Chapter 2 Solutions

2.1.
a) 1000010
b) 110001
c) 1000000001
d) 1101100000
e) 11101101001
f) 11111011111
2.2.
a) $30_{10}, 36_{8}, 1 \mathrm{E}_{16}$
b) $26,32,1 \mathrm{~A}$
c) $291,443,123$
d) $91,133,5 \mathrm{~B}$
e) $878_{10}, 1556_{8}, 36 \mathrm{E}_{16}$
f) $1514,2752,5 \mathrm{EA}$
2.3.
a) 01100110
b) 11100011
c) 0010111111101000
d) 011111000010
e) 0101101000101101
f) 1110000010001011
2.4.
a) 000011101010
b) 111100010110
c) 000010011100
d) 101111000100
e) 111000101000
2.5.

	Decimal	Octal	Hexadecimal
a)	-53	713	CB
b)	30	36	1 E
c)	-19	55	ED
d)	-167	7531	F59
e)	428	654	1 AC

2.6.
a) 11100101; 229
b) 10110001; 177
c) $111010110 ; 214$
d) $101011101 ; 93$
2.7.
a) 11100101;-27
b) 10110001;-79
c) $411010110 ;-42$
d) $101011101 ; 93$
2.8.
a) $01101111 ; 111$
b) 11001001; 201
c) $11110000 ; 240$
d) $10110001 ; 177$
2.9.
a) $01101111 ; 111$
b) $11001001 ;-55$
c) $11110000 ;-16$
d) 10110001;-79
2.10.

Binary calculations	Unsigned decimal calculations	Signed decimal calculations
$1001+0011=1100$ No overflow	$9+3=12$ No overflow error	$-7+3=-4$ No overflow error
$\begin{gathered} 0110+1011=10001 \\ \text { Overflow } \end{gathered}$	$6+11=1$ Overflow error	$6+(-5)=1$ No overflow error
$0101+0110=1011$ No overflow	$5+6=11$ No overflow error	$5+6=-5$ Overflow error
$0101-0110=1111$ No overflow	$5-6=15$ Overflow error	$5-6=-1$ No overflow error
$1011-0101=0110$ No overflow	$11-5=6$ No overflow error	$-5-5=6$ Overflow error

2.11.

x	y	z	$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y z$	$x y^{\prime} z^{\prime}$	$x y z$	F
0	0	0	1	0	0	0	1
0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	1	0	1	0	0	1
1	0	0	0	0	1	0	1
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	1	1

(a)

x	y	z	$x y^{\prime} z$	$x^{\prime} y z^{\prime}$	$x y z$	$x y z^{\prime}$	F
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	1	0	0	1
0	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	0	0	1
1	1	0	0	0	0	1	1
1	1	1	0	0	1	0	1

(b)

w	x	y	z	$w^{\prime} x y^{\prime} z$	$w^{\prime} x y z$	$w x y^{\prime} z$	$w x y z$	F
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	1
0	1	1	0	0	0	0	0	0
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	1
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

(c)

w	x	y	z	$w x y^{\prime} z$	$w^{\prime} y z^{\prime}$	$w x z$	$x y z^{\prime}$	F
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	1	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	0	0	1	0	1	1
0	1	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	1	0	1	0	1
1	1	1	0	0	0	0	1	1
1	1	1	1	0	0	1	0	1

(d)

w	x	y	z	$w^{\prime} z^{\prime}$	$w^{\prime} x y$	$w x^{\prime} z$	$w x y z$	F
0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	1	0	0	0	1
0	1	0	1	0	0	0	0	0
0	1	1	0	1	1	0	0	1
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	1	0	1
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

(f)

x	y	z	$x y^{\prime}$	$x^{\prime} y^{\prime} z$	$x y z^{\prime}$	F
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	1
1	0	1	1	0	0	1
1	1	0	0	0	1	1
1	1	1	0	0	0	0

(e)

x	y	z	x^{\prime}	y^{\prime}	$x+y^{\prime}$	$y z$	$(y z)^{\prime}$	$\left[\left(x+y^{\prime}\right)(y z)^{\prime}\right]$	$x y^{\prime}$	$x^{\prime} y$	$\left(x y^{\prime}+x^{\prime} y\right)$	F
0	0	0	1	1	1	0	1	1	0	0	0	0
0	0	1	1	1	1	0	1	1	0	0	0	0
0	1	0	1	0	0	0	1	0	0	1	1	0
0	1	1	1	0	0	1	0	0	0	1	1	0
1	0	0	0	1	1	0	1	1	1	0	1	1
1	0	1	0	1	1	0	1	1	1	0	1	1
1	1	0	0	0	1	0	1	1	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0	0	0

(g)

N_{3}	N_{2}	N_{1}	N_{0}	$N_{3}{ }^{\prime} N_{2}{ }^{\prime} N_{1} N_{0}{ }^{\prime}$	$N_{3}{ }^{\prime} N_{2}{ }^{\prime} N_{1} N_{0}$	$N_{3} N_{2}{ }^{\prime} N_{1} N_{0}{ }^{\prime}$	$N_{3} N_{2}{ }^{\prime} N_{1} N_{0}$	$N_{3} N_{2} N_{1}{ }^{\prime} N_{0}{ }^{\prime}$	$N_{3} N_{2} N_{1} N_{0}$	F
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	1
0	0	1	1	0	1	0	0	0	0	1
0	1	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	1
1	0	1	1	0	0	0	1	0	0	1
1	1	0	0	0	0	0	0	1	0	1
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	1	1

(h)
2.12.
(a) $F=a^{\prime} b c^{\prime}+a^{\prime} b c+a b c^{\prime}$
(b) $F=w^{\prime} x^{\prime} y z^{\prime}+w^{\prime} x y^{\prime} z^{\prime}+w^{\prime} x y^{\prime} z+w^{\prime} x y z+w x^{\prime} y^{\prime} z+w x^{\prime} y z^{\prime}+w x y^{\prime} z^{\prime}+w x y^{\prime} z+w x y z$
(c) $F_{1}=w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y z+w^{\prime} x y^{\prime} z+w^{\prime} x y z^{\prime}+w x^{\prime} y^{\prime} z+w x^{\prime} y z^{\prime}+w x y^{\prime} z^{\prime}+w x y z$
$F_{2}=w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y^{\prime} z+w^{\prime} x^{\prime} y z^{\prime}+w^{\prime} x^{\prime} y z+w^{\prime} x y^{\prime} z+w x^{\prime} y^{\prime} z^{\prime}+w x^{\prime} y^{\prime} z+w x y^{\prime} z^{\prime}+w x y^{\prime} z+w x y z^{\prime}+w x y z$
(d) $F=N_{3}{ }^{\prime} N_{2}{ }^{\prime} N_{1} N_{0}{ }^{\prime}+N_{3}{ }^{\prime} N_{2}{ }^{\prime} N_{1} N_{0}+N_{3}{ }^{\prime} N_{2} N_{1} N_{0}{ }^{\prime}+N_{3} N_{2}{ }^{\prime} N_{1} N_{0}{ }^{\prime}+N_{3} N_{2}{ }^{\prime} N_{1} N_{0}+N_{3} N_{2} N_{1}{ }^{\prime} N_{0}{ }^{\prime}+N_{3} N_{2} N_{1} N_{0}$
2.14.
(a)

w	x	y	z	$w^{\prime} z^{\prime}$	$w^{\prime} x y$	$w x^{\prime} z$	$w x y z$	Left Side
0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	1	0	0	0	1
0	1	0	1	0	0	0	0	0
0	1	1	0	1	1	0	0	1
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	1	0	1
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

$w^{\prime} z^{\prime}$	$x y z$	$w x^{\prime} y^{\prime} z$	$w y z$	Right Side
1	0	0	0	1
0	0	0	0	0
1	0	0	0	1
0	0	0	0	0
1	0	0	0	1
0	0	0	0	0
1	0	0	0	1
0	1	0	0	1
0	0	0	0	0
0	0	1	0	1
0	0	0	0	0
0	0	0	1	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	1	0	1	1

(b)

$\left.$| y | z | z | y^{\prime} | $y z^{\prime}$ | Left
 Side |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 1 | | Right |
| :---: |
| Side | \right\rvert\, | 1 |
| :---: |
| 1 |
| 1 |

(c)

x	y	z	$x y^{\prime} z^{\prime}$	x^{\prime}	$x y z^{\prime}$	Left Side
0	0	0	0	1	0	1
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	0	1
1	0	0	1	0	0	1
1	0	1	0	0	0	0
1	1	0	0	0	1	1
1	1	1	0	0	0	0

x^{\prime}	z^{\prime}	Right Side
1	1	1
1	0	1
1	1	1
1	0	1
0	1	1
0	0	0
0	1	1
0	0	0

(d)

x	y	Z	$x y$	$x^{\prime} z$	$y z$	Left Side
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	1
1	1	1	1	0	1	1

$x y$	$x^{\prime} z$	Right Side
0	0	0
0	1	1
0	0	0
0	1	1
0	0	0
0	0	0
1	0	1
1	0	1

(e)

w	x	y	z	$w^{\prime} x^{\prime} y z^{\prime}$	$w^{\prime} x^{\prime} y z$	$w x^{\prime} y z^{\prime}$	$w x^{\prime} y z$	$w x y z$	Left Side
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	1
0	0	1	1	0	1	0	0	0	1
0	1	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	1
1	0	1	1	0	0	0	1	0	1
1	1	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	1	1

x^{\prime}	$w z$	$\left(x^{\prime}+w z\right)$	Right Side
1	0	1	0
1	0	1	0
1	0	1	1
1	0	1	1
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
1	0	1	0
1	1	1	0
1	0	1	1
1	1	1	1
0	0	0	0
0	1	1	0
0	0	0	0
0	1	1	1

(f)

w	x	y	z	$w^{\prime} x y^{\prime} z$	$w^{\prime} x y z$	$w x y^{\prime} z$	$w x y z$	Left Side
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	1
0	1	1	0	0	0	0	0	0
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	1
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

Right Side
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1

(g)

x_{i}	y_{i}	c_{i}	$x_{i} y_{i}$	$x_{i}+y_{i}$	$c_{i}\left(x_{i}+y_{i}\right)$	Left Side
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	0
0	1	1	0	1	1	1
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	1

$x_{i} y_{i} c_{i}$	$x_{i} y_{i} c_{i}{ }^{\prime}$	$x_{i} y_{i}{ }^{\prime} c_{i}$	$x_{i}{ }^{\prime} y_{i} c_{i}$	Right Side
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	1	1
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
1	0	0	0	1

(h)

x_{i}	y_{i}	c_{i}	$x_{i} y_{i}$	$x_{i}+y_{i}$	$c_{i}\left(x_{i}+y_{i}\right)$	Left Side
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	0
0	1	1	0	1	1	1
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	1

