4, M_6, M_8, M_9, M_{10}, M_{11}, M_{12}, M_{14})$
- (d) $F(w,x,y,z) = \Pi(M_0, M_1, M_3, M_4, M_5, M_7, M_8, M_9, M_{10}, M_{11}, M_{12})$
- (e) $F(x,y,z) = \Pi(M_0, M_2, M_3, M_7)$
- (f) $F(w,x,y,z) = \Pi(M_1, M_3, M_5, M_8, M_{10}, M_{12}, M_{13}, M_{14})$
- (g) $F(x,y,z) = \prod(M_0, M_1, M_2, M_3, M_6, M_7)$
- (h) $F(N_3, N_2, N_1, N_0) = \Pi(M_0, M_1, M_4, M_5, M_6, M_7, M_8, M_9, M_{13}, M_{14})$

(b)

2.32.

(a) F(x,y,z) = x'y'z + x'yz + xyz

(c)
$$F(x,y,z) = (x+y+z')(x+y'+z')(x'+y'+z')$$

(b)
$$F(w,x,y,z) = w'x'y'z + w'x'yz + w'xyz$$

(d) $F(w,x,y,z) = (w+x+y+z') (w+x'+y'+z')$
 $(w+x'+y'+z')$

- (e) F'(x,y,z) = x'y'z' + x'yz' + xy'z' + xy'z + xyz'
- (f) F(x,y,z) = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')(x'+y'+z)

2.33.

F' is expressed as a sum of its 0-minterms. Therefore, *F* is the sum of its 1-minterms = $\Sigma(0, 2, 4, 5, 6)$. Using three variables, the truth table is as follows:

x	у	Z	Minterms	F
0	0	0	$m_0 = x' y' z'$	1
0	0	1	$m_1 = x' y' z$	0
0	1	0	$m_2 = x' y z'$	1
0	1	1	$m_3 = x' y z$	0
1	0	0	$m_4=x y' z'$	1
1	0	1	$m_5 = x y' z$	1
1	1	0	$m_6=x y z'$	1
1	1	1	$m_7 = x y z$	0

2.34.

$$F = \Sigma(3, 4, 5) = m_3 + m_4 + m_5$$

= $x'yz + xy'z' + xy'z$
= $(x' + x + x)(x' + x + y')(x' + x + z)$
 $(x' + y' + x)(x' + y' + y')(x' + y' + z)$
 $(x' + z' + x)(x' + z' + y')(x' + z' + z)$
 $(y + x + x)(y + x + y')(y + x + z)$
 $(y + y' + x)(y + y' + y')(y + y' + z)$
 $(y + z' + x)(y + z' + y')(y + z' + z)$
 $(z + x + x)(z + x + y')(z + x + z)$
 $(z + y' + x)(z + y' + y')(z + y' + z)$
 $(z + y' + x)(z + z' + y')(z + z' + z)$
 $(z + z' + x)(z + z' + y')(z + z' + z)$
 $(z + y' + z)(x' + y' + z')(x + y + z)(x + y + z')(x + y' + z)$

2.35.

a)

Product-of-sums (AND-of-OR) format is obtained by using the *duality principle* or De Morgan's Theorem: $F' = (x'+y+z) \bullet (x'+y+z') \bullet (x'+y'+z) \bullet (x'+y'+z')$

b)

Sum-of-products (OR-of-AND) format is obtained by first constructing the truth table for F and then inverting the 0's and 1's to get F'. Then we simply use the AND terms where F' = 1.

x	у	Z	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

F' = x'y'z' + x'y'z + x'yz' + x'yz

2.36.

