Digital Signal Processing using MATLAB 3rd Edition Schilling Solutions Mnual

Chapter 2

Classify each of the following signals as finite or infinite. For the finite signals, find the
smallest integer N such that z(k) =0 for |k| > N.

(a) 2(k) = p(k +5) — p(k = 5)

(b) x(k) = sin(.27k)u(k)

(c) z(k) = min(k? —9,0)u(k)

(@) 2(k) = k() /(1 + 2)

(¢) (k) = tan(v/3mk) (k) — pu(k — 100)]
(f) z(k) = §(k) + cos(mk) — (—1)¥

(g) z(k) = k~Fsin(.57k)
Solution

(a) finite, N =5

(b) infinite

(c) finite, N =2

(d) finite, N =1

(e) finite, N =99
(f) finite, N =0

(g) infinite

Classify each of the following signals as causal or noncausal.

(a) z(k) = max{k 0}

(b) (k) = sin(.27k)u(—k)

() (k) = 1 - exp(—k)

(d) z(k) = mod(k, 10)

(e) (k) = M ) (k) + gk — 100)]
(f) x(k) = cos(mk) + (~1)*

(8) =(k) = ( 5mk)/(1+ k?)

Solution

(a) causal
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Classify each of the following signals as periodic or aperiodic. For the periodic signals, find
the period, M.

(a) z(k) = cos(.027k)

(b) x(k) = sin(.1k) cos(.2k)
(c) z(k) = cos(v/3k)

(d) z(k) = exp(jm/8)

(e) xz(k) = mod(k, 10)

(f) (k) = sin®(.17k)u(k)
(g) x(k) =5

Solution

(a) periodic, M = 100
(b) nonperiodic, (7 = 207)
(¢) nonperiodic, (17 = 27/v/3)
(d) periodic, M = 16
) periodic, M = 10
)
)

f) nonperodic, (causal)

(e
(
(g) periodic, M =2

Classify each of the following signals as bounded or unbounded.

(a) 2(k) = kcos(.1mk)/(1+ 1?)

(b) z(k) = ( 1k) cos(.2k)d(k — 3)
(c) x(k) = cos(mk?)

(d) z(k) = tan(17k)[u(k) — p(k — 10]
() #(k) = K2/(1+ 1?)

(£) 2(k) = kexp(—k)u(k)
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Solution

(a) bounded
(b) bounded
(¢) bounded
(d) unbounded
(e) bounded
(f) bounded

e
f

For each of the following signals, determine whether or not it is bounded. For the bounded
signals, find a bound, B,.

(a) x(k) = [1+ sin(bmk)]pu(k)
(b) (k) = K(5)Fp(h)
[ (14 k) sin(10k)
(© ol = |00
(@) 2(k) = [1+ (~1)"] cos(10K)(k)

Solution

(a) bounded, B, =1
(b) The following are the first few values of z(k).

Thus z(k) is bounded with B, = .5.
(¢) unbounded
(d) bounded, B, = 2.

Consider the following sum of causal exponentials.

z(k) = [cip} + cophlp(k)
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(a) Using the inequalities in Appendix 2, show that

(k)] < el - [pal + Jeaf - [paf*

(b) Show that z(k) is absolutely summable if |p;| < 1 and |ps| < 1. Find an upper bound
on |||y

(c) Suppose |p1| < 1 and |ps| < 1. Find an upper bound on the energy FE,.

Solution

(a) Using Appendix 2

lz(k)] = |[er(p1)” + calp2)¥]u(k)]
le1(p1)” + ca(p2)®] - (k)]
le1(p1)” + ca(p2)"|

< er(p1)®| + |ea(p2)”|

k k
= el - PY] + lez| - [p3]]
= e '|p1|k+|62| '|p2|k

(b) Suppose |p1| < 1 and |p2| < 1. Then using (a) and the geometric series in (2.2.14)

lzli = > lx(k)]

k=—o00
o
< Z le] - [pa|® + Jea| - [paf®
k=0
(o] o
= |a Z p1|* + [zl Z |pal®
k=0 k=0
|c1] |c2]

L—1|pi|  1—|po

(c) Using (b) and (2.2.7) through (2.2.9)
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2

= |l=lz

< 3

< |c1] |ca]
L—1pi|  1—|po

Find the average power of the following signals.

(a) z(k) =10

(b) (k) = 20pu(k)

(¢) z(k) = mod(k,b)

(d) z(k) = acos(mk/8) + bsin(mwk/8)
(e) x(k) = 100[u(k + 10) — pu(k — 10)]
(f) x(k) = j*
Solution

Using (2.2.10)-(2.2.12) and Appendix 2

(a) P, =100
(b) P, =400
() Po=(1+4+9+16)/5=6
(d)
[a cos(mk/8) + bsin(mk/8)]? =
Thus
(e) P, =10%

a? cos?(mk/8)) + 2ab cos(mk/8) sin(rk /i) + b* sin’(7k /8)

2 [1 + cos2(7rk'/4)] + absin(mk/4) + 87 [1 - cos2(7rk‘/4)]
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(a) y(k) = 4fy(k —1) + 1z(k)
(b) y(k) = 6kx(k)

(c) y(k) = —y(k —2) + 10z(k + 3)
(d) y(k) = .5y(k) — 2y(k —1)

(e) y(k) = 2y(k — 1) +2*(k)

(f) y(k) = —y(k = z(k—1)/10
Solution

(a) nonlinear (product term)

(b) linear

(c) linear

(d) linear

(e) nonlinear (input term)

(f) nonlinear (product term)

Classify each of the following systems as time-invariant or time-varying.

(a) y(k) = [z(k) - 2y(k - 1)]?

(b) y(k) = sin[my(k — 1)] + 3z(k — 2)

(c) y(k) = (k+ 1)y(k — 1)+ cos|.1mx(k)]
(d) y(k) = 5y(k — 1) +exp(—k/5)u(k)
(e) y(k) = 10g[1 +2%(k - 2)]
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Solution

(a) time-invariant
(b) time-invariant
¢) time-varying

time-invariant

)
)
(c)
(d) time-varying
e)
)

(
(t

time-varying

Classify each of the following systems as causal or noncausal.

(a) y(k) = [Bax(k) — y(k - 1]?

(b) y(k) = sin[ry(k — 1)] + 3x(k + 1)

(c) y(k) = (k+ Dy(k — 1) + cos[.1mx(k?)]
(d) y(k) = 5y(k — 1) +exp(—k/5)u(k)
(e) y(k) = log[l +y*(k — 1)z*(k + 2)]

(£) h(k) = p(k+3) — p(k —3)
Solution

noncausal

noncausal

Consider the following system that consists of a gain of A and a delay of d samples.

y(k) = Az(k—d)

(a) Find the impulse response h(k) of this system.
(b) Classify this system as FIR or IIR.

57
(© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.



(c) Is this system BIBO stable? If so, find ||h/;.
(d

)
)
e) For what values of A and d is this an active system?
f)

For what values of A and d is this a passive system?

(
(

For what values of A and d is this a lossless system?

Solution

(a) h(k) = Ad(k —d)
(b) FIR
(c) Yes, it is BIBO stable with ||h]|; = |A4].
(d)
E, = Y (k)
k=—o0
=3 [An(k— )
k=—o0
= A ) 2Pk—d)
k=—o00
= Azzznz(z) , i=k—d
= A’E,

This is a passive system for |A| < 1.
(e) This is an active system for |A| > 1
(f) This is a lossless system for |A| =1

Consider the following linear time-invariant discrete-time system S.

y(k) —y(k—2) = 2x(k)

(a) Find the characteristic polynomial of S and express it in factored form.
(b) Write down the general form of the zero-input response, y.;(k).

(c) Find the zero-input response when y(—1) =4 and y(—2) = —1.
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Solution

(a)

a(z) = 22-1
= (z—1(z+1)
(b)
v=i(k) = ci(p)” + ca(p2)”
= 1+ Cg(—l)k

(c) Evaluating part (b) at the two initial conditions yields

Cl —Cy = 4

c1te = —1

Adding the equations yields 2¢; = 3 or ¢; = 1.5. Subtracting the first equation from the
second yields 2co = —5 or co = —2.5.. Thus the zero-input response is

y.i(k) =1.5-25(-1)F

V Consider the following linear time-invariant discrete-time system S.

y(k) = 18y(k—1)— .81y(k—2)—3z(k—1)

(a) Find the characteristic polynomial a(z) and express it in factored form.
(b) Write down the general form of the zero-input response, y.;(k).

(c) Find the zero-input response when y(—1) = 2 and y(—2) = 2.

Solution
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a(z) = 2°—1.8z+ .81
= (22— .9)2
(b)
yai(k) = (c1+eak)p®

= (c1+c2k).9F

(c) Evaluating part (b) at the two initial conditions yields

(61 — Cg).9_1 =

(61 — 262).9_2 =
or
Cl —Cp = 1.8
C1 — 262 = 1.62

Subtracting the second equation from the first yields co = .18. Subtracting the second
equation from two times the first yields ¢; = 1.98. Thus the zero-input response is

y.i(k) = (1.98 4 .18k).9%

Consider the following linear time-invariant discrete-time system S.

y(k) = —.64y(k—2)+ (k) — z(k —2)

(a) Find the characteristic polynomial a(z) and express it in factored form.