$x_{i} y_{i}$	$x_{i} \oplus y_{i}$	$c_{i}\left(x_{i} \oplus y_{i}\right)$	Right Side
0	0	0	0
0	0	0	0
0	1	0	0
0	1	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	0	1

2.19.
(a) $w^{\prime} z^{\prime}+w^{\prime} x y+w x^{\prime} z+w x y z$

$$
\begin{aligned}
& =w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y z^{\prime}+w^{\prime} x y^{\prime} z^{\prime}+w^{\prime} x y z^{\prime}+w^{\prime} x y z^{\prime}+w^{\prime} x y z+w x^{\prime} y^{\prime} z+w x^{\prime} y z+w x y z \\
& =w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y z^{\prime}+w^{\prime} x y^{\prime} z^{\prime}+w^{\prime} x y z^{\prime}+w^{\prime} x y z+w x^{\prime} y^{\prime} z+w x^{\prime} y z+w x y z \\
& =w^{\prime} z^{\prime}+w^{\prime} x y z+w x^{\prime} y^{\prime} z+w x^{\prime} y z+w x y z \\
& =w^{\prime} z^{\prime}+\left(w^{\prime}+w\right) x y z+w x^{\prime} y^{\prime} z+w\left(x^{\prime}+x\right) y z \\
& =w^{\prime} z^{\prime}+x y z+w x^{\prime} y^{\prime} z+w y z
\end{aligned}
$$

(b) $z+y^{\prime}+y z^{\prime}$

$$
=z\left(y^{\prime}+y\right)+\left(z^{\prime}+z\right) y^{\prime}+y z^{\prime}
$$

$$
\begin{aligned}
& =z y^{\prime}+z y+z^{\prime} y^{\prime}+z y^{\prime}+y z^{\prime} \\
& =z\left(y^{\prime}+y\right)+z^{\prime}\left(y^{\prime}+y\right) \\
& =z+z^{\prime} \\
& =1
\end{aligned}
$$

(c) $x y^{\prime} z^{\prime}+x^{\prime}+x y z^{\prime}$

$$
\begin{aligned}
& =x z^{\prime}\left(y^{\prime}+y\right)+x^{\prime} \\
& =x z^{\prime}+x^{\prime} \\
& =x z^{\prime}+1 x^{\prime} \\
& =(x+1)\left(x+x^{\prime}\right)\left(z^{\prime}+1\right)\left(z^{\prime}+x^{\prime}\right) \\
& =1 \bullet 1 \bullet 1\left(z^{\prime}+x^{\prime}\right) \\
& =x^{\prime}+z^{\prime}
\end{aligned}
$$

(d) $x y+x^{\prime} z+y z$

$$
\begin{aligned}
& =x y\left(z^{\prime}+z\right)+x^{\prime}\left(y^{\prime}+y\right) z+\left(x^{\prime}+x\right) y z \\
& =x y z^{\prime}+x y z+x^{\prime} y^{\prime} z+x^{\prime} y z+x^{\prime} y z+x y z \\
& =x y\left(z^{\prime}+z\right)+x^{\prime}\left(y^{\prime}+y\right) z \\
& =x y(1)+x^{\prime}(1) z \\
& =x y+x^{\prime} z
\end{aligned}
$$

(e) $w^{\prime} x^{\prime} y z^{\prime}+w^{\prime} x^{\prime} y z+w x^{\prime} y z^{\prime}+w x^{\prime} y z+w x y z$

$$
\begin{aligned}
& =\left[w^{\prime} x^{\prime} y z^{\prime}+w^{\prime} x^{\prime} y z+w x^{\prime} y z^{\prime}+w x^{\prime} y z\right]+\left[w x^{\prime} y z+w x y z\right] \\
& =x^{\prime} y\left(w^{\prime} z^{\prime}+w^{\prime} z+w z^{\prime}+w z\right)+w\left(x^{\prime}+x\right) y z \\
& =x^{\prime} y+w y z \\
& =y\left(x^{\prime}+w z\right)
\end{aligned}
$$

(f) $w^{\prime} x y^{\prime} z+w^{\prime} x y z+w x y^{\prime} z+w x y z$
$=x y^{\prime} z\left(w^{\prime}+w\right)+x y z\left(w^{\prime}+w\right)$
$=x y^{\prime} z+x y z$
$=x z\left(y+y^{\prime}\right)$
$=x z$
(g) $x_{i} y_{i}+c_{i}\left(x_{i}+y_{i}\right)$
$=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}$
$=x_{i} y_{i}\left(c_{i}+c_{i}{ }^{\prime}\right)+x_{i}\left(y_{i}+y_{i}{ }^{\prime}\right) c_{i}+\left(x_{i}+x_{i}{ }^{\prime}\right) y_{i} c_{i}$
$=x_{i} y_{i} c_{i}+x_{i} y_{i} c_{i}{ }^{\prime}+x_{i} y_{i} \epsilon_{i}+x_{i} y_{i} c_{i}+x_{i} \boldsymbol{y}_{i} \epsilon_{i}+x_{i} y_{i} c_{i}$
$=x_{i} y_{i} c_{i}+x_{i} y_{i} c_{i}{ }^{\prime}+x_{i} y_{i}{ }^{\prime} c_{i}+x_{i} y_{i} c_{i}$
(h) $x_{i} y_{i}+c_{i}\left(x_{i}+y_{i}\right)$
$=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}$
$=x_{i} y_{i}\left(c_{i}+c_{i}{ }^{\prime}\right)+x_{i}\left(y_{i}+y_{i}{ }^{\prime}\right) c_{i}+\left(x_{i}+x_{i}{ }^{\prime}\right) y_{i} c_{i}$
$=x_{i} y_{i} c_{i}+x_{i} y_{i} c_{i}{ }^{\prime}+x_{i} y_{i} \epsilon_{i}+x_{i} y_{i}{ }^{\prime} c_{i}+x_{i} y_{i} \epsilon_{i}+x_{i} y_{i} c_{i}$
$=x_{i} y_{i} c_{i}+x_{i} y_{i} c_{i}{ }^{\prime}+x_{i} y_{i}{ }^{\prime} c_{i}+x_{i} y_{i} c_{i}$
$=x_{i} y_{i}\left(c_{i}+c_{i}{ }^{\prime}\right)+c_{i}\left(x_{i} y_{i}{ }^{\prime}+x_{i}{ }^{\prime} y_{i}\right)$
$=x_{i} y_{i}+c_{i}\left(x_{i} \oplus y_{i}\right)$
2.20.
(a) $x^{\prime} y^{\prime} z^{\prime}+x ' y z+x y^{\prime} z^{\prime}+x y z$
$=\left(x+x^{\prime}\right) y^{\prime} z^{\prime}+(x+x) y z$
$=y^{\prime} z^{\prime}+y z$
$=y \odot z$
(b) $x y^{\prime} z+x z^{\prime} y z^{\prime}+x y z+x y z^{\prime}$

$$
\begin{aligned}
& =(x+x) y z^{\prime}+x\left(y+y^{\prime}\right) z \\
& =y z^{\prime}+x z
\end{aligned}
$$

(c) $w^{\prime} x y^{\prime} z+w^{\prime} x y z+w x y^{\prime} z+w x y z$
$=x z\left(w^{\prime} y^{\prime}+w^{\prime} y+w y^{\prime}+w y\right)$

$$
=x z
$$

(d) $w x y^{\prime} z+w^{\prime} y z^{\prime}+w x z+x y z^{\prime}$

$$
=w x z+y z^{\prime}\left(x+w^{\prime}\right)
$$

(e) $x y^{\prime}+x^{\prime} y^{\prime} z+x y z^{\prime}$

$$
\begin{aligned}
& =x y^{\prime} z+x y^{\prime} z^{\prime}+x y^{\prime} y^{\prime} z+x y z^{\prime} \\
& =x y^{\prime}+y^{\prime} z+x z^{\prime} \\
& =y^{\prime}(x+z)+x z^{\prime}
\end{aligned}
$$

(f) $w^{\prime} z^{\prime}+w^{\prime} x y+w x^{\prime} z+w x y z$
$=w^{\prime} z^{\prime}+w^{\prime} x y z+w^{\prime} x y z^{\prime}+w x^{\prime} z+w x y z$
$=w^{\prime} z^{\prime}+x y z\left(w^{\prime}+w\right)+w^{\prime} x y z^{\prime}+w x^{\prime} z$
$=w^{\prime} z^{\prime}+x y z+w x^{\prime} z$
$=w^{\prime} z^{\prime}+z\left(x y+w x^{\prime}\right)$
(g) $\left[\left(x+y^{\prime}\right)(y z)^{\prime}\right]\left(x y^{\prime}+x^{\prime} y\right)$
$=\left[\left(x+y^{\prime}\right)\left(y^{\prime}+z^{\prime}\right)\right]\left(x y^{\prime}+x^{\prime} y\right)$
$=\left[x y^{\prime}+x z^{\prime}+y^{\prime}+y^{\prime} z\right]\left(x y^{\prime}+x^{\prime} y\right)$
$=\left[x z^{\prime}+y^{\prime}\right]\left(x y^{\prime}+x^{\prime} y\right)$
$=x y^{\prime} z^{\prime}+x x^{\prime} y z^{\prime}+y^{\prime} x y^{\prime}+y^{\prime} x^{\prime} y$
$=x y^{\prime} z^{\prime}+x y^{\prime}$
$=x y^{\prime}$
(h) $N_{3}{ }^{\prime} N_{2}{ }^{\prime} N_{1} N_{0}{ }^{\prime}+N_{3}{ }^{\prime} N_{2}{ }^{\prime} N_{1} N_{0}+N_{3} N_{2}{ }^{\prime} N_{1} N_{0}{ }^{\prime}+N_{3} N_{2}{ }^{\prime} N_{1} N_{0}+N_{3} N_{2} N_{1}{ }^{\prime} N_{0}{ }^{\prime}+N_{3} N_{2} N_{1} N_{0}$
$=$
2.21.

$$
\begin{aligned}
F & =\left(x^{\prime}+y^{\prime}+x^{\prime} y^{\prime}+x y\right)\left(x^{\prime}+y z\right) & & \\
& =\left(x^{\prime} \bullet 1+y^{\prime} \bullet 1+x^{\prime} y^{\prime}+x y\right)\left(x^{\prime}+y z\right) & & \text { by Theorem } 6 \mathrm{a} \\
& =\left(x^{\prime}\left(y+y^{\prime}\right)+y^{\prime}\left(x+x^{\prime}\right)+x^{\prime} y^{\prime}+x y\right)\left(x^{\prime}+y z\right) & & \text { by Theorem 9b } \\
& =\left(x^{\prime} y+x^{\prime} y^{\prime}+y^{\prime} x+y^{\prime} x^{\prime}+x^{\prime} y^{\prime}+x y\right)\left(x^{\prime}+y z\right) & & \text { by Theorem 12a } \\
& =\left(x^{\prime} y+x^{\prime} y^{\prime}+y^{\prime} x+y^{\prime} x^{\prime}+x^{\prime} y^{\prime}+x y\right)\left(x^{\prime}+y z\right) & & \text { by Theorem 7b } \\
& =\left(x^{\prime}\left(y+y^{\prime}\right)+x\left(y+y^{\prime}\right)\right)\left(x^{\prime}+y z\right) & & \text { by Theorem } 12 \mathrm{a} \\
& =\left(x^{\prime} \bullet 1+x \bullet 1\right)\left(x^{\prime}+y z\right) & & \text { by Theorem } 9 \mathrm{~b} \\
& =\left(x^{\prime}+x\right)\left(x^{\prime}+y z\right) & & \text { by Theorem 6a } \\
& =1\left(x^{\prime}+y z\right) & & \text { by Theorem } 9 \mathrm{~b} \\
& =\left(x^{\prime}+y z\right) & & \text { by Theorem } 6 \mathrm{a}
\end{aligned}
$$

2.22.