a)

$$F = w \odot x \odot y \odot z$$

$$= (wx + w'x') \odot y \odot z$$

$$= [(wx + w'x')y + (wx + w'x')'y']z + [(wx + w'x')y + (wx + w'x')'y']'z'$$

$$= wxyz + w'x'yz + (wx)'(w'x')'y'z + [(wx + w'x')y + (wx + w'x')'y']'z'$$

$$= m_{15} + m_3 + (w'+x')(w+x)y'z + [(wx + w'x')y + (wx + w'x')'y']'z'$$

$$= m_{15} + m_3 + w'xy'z + wx'y'z + [(wx + w'x')y + (wx + w'x')'y']'z'$$

$$= m_{15} + m_3 + m_5 + m_9 + [(wx + w'x')y]'[(wx + w'x')'y']'z'$$

$$= m_{15} + m_3 + m_5 + m_9 + [(wx + w'x')' + y'][(wx + w'x') + y]z'$$

$$= m_{15} + m_3 + m_5 + m_9 + [(wx')'(w'x')' + y'][wxz' + w'x'z' + yz']$$

$$= m_{15} + m_3 + m_5 + m_9 + [(w'+x')(w+x) + y'][wxz' + w'x'z' + yz']$$

$$= m_{15} + m_3 + m_5 + m_9 + [w'x + wx' + y'][wxz' + w'x'z' + yz']$$

$$= m_{15} + m_3 + m_5 + m_9 + [w'x + wx' + y'][wxz' + w'x'z' + yz']$$

$$= m_{15} + m_3 + m_5 + m_9 + [w'x + wx' + y'][wxz' + w'x'z' + yz']$$

$$= m_{15} + m_3 + m_5 + m_9 + [w'x + wx' + y'][wxz' + w'x'z' + yz']$$

$$= m_{15} + m_3 + m_5 + m_9 + [w'x + wx' + y'][wxz' + w'x'z' + yz']$$

$$= m_{15} + m_3 + m_5 + m_9 + [w'x + wx' + y'][wxz' + w'x'z' + yz']$$

$$= m_{15} + m_3 + m_5 + m_9 + [w'x + wx' + y'][wxz' + w'x'z' + yz']$$

2.37.

a)

module P2_24a (
 input w,x,y,z,
 output F
);
 assign F = (~(x^y) | ~(x&y&z)) & (~w|x|z);
endmodule

b)

```
module P2_24b (
    input x,y,z,
    output F
);
    assign F = x^y^z;
endmodule
```

c)

```
module P2_24c (
    input w, x, y, z,
    output F
);
    assign F = ~((~w&x&~y&z) | (~w&z&(y^x)));
endmodule
```

2.38.

a)

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY P2_24a IS PORT (
   w,x,y,z: IN STD_LOGIC;
   F: OUT STD_LOGIC);
END P2_24a;
ARCHITECTURE Dataflow OF P2_24a IS
BEGIN
   F <= (NOT (x XOR y) OR NOT (x AND y AND z)) AND (NOT w OR x OR z);
END Dataflow;
```

b)

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY P2_24b IS PORT (
    x,y,z: IN STD_LOGIC;
    F: OUT STD_LOGIC);
END P2_24b;
ARCHITECTURE Dataflow OF P2_24b IS
BEGIN
    F <= x XOR y XOR z;
END Dataflow;
```

c)

LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.all; ENTITY P2_24c IS PORT (w,x,y,z: IN STD_LOGIC; F: OUT STD_LOGIC); END P2_24c; ARCHITECTURE Dataflow OF P2_24c IS BEGIN F <= NOT((NOT w AND x AND NOT y AND z) OR (NOT w AND z AND (y XOR x))); END Dataflow; 2.39.

```
// this is a Verilog behavioral model of the car security system
module Siren (
    input M, D, V,
    output S
);

wire term1, term2, term3;

always @ (M or D or V) begin
    term1 = (M & ~D & V);
    term2 = (M & D & ~V);
    term3 = (M & D & V);
    S = term1 | term2 | term3;
end
```

endmodule

2.40.