(b) Write down the general form of the zero-input response, y.;(k), expressing it as a real
signal.
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(c) Find the zero-input response when y(—1) = 3 and y(—2) = 1.

Solution

(a)

a(z) = 224 .64
= (z—.85)(z+.8j)
(b) In polar form the roots are z = .8 exp(£jn/2). Thus
y.i(k) = 1F[er cos(kB) + o sin(kO)]
= .8%¢; cos(km/2) + cysin(mwk/2)]

(c) Evaluating part (b) at the two initial conditions yields

.8_162(—1)
.8_261(—1)

3
1

Thus co = —3(.8) and ¢; = —1(.64). Hence the zero-input response is

y.i(k) = —(.8)F[.64 cos(mk/2) + 2.4sin(rk/2)]

Consider the following linear time-invariant discrete-time system S.

y(k) —2y(k — 1) + 1.48y(k — 2) — 416y(k —3) = buxz(k)

(a) Find the characteristic polynomial a(z). Using the MATLAB function roots, express it
in factored form.

(b) Write down the general form of the zero-input response, y.;(k).
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(c) Write the equations for the unknown coefficient vector ¢ € R® as Ac = yy, where
vo = [y(—1),y(—2),y(—3)]7 is the initial condition vector.

Solution
(a)
a(z) = 2°—22%41.482— .416
a=[1-21.48 -.416]
r = roots(a)
a(z) = (z—8)(z—.6—.45)(z— .6+ .47)

(b) The complex roots in polar form are py 3 = rexp(+jf) where

y - VBB
= .7211

6 = arctan(+.4/.6)
= +.588

Thus the form of the zero-input response is

vi(k) = @ (pl)k + 'r'k[CQ cos(k@) + c3sin(k0)]
= ¢1(.8)F + .7211%[¢; cos(.588k) + 3 sin(.588k)]

(c) Let ¢ € R? be the unknown coefficient vector, and yo = [y(—1), y(—2),y(—3)]”. Then
Ac =y or

871 721171 cos(—.588) 7211 !sin(—.588)
872 721172 cos[—2(.588)] .72112sin[—2(.588)] | ¢ = o
873

[— [—
721173 cos[—3(.588)] 721173 sin[—3(.588)]
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Consider the following linear time-invariant discrete-time system S.

y(k)—9y(k—1) = 2z(k)+z(k—1)

(a) Find the characteristic polynomial a(z) and the input polynomial b(z).

(b) Write down the general form of the zero-state response, y.s(k), when the input is z(k) =
3(.4)Fu(k).
(c) Find the zero-state response.

Solution

(a)

b(z) = 2z+1

Yos(k) = [do(po)® + di(p1)¥]p(k)

= -10.8
4 = A(z — p1)b(2)
(z —po)a(z)
3[2(.9) + 1]

Z=p1
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Thus the zero-state response is

Yos(k) = [—10.8(.4)% +16.8(.9) (k)

Consider the following linear time-invariant discrete-time system S.

ylk) = ylk—1)—.24y(k —2) + 3x(k) — 22(k — 1)

(a) Find the characteristic polynomial a(z) and the input polynomial b(z).

(b) Suppose the input is the unit step, x(k) = p(k). Write down the general form of the
zero-state response, y.s (k).

(c) Find the zero-state response to the unit step input.

Solution

(a)

a(z) = 22—2z+.24

(b) The factored form of a(z) is

Thus the form of the zero-state response to a unit step input is

Yss(k) = [do+ di(.6)" + da(4) (k)
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d =

dy =

Thus the zero-state response is

Yos(k) = [4.167 +2.5(.6)F +6.667(.4)% u(k)

Consider the following linear time-invariant discrete-time system S.

ylk) = ylk—1)— 21y(k—2) + 3z(k) + 2z2(k — 2)

(a) Find the characteristic polynomial a(z) and the input polynomial b(z). Express a(z) in
factored form.

(b) Write down the general form of the zero-input response, y.;(k).

(c) Find the zero-input response when the initial condition is y(—1) =1 and y(—2) = —1.
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(d) Write down the general form of the zero-state response when the input is z(k) =
2(.5)F (k).
(e) Find the zero-state response using the input in (d).

(f) Find the complete response using the initial condition in (¢) and the input in (d).

Solution

(a)

a(z) = 22—z+.21
= (2—3)(z—.7)
b(z) = 32242

61(3_1—1-62(7_1 =1
e ( )_2 + cof 7)_2 = -1
Clearing the denominators,
STer+ 3¢ = .21
49¢1 4+ .09¢c; = —.0441

Subtracting the second equation from seven times the first equation yields 2.01¢o = 1.51.
Subtracting .3 times the first equation from the second yields .28¢c; = —.127. Thus the
zero-input response is

yai(k) = —.454(.3)F 4+ .751(.7)F

66
(© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.



(d) First note that

The general form of the zero-state response is

Yas(k) = [do(:5)" + di(.3)" + da(.7)*] (k)

dy =

A(z — p1)b(2)
(z = po)a(z)
4[3(.3)% + 2
(3= 5)(3=.7)
4(2.27)

.08
= 113.5

dy = A(z — p2)b(2)
(z = po)a(z)
413(.7)% + 2]
(77— 5)(7—.3)
4(2.63)

.08
= 131.5

dy =

Z=p1

Z=p2

Thus the zero-state response is

Uss(k) = [=275(.5)% +113.5(.3)F 4 131.5(.7)" u(k)
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(f) By superposition, the complete response is

—.454(.3)F + . 751(.7)% + [—275(.5)% + 113.5(.3)% + 131.5(.7)¥ (k)

Consider the following linear time-invariant discrete-time system S. Sketch a block diagram
of this IIR system.

y(k) = 3y(k—1)—2y(k —2)+4z(k)+ dx(k—1)
Solution

a = [1,-3,2]
b = [4,5,0]

]
5

— 1 H?—» 51 Aé—o—o y(k)
-3

i i

Problem 2.19

Consider the following linear time-invariant discrete-time system S. Sketch a block diagram
of this FIR system.

y(k) = x(k) —2x(k—1)+3z(k —2) —4a(k —4)
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Solution

= [1,0,0]
b = [1,-2,3,0,—4]

z(k) O—¢—>{ 271 > 27t > 2t > 21
\ 4 \ 4 _1

1 -2 —4

Y Y
3 0
I N N NS
D O——O——O——ou

Problem 2.20

Consider the following linear time-invariant discrete-time system S called an auto-regressive
system. Sketch a block diagram of this system.

y(k) = x(k)— .8y(k—1)+ .6y(k—2)— .4y(k—3)

Solution

a [1,.8,—.6, .4]
b = [1,0,0,0]
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Problem 2.21

Consider the block diagram shown in Figure 2.32.

z(k) O i

1.8

2.1

’ng(k‘)

!
9
%l uq (k)

—-1.5

!

Figure 2.32 A Block Diagram of the System in Problem 2.22

(a) Write a single difference equation description of this system.

(b) Write a system of difference equations for this system for w;(k) for 1 <14 <2 and y(k).

Solution

(a) By inspection of Figure 2.32

y(k) =

—Adx(k)+ 9z(k— 1)+ 1.82(k — 2) + 1.5y(k — 1) — 2.1y(k — 2)
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(b) The equivalent system of equations is
ug(k) = 1.8z(k) — 2.1y(k)

ui(k) = 9z(k)+ 1.5y(k) 4+ ua(k — 1)
y(k) = —dx(k)+u(k—1)

Consider the following linear time-invariant discrete-time system S.

ylk) = .b6ylk—1)+z(k)— .Tx(k—1)

(a) Find the characteristic polynomial and the input polynomial.
(b) Write down the form of the impulse response, h(k).

(c) Find the impulse response.

Solution
(a)
a(z) = z—.6
b(z) = z—.7
(b)
h(k) = dod(k) +dy(.6) (k)
(c)
_ M)
ST
_ =7
= =%
= 1.167
_ (z=p)b(z)
. 6-.7)
N .6)
= —.167
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Thus the impulse response is

h(k) = 1.1676(k) — .167(.6)"u(k)

Consider the following linear time-invariant discrete-time system S.

ylk) = —25y(k—2)+x(k—1)

(a) Find the characteristic polynomial and the input polynomial.
(b) Write down the form of the impulse response, h(k).

(c) Find the impulse response. Use the identities in Appendix 2 to express h(k) in real form.

Solution

(a)

alz) = 224.25
b(z) = =z
(b) First note that
a(z) = (z—.55)(z+ .57)

Thus the form of the impulse response is

hk) = dod(k)+ [di(.55)F + do(—.55)" (k)
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i =

Z=p1

do

Z=p2

Thus from Appendix 2 the impulse response is

h(k) =[5 (55)" + j(—=55)"u(k)
2Re[—j(.5)"]u(k)
—2Re[(.5)* ()" (k)
—2(.5)"Re{[exp(jm/2)]* "} (k)
—2(.5)"Re[explj(k + 1)m/2)p(k)
= —2(.5)% cos[(k + 1)7/2]u(k)

2
2

Consider the following linear time-invariant discrete-time system S. Suppose 0 < m < n and
the characteristic polynomial a(z) has simple nonzero roots.

y(k) = Zbiiﬂ(k‘ — i) — Zaiy(k — i)
=0 =1

(a) Find the characteristic polynomial a(z) and the input polynomial b(z).