For three variables (x, y, z), there is a total of eight $\left(2^{3}\right)$ minterms. The function has five minterms, therefore, the inverted function will have three $(8-5=3)$ minterms. Hence, implementing the inverted function and then adding a NOT gate at the final output will result in a smaller circuit. The circuit requires 3 AND gates, 1 OR gate, and 1 NOT gate.
2.23.

w	x	y	z	4 AND	4 NAND	4 NOR	4 XOR	4 XNOR
0	0	0	0	0	1	1	0	1
0	0	0	1	0	1	0	1	0

v	w	x	y	z	5 XOR	5 XNOR
00	0	0	0	0	0	0
0	0	0	0	1	1	1

0	0	1	0	0	1	0	1	0	0	0	0	1	0	1	1
0	0	1	1	0	1	0	0	1	0	0	0	1	1	0	0
0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	1
0	1	0	1	0	1	0	0	1	0	0	1	0	1	0	0
0	1	1	0	0	1	0	0	1	0	0	1	1	0	0	0
0	1	1	1	0	1	0	1	0	0	0	1	1	1	1	1
1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	1
1	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0
1	0	1	0	0	1	0	0	1	0	1	0	1	0	0	0
1	0	1	1	0	1	0	1	0	0	1	0	1	1	1	1
1	1	0	0	0	1	0	0	1	0	1	1	0	0	0	0
1	1	0	1	0	1	0	1	0	0	1	1	0	1	1	1
1	1	1	0	0	1	0	1	0	0	1	1	1	0	1	1
1	1	1	1	1	0	0	0	1	0	1	1	1	1	0	0
(a)					(b)	(c)	(d)	(e)	1	0	0	0	0	1	1
					1				0	0	0	1	0	0	
					1				0	0	1	0	0	0	
					1				0	0	1	1	1	1	
					1				0	1	0	0	0	0	
					1				0	1	0	1	1	1	
					1				0	1	1	0	1	1	
					1				0	1	1	1	0	0	
					1				1	0	0	0	0	0	
					1				1	0	0	1	1	1	
					1				1	0	1	0	1	1	
					1				1	0	1	1	0	0	
					1				1	1	0	0	1	1	
					1				1	1	0	1	0	0	
					1				1	1	1	0	0	0	
					1				1	1	1	1	1	1	
													(f)	(g)	

2.24.

w	x	y	z	$(x \odot$ $y)^{\prime}$	$(x y z)^{\prime}$	$(x \odot y)^{\prime}+$ $(x y z)^{\prime}$	$\left(w^{\prime}+x+\right.$ $z)$	F
0	0	0	0	0	1	1	1	1
0	0	0	1	0	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	0	0	1	1	1	1
0	1	1	1	0	0	0	1	0
1	0	0	0	0	1	1	0	0
1	0	0	1	0	1	1	1	1
1	0	1	0	1	1	1	0	0
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	1	1	0	0	1	1	1	1
1	1	1	1	0	0	0	1	0

(a)

(b)

w	x	y	z	$w^{\prime} x y^{\prime} z$	$(x \oplus y)$	$w^{\prime} z(y \oplus x)$	$\left[w^{\prime} x y^{\prime} z+w^{\prime} z(y \oplus x)\right]$	F
0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	1
0	0	1	0	0	1	0	0	1
0	0	1	1	0	1	1	1	0
0	1	0	0	0	1	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	0	0	0	0	0	1
0	1	1	1	0	0	0	0	1
1	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	1
1	0	1	0	0	1	0	0	1
1	0	1	1	0	1	0	0	1
1	1	0	0	0	1	0	0	1
1	1	0	1	0	1	0	0	1
1	1	1	0	0	0	0	0	1
1	1	1	1	0	0	0	0	1

(c)
2.25.
a)

w	x	y	z	$(x \odot$ $y)^{\prime}$	$(x y z)^{\prime}$	$(x \odot y)^{\prime}+$ $(x y z)^{\prime}$	$\left(w^{\prime}+x+\right.$ $z)$	F
0	0	0	0	0	1	1	1	1
0	0	0	1	0	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	0	0	1	1	1	1
0	1	1	1	0	0	0	1	0
1	0	0	0	0	1	1	0	0
1	0	0	1	0	1	1	1	1
1	0	1	0	1	1	1	0	0
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	1	1	0	0	1	1	1	1
1	1	1	1	0	0	0	1	0

(a)

$$
\begin{array}{|c|c|c|c|}
\hline x & y & z & F \\
\hline \hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 0 & 0 \\
\hline 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

(b)

w	x	y	z	$w^{\prime} x y^{\prime} z$	$(x \oplus y)$	$w^{\prime} z(y \oplus x)$	$\left[w^{\prime} x y^{\prime} z+w^{\prime} z(y \oplus x)\right]$	F
0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	1
0	0	1	0	0	1	0	0	1
0	0	1	1	0	1	1	1	0
0	1	0	0	0	1	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	0	0	0	0	0	1
0	1	1	1	0	0	0	0	1
1	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	1
1	0	1	0	0	1	0	0	1
1	0	1	1	0	1	0	0	1
1	1	0	0	0	1	0	0	1
1	1	0	1	0	1	0	0	1
1	1	1	0	0	0	0	0	1
1	1	1	1	0	0	0	0	1

(c)
b)

$$
\begin{aligned}
F= & {\left[(x \odot y)^{\prime}+(x y z)\right]\left(w^{\prime}+x+z\right) } \\
& \left.=\left[x y^{\prime}+x^{\prime} y+x^{\prime}+y^{\prime}+z^{\prime}\right)\right]\left(w^{\prime}+x+z\right) \\
& =\left(x^{\prime}+y^{\prime}+z^{\prime}\right)\left(w^{\prime}+x+z\right) \\
& =\left(w w^{\prime}+x^{\prime}+y^{\prime}+z^{\prime}\right)\left(w^{\prime}+x+y y^{\prime}+z\right) \\
& =\left(w+x^{\prime}+y^{\prime}+z^{\prime}\right)\left(w^{\prime}+x^{\prime}+y^{\prime}+z^{\prime}\right)\left(w^{\prime}+x+y+z\right)\left(w^{\prime}+x+y^{\prime}+z\right) \\
& =\Pi\left(M_{7}+M_{8}+M_{10}+M_{15}\right)
\end{aligned}
$$

(a)

$$
\begin{aligned}
F= & x \oplus y \oplus z \\
& =\left(x y^{\prime}+x^{\prime} y\right) z^{\prime}+\left(x y^{\prime}+x^{\prime} y\right)^{\prime} z \\
& =x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y^{\prime} z+x^{\prime} y^{\prime} z \\
& =(x+y+z)\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right)\left(x^{\prime}+y^{\prime}+z^{\prime}\right) \\
& =\Pi\left(M_{0}+M_{3}+M_{6}+M_{7}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
F= & {\left[w^{\prime} x y^{\prime} z+w^{\prime} z(y \oplus x)\right]^{\prime} } \\
& =\left[w^{\prime} x y^{\prime} z\right]^{\prime}\left[w^{\prime} z(y \oplus x)\right]^{\prime} \\
& =\left[w+x^{\prime}+y^{+}+z^{\prime}\right]\left[w+z^{\prime}+(y \oplus x)\right] \\
& =\left[w+x^{\prime}+y^{\prime}+z^{\prime}\right]\left[w+z^{\prime}+x y+x^{\prime} y^{\prime}\right] \\
& =\left[w+x^{\prime}+y^{+}+z^{\prime}\right]\left[w+x+y^{\prime}+z^{\prime}\right]\left[w+x^{\prime}+y^{+}+z^{\prime}\right] \\
& =\Pi\left(M_{3}+M_{5}\right)
\end{aligned}
$$

2.26.

$$
\begin{aligned}
F= & {\left[(x \odot y){ }^{\prime}+(x y z)\right]\left(w^{\prime}+x+z\right) } \\
& \left.=\left[x y^{\prime}+x^{\prime} y+x^{\prime}+y^{\prime}+z^{\prime}\right)\right]\left(w^{\prime}+x+z\right) \\
& =\left(x^{\prime}+y^{\prime}+z^{\prime}\right)\left(w^{\prime}+x+z\right) \\
& =x^{\prime} w^{\prime}+x^{\prime} x+x^{\prime} z+y^{\prime} w^{\prime}+y^{\prime} x+y^{\prime} z+z^{\prime} w^{\prime}+z^{\prime} x+z^{\prime} z \\
& =w^{\prime} x^{\prime}+x^{\prime} z+w^{\prime} y^{\prime}+x y^{\prime}+y^{\prime} z+w^{\prime} z^{\prime}+x z^{\prime} \\
& =(x \oplus z)+x y^{\prime}+w^{\prime} x^{\prime} \\
& \text { or }(x \oplus z)+x y^{\prime}+w^{\prime} z^{\prime} \\
& \text { or }(x \oplus z)+y^{\prime} z+w^{\prime} x^{\prime} \\
& \text { or }(x \oplus z)+y^{\prime} z+w^{\prime} z^{\prime}
\end{aligned}
$$

$F=x \oplus y \oplus z$
(b)

$$
\begin{aligned}
F= & {\left[w^{\prime} x y^{\prime} z+w^{\prime} z(y \oplus x)\right]^{\prime} } \\
& =\left[w^{\prime} x y^{\prime} z\right]^{\prime}\left[w^{\prime} z(y \oplus x)\right]^{\prime} \\
& =\left[w+x^{\prime}+y+z^{\prime}\right]\left[w+z^{\prime}+(y \oplus x)\right] \\
& =\left[w+x^{\prime}+y+z^{\prime}\right]\left[w+z^{\prime}+x y+x x^{\prime} y\right] \\
& =w+w z^{\prime}+w x y+w x^{\prime} y^{\prime}+w x^{\prime}+x^{\prime} z^{\prime}+x^{\prime} y^{\prime}+w y+y z^{\prime}+x y+w z^{\prime}+z^{\prime}+x y z^{\prime}+x^{\prime} y^{\prime} z^{\prime} \\
& =w+z^{\prime}+x^{\prime} y^{\prime}+x y \\
& =w+z^{\prime}+(x \odot y)
\end{aligned}
$$