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY Siren IS PORT (
    M, D, V: IN STD_LOGIC;
    S: OUT STD_LOGIC);
END Siren;
ARCHITECTURE Behavioral OF Siren IS
BEGIN
    PROCESS(M, D, V)
BEGIN
    S <= (M AND NOT D AND V) OR (M AND D AND NOT V) OR (M AND D AND V);
END PROCESS;
END Behavioral;
```

Digital Logic & Microprocessor Design with Interfacing 2nd Edition

Enoch O. Hwang

Chapter 2 Fundamentals of Digital Circuits

Binary Number

Decimal	Binary	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Value of a Binary Number

For decimal number:

• $658_{10} = (6 \times 10^2) + (5 \times 10^1) + (8 \times 10^0)$ = $600 + 50 + 8 = 658_{10}$

For binary number:

 $1011011_{2} = (1 \times 2^{6}) + (0 \times 2^{5}) + (1 \times 2^{4}) + (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0}) \\ = 64 + 0 + 16 + 8 + 0 + 2 + 1 = 91_{10}$

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Hwang

Octal and Hex

Octal <u>001</u> <u>110</u> <u>011</u> 1 6 3 5 7 2 4 101 111 010 100 $5724_8 = (5 \times 8^3) + (7 \times 8^2)$ $+ (2 \times 8^{1}) + (4 \times 8^{0})$ = 2560 + 448 + 16 + 4 $= 3028_{10}$

Hex <u>0110 1101 1011</u> 6 D B 5 C F 0101 1100 1111 $5CA_{16} = (5 \times 16^2) + (C \times 16^1) + (C \times$ $(\mathsf{F} \times 16^{0})$ $= (5 \times 16^2) + (12 \times 16^1) + (15 \times 16^2)$ 16°) = 1280 + 192 + 15 $= 1487_{10}$

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

6

Negative Number

- Signed or unsigned number representation
- Use two's complement representation for signed numbers
- For signed numbers, the MSB tells whether the number is positive or negative
 - •0 = positive
 - 1 = negative
- If signed number is positive then you can find the value just like for unsigned numbers

Negative Number

- If signed number is negative then you need to do two steps to find its value:
 - (1) Flip all the 1 bits to 0's and all the 0 bits to 1's.
 - (2) Add a 1 to the result obtained from step (1).
- The negated value obtained from step (2) is the value of the original signed number

1001	(original number – MSB is a 1)
(1) 0110	(flip all the bits)
(2) 0111	(add a 1 to the previous number)
0111 = 7, the second	herefore $1001 = -7$

Negative Number

4-bit Binary	Two's		
	Complement		
0000	0		
0001	1		
0010	2		
0011	3		
0100	4		
0101	5		
0110	6		
0111	7		
1000	- 8		
1001	-7		
1010	- 6		
1011	- 5		
1100	- 4		
1101	- 3		
1110	- 2		
1111	- 1		

For 4-bit unsigned number: range is 0 to $2^4 - 1$ = 0 to 15

For 4-bit signed number: range is -2^3 to $2^3 - 1$ = -8 to 7

For n-bit **unsigned** number: range is 0 to $2^n - 1$

For *n*-bit signed number: range is -2^{n-1} to $2^{n-1} - 1$

Example

- Find the two's complement number for –58
 - Start with +58

- $2 \begin{array}{|c|c|c|c|c|c|c|c|} 2 & 58 & 0 \\ 2 & 29 & 1 \\ 2 & 14 & 0 \\ 2 & 7 & 1 \\ 2 & 3 & 1 \\ 1 & & Most significant bit \end{array}$ = 111010
- Binary for +58 is 0111010. Need to add a leading 0, otherwise it is a negative number!
 0111010 = 58
 1000101 Flip all the bits
 1000110 add a 1 to the previous number
 Therefore, 1000110 = -58

Sign Extension

For unsigned numbers, extend with 0

For signed numbers, extend with the MSB

	Original Number	Sign Extended	Original Number	Sign Extended
	10010	11110010	0101	00000101
Flip bits	01101	00001101		
Add 1	01110	00001110		