(b) Find a constraint on b(z) that ensures that the impulse response h(k) does not contain
an impulse term.

Solution
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a(z) = 2"4a2" M4 +ay,
b(z) = bz +b12" L+ b2

(b) The coefficient of the impulse term is

dy = — =

Thus
dy#0 < b(0)#0

S m=n

Consider the following linear time-invariant discrete-time system S. Compute and sketch the
impulse response of this FIR system.

y(k) = u(k—1)+2u(k —2)+3u(k —3) +2u(k —4) + u(k - 5)

Solution

By inspection, the impulse response is

k) = [0,1,2,3,2,1,0,0,..]
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Impulse Response

3 ‘

0.5 i

k

Problem 2.26

Using the definition of linear convolution, show that for any signal h(k)

h(k)x6(k) = h(k)

Solution

From Definition 2.3 we have

h(k)x6(k) = 'Z h(i)z(k — 1)
= 'Z h(i)é(k — 1)
_—
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Use Definition 2.3 and the commutative property to show that the linear convolution operator

is associative.

Solution

f(R)*lg(k)xh(k)] = [f(k)*g(k)]*h(k)

From Definition 2.3 we have

di(k) = [f(k)*[g(k)xh(k)]

(e e}

= Y fm)| D g(i)h(k—m—1)

m=—00 1=—00

= Y D fm)g(@)h(k—m—1)

m=—00 {=—00

Next, using the commutative property

da (k)

Thus dg(k‘) = dl(k‘)

Z Zf(m)g(i)h(k‘—m—i) . i=n

m=—00 {=—00

Use Definition 2.3 to show that the linear convolution operator is distributive.

f(k)x[g(k) + h(k)] = f(k)*g(k)+ f(k) > h(k)
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Solution

d(k) = f(k)*[g(k)+h(k)]
= > f@)glk—1i)+ h(k — )]

1=—00

= > fli)glk—i)+ f@i)h(k — i)]

1=—00

= > fl)gk—i)+ > fli)h(k—i)]

1=—00 1=—00

= J(k)xg(k) + f(k) x h(k)

Suppose h(k) and x(k) are defined as follows.

= [27_17074]T
r = [5,3,-7,67

(a) Let y.(k) = h(k)ox(k). Find the circular convolution matrix C(x) such that y. = C(z)h.
(b) Use C(x) to find y.(k).

Solution

(a) Using (2.7.9) and Example 2.14 as a guide, the 4 x 4 circular convolution matrix is

:EEO; $§3§ x§2§ :cglg
B z(l) =z(0) =(3) =(2
Clz) = z(2) z(1) z(0) z(3)
| 2(3) @(2) (1) =(0)
5 6 -7 3
B 3 5 6 -7
| -7 3 5 6
| 6 -7 3 5)
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(b) Using (2.7.10) and the results from part (a)

ye = C(x)h
[ 5 6 -7 3 2
13 5 6 -7 || -1
- -7 3 5! 6 0
6 -7 3 ) 4
[ 16
NE2
- 7
o

This can be verified using the DSP Companion function f_conuw.

Suppose h(k) and z(k) are the following signals of length L and M, respectively.

13,6, —1]7
= [27 07 _47 5]T

(a) Let h, and z, be zero-padded versions of h(k) and z(k) of length N = L + M — 1.
Construct h, and z.

(b) Let y.(k) = h.(k) o z,(k). Find the circular convolution matrix C(z,) such that y.
C(x,)h,.

(c) Use C(x,) to find y.(k).
(d) Use y.(k) to find the linear convolution y(k) = h(k) x z(k) for 0 < k < N.

Solution

(a) Here

N = L+M-1
— 344-1

Thus the zero-padded versions of h(k) and z(k) are
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h. = [3,6,—1,0,0,0]"
T, = [2707_4757070]T

(b) Using (2.7.9) and the results from part (a), the N x N circular convolution matrix is

[ 2(0) 2.(5) 2:(4) 2.(3) 2.(2) z,(1) ]
z5(1) 2,(0) 2.(5) z.(4) 2.(3) 2:(2)
C(z,) = 22(2) x:(1) 2:(0) 2.(5) w.(4) :(3)
- 2:(3) z2(2) x.(1) z.(0) 2.(5) w.(4)
r5(4) z:(3) 2:(2) z.(1) 2.(0) z:(5)
L 2:(5) 2.(4) 2:(3) 2.(2) z.(1) z.(0) |
[ 2 0 0 5 —4 0 ]
0 2 0 0 5 —4
_ -4 0 2 0 0 5
N 5 —4 0 2 0 0
0O 5 —4 0 2 0
| 0 O 5 —4 0 2
(c) Using (2.7.9), the circular convolution of h, (k) with =, (k) is
y.(k) = Cl(x,)h,
[ 2 0 0 5 —4 0 77T 3 17
0 2 0 0 5 —4 6
_ -4 0 2 0 0 5 -1
- 5 —4 0 2 0 0 0
0 5 —4 0 2 0 0
| O 0 5 -4 0 2 || 0 |
6
12
_ —14
- -9
34
| 5 |

(d) Using (2.7.14) and the results of part (c), the linear convolution y(k) = h(k) x z(k) is

y(k) = hu(k)ox.(k)
= C(x,)h,
= [6,12,—14,-9,34, 5]
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This can be verified using the DSP Companion function f_conuv.

Consider a linear discrete-time system S with input z and output y. Suppose S is driven by
an input x(k) for 0 < k < L to produce a zero-state output y(k). Use deconvolution to find
the impulse response h(k) for 0 < k < L if z(k) and y(k) are as follows.

r = [2,0,—1,4)7T
= [6,1,-4,3]T

Solution

Using (2.7.15) and Example 2.16 as a guide

moy = 49

Wl o

Applying (2.7.18) with k = 1 yields

h(1) =

Applying (2.7.18) with k = 2 yields

h2) =
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Finally, applying (2.7.18) with k£ = 3 yields

h3) = y(3) — h(0)x(3) — h(1)2(2) — h(2)x(1)

Thus the impulse response of the discrete-time system is

hk) = [3,.5,—.5,—-4.25]7 | 0<k<4

This can be verified using the DSP Companion function f_conuw.

Suppose z(k) and y(k) are the following finite signals.

r = [5,0,—4]7
= [10,-5,7,4,—12]T

(a) Write the polynomials x(z) and y(z) whose coefficient vectors are z and y, respectively.
The leading coefficient corresponds to the highest power of z.

(b) Using long division, compute the quotient polynomial ¢(z) = y(z)/z(z).

(c) Deconvolve y(k) = h(k) * x(k) to find h(k), using (2.7.15) and (2.7.18). Compare the
result with ¢(z) from part (b).

Solution

(a)

z(z) = 522-4
y(z) = 102" =523+ 722 + 42— 12
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222 - 2+3
522 —4 | 1024 — 523 + 722 + 42 — 12
1021 — 023 — 822

—52% + 1522 + 42

—523 — 022 4+ 4z
152% + 0z — 12
1527 + 0z — 12
0
Thus the quotient polynomial is
q(z) = 222243
(c) Using (2.7.15) and Example 2.16 as a guide
y(0)
0) = ==
12
4
= 3

Applying (2.7.18) with k = 1 yields

q(1) =

Applying (2.7.18) with k = 2 yields

q(2) = )
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Thus g = [2, —1, 3] and the quotient polynomial is

q(z) = 222 —2+3

This can be verified using the MATLAB function deconw.
Some books use the following alternative way to define the linear cross-correlation of an L
point signal y(k) with an M-point signal (k). Using a change of variable, show that this is

equivalent to Definition 2.5

Solution

Consider the change of variable i = n + k. Then n =i — k and

1L—1—]€
re®) = 7 3 yln+ k()
n=0 i=n+k
L—
= =Yyl k)
i=k

Since z(n) = 0 for n < 0, the lower limit of the sum can be changed to zero without affecting

the result. Thus,

1 L-1
ree(k) = Y y(a(i—k) , 0<k<L
=0

il

This is identical to Definition 2.5.
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Suppose z(k) and y(k) are defined as follows.

r = [50,—-107T
= [1,0,-2,4,3]7

(a) Find the linear cross-correlation matrix D(x) such that r,, = D(x)y.
(b) Use D(x) to find the linear cross-correlation 7y, (k).