(c)
2.27.

x	y	Left Side $x \oplus y$	$x \odot y$	Right Side $(x \odot y)^{\prime}$						
0	0	0	1	0						
0	1	1	0	1						
1	0	1	0	1						
1	1	0	1	0	\quad	x	y	y^{\prime}	Left Side $x \oplus y^{\prime}$	Right Side $x \odot y$
:---:	:---:	:---:	:---:	:---:						
0	0	1	1	1						
0	1	0	0	0						
1	0	1	0	0						
1	1	0	1	1						

(a)

w	x	y	z	$w \oplus x$	$y \oplus z$	Left Side $(w \oplus x) \odot(y \oplus z)$	$w \bigcirc x$	$y \bigcirc z$	Right Side $\left(w \odot_{x}\right) \odot\left(y \odot_{z}\right)$	Right Side $(((w \odot x) \odot y) \odot z)$
0	0	0	0	0	0	1	1	1	1	1
0	0	0	1	0	1	0	1	0	0	0
0	0	1	0	0	1	0	1	0	0	0
0	0	1	1	0	0	1	1	1	1	1
0	1	0	0	1	0	0	0	1	0	0
0	1	0	1	1	1	1	0	0	1	1
0	1	1	0	1	1	1	0	0	1	1
0	1	1	1	1	0	0	0	1	0	0
1	0	0	0	1	0	0	0	1	0	0
1	0	0	1	1	1	1	0	0	1	1
1	0	1	0	1	1	1	0	0	1	1
1	0	1	1	1	0	0	0		0	0
1	1	0	0	0	0	1	1	1	1	1
1	1	0	1	0	1	0	1	0	0	0
1	1	1	0	,	1	0	1	0	0	0
1	1	1	1	0	0	1	1	1	1	1

(c)

x	y	z	$(x y)^{\prime}$	$\left((x y)^{\prime} x\right)^{\prime}$	$\left((x y)^{\prime} y\right)^{\prime}$	$\left[\left((x y)^{\prime} x\right)^{\prime}\left((x y)^{\prime} y\right)^{\prime}\right]$	Left Side $\left[\left((x y)^{\prime} x\right)^{\prime}\left((x y)^{\prime} y\right)^{\prime}\right]^{\prime}$	Right Side $x \oplus y$
0	0	0	1	1	1	1	0	0
0	0	1	1	1	1	1	0	0
0	1	0	1	1	0	0	1	1
0	1	1	1	1	0	0	1	1
1	0	0	1	0	1	0	1	1
1	0	1	1	0	1	0	1	1
1	1	0	0	1	1	1	0	0
1	1	1	0	1	1	1	0	0

(d)
2.28.

$$
\begin{aligned}
& (x \oplus y)=x y^{\prime}+x^{\prime} y \\
& \quad=x x^{\prime}+x y^{\prime}+x^{\prime} y+y y^{\prime} \\
& \quad=(x+y)\left(x^{\prime}+y^{\prime}\right) \\
& \quad=\left(x^{\prime} y^{\prime}\right)^{\prime}(x y)^{\prime} \\
& \quad=\left[\left(x^{\prime} y^{\prime}\right)+(x y)\right]^{\prime} \\
& \quad=(x \odot y)^{\prime}
\end{aligned}
$$

(a)
$\left.\left[\left((x y)^{\prime} x\right)^{\prime}((x y))^{\prime} y\right)^{\prime}\right]^{\prime}$

$$
\begin{aligned}
& =\left((x y)^{\prime} x\right)+\left((x y)^{\prime} y\right) \\
& =\left(x^{\prime}+y^{\prime}\right) x+\left(x^{\prime}+y^{\prime}\right) y \\
& =x x^{\prime}+x y^{\prime}+x^{\prime} y+y^{\prime} y \\
& =x y^{\prime}+x^{\prime} y \\
& =x \oplus y
\end{aligned}
$$

(d)
2.29.

$$
\begin{aligned}
x \oplus y & \oplus z \\
& =(x \oplus y) \oplus z \\
& =\left(x y^{\prime} y+x y^{\prime}\right) \oplus z \\
& =\left(x^{\prime} y+x y^{\prime}\right) z^{\prime}+\left(x^{\prime} y+x y^{\prime}\right)^{\prime} z \\
& =x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+\left(x y^{\prime} y\right)^{\prime}\left(x y^{\prime}\right)^{\prime} z \\
& =x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+\left(x+y^{\prime}\right)\left(x^{\prime}+y\right) z \\
& =x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x x^{\prime} z+x y z+x y^{\prime} z+y^{\prime} y z \\
& =x^{\prime} y^{\prime} z+x y z^{\prime}+x y^{\prime} z^{\prime}+x y z
\end{aligned}
$$

2.30.

$$
\begin{aligned}
x \oplus & y \oplus z=(x \oplus y) \oplus z \\
& =\left(x^{\prime} y+x y^{\prime}\right) \oplus z \\
& =\left(x^{\prime} y+x y^{\prime}\right)^{\prime} z+\left(x^{\prime} y+x y^{\prime}\right) z^{\prime} \\
& =\left(x^{\prime} y\right)^{\prime} \cdot\left(x y^{\prime}\right)^{\prime} z+x x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime} \\
& =\left(x+y^{\prime}\right) \cdot\left(x^{\prime}+y\right) z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime} \\
& =x x^{\prime} z+x y z+x^{\prime} y^{\prime} z+y^{\prime} y z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime} \\
& =\left(x y+x^{\prime} y^{\prime}\right) z+\left(x^{\prime} y+x y^{\prime}\right) z^{\prime} \\
& =\left(x y+x^{\prime} y\right) z+\left(x y+x^{\prime} y^{\prime}\right)^{\prime} z^{\prime} \\
& =(x \circlearrowleft y) z+(x \odot y)^{\prime} z^{\prime} \\
& =x \circlearrowleft y \bigcirc z
\end{aligned}
$$

$$
\begin{gathered}
x \oplus y^{\prime}=x y+x^{\prime} y^{\prime} \\
=x \odot y
\end{gathered}
$$

(b)
2.32.
(a) $F(x, y, z)=x^{\prime} y^{\prime} z+x^{\prime} y z+x y z$
(b) $\quad F(w, x, y, z)=w^{\prime} x^{\prime} y^{\prime} z+w^{\prime} x^{\prime} y z+w^{\prime} x y z$
(c) $F(x, y, z)=\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z^{\prime}\right)$
(d) $F(w, x, y, z)=\left(w+x+y+z^{\prime}\right) \quad\left(w+x+y^{\prime}+z^{\prime}\right)$ $\left(w+x^{\prime}+y^{\prime}+z^{\prime}\right)$
(e) $F^{\prime}(x, y, z)=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y^{\prime} z+x y z^{\prime}$
(f) $F(x, y, z)=(x+y+z)\left(x+y^{\prime}+z\right)\left(x^{\prime}+y+z\right)\left(x^{\prime}+y+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right)$
2.33.
F^{\prime} is expressed as a sum of its 0 -minterms. Therefore, F is the sum of its 1 -minterms $=\Sigma(0,2,4,5,6)$. Using three variables, the truth table is as follows:

x	y	z	Minterms	F
0	0	0	$m_{0}=x^{\prime} y^{\prime} z^{\prime}$	1
0	0	1	$m_{1}=x^{\prime} y^{\prime} z$	0
0	1	0	$m_{2}=x^{\prime} y z^{\prime}$	1
0	1	1	$m_{3}=x^{\prime} y z$	0
1	0	0	$m_{4}=x y^{\prime} z^{\prime}$	1
1	0	1	$m_{5}=x y^{\prime} z$	1
1	1	0	$m_{6}=x y z^{\prime}$	1
1	1	1	$m_{7}=x y z$	0

2.34.

```
\(F=\Sigma(3,4,5)=m_{3}+m_{4}+m_{5}\)
    \(=x^{\prime} y z+x y^{\prime} z^{\prime}+x y^{\prime} z\)
    \(=\left(x^{\prime}+x+x\right)\left(x^{\prime}+x+y^{\prime}\right)\left(x^{\prime}+x+z\right)\)
        \(\left(x^{\prime}+y^{\prime}+x\right)\left(x^{\prime}+y^{\prime}+y^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right)\)
        \(\left(x^{\prime}+z^{\prime}+x\right)\left(x^{\prime}+z^{\prime}+y^{\prime}\right)\left(x^{\prime}+z^{\prime}+z\right)\)
        \((y+x+x)\left(y+x+y^{\prime}\right)(y+x+z)\)
        \(\left(y+y^{\prime}+x\right)\left(y+y^{\prime}+y^{\prime}\right)\left(y+y^{\prime}+z\right)\)
        \(\left(y+z^{\prime}+x\right)\left(y+z^{\prime}+y^{\prime}\right)\left(y+z^{\prime}+z\right)\)
        \((z+x+x)\left(z+x+y^{\prime}\right)(z+x+z)\)
        \(\left(z+y^{\prime}+x\right)\left(z+y^{\prime}+y^{\prime}\right)\left(z+y^{\prime}+z\right)\)
        \(\left(z+z^{\prime}+x\right)\left(z+z^{\prime}+y^{\prime}\right)\left(z+z^{\prime}+z\right)\)
    \(=\left(x^{\prime}+y^{\prime}+z\right)\left(x^{\prime}+y^{\prime}+z^{\prime}\right)(x+y+z)\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z\right)\)
```

2.35.
a)

Product-of-sums (AND-of-OR) format is obtained by using the duality principle or De Morgan's Theorem: $F^{\prime}=\left(x^{\prime}+y+z\right) \bullet\left(x^{\prime}+y+z^{\prime}\right) \bullet\left(x^{\prime}+y^{\prime}+z\right) \bullet\left(x^{\prime}+y^{\prime}+z^{\prime}\right)$
b)

Sum-of-products (OR-of-AND) format is obtained by first constructing the truth table for F and then inverting the 0 's and 1 's to get F^{\prime}. Then we simply use the AND terms where $F^{\prime}=1$.

x	y	z	F	F^{\prime}
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$
F^{\prime}=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x z^{\prime} y z^{\prime}+x ' y z
$$