Value	- 14	- 14	5	5

Signed Number Arithmetic

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Hwang

12

1. Perform the following 4-bit unsigned number addition. Is there an overflow error?

1. Perform the following 4-bit unsigned number addition. Is there an overflow error?

 Perform the following 4-bit unsigned number addition. Is there an overflow error?

2. Perform the following 4-bit unsigned number addition. Is there an overflow error?

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

2. Perform the following 4-bit unsigned number addition. Is there an overflow error?

3. Perform the following 4-bit signed number addition. Is there an overflow error?

3. Perform the following 4-bit signed number addition. Is there an overflow error?

No, there is no overflow error

4. Perform the following 4-bit signed number addition. Is there an overflow error?

4. Perform the following 4-bit signed number addition. Is there an overflow error?

Yes, there is an overflow error

5. Perform the following 4-bit unsigned number subtraction. Is there an overflow error?

5. Perform the following 4-bit unsigned number subtraction. Is there an overflow error?

5. Perform the following 4-bit unsigned number subtraction. Is there an overflow error?

6. Perform the following 4-bit signed number subtraction. Is there an overflow error?

6. Perform the following 4-bit signed number subtraction. Is there an overflow error?

6. Perform the following 4-bit signed number subtraction. Is there an overflow error?

No, there is no overflow error

7. Perform the following 4-bit signed number subtraction. Is there an overflow error?

7. Perform the following 4-bit signed number subtraction. Is there an overflow error?

7. Perform the following 4-bit signed number subtraction. Is there an overflow error?

	0	1	0	1	=	5
_	1	0	0	0	=	_(-8)
	1	1	0	1	=	-3

Yes, there is an overflow error

Digital Logic and Microprocessor Design with Interfacing, 2E

Binary Switch

Digital Logic and Microprocessor Design with Interfacing, 2E

Basic Logic

AND F = x and y F = x•y F = xy
OR F = x or y F = x + y
NOT F = x' F = x
Precedence from high to low: NOT/AND/OR
F = xy + z' F = x(y + z)'

Logic Gate

- Logic gates are the actual physical devices that implement the logical operators
- Using Logic Symbol to denote logic gates

Logic Gate

- NAND F = (xy)'
- NOR F = (x + y)'
- XOR $F = x \oplus y = x'y + xy'$
- XNOR $F = x \odot y = x'y' + xy$

For even number of inputs xor = xnor' $(x \oplus y) = (x \odot y)'$ For odd number of inputs xor = xnor $(x \oplus y \oplus z) = (x \odot y \odot z)$

Digital Logic and Microprocessor Design with Interfacing, 2E

> **Truth Table** F F У Χ У Х 0 0 0 0 0 0 F Χ 1 0 0 1 1 \mathbf{O} \mathbf{O} 0 1 0 0 1 1 \mathbf{O} 1 1 1 1 1 1 2-NAND 2-XNOR 2-NOR 2-XOR (x•y)' (x+y)' **x** • **y** $\mathbf{x} \oplus \mathbf{y}$ У Х $\mathbf{0}$ 0 () \mathbf{O} 1 \mathbf{O} N \mathbf{O} 1 \cap () 1 1 ()()()

Truth Table

			3-AND	3-OR	3-NAND	3-NOR	3-XOR	3-XNOR
Х	У	Z	x • y • z	x + y + z	(x • y • z)'	(x + y + z)'	$x \oplus y \oplus z$	x ⊙ y ⊙ z
0	0	0	0	0	1	1	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	0	1	1	0	0	0
1	1	0	0	1	1	0	0	0
1	1	1	1	1	0	0	1	1

How can you use a NAND gate to work like an AND gate?

How can you use a NAND gate to work like an AND gate?