(c) Find the normalized linear cross-correlation py, (k).
Solution

(a) Using (2.8.2) and Example 2.18 as a guide, the linear cross-correlation matrix is

[ 2(0) z(1) x=(2) O 0
1 0 z(0) z(1) x=(2) 0 —|
D(z) = - 0 0 x(0) =z(1) x(2)
L o 0o 0 20 z(1)
L0 0 0 0 z(0)
50 -10 0 0
o5 0 -0 0 1
= H 0 0 5 0 —10
0 0 O ! 0
00 0 0 5
10 -2 0 0
[0 1 0 -2 0 1
= |loo 1 0o -2
0 0 O 1 0
0 0 O 0 1

(b) Using (2.8.3) and the results from part (a)
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10 -2 0 0 1
01 0 -2 0
= ]l00 1 0 -2 —2
00 0 1 0J{4J
(00 0 0 1 3
[ 5
-8
= -8
4
| 3

This can be verified using the DSP Companion function f_corr.
(c) Using (2.8.5) we have L =5 and M = 3. Also from Definition 2.5

=
Ty (0) = EZyz(z)
i=0

1+0+44+16+9
5

N 61 M-1
rez(0) = sz%)
=0

25+ 0+ 100

3
= 41.67

Finally, from (4.49) the normalized cross-correlation of x(k) with y(k) is

Tyz (k)
\/(M/L)Tm(o)ryy(o)
ryz (k)
.6(6)41.67
= [.408, —.653, —.653,.327, .245]

Pyr(k‘)

This can be verified using the DSP Companion function f corr.
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vV Suppose y(k) is as follows.

(a)
(b)

Yy = [5777 _27478767 1]T

Construct a 3-point signal (k) such that r,,(k) reaches its peak positive value at k = 3
and |z(0)| = 1.
Construct a 4-point signal (k) such that r,, (k) reaches its peak negative value at k = 2
and |z(0)| = 1.

Solution

(a)

Recall that the cross-correlation ry,(k) measures the degree which (k) is similar to a
subsignal of y(k). In order for ry,(k) to reach its maximum positive value at k = 3,
one must have maximum positive correlation starting at £ = 3. Thus for some positive
constant « it is necessary that

z = ofy(3),y4),y(5)"
= af4,8,6]7

The constraint, |z(0)| = 1, implies that the positive scale factor must be o = 1/4. Thus

r = [1,2,1.5]7

In order for ry,(k) to reach its maximum negative value at k = 2, one must have
maximum negative correlation starting at k = 2. Thus for some positive constant o we
need

z = —aly(2),y(3),y(4),y(5)]"
= af2,—4,-8,—6]7

The constraint, |z(0)| = 1, implies that the positive scale factor must be o = 1/2. Thus
r = [1,-2,—4,-3]T
The answers to (a) and (b) can be verified using the DSP Companion function f_corr.
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Suppose z(k) and y(k) are defined as follows.

r = [4,0,—12,8]7
= [273717_1]T

(a) Find the circular cross-correlation matrix E(zx) such that ¢y, = E(x)y.
(b) Use E(x) to find the circular cross-correlation ¢y, (k).

(c) Find the normalized circular cross-correlation oy, (k).
Solution

(a) Using Definition 2.6, ¢y, (k) is just 1/N times the dot product of y with « rotated right
by k samples. Thus the kth row of E(z) is the vector = rotated right by k samples.

[ 2(0) x(1) x(2) x(3)
_ 1 a3) =(0) 2(1) =(2)
FO = 2] 20) o) 2(0) <)
L 2(1) xz(2) 2(3) =(0)
[ 4 0o -12 8
1] 8 4 0 12
- —-12 8 4 0
| 0 -12 8 4
1 0 -3 2
2 1 0 -3
N -3 2 1 0
0o -3 2 1
(b) Using Definition 2.6 and the results from part (a)
e = E(z)y
! 0 -3 2 2
2 1 0 -3 3
- -3 2 1 1
0 -3 2 1 -1
[ -3
|10
- 1
=
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This can be verified using the DSP Companion function f_corr.
(c) Using (2.8.7), N = 4. Also from Definition 2.6

cyy(0) =

cz2(0) = — $2(z)
i=0
16+ 0 + 144 + 64
4

= 56

Finally, from (2.8.7) the normalized circular cross-correlation of y(k) with x(k) is

_owlh)
Czz(0)cyy(0)
Cym(k)

3.75(56)
= [-.207,.690,.069, —.552]"

oy (k) =

This can be verified using the DSP Companion function f corr.

Suppose y(k) is as follows.

Yy = [8727_3747577]T

(a) Construct a 6-point signal z(k) such that oy, (2) =1 and |2(0)| = 6.
(b) Construct a 6-point signal (k) such that o,,(3) = —1 and |2(0)| = 12.

Solution

88
(© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.



(a) Recall that normalized circular cross-correlation, —1 < oy, (k) < 1, measures the degree
which a rotated version of a signal (k) is similar to the signal y(k). In order for oy, (k) to
reach its maximum positive value at k = 2, one must have maximum positive correlation
starting at £ = 2. Thus for some positive constant « it is necessary that

z = ay(2),y(3),y(4),y(5),y(0), y(1)]"
a[-3,4,5,7,8,2]F

The constraint, |x(0)| = 6, implies that the positive scale factor must be a = 2. Thus

r = [-6,8,10,14,16,4]"

Because y and x are of the same length, this will result is 0,,(2) = 1 which can be
verified by using the DSP Companion function f_corr.

(b) In order for oy, (k) to reach its maximum negative value at k = 3, one must have
maximum negative correlation starting at £ = 3. Thus for some positive constant «

z = —aly(3),y(4),y(5),5(0),y(1),y(2)]"
= a[4,5,7,8,2,-3]7

The constraint, |2(0)| = 12, implies that the positive scale factor must be ae = 3. Thus

r = [12,15,21,24,6,-9]7

Because y and x are of the same length, this will result is 0,,(3) = —1 which can be
verified by using the DSP Companion function f_corr.

Let z(k) be an N-point signal with average power P,.

(a) Show that r,,(0) = ¢4 (0) = P,
(b) Show that p;.(0) = 0,.(0) =

Solution
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(a) The average power of z(k) is

L N
N 2*(k)
=0

P, =
From Definition 2.5, the auto-correlation of an N-point signal is

real0) = 3 w(i)ali—0)
=0

From Definition 2.6, the circular auto-correlation of an N-point signal with periodic
extension zp(k) is

(b) From (2.8.5), the normalized auto-correlation of an N-point signal is

T22(0)

2z (0 =

PO = NN a0
= 1

From (2.8.7), the normalized circular auto-correlation of an N-point signal is
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- _ ¢22(0)
e2(0) Coz(0)Caz(0)
=1

This problem establishes the normalized circular cross-correlation inequality, |0y, (k)| < 1.
Let z(k) and y(k) be sequences of length N where x,(k) is the periodic extension of z(k).

(a) Consider the signal u(i, k) = ay(i) + xp(i — k) where a is arbitrary. Show that

=z

1
N “

(2

lay(i) + (i = B[P = a%eyy(0) + 2acys(k) + cra(0) > 0

i
o

(b) Show that the inequality in part (a) can be written in matrix form as

nliz ] [1]

(c) Since the inequality in part (b) holds for any a, the 2 x 2 coefficient matrix C(k) is
positive semi-definite, which means that det[C(k)] > 0. Use this fact to show that

Cop(k) < Cax(0)cyy(0) ,  0<k<N

(d) Use the results from part (c) and the definition of normalized cross-correlation to show
that

—1<o,k) <1 , 0<k<N

Solution
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| Nl | Nl
_ 2¢; - ; 12
N R =y S lar() oyl )
| N1
- ¥ Z a?y? (i) + 2ay(i)zy(i — k) + ZE?,(Z — k)
=0
2 N-1 N-1 N-1
a N 2a . . 1 .
= ) Y iyl B+ S )
i=0 i=0 i=0
| Nl
= a%cyy(0) + 2acy. (k) + N 22 (i)
=0
a?cyy(0) + 2acy, (k) + cz:(0)
> 0
(b)
cya (k) _ acyy(0) + cya (k)

la. 1] [ acyz (k) + cz2(0)
azcyy(o) + acyz (k) + acys (k) + c22(0)

a?cyy (0) + 2acy, (k) + ¢z (0)

(c) The coefficient matrix C'(k) from part (b) is positive semi-definite and therefore det[C(k)] >

0. But
B c (0) Cm(k)
det[C(k)] = det{[cf,’i’(k) cim(O)]}
= ny(O)Cmm(O)_ngjm(k)
> 0
Thus
szjfﬂ(k) S Cmm(o)cyy(o) ’ 0§k<N
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(d) Using (2.8.7) and the results from part (c)

=(k
loye(k)] = _culk)
vV Cm(o)cyy(o)
- 2 (k)
Cm(o)cyy(o)
< 1
Thus
—1<o,(k)<1 , 0<k<N
Consider the following FIR system.
5
y(k) = > (1+i)z(k —1)
i=0

Let z(k) be a bounded input with bound B,. Show that y(k) is bounded with bound B, =
cB;. Find the minimum scale factor, c.