2.36.
a)
$F=w \odot x \odot y \odot z$

$$
=\left(w x+w^{\prime} x^{\prime}\right) \odot y \odot z
$$

$$
=\left[\left(w x+w^{\prime} x^{\prime}\right) y+\left(w x+w^{\prime} x^{\prime}\right)^{\prime} y^{\prime}\right] z+\left[\left(w x+w^{\prime} x^{\prime}\right) y+\left(w x+w^{\prime} x^{\prime}\right)^{\prime} y^{\prime}\right]^{\prime} z^{\prime}
$$

$$
=w x y z+w^{\prime} x^{\prime} y z+(w x)^{\prime}\left(w^{\prime} x^{\prime}\right)^{\prime} y^{\prime} z+\left[\left(w x+w^{\prime} x^{\prime}\right) y+\left(w x+w^{\prime} x^{\prime}\right)^{\prime} y^{\prime}\right]^{\prime} z^{\prime}
$$

$$
=m_{15}+m_{3}+\left(w^{\prime}+x^{\prime}\right)(w+x) y^{\prime} z+\left[\left(w x+w^{\prime} x^{\prime}\right) y+\left(w x+w^{\prime} x^{\prime}\right)^{\prime} y^{\prime}\right]^{\prime} z^{\prime}
$$

$$
=m_{15}+m_{3}+w^{\prime} x y^{\prime} z+w x^{\prime} y^{\prime} z+\left[\left(w x+w^{\prime} x^{\prime}\right) y+\left(w x+w^{\prime} x^{\prime}\right)^{\prime} y^{\prime}\right]^{\prime} z^{\prime}
$$

$$
=m_{15}+m_{3}+m_{5}+m_{9}+\left[\left(w x+w^{\prime} x^{\prime}\right) y\right]^{\prime}\left[\left(w x+w^{\prime} x^{\prime}\right)^{\prime} y^{\prime}\right]^{\prime} z^{\prime}
$$

$$
=m_{15}+m_{3}+m_{5}+m_{9}+\left[\left(w x+w^{\prime} x^{\prime}\right)^{\prime}+y^{\prime}\right]\left[\left(w x+w^{\prime} x^{\prime}\right)+y\right] z^{\prime}
$$

$$
=m_{15}+m_{3}+m_{5}+m_{9}+\left[(w x)^{\prime}\left(w^{\prime} x^{\prime}\right)^{\prime}+y^{\prime}\right]\left[w x z^{\prime}+w^{\prime} x^{\prime} z^{\prime}+y z^{\prime}\right]
$$

$$
=m_{15}+m_{3}+m_{5}+m_{9}+\left[\left(w^{\prime}+x^{\prime}\right)(w+x)+y^{\prime}\right]\left[w x z^{\prime}+w^{\prime} x^{\prime} z^{\prime}+y z^{\prime}\right]
$$

$$
=m_{15}+m_{3}+m_{5}+m_{9}+\left[w^{\prime} x+w x^{\prime}+y^{\prime}\right]\left[w x z^{\prime}+w^{\prime} x^{\prime} z^{\prime}+y z^{\prime}\right]
$$

$$
=m_{15}+m_{3}+m_{5}+m_{9}+w^{\prime} x y z^{\prime}+w x^{\prime} y z^{\prime}+w x y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y^{\prime} z^{\prime}
$$

$$
=m_{15}+m_{3}+m_{5}+m_{9}+m_{6}+m_{10}+m_{12}+m_{0}
$$

2.37.

a)

```
module P2_24a (
    input w,x,y,z,
    output F
);
    assign F = (~(x^y) | ~(x&y&z)) & (~w|x|z);
endmodule
```

b)

```
module P2_24b (
    input x,y,z,
    output F
);
    assign F = x^y^z;
endmodule
```

c)

```
module P2_24c (
    input w,x,Y,z,
    output F
) ;
    assign F = ~ ((~W&X&~Y&z) | (~W&Z&( }\mp@subsup{\textrm{Y}}{}{\wedge}\textrm{X})))
endmodule
```

2.38.
a)

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY P2_24a IS PORT (
    w,x,y,z: IN STD_LOGIC;
    F: OUT STD_LOGI\overline{C});
END P2_24a;
ARCHITECTURE Dataflow OF P2_24a IS
BEGIN
    F <= (NOT (x XOR y) OR NOT (x AND y AND z)) AND (NOT w OR x OR z);
END Dataflow;
```

b)

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY P2_24b IS PORT (
    x,y,z: IN STD_LOGIC;
    F: OUT STD_LOGIC);
END P2_24b;
ARCHITECTURE Dataflow OF P2_24b IS
BEGIN
    F <= x XOR y XOR z;
END Dataflow;
```

c)

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY P2_24C IS PORT (
    W,x,Y,\overline{z}: IN STD_LOGIC;
    F: OUT STD_LOGIC);
END P2_24C;
ARCHITECTURE Dataflow OF P2_24C IS
BEGIN
    F <= NOT((NOT w AND x AND NOT y AND z) OR (NOT w AND z AND (y XOR x) ));
END Dataflow;
```

2.39.

```
// this is a Verilog behavioral model of the car security system
module Siren (
        input M, D, V,
        output S
);
    wire term1, term2, term3;
    always @ (M or D or V) begin
            term1 = (M & ~D & V);
            term2 = (M & D & ~V);
            term3 = (M & D & V);
            S = term1 | term2 | term3;
        end
endmodule
```

2.40 .

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY Siren IS PORT (
    M, D, V: IN STD_LOGIC;
    S: OUT STD_LOGI\overline{C});
END Siren;
ARCHITECTURE Behavioral OF Siren IS
BEGIN
    PROCESS (M, D, V)
    BEGIN
        S <= (M AND NOT D AND V) OR (M AND D AND NOT V) OR (M AND D AND V);
    END PROCESS;
END Behavioral;
```


Digital Logic \& Microprocessor Design with Interfacing
 2nd Edition

Chapter 2 Fundamentals of Digital Circuits

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Binary Number

Decimal	Binary	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Value of a Binary Number

- For decimal number:
$-658_{10}=\left(6 \times 10^{2}\right)+\left(5 \times 10^{1}\right)+\left(8 \times 10^{0}\right)$

$$
=600+50+8=658_{10}
$$

- For binary number:
- $1011011_{2}=\left(1 \times 2^{6}\right)+\left(0 \times 2^{5}\right)+\left(1 \times 2^{4}\right)+(1$
$\left.\times 2^{3}\right)+\left(0 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)$
$=64+0+16+8+0+2+1=91_{10}$
© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Convert Decimal to Digital

Octal and Hex

- Octal
$001 \quad 110 \quad 011$
$1 \quad 6 \quad 3$
$\begin{array}{lll}5 & 7 & 2\end{array}$
$\begin{array}{lll}101 & 111 \quad 010 & 100\end{array}$
$5724_{8}=\left(5 \times 8^{3}\right)+\left(7 \times 8^{2}\right)$
$+\left(2 \times 8^{1}\right)+\left(4 \times 8^{0}\right)$
$=2560+448+16+4$
$=3028_{10}$
- Hex
$01101101 \quad 1011$

6 D B
5
$0101 \quad 11001111$
$5 \mathrm{CA}_{16}=\left(5 \times 16^{2}\right)+\left(\mathrm{C} \times 16^{1}\right)+$ ($\mathrm{F} \times 16^{0}$)
$=\left(5 \times 16^{2}\right)+\left(12 \times 16^{1}\right)+(15 \times$ 160)
$=1280+192+15$
$=1487_{10}$
© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or

Binary Number Arithmetic

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Negative Number

- Signed or unsigned number representation
- Use two's complement representation for signed numbers
- For signed numbers, the MSB tells whether the number is positive or negative
$0=$ positive
1 = negative
- If signed number is positive then you can find the value just like for unsigned numbers

Negative Number

- If signed number is negative then you need to do two steps to find its value:
(1) Flip all the 1 bits to 0 's and all the 0 bits to 1 's.
(2) Add a 1 to the result obtained from step (1).
- The negated value obtained from step (2) is the value of the original signed number

1001	(original number - MSB is a 1)
(1) 0110	(flip all the bits)
(2) 0111	(add a 1 to the previous number)
$0111=7$,	therefore $1001=-7$

Negative Number

4-bit Binary	Two's Complement
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

For 4-bit unsigned number: range is 0 to $2^{4}-1$ $=0$ to 15

For 4-bit signed number: range is -2^{3} to $2^{3}-1$ $=-8$ to 7

For n-bit unsigned number:

 range is 0 to $2^{n}-1$For n-bit signed number: range is -2^{n-1} to $2^{n-1}-1$

Example

- Find the two's complement number for -58 Start with +58

$2\lfloor 58 \quad 0 \uparrow$	Least significant bit	$=111010$
$2 \lcm{29} 1$		
$2 \lcm{14} 0$		
$2 \lcm{7} 1$		
$2 \bigsqcup 31$		
1	Most significant bit	

Binary for +58 is 0111010 . Need to add a leading 0, otherwise it is a negative number!
$0111010=58$
$1000101 \quad$ Flip all the bits
1000110 add a 1 to the previous number
Therefore, $1000110=-58$

Sign Extension

- For unsigned numbers, extend with 0
- For signed numbers, extend with the MSB

	Original Number	Sign Extended	Original Number	Sign Extended
Flip bits	10010	11110010	0101	00000101
Add 1	01101	00001101		
Value	01110	00001110		

Signed Number Arithmetic

6	$=$	$0 \begin{array}{llll}0 & 1 & 1 & 0\end{array}$				
+ 3	$=$	+	0		1	1
9	\#		1	0	0	1

6							
+	$=$						
+	$=$						
9	$+\quad 0 \quad 0$		0	1	1	0	
:---	:---	:---	:---	:---			
0	1	0	0	1			

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Binary Arithmetic

1. Perform the following 4-bit unsigned number addition. Is there an overflow error?

$$
\begin{array}{r}
0101 \\
+1011 \\
+ \\
=
\end{array}
$$

Binary Arithmetic

1. Perform the following 4-bit unsigned number addition. Is there an overflow error?

$$
\begin{array}{rlll}
0101 & & 5 \\
+1011 & & +11 \\
\hline 10000 & = &
\end{array}
$$

Binary Arithmetic

1. Perform the following 4-bit unsigned number addition. Is there an overflow error?

$$
\begin{array}{rrrrrr}
0 & 1 & 0 & 1 & & \\
+10 & 1 & 1 & & 5 \\
+1 & 0 & 0 & 0 & = & 11 \\
\hline
\end{array}
$$

Binary Arithmetic

2. Perform the following 4-bit unsigned number addition. Is there an overflow error?

$$
\begin{array}{r}
0101 \\
+0110 \\
+ \\
=
\end{array}
$$

Binary Arithmetic

2. Perform the following 4-bit unsigned number addition. Is there an overflow error?

$$
\begin{array}{rlll}
0101 & & 5 \\
+0110 & & +6 \\
\hline 1011 & = & 11
\end{array}
$$