How can you use a NAND gate to work like a NOT gate?

How can you use a NAND gate to work like a NOT gate?

Or

How can you use a NAND gate to work like an OR gate?

How can you use a NAND gate to work like an OR gate?

Use DeMorgan's Theorem

How can you use a NAND gate to work like an OR gate?

Use DeMorgan's Theorem

x+y = (x+y)''

How can you use a NAND gate to work like an OR gate?

Use DeMorgan's Theorem

$$x + y = (x + y)''$$

= $(x'y')'$

Use AND, OR, and NOT gates to implement the XOR gate

Use AND, OR, and NOT gates to implement the XOR gate

Use only NAND gates to implement the XOR gate

Use only NAND gates to implement the XOR gate

- Circuits built with binary switches can be described using Boolean algebra.
- Let B = {0,1} be the Boolean algebra. We have axioms, single variable theorems, and two or three variable theorems.
- Can be used to reduce circuit size.

Digital Logic and Microprocessor Design with Interfacing, 2E

Boolean Algebra

1a.	$0 \bullet 0 = 0$	1b.	1 + 1 = 1			
2a.	1 • 1 = 1	2b.	0 + 0 = 0			
3a.	$0 \bullet 1 = 1 \bullet 0 = 0$	3b.	1 + 0 = 0 + 1 = 1			
4a.	0' = 1	4b.	1' = 0			
			(a)			
5a.	$\mathbf{X} \bullet 0 = 0$	5b.	x + 1 = 1	Null Elei	ment	
6a.	$\mathbf{x} \bullet 1 = 1 \bullet \mathbf{x} = \mathbf{x}$	6b.	x + 0 = 0 + x = x	Identity		
7a.	$X \bullet X = X$	7b.	X + X = X	Idempot	ent	
8a.	(X')' = X			Double	Complement	
9a.	x • x' = 0	9b.	x + x' = 1	Inverse		
(b)						
10a.	$\mathbf{x} \bullet \mathbf{y} = \mathbf{y} \bullet \mathbf{x}$	10b.	$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$		Commutative	
11a.	$(\mathbf{x} \bullet \mathbf{y}) \bullet \mathbf{z} = \mathbf{x} \bullet (\mathbf{y} \bullet \mathbf{z})$	11b.	(x + y) + z = x + (y - y)	+ Z)	Associative	
12a.	$(x \bullet y) + (x \bullet z) = x \bullet$ (y + z)	12b.	$(x + y) \bullet (x + z) = x$	+ (y • z)	Distributive	
13a.	$(\mathbf{x} \bullet \mathbf{y})' = \mathbf{x}' + \mathbf{y}'$	13b.	$(x+y)'=x'\bullety'$		DeMorgan's	
(C)						

Digital Logic and Microprocessor Design with Interfacing, 2E

Reduce Logic Expression using Boolean Algebra Use Boolean algebra to reduce the expression $x + (x \bullet y)$ as much as possible $x + (x \bullet y) = (x \bullet 1) + (x \bullet y)$ $= x \bullet (1 + y)$ $= x \bullet (1)$ $\equiv \chi$

Use Boolean algebra to reduce the equation as much as possible F = (x'yz) + (xy'z) + (xyz') + (xyz)

Use Boolean algebra to reduce the equation as much as possible
 F= (x'yz) + (xy'z) + (xyz') + (xyz) = (x'yz) + (xy'z) + (xyz') + (xyz) + (xyz

Use Boolean algebra to reduce the equation as much as possible

F = (x'yz) + (xy'z) + (xyz') + (xyz)= (x'yz) + (xy'z) + (xyz') + (xyz) + (xyz) + (xyz)= (x'yz) + (xyz) + (xy'z) + (xyz) + (xyz') + (xyz)= [(x'yz) + (xyz)] + [(xy'z) + (xyz)] + [(xyz') + (xyz)]
Boolean Algebra

Use Boolean algebra to reduce the equation as much as possible

F = (x'yz) + (xy'z) + (xyz') + (xyz)= (x'yz) + (xy'z) + (xyz') + (xyz) + (xyz)= (x'yz) + (xyz) + (xy'z) + (xyz) + (xyz') + (xyz)= [(x'yz) + (xyz)] + [(xy'z) + (xyz)] + [(xyz') + (xyz)]= yz(x' + x) + xz(y' + y) + xy(z' + z)= yz(1) + xz(1) + xy(1)= yz + xz + xy= z(y + x) + xy

Duality Principle

 Dual: changing AND with OR and vice versa, Changing 0 with 1 and vice versa

> $(x \bullet y' \bullet z) + (x \bullet y \bullet z') + (y \bullet z) + 0$ $(x + y' + z) \bullet (x + y + z') \bullet (y + z) \bullet 1$