Solution

5
> (1 4i)2z(k — )

(2

Il
=)

|(1+14)%z(k — 1))

IA

= 2 +1)°] - | (k )|

(2

5
< By)Y [(1+4)
1=0

= |[hll Bz
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Here

5

> (1+1i)
=0
= 14+4+9+16+25+ 36

= 93

17211

Thus

B, = 93B,

Consider a linear time-invariant discrete-time system S with the following impulse response.
Find conditions on A and p that guarantee that S is BIBO stable.

hk) = Ap*u(k)

Solution

The system S is BIBO stable if an only if ||||; < co. Here

Y k)]

k=—o00
[e.e]
k=0
[e.e]
k=0

= A Ip| < 1
= 1=, P

1711

Thus S is BIBO stable if and only if |p| < 1. There is no constraint on A.
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From Proposition 2.1, a linear time-invariant discrete-time system S is BIBO stable if and
only if the impulse response h(k) is absolutely summable, that is, ||h||3 < oo. Show that
|Ih|l1 < oo is necessary for stability. That is, suppose that S is stable but h(k) is not absolutely
summable. Consider the following input, where h*(k) denotes the complex conjugate of h(k)
(Proakis and Manolakis,1992).

(a) Show that x(k) is bounded by finding a bound B,.
(b) Show that S is not is BIBO stable by showing that y(k) is unbounded at k& = 0.

Solution

(a) Since z(0) = 0 when h(k) = 0, consider the case when h(k) # 0.

(k)|

Thus x(k) is bounded with B, = 1.
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(O] = [h(k) % 2(k) k=0
= | 2 h@a(=)
_ | s At
= | & T
_ oy @)
e
= > IhG)
= |kl

Consider the following discrete-time system. Use GUI module g_systime to simulate this
system. Hint: You can enter the b vector in the edit box by using two statements on one line:
i=0:8; b=cos(pi*i/4)

8
y(k) = > cos(wi/d)x(k — i)
=0

(a) Plot the polynomial roots
(b) Plot and the impulse response using N = 40.

Solution
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g_systime Select type Select view

1
© Zero input @ Time signals
@ Unit impulse @ Eolynomial Toots
05 x (k) S y (k) Uit step = Convolution
© Damped casine '
@ Deconvolution
2 WWhite noise
% 0.2 04 06 08 1 © Record x e
Edit parameters @ Import: a,b,x fs dB display
a=1; yO = [00]
i=0:8; b=cos(pi*if4); fs = 2000; Slider bar
¢ =099 Play x as sound M =40
<] [ »
FO = 300; Play y as sound E a192
Polynomial roots: ’'x’=a(z), 'o’=b(z) Magnitude of b(z)/a(z)
o 20
1 s
10 i "‘ S
g S Iy “\\\\ (S
_ 0 5 ‘ '“ ‘ A
~ : / N e
& 3 -10 ‘ ‘Iu‘m‘ 5 I
Q
-1 - -20
2
7
-2 T -1
2 0 1 2 w2 2 -2 ce( 2
Re ( z)
Problem 2.44 (a) Polynomial Roots
1 g_systime Select type Select view
@ Zero input @ Time signals
@ Unit impulss ~ Palynomial roots
0.5 x (k) S vy (k) e step = Convolution
~) Damped cosine i
@ Deconvolution
2 White noise
% 0.2 0.4 0.6 0.8 1 © Record x S
Edit parameters @ Import: aboxfs dE display
a=1 yO=[00]
i=0:8; b=cos(pi*if4); fs = 2000; Slider bar
c =099 Play x as sound =40
«| | >
FO = 300; Play ¥ as sound ] 8192
Time signals, unit impulse input
1 \ \ \
<05 *
0 ! 1 1 it It It It
0 5 10 15 20 25 30 35
1 \ \ \ \ \ \ \
%9 N X
I I I I I I I

-1
0 5 10 15 20 25 30 35
k

Problem 2.44 (b) Impulse Response
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Consider a discrete-time system with the following characteristic and input polynomials. Use
GUI module g_systime to plot the step response using N = 100 points. The MATLAB poly
function can be used to specify coefficient vectors a and b in terms of their roots, as discussed
in Section 2.9.

(z4+.5+5.6)(z—.9)(2+.75)
32%(z — .5)*

Solution
1 g_systime Select type Select view
= Zero input @ Time signals
= Unit impulss ~ Palynomial roots
0.5 x (k) O—> s oy (k) @ Unit sted
~) Damped cosine
) White noise
0
0 0.2 0.4 0.6 0.8 1 © Recard x
Edit parameters = Import: a,b,x fs [#] dB display
a = poly([- 546 -.5j"6.9 yO=[00]
fs = 2000; Slider bar
c =099 Play x as sound [ =100
FO = 300; Play ¥ as soun. 8 8192
Time signals, unit step input
1
Zo5H -
0 10 20 30 40 50 60 70 80 90
T T T T T T T T T
Z N‘HmrHmTHHHIHHHHHHHHHHHHHHHHHTIHTTHHHTHTTHHWHHHHHHHHH
=
_5 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90
k

Problem 2.45 Step Response
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vV Consider the following linear discrete-time system.

y(k) = L7y(k—2)—.72y(k —4) + bx(k — 2) + 4.5x(k — 4)

Use GUI module g_systime to plot the following damped cosine input and the zero-state
response to it using N = 30. To determine Fy, set 2nr FpkT = .37k and solve for Fy/ fs; where

T=1/f.

x(k) = .97%cos(.37k)

Solution

2nkgkT = 3mk

Thus 2FyT = .3 or Fy = .15fs. If f, = 2000, then Fy = 300.
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g_systime

Select type

Select view

o Zero input @ fime signals
= Unit impulse = Polynomial roots
0.5 x (k) O— s —oOy (k) = Unit step
@ Damped cosine
= VWhite noise
0
0 0.2 0.4 0.6 0.8 1 = Reserd x
Edit parameters = Import: a,b,x fs dB display
a=[10-1.70.72] ¥0 = [00]
b=[0504.5] fs = 2000; Slider bar
=097, Play x as sound M =500
7 ¥ W >
FO = 300; Play y as sound ] 8192
Time signals, damped cosine input: c=0.97, F0=300
1 T T T
2 9 [ HT TH Ih Ww | T it o e
=TT
- Il Il Il Il Il
50 100 150 200 250
20 \ \ \ \ \
Sl ’
~
= 0 {HLLILC . .ULN‘LMNUHTTTNwv 2tante,
~10 I I I I I
0 50 100 150 200 250

k

Problem 2.46 Input and Output

Consider the following linear discrete-time system.

y(k) —Ay(k —1)+ .19y(k — 2) — .104y(k — 3) + 6x(k) — 7.7z(k — 1) + 2.5z2(k — 2)

Create a MAT-file called prob2_47 that contains fs = 100, the appropriate coefficient vectors
a and b, and the following input samples, where v(k) is white noise uniformly distributed over
[—.2,.2]. Uniform white noise can be generated with the MATLAB function rand.

x(k) kexp(—k/50)+v(k) , 0<k <500

(a) Print the MATLAB program used to create prob2_47.mat.

(b) Use GUI module g_systime and the Import option to plot the roots of the characteristic
polynomial and the input polynomial.

(c) Plot the zero-state response on the input z(k).
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Solution

(a) % Problem 2.47

f_header(’Problem 2.47: Create MAT file’)
fs = 100;
a=[1 .4 -.19 .104]

b=[6-7.7 2.5];

N = 500;

v = -.2 + .4*xrand(1,N);

k = 0:N-1;

x = k .* exp(-k/50) + v;

save prob2_47 fs a b x

what

1 g_systime Select type Select view
Zera input Time signals
Unit impulss & Paolynomial roots
05 x(k)o—> 5 —Oy(k) Unit step o
Damped cosine )
ution
White noise
O d
0 0.2 0.4 0.6 0.8 1 Record x
o fpeaE 7| dB display
a=[104-0190104] ¥0 = [0:0:0]
b=[6-7.7 2.5[; fs = 100; Slider bar
c=0.99; Play x as sound
FO = 300; Play y as sound

Polynomial roots: ’'x’'=a(z), 'o’=b(z)

Z 50
1 3
- o0
0 XO N
-~ 0 D O ©
: \X % -
1 2 100
2
= - 0 1 2 mal =) -2

Re ( z)

Problem 2.47 (b) Polynomial Roots
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1 g_systime Select type Select view

© Zero input

@ Time signaig

© Unit impulss :
- P © Palynamial roots

0.5 x (k)o—> s oy (k) © Unit step

& Convolution

© Damped cosine

@ White noise

0 .
0 0.2 0.4 0.6 0.8 1 © Record x
@ Import: a,b,x fs dB display
a=[10.4-0190.104] y0 = [0:0,0]
b=1[6-7.7 2.5% fs = 100; Slider bar

x (k)

! ! ! !
150 200 250 300
T T T T

y (k)

0 50 100 150 200 250 300 350 400 450
k

Problem 2.47 (c) Input and Output

Consider the following discrete-time system, which is a narrow band resonator filter with
sampling frequency of fs = 800 Hz.

y(k) = .704y(k —1) — .723y(k — 2) + .141z(k) — 141z (k — 2)

Use GUI module g_systime to find the zero-input response for the following initial conditions.
In each chase plot N = 50 points.