No, there is no overflow error

Binary Arithmetic

3. Perform the following 4-bit signed number addition. Is there an overflow error?

> 0101 $+1011=$ + $=$

Binary Arithmetic

3. Perform the following 4-bit signed number addition. Is there an overflow error?

$$
\begin{array}{rlrr}
0101 & & 5 \\
+1011 & & +(-5) \\
\hline 10000 & = & 0
\end{array}
$$

No, there is no overflow error

Binary Arithmetic

4. Perform the following 4-bit signed number addition. Is there an overflow error?

$$
\begin{array}{r}
0101 \\
+0110 \\
+0 \\
=
\end{array}
$$

Binary Arithmetic

4. Perform the following 4-bit signed number addition. Is there an overflow error?

$$
\begin{array}{rlll}
0101 & & 5 \\
+0110 & & +6 \\
\hline 1011 & = & -5
\end{array}
$$

Yes, there is an overflow error

Binary Arithmetic

5. Perform the following 4-bit unsigned number subtraction. Is there an overflow error?

$$
\begin{array}{r}
0101 \\
-0110 \\
- \\
=
\end{array}
$$

Binary Arithmetic

5. Perform the following 4-bit unsigned number subtraction. Is there an overflow error?

$$
\begin{array}{rlll}
0101 & & 5 \\
-0110 & & -6 \\
\hline 1111 & = &
\end{array}
$$

Binary Arithmetic

5. Perform the following 4-bit unsigned number subtraction. Is there an overflow error?

Yes, there is an overflow error

Binary Arithmetic

6. Perform the following 4-bit signed number subtraction. Is there an overflow error?

$$
\begin{array}{r}
0101 \\
-0110 \\
- \\
=
\end{array}
$$

Binary Arithmetic

6. Perform the following 4-bit signed number subtraction. Is there an overflow error?

$$
\begin{array}{rrr}
0101 & = & 5 \\
-0110 & -6 \\
\hline 1111 & = &
\end{array}
$$

Binary Arithmetic

6. Perform the following 4-bit signed number subtraction. Is there an overflow error?

$$
\begin{array}{rrrr}
0101 & = & 5 \\
-0110 & = & -6 \\
\hline 1111 & = &
\end{array}
$$

No, there is no overflow error

Binary Arithmetic

7. Perform the following 4-bit signed number subtraction. Is there an overflow error?

$$
\begin{array}{r}
01001 \\
= \\
-10000
\end{array}=
$$

Binary Arithmetic

7. Perform the following 4-bit signed number subtraction. Is there an overflow error?

$$
\begin{array}{rlll}
0101 & & 5 \\
-1000 & = & -(-8) \\
\hline 1101 & = &
\end{array}
$$

Binary Arithmetic

7. Perform the following 4-bit signed number subtraction. Is there an overflow error?

$$
\begin{array}{rlrr}
0101 & & 5 \\
-1000 & & -(-8) \\
\hline 1101 & = & -3
\end{array}
$$

Yes, there is an overflow error

Binary Switch

[^0]
Basic Logic

- AND $F=x$ and $y \quad F=x \bullet y \quad F=x y$
- OR $F=x$ or $y \quad F=x+y$
- NOT F = $x^{\prime} F \equiv x$
- Precedence from high to low: NOT/AND/OR
- $F=x y+z^{\prime} \quad F=x(y+z)^{\prime}$
© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Logic Gate

- Logic gates are the actual physical devices that implement the logical operators
- Using Logic Symbol to denote logic gates

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Logic Gate

- NAND $F=(x y)^{\prime}$
- NOR $F=(x+y)^{\prime}$
- XOR $\mathrm{F}=x \oplus y=x^{\prime} y+x y^{\prime}$
- XNOR $\mathrm{F}=x \bigcirc y=x^{\prime} y^{\prime}+x y$

For even number of inputs xor = xnor'

$$
(x \oplus y)=(x \odot y)^{\prime}
$$

For odd number of inputs xor $=$ xnor

$$
(x \oplus y \oplus z)=(x \odot y \odot z)
$$

Truth Table

		2-NAND x	y	$(\mathrm{x} \bullet \mathrm{y})^{\prime}$	2-NOR $(\mathrm{x}+\mathrm{y})^{\prime}$
0	0	1	$\mathrm{x} \oplus \mathrm{y}$	$\mathrm{x} \odot \mathrm{y}$	
0	1	1	0	0	1
1	0	1	0	1	0
1	1	0	0	0	1

Truth Table

| | | | 3-AND | 3-OR | 3-NAND | 3-NOR | 3-XOR | 3-XNOR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | y | z | $\mathrm{x} \bullet \mathrm{y} \bullet \mathrm{z}$ | $\mathrm{x}+\mathrm{y}+\mathrm{z}$ | $(\mathrm{x} \bullet \mathrm{y} \bullet \mathrm{z})^{\prime}$ | $(x+y+z)^{\prime}$ | $\mathrm{x} \oplus \mathrm{y} \oplus \mathrm{z}$ | $\mathrm{x} \odot \mathrm{y} \odot \mathrm{z}$ |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or
in part.

NAND Gate

- How can you use a NAND gate to work like an AND gate?

\mathbf{x}	y	F
0	0	1
0	1	1
1	0	1
1	1	0

NAND Gate

- How can you use a NAND gate to work like an AND gate?

x	y	F
0	0	1
0	1	1
1	0	1
1	1	0

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

NAND Gate

- How can you use a NAND gate to work like a NOT gate?

x	y	F
0	0	1
0	1	1
1	0	1
1	1	0

NAND Gate

- How can you use a NAND gate to work like a NOT gate?

x	y	F
0	0	1
0	1	1
1	0	1
1	1	0

or

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

NAND Gate

- How can you use a NAND gate to work like an OR gate?

x	y	F
0	0	1
0	1	1
1	0	1
1	1	0

NAND Gate

- How can you use a NAND gate to work like an OR gate?

Use DeMorgan's Theorem

\mathbf{x}	y	F
0	0	1
0	1	1
1	0	1
1	1	0

NAND Gate

- How can you use a NAND gate to work like an OR gate?

Use DeMorgan's Theorem

x	y	F
0	0	1
0	1	1
1	0	1
1	1	0

$x+y=(x+y)^{\prime \prime}$
$=$

NAND Gate

- How can you use a NAND gate to work like an OR gate?

Use DeMorgan's Theorem

x	y	F
0	0	1
0	1	1
1	0	1
1	1	0

$$
\begin{aligned}
x+y & =(x+y)^{\prime \prime} \\
= & \left(x^{\prime} y^{\prime}\right)^{\prime}
\end{aligned}
$$

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

XOR Gate

- Use AND, OR, and NOT gates to implement the XOR gate

x	y	F
0	0	0
0	1	1
1	0	1
1	1	0

XOR Gate

- Use AND, OR, and NOT gates to implement the XOR gate

x	y	F
0	0	0
0	1	1
1	0	1
1	1	0

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

XOR Gate

- Use only NAND gates to implement the XOR gate

x	y	F
0	0	0
0	1	1
1	0	1
1	1	0

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

XOR Gate

- Use only NAND gates to implement the XOR gate

x	y	F
0	0	0
0	1	1
1	0	1
1	1	0

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Boolean Algebra

- Circuits built with binary switches can be described using Boolean algebra.
- Let $B=\{0,1\}$ be the Boolean algebra. We have axioms, single variable theorems, and two or three variable theorems.
- Can be used to reduce circuit size.

Boolean Algebra

© 2018 Cengage Learning ${ }^{\oplus}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or

$$
\begin{aligned}
x+(x \circ y) & =(x \circ 1)+(x \circ y) \\
& =x \circ(1+y) \\
& =x \circ(1) \\
& =x
\end{aligned}
$$

Boolean Algebra

- Use Boolean algebra to reduce the equation as much as possible

$F=\left(x^{\prime} y z\right)+\left(x y^{\prime} z\right)+\left(x y z^{\prime}\right)+(x y z)$

Boolean Algebra

- Use Boolean algebra to reduce the equation as much as possible

$$
\begin{aligned}
F & =\left(x^{\prime} y z\right)+\left(x y^{\prime} z\right)+(x y z)+(x y z) \\
& =\left(x^{\prime} y z\right)+\left(x y^{\prime} z\right)+(x y z)+(x y z)+(x y z)+(x y z)
\end{aligned}
$$

Boolean Algebra

- Use Boolean algebra to reduce the equation as much as possible

$$
\begin{aligned}
F & =\left(x^{\prime} y z\right)+\left(x y^{\prime} z\right)+\left(x y z^{\prime}\right)+(x y z) \\
& =\left(x^{\prime} y z\right)+\left(x y^{\prime} z\right)+\left(x y z^{\prime}\right)+(x y z)+(x y z)+(x y z) \\
& =\left(x^{\prime} y z\right)+(x y z)+\left(x y^{\prime} z\right)+(x y z)+\left(x y z^{\prime}\right)+(x y z) \\
& =\left[\left(x^{\prime} y z\right)+(x y z)\right]+\left[\left(x y^{\prime} z\right)+(x y z)\right]+\left[\left(x y z^{\prime}\right)+(x y z)\right]
\end{aligned}
$$

Boolean Algebra

- Use Boolean algebra to reduce the equation as much as possible

$$
\begin{aligned}
F & =\left(x^{\prime} y z\right)+\left(x y^{\prime} z\right)+(x y z)+(x y z) \\
& =\left(x^{\prime} y z\right)+\left(x y^{\prime} z\right)+\left(x y z^{\prime}\right)+(x y z)+(x y z)+(x y z) \\
& =\left(x^{\prime} y z\right)+(x y z)+\left(x y^{\prime} z\right)+(x y z)+\left(x y z^{\prime}\right)+(x y z) \\
& =\left[\left(x^{\prime} y z\right)+(x y z)\right]+\left[\left(x y^{\prime} z\right)+(x y z)\right]+\left[\left(x y z^{\prime}\right)+(x y z)\right] \\
& =y z\left(x^{\prime}+x\right)+x z\left(y^{\prime}+y\right)+x y\left(z^{\prime}+z\right) \\
& =y z(1)+x z(1)+x y(1) \\
& =y z+x z+x y \\
& =z(y+x)+x y
\end{aligned}
$$

Duality Principle

- Dual: changing AND with OR and vice versa, Changing 0 with 1 and vice versa

$$
\begin{aligned}
& \left(x \bullet y^{\prime} \cdot z\right)+\left(x \bullet y \bullet z^{\prime}\right)+(y \bullet z)+0 \\
& \left(x+y^{\prime}+z\right) \cdot\left(x+y+z^{\prime}\right) \cdot(y+z) \cdot 1
\end{aligned}
$$

- Duality Principle: if a Boolean expression is true, then its dual is also true

$$
x+1=1 \text { is true. } x \cdot 0=0 \text { is true }
$$

- The inverse of a Boolean expression can be obtained by taking the dual of that expression and then complementing each variable.