 Duality Principle: if a Boolean expression is true, then its dual is also true

x + 1 = 1 is true. $x \bullet 0 = 0$ is true

 The inverse of a Boolean expression can be obtained by taking the dual of that expression and then complementing each variable.

Boolean function: logic expression to describe digital circuit.

Sum-of-product

We are mainly interested in when a function evaluates to a 1

F = 1 when any one of the three AND terms evaluate to a 1
The first AND term, *xy'z*, equals 1 if

x = 1, y = 0, and z = 1

Digital Logic and Microprocessor Design with Interfacing, 2E

Boolean Function and Inverse

The last AND term, yz, equals 1 if
 y = 1 and z = 1
 the missing variable, x, means it doesn't matter what its value is, so it can be either 0 or 1

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Hwang

Digital Logic and Microprocessor Design with Interfacing, 2E

Boolean Function and Inverse

 Putting everything together, F = 1 when *x* = 1, *y* = 0, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 0
 or *x* = 0, *y* = 1, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1
 or *x* = 1, *y* = 1, and *z* = 1
 or *x* = 1
 or

It is more convenient to summarize this verbal description of a function with a truth

1	

Х	У	Z	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

The inverse of a function, F', can be obtained easily from the truth table

Х	У	Z	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Look at the rows where F' = 1

$$F' = (x'y'z') + (x'y'z) + (x'yz') + (xy'z') + (xy'z')$$

To get F' using Boolean Algebra requires using DeMorgan's Theorem twice

> F = xy'z + xyz' + yz F' = (xy'z + xyz' + yz)' $= (xy'z)' \bullet (xyz')' \bullet (yz)'$ $= (x'+y+z') \bullet (x'+y'+z) \bullet (y'+z')$

We have two different equations for F'

F' = (x'y'z') + (x'y'z) + (x'yz') + (xy'z')sum-of-products

$F'=(x'+y+z') \bullet (x'+y'+z) \bullet (y'+z')$ product-of-sums

Minterms and Maxterms

- Minterm
 - Is a product term that contains all the variables in a function
 - The variable is negated (primed) if the value is a 0
- Maxterm
 - Is a sum term that contains all the variables in a function
 - The variable is negated (primed) if the value is a 1

Minterms and Maxterms

- *m_i* for minterms
- *M_i* for maxterms where 0 ≤ *i* < 2ⁿ for *n* variables

Х	У	Ζ	Minterm	Notation	Maxterm	Notation
0	0	0	x' y' z'	m _o	x + y + z	M ₀
0	0	1	x' y' z	m ₁	x + y + z'	M_1
0	1	0	x' y z'	m_2	x + y' + z	M_2
0	1	1	x' y z	m ₃	x + y' + z'	M_3
1	0	0	x y' z'	m_4	x' + y + z	M_4
1	0	1	x y' z	m_5	x' + y + z'	M_5
1	1	0	x y z'	m_6	x' + y' + z	M_6
1	1	1	хуz	m ₇	x' + y' + z'	M_7

F = xy'z + xyz' + yz
= x'yz + xy'z + xyz' + xyz

Х	У	Z	F	F'	Minterm	Notation
0	0	0	0	1	x' y' z'	m _o
0	0	1	0	1	x' y' z	m ₁
0	1	0	0	1	x' y z'	m ₂
0	1	1	1	0	x' y z	m_3
1	0	0	0	1	x y' z'	m ₄
1	0	1	1	0	x y' z	m ₅
1	1	0	1	0	x y z'	m ₆
1	1	1	1	0	хуz	m ₇

 $F(x, y, z) = m_3 + m_5 + m_6 + m_7$ $F(x, y, z) = \Sigma(3, 5, 6, 7)$ $F'(x, y, z) = \Sigma(0, 1, 2, 4)$

 $F = xy'z + xyz' + yz = (x + y + z) \bullet (x + y + z') \bullet (x + y' + z) \bullet (x' + y + z')$

Х	У	Z	F	F'	Maxterm	Notation
0	0	0	0	1	x + y + z	M_0
0	0	1	0	1	x + y + z'	M_1
0	1	0	0	1	x + y' + z	M_2
0	1	1	1	0	x + y' + z'	M_3
1	0	0	0	1	x' + y + z	M_4