(a) yo = [10,-3]"
(b) yo = [-5,-8]"

Solution
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g_systime

Select type

Select view

1
@ Zero input @ Time signals
D Unit impulse Polynomial roots
0.5 x (k)O—> S —Ov (k) - Lnit step Convolution
) Damped cosine '
= Deconvolution
= VWhite noise
0 - Stem plot
0 0.2 0.4 0.6 0.8 1 — Reeord x
Edit parameters = Import: a,b,x fs dB display
a=[1-704 723] ¥0 = [10 -3]
b=[141-.141]; fs = 800; Slider bar
c=0.99; Play x as sound [ I N=s0 |
FO = 300; Play y as sound ] 8192
Time signals, zero input
1 \ \ \ \
£ 0
X
1 Il Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45
10 \ \ \ \ \ \ \ \ \
X 0 ; ‘ J 1 [ ! T 11 ——t .
>y
~10 I I I I I I I I I I
0 5 10 15 20 25 30 35 40 45
k
Problem 2.48 (a) Zero-input Response
1 g_systime Select type Select view
@ Zero input @ Time signals
= Unit impulse = Palynomial roots
0'5 x (k) s Y (k) - Uit step Convolution
= Damped cosine )
nvolution
= White noise
0 m plat
0 0.2 0.4 0.6 0.8 1 - Record x
Edit parameters = Import: a.b,x fs dB display
¥0 = [-5 -8]}
b=[.141-141] fs = 800; Slider bar
=099 Play x as sound ‘ L M =s0 |
FO = 300; Play y as sound 8192
Time signals, zero input
1 T T T T
€
X
_q I I I I I I I I I I
0 5 10 15 20 25 30 35 40 45
10 T T T T T T T T T T
S} 1 { I I Lt — 3 .
e [ |
10 I I I I I I I I I I
0 5 10 15 20 25 30 35 40 45

k

Problem 2.48 (b) Zero-input Response
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Consider the following discrete-time system, which is a notch filter with sampling interval
T = 1/360 sec.

y(k) = .956y(k—1)— .914y(k—2)+x(k) —z(k— 1) + z(k — 2)

Use GUI module g_systime to find the output corresponding to the sinusoidal input z(k) =
cos(2m FokT) (k). Do the following cases. Use the caliper option to estimate the steady state
amplitude in each case.

(a) Plot the output when Fy = 10 Hz.
(b) Plot the output when Fy = 60 Hz.

.
Solution
1 g_systime Select type Select view
@ Zero input @ Time signals
© Unit impulss & Palynomial roots
0.5 x (k) S v () e step © Comvalution
@ Damped cosine
@ Deconvalution
Whit
0 - Record Stem plot
0 0.2 0.4 0.6 0.8 1 o Reeord x
Edit parameters @ Import: a,b x fs dB display
a=[1-956.914] y0 = [00]:
B=11-11] fs = 360; Slider bar
c=1; Play x as sound m I M =300 .
FO = 10; ay y as souncd ] EIE=
Time signals, damped cosine input: c=1, F0=10
I~
X
1 I L L L
0 50 100 150 200 250
2
sl
>y
-2
0 50 100 150 200 250
k

Problem 2.49 (a) Fy =10 Hz
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1 g_systime Select type Select view
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Problem 2.49 (b) Fy =60 Hz

Consider the following two polynomials. Use g_systime to compute, plot, and Export to a
data file the coefficients of the product polynomial ¢(z) = a(z)b(z). Then Import the saved
file and display the coefficients of the product polynomial.

a(z) = 2°—22+3
b(z) = 42°+522—62+7

Solution
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1 g_systime Select type Select view

D Zero input = Time signals
= Unit impulse
0.5 x (k) O— s —oOy (k) = Unit step
@ Damped cosine
7 White noise
0
0 0.2 0.4 0.6 0.8 1 = Reserd x
Edit parameters = Import: a,b,x fs dB display
a=[1-23] y0 = [00]
bL=[45-67] fs = 2000; Slider bar
c= ; Play x as sound =300
0.99 ¥ " | .
FO = 300; 8 8192
Convolution
10 T T T T
T —O a
S g T ? —H b
@ ) J]
10 1 1 ! | | |
-1 0 1 2 conv(a,b) 3 4 5 6
50 T T T T T
Q T —O p=ab
* W
]
1 0 = O O
Q,
-50 L Il 1 1 1 |
-1 0 1 2 3 4 5 6
k
Problem 2.50 Polynomial Multiplication
product =
4 -3 -4 34 -32 21

Consider the following two polynomials. Use g_systime to compute, plot, and Export to a
data file the coefficients of the quotient polynomial ¢(z) and the remainder polynomial r(z)
where b(z) = q(z)a(z) + r(z). Then Import the saved file and display the coefficients of the
quotient and remainder polynomials.

a(z) = 22+32-4
b(z) = 421 —2%2-8

Solution
quotient =
4 -12 51
remainder =
0 0 0 -201 196
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1 g_systime Select type Select view

® Zero input ~ Time signals
= Unit impulse = Polynomial roots
0.5 x (k) O— s —oOy (k) = Unit step
@ Damped cosine
= VWhite noise
0
0 0.2 0.4 0.6 0.8 1 = Reserd x
Edit parameters = Import: a,b,x fs [#] dB display
a=[13-4] ¥0 = [00]
b=[40-10-8] fs = 2000; Slider bar
c=0099; Play x as sound =300
I v
FO = 300; Play y as sound ] 8192
Deconvolution
5 T T
? —o
Q 0 I 1) —E b
[
5 4
-10 Il Il Il Il Il
-1 0 1 2 3 4 5
. 200 T T T T T
q
¥ —
| 0 15} 15} 8 l —F r [
K
o'
N -200 -
2 _400 I I I I I
-1 0 1 2 3 4 5
k

Problem 2.51 Polynomial Division

vV Use the GUI module g_correlate to record the sequence of vowels “A” “E”,“I”,
“0”,“U” in y. Play y to make sure you have a good recording of all five vowels. Then record
the vowel “O” in z. Play x back to make sure you have a good recording of “O” that sounds
similar to the “O” in y. Export the results to a MAT-file named my_vowels.

(a) Plot the inputs = and y showing the vowels.

(b) Plot the normalized cross-correlation of y with x using the Caliper option to mark the
peak which should show the location of x in .

(c) Based on the plots in (a), estimate the lag d; that would be required to get the “O”
in z to align with the “O” in y. Compare this with the peak location ds in (b). Find
the percent error relative to the estimated lag d;. There will be some error due to the
overlap of z with adjacent vowels and co-articulation effects in creating .

Solution
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Select type

Select view

1
) White noise ® JPHE  ERd Y
. o Periodic
Linear = Convolution
0.5 x (k)o—=> . (k) *y (k)
convolution © Impulse train
= Cross-correlation
© Record x and y
0 ® Import x.y fs = Auto-correlation
0 0.2 0.4 0.6 0.8 1
[ Gircular [#) Normalized
c=05 fs = B000;
Slider bar
L = 16000; Play y as sound
M = 4000; Play x as sound
Inputs x and y: user-defined inputs from file my_vowels
1 T T T T T
£ 0
=
9 I 1 1 1 1 1 1
10 2000 4000 6000 8000 10000 12000 14000 16000
T T T T T
£ 0 B
X
1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000
k
Problem 2.52 (a) The Vowels A, E, I, O, U
1 Select type Select view
© White noise ) Inputs x and y
x (k) O—D) Linear © Periodiz @ Convolution
0.5 cross— —op,, (k) . -
y (k)o—> correlation y © Impulse train
© Record x and y
0 © Impor: x.y s o Auto-correlation
0 0.2 0.4 0.6 0.8 1
[C] Circular ] Normalized
c=05 fs = BOOO;
Slider bar
L = 16000; Play y as sound
W1 = 4000 Play x as sound
Normalized cross-correlation: user-defined inputs from file my_vowels
0.3 T T T T T T T
0.2 _
~ 0.1 _
<
%
(=% 0 ‘I'l‘
-0.1F 1
02 1 1 1 1 1 1
0 2000 4000 6000 10000 12000 14000 16000

8000
k

Problem 2.52 (b) Normalized Cross-correlation of x with y
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(¢c) From part (a), the start of O in z is approximately o, = 9000, and the start of O in y
is approximately o, = 1800. Thus the translation of y required to get a match with x is

di = o0y — 0y
9000 — 1800
7200

Q

The peak in part (b) is at do = 6807. Thus the percent error in finding the location of
Oin z is

100(ds — dy)
dy
100(6807 — 7200)

7200
= —5.46 %

The file prob2_53.mat contains two signals, x and y, and their sampling frequency, fs. Use
the GUI module g_correlate to Import x, y, and fs.
(a) Plot z(k) and y(k).

(b) Plot the normalized linear cross-correlation py. (k). Does y(k) contain any scaled and
shifted versions of x(k)? Determine how many, and use the Caliper option to estimate
the locations of z(k) within y(k).