Boolean Function and Inverse

- Boolean function: logic expression to describe digital circuit.

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Boolean Function and Inverse

- We are mainly interested in when a function evaluates to a 1
$F(x, y, z)=x y^{\prime} z+x y z^{\prime}+y z z$

F = 1 when any one of the three AND terms evaluate to a 1
The first AND term, $x y^{\prime} z$, equals 1 if

$$
x=1, y=0 \text {, and } z=1
$$

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Boolean Function and Inverse

The last AND term, $y z$, equals 1 if

$$
y=1 \text { and } z=1
$$

the missing variable, x, means it doesn't matter what its value is, so it can be either 0 or 1

Boolean Function and Inverse

Putting everything together, $\mathrm{F}=1$ when

$$
x=1, y=0, \text { and } z=1
$$

or

$$
x=1, y=1 \text {, and } z=0
$$

or
$x=0, y=1$, and $z=1$
or

$$
x=1, y=1 \text {, and } z=1
$$

Boolean Function and Inverse

- It is more convenient to summarize this verbal description of a function with a truth table

x	y	z	F	F^{\prime}
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Boolean Function and Inverse

- The inverse of a function, F', can be obtained easily from the truth table

X	y	z	F	F^{\prime}
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

- Look at the rows where $F^{\prime}=1$
$F^{\prime}=\left(x^{\prime} y^{\prime} z^{\prime}\right)+\left(x^{\prime} y^{\prime} z\right)+\left(x^{\prime} y z^{\prime}\right)+$ ($x y^{\prime} z^{\prime}$)

Boolean Function and Inverse

- To get F'using Boolean Algebra requires using DeMorgan's Theorem twice

$$
\begin{aligned}
F & =x y^{\prime} z+x y z^{\prime}+y z \\
F^{\prime} & =\left(x y^{\prime} z+x y z^{\prime}+y z\right)^{\prime} \\
& =\left(x y^{\prime} z\right)^{\prime} \bullet(x y z)^{\prime} \bullet(y z)^{\prime} \\
& =\left(x^{\prime}+y+z\right) \bullet\left(x^{\prime}+y^{\prime}+z\right) \bullet\left(y^{\prime}+z^{\prime}\right)
\end{aligned}
$$

Boolean Function and Inverse

- We have two different equations for F^{\prime}

$$
\begin{aligned}
F^{\prime}= & \left(x^{\prime} y^{\prime} z^{\prime}\right)+\left(x^{\prime} y^{\prime} z\right)+\left(x^{\prime} y z^{\prime}\right)+\left(x y^{\prime} z^{\prime}\right) \\
& \text { sum-of-products }
\end{aligned}
$$

$$
\begin{aligned}
F^{\prime}= & \left(x^{\prime}+y+z\right) \bullet\left(x^{\prime}+y^{\prime}+z\right) \bullet\left(y^{\prime}+z^{\prime}\right) \\
& \text { product-of-sums }
\end{aligned}
$$

Minterms and Maxterms

- Minterm
- Is a product term that contains all the variables in a function
The variable is negated (primed) if the value is a 0
- Maxterm
- Is a sum term that contains all the variables in a function
- The variable is negated (primed) if the value is a 1

Minterms and Maxterms

- m_{i} for minterms
- M_{i} for maxterms where $0 \leq i<2^{n}$ for n variables

| x | y | z | Minterm | Notation | Maxterm | Notation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $x^{\prime} y^{\prime} z^{\prime}$ | m_{0} | $x+y+z$ | M_{0} |
| 0 | 0 | 1 | $x^{\prime} y^{\prime} z$ | m_{1} | $x+y+z^{\prime}$ | M_{1} |
| 0 | 1 | 0 | $x^{\prime} y z^{\prime}$ | m_{2} | $x+y^{\prime}+z$ | M_{2} |
| 0 | 1 | 1 | $x^{\prime} y z$ | m_{3} | $x+y^{\prime}+z^{\prime}$ | M_{3} |
| 1 | 0 | 0 | $x y^{\prime} z^{\prime}$ | m_{4} | $x^{\prime}+y+z$ | M_{4} |
| 1 | 0 | 1 | $x y^{\prime} z$ | m_{5} | $x^{\prime}+y+z^{\prime}$ | M_{5} |
| 1 | 1 | 0 | $x y z z^{\prime}$ | m_{6} | $x^{\prime}+y^{\prime}+z$ | M_{6} |
| 1 | 1 | 1 | $x y z$ | m_{7} | $x^{\prime}+y^{\prime}+z^{\prime}$ | M_{7} |

Minterm/Maxterm Example

$$
\begin{aligned}
& F=x y^{\prime} z+x y z^{\prime}+y z \\
& \quad=x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z
\end{aligned}
$$

X	y	z	F	F^{\prime}	Minterm	Notation
0	0	0	0	1	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}
0	0	1	0	1	$x^{\prime} y^{\prime} \mathrm{z}$	m_{1}
0	1	0	0	1	$x^{\prime} \mathrm{y} \mathrm{z}^{\prime}$	m_{2}
0	1	1	1	0	$x^{\prime} \mathrm{y} z$	m_{3}
1	0	0	0	1	$x y^{\prime} z^{\prime}$	m_{4}
1	0	1	1	0	$x y^{\prime} z$	m_{5}
1	1	0	1	0	x y z'	m_{6}
1	1	1	1	0	$x \mathrm{yz}$	m_{7}

$$
\begin{gathered}
F(x, y, z)=m_{3}+m_{5}+m_{6}+m_{7} \\
F(x, y, z)=\Sigma(3,5,6,7) \\
F^{\prime}(x, y, z)=\Sigma(0,1,2,4)
\end{gathered}
$$

$$
F=x y^{\prime} z+x y z^{\prime}+y z
$$

$$
=(x+y+z) \cdot(x+y+z)
$$

$$
\left(x+y^{\prime}+z\right) \bullet\left(x^{\prime}+y+z\right)
$$

x	y	z	F	F^{\prime}	Maxterm	Notation
0	0	0	0	1	$x+y+z$	M_{0}
0	0	1	0	1	$x+y+z^{\prime}$	M_{1}
0	1	0	0	1	$x+y^{\prime}+z$	M_{2}
0	1	1	1	0	$x+y^{\prime}+z^{\prime}$	M_{3}
1	0	0	0	1	$x^{\prime}+y+z$	M_{4}
1	0	1	1	0	$x^{\prime}+y+z^{\prime}$	M_{5}
1	1	0	1	0	$x^{\prime}+y^{\prime}+z$	M_{6}
1	1	1	1	0	$x^{\prime}+y^{\prime}+z^{\prime}$	M_{7}

$$
\begin{gathered}
F(x, y, z)=M_{0} \bullet M_{1} \bullet M_{2} \bullet M_{4} \\
F(x, y, z)=\Pi(0,1,2,4) \\
F^{\prime}(x, y, z)=\Pi(3,5,6,7)
\end{gathered}
$$

Minterm/Maxterm Example

- Given $F(x, y, z)=\Sigma(1,2,3,5,6,7)$
- Write out the full function

Minterm/Maxterm Example

- Given $F(x, y, z)=\Sigma(1,2,3,5,6,7)$
- Write out the full function

$$
F(x, y, z)=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x^{\prime} y z+x^{\prime} y z^{\prime}+x y z^{\prime}+x y z
$$

Minterm/Maxterm Example

- Given $F(x, y, z)=\Sigma(1,2,3,5,6,7)$
- What is F using П?

Minterm/Maxterm Example

- Given $F(x, y, z)=\Sigma(1,2,3,5,6,7)$
- What is F using П?
- $F(x, y, z)=\Pi(0,4)$

Minterm/Maxterm Example

- Given $F(x, y, z)=\Sigma(1,2,3,5,6,7)$
- What is F using Π ?
- $F(x, y, z)=\Pi(0,4)$
- Write out the full function for $\Pi(0,4)$

Minterm/Maxterm Example

- Given $F(x, y, z)=\Sigma(1,2,3,5,6,7)$
- What is F using П?
- $F(x, y, z)=\Pi(0,4)$
- Write out the full function for $\Pi(0,4)$
- $F(x, y, z)=(x+y+z) \bullet\left(x^{\prime}+y+z\right)$

Minterm/Maxterm Example

- Given $F(x, y, z)=\Sigma(1,2,3,5,6,7)$
- What is F^{\prime} using Σ ?
- $F^{\prime}=\Sigma(0,4)$

Minterm/Maxterm Example

- Given $F(x, y, z)=\Sigma(1,2,3,5,6,7)$
- What is F^{\prime} using П?
- $F^{\prime}=\Pi(1,2,3,5,6,7)$

Minterm/Maxterm Example

- Given $F(w, x, y, z)=\Sigma(1,2,3,5,6,7)$
- Write out the full function

Minterm/Maxterm Example

- Given $F(w, x, y, z)=\Sigma(1,2,3,5,6,7)$
- What is F using Π ?

Minterm/Maxterm Example

- Given $F(w, x, y, z)=\Sigma(1,2,3,5,6,7)$
- What is F using Π ?
- Write out the full function for Π of 0-Maxterms

Minterm/Maxterm Example

- Given $F(w, x, y, z)=\Sigma(1,2,3,5,6,7)$
- What is F^{\prime} using Σ ?

Minterm/Maxterm Example

- Given $F(w, x, y, z)=\Sigma(1,2,3,5,6,7)$
- What is F^{\prime} using П?