1	0	1	1	0	x' + y + z'	M_5
1	1	0	1	0	x' + y' + z	M_6
1	1	1	1	0	x' + y' + z'	M_7

 $F(x, y, z) = M_0 \bullet M_1 \bullet M_2 \bullet M_4$ $F(x, y, z) = \Pi(0, 1, 2, 4)$ $F'(x, y, z) = \Pi(3, 5, 6, 7)$

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- Write out the full function

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Hwang

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- Write out the full function
- F(x, y, z) = x'y'z + x'yz' + x'yz + x'yz' + xyz' + xyz

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F using Π ?

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Hwang

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F using Π ?
- $F(x, y, z) = \Pi(0, 4)$

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F using Π ?
- $F(x, y, z) = \Pi(0, 4)$
- Write out the full function for $\Pi(0, 4)$

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F using Π ?
- $F(x, y, z) = \Pi(0, 4)$
- Write out the full function for $\Pi(0, 4)$
- $F(x, y, z) = (x + y + z) \bullet (x' + y + z)$

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F' using Σ ?
- $F' = \Sigma(0, 4)$

- Given $F(x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F' using $\Pi?$
- $F' = \Pi(1, 2, 3, 5, 6, 7)$

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

75

Hwang

- Given $F(w, x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- Write out the full function

- Given $F(w, x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F using Π ?

Given F(w, x, y, z) = Σ(1, 2, 3, 5, 6, 7)
What is F using Π?

• Write out the full function for Π of 0-Maxterms

© 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Hwang

- Given $F(w, x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F' using Σ ?

- Given $F(w, x, y, z) = \Sigma(1, 2, 3, 5, 6, 7)$
- What is F' using Π ?

Digital Logic and Microprocessor Design with Interfacing, 2E

Minterms/Maxterms Relationship

- Write it in the Σ of minterms format and Π of maxterms format
- Use Truth Table

Use Truth Table

Х	у	Z	F	Minterm	Notation
0	0	0		x' y' z'	m ₀
0	0	1		x' y' z	m_1
0	1	0		x' y z'	m_2
0	1	1		x' y z	m_3^-
1	0	0		x y' z'	m_4
1	0	1		x y' z	m_5
1	1	0		x y z'	m_6
1	1	1		хуz	m_7

Use Truth Table

Х	у	Z	F	Minterm	Notation
0	0	0	0	x' y' z'	m ₀
0	0	1	1	x' y' z	m ₁
0	1	0	1	x' y z'	m_2
0	1	1	1	x' y z	m ₃
1	0	0	0	x y' z'	m_4
1	0	1	0	x y' z	m ₅
1	1	0	1	x y z'	m_6
1	1	1	1	ХVZ	m_{7}

$F = \Sigma(1, 2, 3, 6, 7)$ and $F = \Pi(0, 4, 5)$

- Write it in the Σ of minterms format
- Use Boolean algebra
- F = y + x'z

Converting to Minterms/Maxterms
Given F(x, y, z) = y + x'z
Write it in the Σ of minterms format
Use Boolean algebra

Converting to Minterms/Maxterms
Given F(x, y, z) = y + x'z
Write it in the Π of maxterms format

- Use Boolean algebra
- F = y + x'z

Converting to Minterms/Maxterms • Given F(x, y, z) = y + x'zWrite it in the Π of maxterms format Use Boolean algebra F = y + x'z= (y+x')(y+z)= (y + x' + zz')(y + z + xx')= (x'+y+z) (x'+y+z') (x+y+z) (x'+y+z) $= M_4 \bullet M_5 \bullet M_0 = \Pi(0, 4, 5)$

Converting to Minterms/Maxterms
Given F(x, y, z) = y + x'z
Write F' in the Σ of minterms format

- Use Boolean algebra
- F' = (y + x'z)'

Digital Logic and Microprocessor Design with Interfacing, 2E

Converting to Minterms/Maxterms • Given F(x, y, z) = y + x'z