Solution

From the plot of pgy(k), there are three scaled and shifted versions of y(k) within (k). They
are located at

k = [388,1718,2851]
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Select type Select view

1
=) White noise © inpits % and ¢
. = Periodic
Linear @ Convalution
0.5 x (k) O—> ) —Ox (k) *y (k) _
convolution = Impulse train
= Cross-correlation
= Record x and y
0 ® Import: %y fs @ Auto-carrelation
0 0.2 0.4 0.6 0.8 1
1 Gircular Mormalized
c=05 fs = 500;
Slider bar
L = 4096; Play y as sound
M= 1024, Play x as sound
Inputs x and y: user-defined inputs from file prob2_53
5 T T T T T T
= i
>
_5 I I I I I I I I
’ 0 500 1000 1500 2000 2500 3000 3500 4000 4500
T T T T T T
=0 B
X
1 ! | I I I I I I
500 1000 1500 2000 2500 3000 3500 4000 4500
k
Problem 2.53 (a)
1 Select type Select view
=) White noise = Inputs x and y
x (k) Oo—D) Linear - Perindic @ Convolution
0.5 cross-— —op, (k) i .
y (k) correlation . - s tran @ Cross-correlation
= Record x and y i
0 ® Import: x.y 15 @ Auto-correlation
0 0.2 0.4 0.6 0.8 1
[ Circular Normalized
c=058 fs = 500;
Slider bar
L = 4096; Play y as sound
M= 1024; Play x as sound
Normalized cross-correlation: user-defined inputs from file prob2_53
0.25 T T T T T T T T
0.2~ (x,y) = (385.66,0.19) 7
’ 00 (x.y) =(1720.47,0.18) (x.y) = (2847.47,0.17)

0.15- i
7 01pF i
&

2 0.05- i
o —
-0.05 *

01 I I I I I I I I

0

500 1000 1500 2000 2500 3000 3500 4000 4500
k

Problem 2.53 (b)
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Consider the following discrete-time system.

y(k)

95y(k — 1) +.035y(k — 2) — .462y(k — 3) + .351y(k — 4) +
Sz(k) —.75x(k—1) — 1.2z(k — 2) + 4z (k — 3) — 1.2z(k — 4)

Write a MATLAB program that uses filter and plot to compute and plot the zero-state
response of this system to the following input. Plot both the input and the output on the
same graph.

Solution

% Problem 2.54

% Initialize

f_header(’Problem 2.54°)

a

N =101;
0 :
x = (k+1).72 .x (.8).7k;

k

= (h+DX®uk) . 0< k<100

[1 -.95 -.035 .462 -.351]
b=1[.56-.75-1.2 .4 -1.2]

N-1;

% Find zero-state response

y = filter (b,a,x);
% Plot input and output

figure
h = plot (k,x,k,y);

set (h(2),’LineWidth’,1.0)
f_labels (°’,’k’,’x(k) and y(k)’)

legend (’x’,’y’)
f_wait
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Problem 2.54 Input and Zero-State Response

Consider the following discrete-time system.

a(z) = zt— .32 — 57224 1152 + .0168
b(z) = 10(z+.5)3

This system has four simple nonzero roots. Therefore the zero-input response consists of a
sum of the following four natural mode terms.

v.i(k) = Clplf + Cng + Csp§ + C4P’Z

The coefficients can be determined from the initial condition

Setting y.;(—k) = y(—k) for 1 < k < 4 yields the following linear algebraic system in the
coefficient vector ¢ = [cy, 2, ¢3, c4]” .
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Write a MATLAB program that uses roots to find the roots of the characteristic polynomial
and then solves this linear algebraic system for the coefficient vector ¢ using the MATLAB
left division or \ operator when the initial condition is yp. Print the roots and the coefficient
vector ¢. Use stem to plot the zero-input response y.; (k) for 0 < k < 40.

Solution

% Problem 2.55
% Initialize

f_header (’Problem 2.55°)
a=[1-.3-.57 .115 .0168]
y=1[2-10 23]

n=4;

% Construct coefficient matrix

p = roots(a)
A = zeros(n,n);
for i =1 :n
for k=1 :n
A(i,k) = p(k)~(-1);
end
end

% Find coefficient vector c
c=A\y
% Compute zero-input response

N =41;

k=0 : N-1;

y_0 = zeros(1,N);
for i =1 :n
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y_0 = y_0 + c(i) .” k;
end

% Plot it

figure
stem (k,y_0,’filled’,’.’)
f_labels (’’,°k’,’y_0(k)’)
f_wait

Program Output:

-.7000
.8000
.3000

-.1000

-.8195
.8720
-.0742
.0013

3.5 4

251 b

v, (k)

1.5F i

0.5

Problem 2.55 Zero-Input Response to Initial Condition
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vV Consider the discrete-time system in Problem 2.55. Write a MATLAB program that uses the
DSP Companion function f_filter0 to compute the zero-input response to the following initial
condition. Use stem to plot the zero-input response y.; (k) for —4 < k < 40.

Solution

% Problem 2.56
% Initialize

f_header (’Problem 2.56°)
a=[1-.3-.57 .115 .0168]
b = 10*poly([-.5,-.5,-.5])
y0 = [2 -1 0 3]’

n=4;

% Solve system

N = 41;
x = zeros(1,N);
y_zi = £f_filter0(b,a,x,y0);

% Plot it

figure

k= [-n : N-1];

stem (k,y_zi,’filled’,’.’)

f_labels (’Zero-input Response’,’k’,’y_{zi}(k)’)
f_wait
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Problem 2.56 Zero-input Response

Consider the following running average filter.

1

y(k‘):10 x(k—1) , 0<k<100

9
i=0
Write a MATLAB program that performs the following tasks.

(a) Use filter and plot to compute and plot the zero-state response to the following input,

where v(k) is a random white noise uniformly distributed over [—.1,.1]. Plot (k) and

y(k) below one another. Uniform white noise can be generated using the MATLAB
function rand.

x(k) = exp(—k/20)cos(rk/10)u(k) + v(k)

(b) Add a third curve to the graph in part (a) by computing and plotting the zero-state
response using conv to perform convolution.

Solution

The transfer function of this FIR filter is
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% Problem 2.57

% Initialize

f_header (’Problem 2.57°)

m = 9;

b = .1*ones(1,m+1);
a=1;

N =101;

k=0 : N-1;

c = .1;

x = exp(-k/20) .* cos(pi*k/10) + f_randu(l,N,-c,c);
% Find zero-state response

y = filter (b,a,x);

% Plot input and output

figure

h = plot (k,x,k,y);

set (h(2),’LineWidth’,1.0)

f_labels (’Input and Output’,’k’,’x(k) and y(k)’)
legend (’x’,’y’)

f_wait
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Problem 2.57 Running Average Filter of Order m =9

Consider the following FIR filter. Write a MATLAB program that performs the following
tasks.

20 ek —i
ylk) = (_11)0&'2 )

(a) Use the function filter to compute and plot the impulse response h(k) for 0 < k < N
where N = 50.

(b) Compute and plot the following periodic input.

x(k) = sin(.1wk)—2cos(.2nk)+ 3sin(.37k) , O0<k<N

(c) Use conv to compute the zero-state response to the input z(k) using convolution. Also

compute the zero-state response to x(k) using filter. Plot both responses on the same
graph using a legend.

Solution

118
(© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.



% Problem 2.58

% Construct filter

f_header (’Problem 2.58’)

i=0: 20;
b=(-1).72 ./ (10 + i.72);
a=1;

% Construct input

N = 50;
k=0 : N-1;
x = sin(.1*xpix*k) - 2*cos(.2%pixk) + 3*sin(.3*pix*k);

% Compute and plot impulse response

delta = [1,zeros(1,N-1)];

h = filter (b,a,delta);

figure

plot (k,h)

f_labels (’Impulse Response’,’k’,’h(k)’)
f_wait

% Compute and plot zero-state response using convolution

figure

plot (k,x)

f_labels (’Input’,’k’,’x(k)’)

f_wait

circ = 0;

y1l = f_conv (h,x,circ);

k1 = 0 : length(yl)-1;

y2 = filter (b,a,x);

k2 =0 : N-1;

hp = plot (k1,y1,k2,y2);

set (hp(2),’LineWidth’,1.5)

f_labels (’Zero State Response’,’k’,’y(k)’)
legend (’Using f\_conv’,’Using filter’)
f_wait
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Problem 2.58 (a) Impulse Response

Input

0 10 20 30 40 50
k

Problem 2.58 (b) Periodic Input
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Problem 2.58 (c) Zero-State Response

Consider the following pair of signals.

= [1,2,3,4,5,4,3,2,1]"
= [27_173747 _5707 7797 _6]T

Verify that linear convolution and circular convolution produce different results by writing
a MATLAB program that uses the DSP Companion function f.conv to compute the linear
convolution y(k) = h(k) x (k) and the circular convolution y.(k) = h(k) o z(k). Plot y(k)
and y.(k) below one another on the same screen.

Solution

% Problem 2.59

% Initialize
f_header(’Problem 2.59°)
h=1[1234514321]
x=[2-134-5079 -6]

% Compute convolutions
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y = f_conv (h,x,0);
y_c = f_conv (h,x,1);

% Plot them

figure

subplot (2,1,1)

k = 0 : length(y)-1;

plot (k,y)

f_labels (’Linear Convolution: y(k) = h(k) * x(k)’,’k’,’y(k)’)

subplot (2,1,2)

k = 0 : length(y_c)-1;

plot (k,y_c)

f_labels (’Circular Convolution: y_c(k) = h(k) \circ x(k)’,’k’,’y_c(k)’)
f_wait

Linear Convolution: y(k) = h(k) * x(k)
60 T T T T T T

=
>

_20 Il Il Il Il Il Il Il

0 2 4 6 8 10 12 14 16
k
Circular Convolution: y_(k) = h(k) ° x (k)
60

O]
6]
>

Problem 2.59 Linear and Circular Convolution
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Consider the following pair of signals.