Minterms/Maxterms Relationship

$$
\begin{aligned}
F(x, y, z) & =x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z \\
& =m_{3}+m_{5}+m_{6}+m_{7} \\
& =\Sigma(3,5,6,7) \\
& =(x+y+z) \bullet\left(x+y+z^{\prime}\right) \bullet\left(x+y^{\prime}+z\right) \bullet\left(x^{\prime}+y+z\right) \\
& =M_{0} \bullet M_{1} \bullet M_{2} \bullet M_{4} \\
& =\Pi(0,1,2,4) \\
F^{\prime}(x, y, z) & =x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime} \\
& =m_{0}+m_{1}+m_{2}+m_{4} \\
& =\Sigma(0,1,2,4) \\
& =\left(x+y^{\prime}+z^{\prime}\right) \bullet\left(x^{\prime}+y+z^{\prime}\right) \bullet\left(x^{\prime}+y^{\prime}+z\right) \bullet\left(x^{\prime}+y^{\prime}+z^{\prime}\right) \\
& =M_{3} \bullet M_{5} \bullet M_{6} \bullet M_{7} \\
& =\Pi(3,5,6,7)
\end{aligned}
$$

E 1-minterms

П 0-maxterms

Inverted Duals

इ0-minterms $\quad \square$
इ0-minterms $\quad \square$

П 1-maxterms

Equivalent

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Converting to Minterms/Maxterms

- Given $F(x, y, z)=y+x^{\prime} z$
- Write it in the Σ of minterms format and Π of maxterms format
- Use Truth Table

Converting to

 Minterms/Maxterms- Given $F(x, y, z)=y+x^{\prime} z$
- Use Truth Table

X	y	Z	F	Minterm	Notation
0	0	0		$x^{\prime} y^{\prime} z^{\prime}$	m_{0}
0	0	1		$x^{\prime} y^{\prime} z$	m_{1}
0	1	0		$x^{\prime} \mathrm{y} z^{\prime}$	m_{2}
0	1	1		$x^{\prime} y z$	m_{3}
1	0	0		$x y^{\prime} z^{\prime}$	m_{4}
1	0	1		$x y^{\prime} z$	m_{5}
1	1	0		$x y z^{\prime}$	m_{6}
1	1	1		$x \mathrm{yz}$	m_{7}

Converting to

 Minterms/Maxterms- Given $F(x, y, z)=y+x^{\prime} z$
- Use Truth Table

x	y	-	F	Minterm	Notation
0	0	0	0	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}
0	0	1	1	$x^{\prime} y^{\prime} z$	m_{1}
0	1	0	1	$x^{\prime} y z^{\prime}$	m_{2}
0	1	1	1	$x^{\prime \prime} \mathrm{yz}$	m_{3}
1	0	0		$x y^{\prime} z^{\prime}$	m_{4}
1	0	1	0	$x y^{\prime} z$	m_{5}
1	1	0	1	$x y z^{\prime}$	m_{6}
1	1	1	1	$x y z$	m_{7}

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Converting to Minterms/Maxterms

- Given $F(x, y, z)=y+x^{\prime} z$
- Write it in the Σ of minterms format
- Use Boolean algebra
$F=y+x^{\prime} z$

Converting to Minterms/Maxterms

- Given $F(x, y, z)=y+x^{\prime} z$
- Write it in the Σ of minterms format
- Use Boolean algebra

$$
\begin{aligned}
F & =y+x^{\prime} z \\
& =y\left(x+x^{\prime}\right)\left(z+z^{\prime}\right)+x^{\prime} z\left(y+y^{\prime}\right) \\
& =x y z+x y z^{\prime}+x^{\prime} y z+x^{\prime} y z^{\prime}+x^{\prime} y z+x^{\prime} y^{\prime} z \\
& =m_{7}+m_{6}+m_{3}+m_{2}+m_{1} \\
& =\Sigma(1,2,3,6,7)
\end{aligned}
$$

Converting to Minterms/Maxterms

- Given $F(x, y, z)=y+x^{\prime} z$
- Write it in the П of maxterms format
- Use Boolean algebra
$F=y+x^{\prime} z$

Converting to Minterms/Maxterms

- Given $F(x, y, z)=y+x^{\prime} z$
- Write it in the П of maxterms format
- Use Boolean algebra
$F=y+x^{\prime} z$

$$
=\left(y+x^{\prime}\right)(y+z)
$$

$$
=\left(y+x^{\prime}+z z^{\prime}\right)\left(y+z+x x^{\prime}\right)
$$

$$
=\left(x^{\prime}+y+z\right)\left(x^{\prime}+y+z^{\prime}\right)(x+y+z)\left(x^{\prime}+y+z\right)
$$

$$
=\mathrm{M}_{4} \cdot \mathrm{M}_{5} \cdot \mathrm{M}_{0}=\Pi(0,4,5)
$$

Converting to Minterms/Maxterms

- Given $F(x, y, z)=y+x^{\prime} z$
- Write F^{\prime} in the Σ of minterms format
- Use Boolean algebra

$$
F^{\prime}=\left(y+x^{\prime} z\right)^{\prime}
$$

Converting to Minterms/Maxterms

- Given $F(x, y, z)=y+x^{\prime} z$

$$
\begin{aligned}
& F^{\prime}=\left(y+x^{\prime} z\right)^{\prime} \\
& =y^{\prime} \cdot\left(x^{\prime} z\right)^{\prime} \\
& =y^{\prime} \cdot\left(x+z^{\prime}\right) \\
& =y^{\prime} x+y^{\prime} z^{\prime} \\
& =y^{\prime} x\left(z+z^{\prime}\right)+y^{\prime} z^{\prime}\left(x+x^{\prime}\right) \\
& =x y^{\prime} z+x y^{\prime} z^{\prime}+x y^{\prime} z^{\prime}+x y^{\prime} z^{\prime} \\
& =m_{5}+m_{4}+m_{0} \\
& =\Sigma(0,4,5)
\end{aligned}
$$

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or

Converting to Minterms/Maxterms

- Given $F(x, y, z)=y+x^{\prime} z$
- Write F' in the Π of maxterms format
- Use Boolean algebra

$$
F^{\prime}=\left(y+x^{\prime} z\right)^{\prime}
$$

Converting to Minterms/Maxterms

- Given $F(x, y, z)=y+x^{\prime} z$

$$
\begin{aligned}
& F^{\prime}=\left(y+x^{\prime} z\right)^{\prime} \\
& =y^{\prime} \cdot\left(x^{\prime} z\right)^{\prime} \\
& =y^{\prime} \cdot\left(x+z^{\prime}\right) \\
& =\left(y^{\prime}+x x^{\prime}+z z^{\prime}\right) \cdot\left(x+z^{\prime}+y y^{\prime}\right) \\
& =\left(x+y^{\prime}+z\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right)\left(x^{\prime}+y^{\prime}+z^{\prime}\right) \\
& \left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z^{\prime}\right) \\
& =\mathrm{M}_{2} \cdot \mathrm{M}_{3} \cdot \mathrm{M}_{6} \cdot \mathrm{M}_{7} \cdot \mathrm{M}_{1} \\
& =\Pi(1,2,3,6,7) \\
& \text { © } 2018 \text { Cengage Learning }{ }^{\circledR} \text {. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or }
\end{aligned}
$$

Converting to Minterms/Maxterms

- Given $F(x, y, z)=y+x^{\prime} z$
$F=\Sigma(1,2,3,6,7)=\Pi(0,4,5)$
$F^{\prime}=\Sigma(0,4,5)=\Pi(1,2,3,6,7)$

Canonical, Standard, and Non-standard Forms

- Canonical: Boolean function expressed in sum-of-minterms or product-of-maxterms

$$
\begin{gathered}
F=x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z \\
F^{\prime}=\left(x+y^{\prime}+z^{\prime}\right) \bullet\left(x^{\prime}+y+z^{\prime}\right) \bullet\left(x^{\prime}+y^{\prime}+z\right) \bullet\left(x^{\prime}+y^{\prime}+z^{\prime}\right) \\
F_{1}(x, y, z)=\Sigma(0,1,2,3,4,5) \quad F_{2}(x, y, z)=\Pi(6,7) \\
F_{1}(x, y, z)=\Sigma(3,5,6) \quad F_{2}(x, y, z)=\Pi(3,5,6)
\end{gathered}
$$

- Standard: sum-ofproducts or products-ofsum has at least one

$$
F=x y^{\prime} z+x y z^{\prime}+y z
$$ minterm/maxterm

- Non-standard: not in sum-of-product or product-of-sum format

$$
F=x\left(y^{\prime} z+y z^{\prime}\right)+y z
$$

Digital Circuit

- Digital circuit is a connection of two or more logic gates
- Digital network can be described using schematic diagrams, Boolean expressions, or truth tables

$F(x, y, z)=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x^{\prime} y z+x y z^{\prime}+x y z$

x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Design a

Car Security System

- Input: D = Door switch

$$
\begin{aligned}
& \text { V }=\text { Vibration sensor } \\
& M=\text { Motion sensor }
\end{aligned}
$$

Output: S = Siren

M	D	V	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$
\begin{aligned}
S & =\left(M D D^{\prime} V\right)+\left(M D V^{\prime}\right)+(M D V) \\
& =M\left(D^{\prime} V+D V^{\prime}+D V\right) \\
& =M\left(D^{\prime} V+D V^{\prime}+D V+D V\right) \\
& =M\left(D\left(V^{\prime}+V\right)+V\left(D^{\prime}+D\right)\right) \\
& =M(D(1)+V(1)) \\
& =M(D+V)
\end{aligned}
$$

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Verilog Code for Car System

```
// this is a Verilog dataflow model of the car security system
module Siren (
    input M,
    input D,
    input V,
    output S
);
wire term1, term2, term3;
assign term1 \(=(\mathrm{M} \&!\mathrm{D} \& \mathrm{~V})\);
    assign term2 = (M & D & !V);
    assign term3 = (M & D & V);
    assign S = term1 | term2 | term3;
endmodule
```


Verilog Code for Car System

```
// this is a Verilog dataflow model of the car security system
module Siren (
    input M,
    input D,
    input V,
    output S
);
    assign S = (M & !D & V) | (M & D & !V) | (M & D & V);
```

endmodule

Verilog Code for Car System

```
// this is a Verilog dataflow model of the car security system
module Siren (
    input M,
    input D,
    input V,
    output S
);
    assign S = M & (D | V);
```

endmodule

Verilog Code for Car System

```
// this is a Verilog structural model of the car security system
module Siren (
    input M,
    input D,
    input V,
    output S
);
wire w1;
or (W1, D, V);
and (S, M, w1);
```


endmodule

VHDL Code for Car System

```
// this is a VHDL dataflow model of the car security system
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALLL;
ENTITY Siren IS PORT(
    M: IN STD_LOGIC;
    D: IN STD_LOGIC;
    V: INSTD_LOGIC;
    S: OUT STD_LOGIC);
```


END Siren;

```
ARCHITECTURE Dataflow OF Siren IS
SIGNAL term_1, term_2, term_3: STD_LOGIC;
BEGIN
term_1 <= M AND (NOT D) AND V;
    term_2 <= M AND D AND (NOT V);
    term_3 <= M AND D AND V;
    S <= term_1 OR term_2 OR term_3;
END Dataflow;
```

© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

VHDL Code for Car System

// this is a VHDL dataflow model of the car security system
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY Siren IS PORT (
M: IN STD_LOGIC;
D: IN STD_LOGIC;
V: IN STD_LOGIC;
S: OUT STD_LOGIC);
END Siren;
ARCHITECTURE Dataflow OF Siren IS
BEGIN

$$
\mathrm{S}<=\mathrm{M} \text { AND (D OR V); }
$$

END Dataflow;
© 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

[^0]: © 2018 Cengage Learning ${ }^{\circledR}$. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