F' = (y + x'z)' $= y' \bullet (x'z)'$ $= y' \bullet (x+z')$ = y'x + y'z'= y'x(z+z') + y'z'(x+x')= xy'z + xy'z' + xy'z' + x'y'z' $= m_5 + m_4 + m_0$ $=\Sigma(0, 4, 5)$
Converting to Minterms/Maxterms • Given F(x, y, z) = y + x'z

- Write F' in the Π of maxterms format
- Use Boolean algebra

F' = (y + x'z)'

Converting to Minterms/Maxterms • Given F(x, y, z) = y + x'z

F' = (y + x'z)' $= y' \bullet (x'z)'$ $= y' \bullet (x+z')$ $= (y' + xx' + zz') \bullet (x + z' + yy')$ = (x+y'+z) (x+y'+z') (x'+y'+z) (x'+y'+z')(x+y+z') (x+y'+z') $= M_2 \bullet M_3 \bullet M_6 \bullet M_7 \bullet M_1$ $=\Pi(1, 2, 3, 6, 7)$ © 2018 Cengage Learning[®]. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Converting to Minterms/Maxterms • Given F(x, y, z) = y + x'z

 $F = \Sigma(1, 2, 3, 6, 7) = \Pi(0, 4, 5)$ $F' = \Sigma(0, 4, 5) = \Pi(1, 2, 3, 6, 7)$

Canonical, Standard, and Non-standard Forms

- Canonical: Boolean function expressed in sum-of-minterms or product-of-maxterms
- Standard: sum-ofproducts or products-ofsum has at least one minterm/maxterm
- Non-standard: not in sum-of-product or product-of-sum format

F = x' y z + x y' z + x y z' + x y z $F' = (x+y'+z') \bullet (x'+y+z') \bullet (x'+y'+z) \bullet (x'+y'+z')$ $F_1(x, y, z) = \Sigma(0, 1, 2, 3, 4, 5) \qquad F_2(x, y, z) = \Pi(6, 7)$ $F_1(x, y, z) = \Sigma(3, 5, 6) \qquad F_2(x, y, z) = \Pi(3, 5, 6)$

F = xy'z + xyz' + yz

F = x(y'z + yz') + yz

Digital Circuit

- Digital circuit is a connection of two or more logic gates
- Digital network can be described using schematic diagrams, Boolean expressions, or truth tables

$\mathsf{F}(x, y, z) = x'y'z + x'yz' + x'yz + xyz' + xyz$

Design a Car Security System

- Input: D = Door switch
 - V = Vibration sensor
 - M = Motion sensor
 - Output: S = Siren

Μ	D	V	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

S = (M D ' V) + (M D V') + (M D V)= M (D' V + D V' + D V) = M (D' V + D V' + D V + D V) = M (D(V' + V) + V(D' + D)) = M (D(1) + V(1)) = M (D + V)

Hwang

Digital Logic and Microprocessor Design with Interfacing, 2E

wire term1, term2, term3;

assign term1 = (M & !D & V); assign term2 = (M & D & !V); assign term3 = (M & D & V); assign S = term1 | term2 | term3;

endmodule

Verilog Code for Car System

assign S = (M & !D & V) | (M & D & !V) | (M & D & V);

endmodule

// this is a Verilog dataflow model of the car security system
module Siren (
 input M,
 input D,
 input V,
 output S

);

assign S = M & (D | V);

endmodule

> or (w1, D, V); and (S, M, w1);

endmodule

VHDL Code for Car System

// this is a VHDL dataflow model of the car security system LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; **ENTITY Siren IS PORT (** M: IN STD LOGIC: IN STD_LOGIC; D: V: IN STD_LOGIC; OUT STD_LOGIC); **S**: **END Siren: ARCHITECTURE Dataflow OF Siren IS** SIGNAL term_1, term_2, term_3: STD_LOGIC; BEGIN term_1 <= M AND (NOT D) AND V; term_2 <= M AND D AND (NOT V); term $3 \leq M$ AND D AND V; S <= term_1 OR term_2 OR term_3; **END Dataflow:**

Hwang

VHDL Code for Car System

// this is a VHDL dataflow model of the car security system LIBRARY IEEE: USE IEEE.STD_LOGIC_1164.ALL; **ENTITY Siren IS PORT (M**: IN STD LOGIC; D: IN STD_LOGIC; IN STD_LOGIC; V: OUT STD_LOGIC); **S**: **END Siren**: **ARCHITECTURE** Dataflow OF Siren IS **BEGIN** $S \leq M AND (D OR V);$ **END Dataflow;**