[1,2,4,8,16,8,4,2,1]"
= [27_17_47 _47_172]T

Verify that linear convolution can be achieved by zero padding and circular convolution by
writing a MATLAB program that pads these signals with an appropriate number of zeros and
uses the DSP Companion function f-conv to compare the linear convolution y(k) = h(k)xx(k)
with the circular convolution y,.(k) = h.(k) o x.(k). Plot the following.

(a) The zero-padded signals h,(k) and z,(k) on the same graph using a legend.
(b) The linear convolution y(k) = h(k) x z(k).
(c) The zero-padded circular convolution y,.(k) = h(k) o z,(k).

Solution

% Problem 2.60
% Initialize

f_header (’Problem 2.60°)
h=1[1248168 4 2 1];
x=[2-1-4-4 -1 2];

% Construct and plot zero-padded signals

L = length(h);

M = length(x);

h_z = [h, zeros(1,M-1)]

x_z = [x, zeros(1,L-1)]
figure

k = 0 : length(h_z)-1;

hp = plot (k,h_z,k,x_z);
set (hp(1),’LineWidth’,1.5)
f_labels (’Zero-Padded Signals’,’k’,’Inputs’)
legend (Ch_z(k)’,’x_z(k)’)
f_wait

% Compute and plot convolutions
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y = f_conv (h,x,0);

y_zc = f_conv (h_z,x_z,1);

figure

plot (k,y)

f_labels (’Linear Convolution: y(k) = h(k) * x(k)’,’k’,’y(k)’)

f_wait

figure

plot (k,y_zc)

f_labels (’Circular Convolution: y_{zc}(k) = h_z(k) \circ x_z(k)’,’k’,’y_{zc}(k)’)
f_wait

Zero—-Padded Signals
T T

16

h, (k)
x,9 |1

Inputs

10 12 14

Problem 2.60 (a) Zero-padded Signals
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Linear Convolution: y (k) = h(k) * x(k)
20 T T T T T

100 . . . . . .
0

Problem 2.60 (b) Linear Convolution

Circular Convolution: v, (k) = hz(k) °© xZ(k)
20 T T T

-20

100 . . . . . .
0

Problem 2.60 (c) Zero-padded Circular Convolution
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Consider the following polynomials

a(z) = 2443422243
b(z) = 22—322+42-1
c(z) = a(2)b(z)

Let a € R%, b € R* and ¢ € R® be the coefficient vectors of a(z), b(z) and c(z), respectively.

(a) Find the coefficient vector of ¢(z) by direct multiplication by hand.

(b) Write a MATLAB program that uses conv to find the coefficient vector of ¢(z) by com-
puting ¢ as the linear convolution of a with b.

(¢) In the program, show that a can be recovered from b and ¢ by using the MATLAB
function deconv to perform deconvolution.

Solution

% Problem 2.61

% Initialize

f_header (’Problem 2.61°)

a=[142-13]

b=1[1-34-1]

% Construct coefficient vector of product polynomial
¢ = conv (a,b)

% Recover coefficients of a from b and c

[a,r] = deconv (c,a)

(a) Using direct multiplication, C'(z) = A(z)B(z), we have
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A(2)B(z) = 2" 4423 +222— 243
223224421
2T 4425 4 22° — 2% 4328
—328 — 1225 — 62 +32% — 922
425 +162* + 823 — 422 + 122
2t 439224 23
21425 — 625 + 821 +102° — 1522 + 132 — 3

Thus the coefficient vector of the product polynomial is

c = [1,1,-6,8,10,—15,13, —3]%

(b) The program output for ¢ using conv is

C =
1 1 -6 8 10 -15 13 -3

(¢c) The program output for a using deconv is

a =
1 -3 4 -1

Consider the following pair of signals.

r = [2,-4,3,7,6,1,9,4,-3,2,7,8]7
= [37271707_17_27_37 _27_1707172]T

Verify that linear cross-correlation and circular cross-correlation produce different results by
writing a MATLAB program that uses the DSP Companion function f corr to compute the
linear cross-correlation, 7y, (k), and the circular cross-correlation, cy. (k). Plot ry,(k) and
cyz (k) below one another on the same screen.

Solution
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% Problem 2.62

% Initialize

f_header (’Problem 2.62°)
x=[3210-1-2-3-2-1012]
y=[2-4376194-327 8]

% Compute cross-correlations

f_corr (x,y,0,0);
f_corr (x,y,1,0);

r_Xy

C_Xy
% Plot them

figure

subplot (2,1,1)

k = 0 : length(r_xy)-1;

plot (k,r_xy)

f_labels (’Linear Cross-Correlation’,’k’,’r_{xy}(k)’)
subplot (2,1,2)

k = 0 : length(c_xy)-1;

plot (k,c_xy)

f_labels (’Circular Cross-Correlation)’,’k’,’c_{xy}(k)’)
f_wait

128
(© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.



Linear Cross-Corrlation

2 T T T
_ of 1
=)
>
Mx
2t 4
_4 Il Il Il Il Il
0 2 4 6 8 10 12
k
Circular Cross—-Correlation)
4 T T

k

Problem 2.62 Linear and Circular Cross-Correlation

vV Consider the following pair of signals.

Yy = [1787_372777_57_174]T
r = [2,-3,4,0,5]7

Verify that linear cross-correlation can be achieved by zero-padding and circular cross-correlation
by writing a MATLAB program that pads these signals with an appropriate number of zeros
and uses the DSP Companion function f_corr to compute the linear cross-correlation ry, (k)
and the circular cross-correlation ¢, ., (k). Plot the following.

(a) The zero-padded signals x,(k) and y,(k) on the same graph using a legend.

(b) The linear cross-correlation 7y, (k) and the scaled zero-padded circular cross-correlation
(N/L)cy.o. (k) on the same graph using a legend.

Solution

% Problem 2.63
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% Initialize

f_header (’Problem 2.63°)
y=1[18-327-5-14]
x = [2 -3 4 0 5]

% Construct and plot zero-padded signals

L = length(y);
M = length(x);
x_z = [x, zeros(1,L-1)]1;
y_z = [y, zeros(1,M-1)];

figure
N = length(y_z);
k=0 : N-1;

hp = plot (k,x_z,k,y_z);

set (hp(1),’LineWidth’,1.5)

f_labels (’Zero-Padded Signals’,’k’,’Inputs’)
legend (’x_z(k)’,’y_z(k)’)

f_wait

% Compute and plot cross-correlations

r_yx = f_corr (y,x,0,0);

R_yx (N/L)*f_corr (y_z,x_z,1,0);

kr = 0 : length(r_yx)-1;

kR = 0 : length(R_yx)-1;

figure

h = plot (kR,R_yx,kr,r_yx);

set (h(2),’LineWidth’,1.5)

legend (°(N/L)c_{y_zx_z}(k)’, ’r_{yx}(k)’,’Location’,’North’)
f_wait
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Problem 2.63 (a) Zero-Padded Signals
5 :
(NiLe, , (9
ar —

Problem 2.63 (b) Cross-Correlations
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Consider the following pair of signals of length N = 8.

r = [2,-4,7,3,8,—6,5,1]T
[3717_57274797770]T

Write a MATLAB program that performs the following tasks.

(a) Usethe DSP Companion function f_corrto compute the circular cross-correlation, ¢y, (k).
(b) Compute and print u(k) = z(—Fk) using the periodic extension, x,(k).

(c) Verify that ¢y, (k) = [y(k) o x(—k)]/N by using the DSP Companion function f_conv to
compute and plot the scaled circular convolution, w(k) = [u(k) o z(k)]/N. Plot cy. (k)
and w(k) below one another on the same screen.

Solution

% Problem 2.64
% Initialize

f_header(’Problem 2.64°)
y=1[31-524970]
x=[2-4738-65 1]

% Compute and plot circular cross-correlation
c_yx = f_corr (y,x,1,0);
% Construct u(k) = x(-k) using periodic extension x_p(k)

N = length(x);
u= [x(1), x(N:-1:2)]

% Compute and plot scaled circular convolution

w = f_conv (y,u,1)/N;

figure

subplot(2,1,1)

kc = 0 : length(c_yx)-1;

plot (kc,c_yx)

f_labels (’Circular Cross-correlation of y(k) with x(k)’,’k’,’c_{yx}(k)’)
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subplot(2,1,2)

kw = 0 : length(w)-1;

plot (kw,w)

f_labels (’Scaled Circular Convolution of y(k) with x(-k)’,’k’,’[y(k) \circ x(-k)]/N’)

f_wait

(b) The signal u(k) = x(—k) using the periodic extension x,(k) is

u =

Problem 2.64 (c) Scaled Circular Convolution
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