
Chapter 2

2.1 Classify each of the following signals as finite or infinite. For the finite signals, find the
smallest integer N such that x(k) = 0 for |k| > N .

(a) x(k) = µ(k + 5) − µ(k − 5)

(b) x(k) = sin(.2πk)µ(k)

(c) x(k) = min(k2 − 9, 0)µ(k)

(d) x(k) = µ(k)µ(−k)/(1 + k2)

(e) x(k) = tan(
√

2πk)[µ(k)− µ(k − 100)]

(f) x(k) = δ(k) + cos(πk) − (−1)k

(g) x(k) = k−k sin(.5πk)

Solution

(a) finite, N = 5

(b) infinite

(c) finite, N = 2

(d) finite, N = 1

(e) finite, N = 99

(f) finite, N = 0

(g) infinite

2.2 Classify each of the following signals as causal or noncausal.

(a) x(k) = max{k, 0}
(b) x(k) = sin(.2πk)µ(−k)

(c) x(k) = 1− exp(−k)

(d) x(k) = mod(k, 10)

(e) x(k) = tan(
√

2πk)[µ(k) + µ(k − 100)]

(f) x(k) = cos(πk) + (−1)k

(g) x(k) = sin(.5πk)/(1 + k2)

Solution

(a) causal
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(b) noncausal

(c) noncausal

(d) noncausal

(e) causal

(e) causal

(f) noncausal

2.3 Classify each of the following signals as periodic or aperiodic. For the periodic signals, find
the period, M .

(a) x(k) = cos(.02πk)

(b) x(k) = sin(.1k) cos(.2k)

(c) x(k) = cos(
√

3k)

(d) x(k) = exp(jπ/8)

(e) x(k) = mod(k, 10)

(f) x(k) = sin2(.1πk)µ(k)

(g) x(k) = j2k

Solution

(a) periodic, M = 100

(b) nonperiodic, (τ = 20π)

(c) nonperiodic, (τ = 2π/
√

3)

(d) periodic, M = 16

(e) periodic, M = 10

(f) nonperodic, (causal)

(g) periodic, M = 2

2.4 Classify each of the following signals as bounded or unbounded.

(a) x(k) = k cos(.1πk)/(1 + k2)

(b) x(k) = sin(.1k) cos(.2k)δ(k− 3)

(c) x(k) = cos(πk2)

(d) x(k) = tan(.1πk)[µ(k)− µ(k − 10]

(e) x(k) = k2/(1 + k2)

(f) x(k) = k exp(−k)µ(k)

52
c© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible

website, in whole or in part.



Solution

(a) bounded

(b) bounded

(c) bounded

(d) unbounded

(e) bounded

(f) bounded

2.5 For each of the following signals, determine whether or not it is bounded. For the bounded

signals, find a bound, Bx.

(a) x(k) = [1 + sin(5πk)]µ(k)

(b) x(k) = k(.5)kµ(k)

(c) x(k) =

[

(1 + k) sin(10k)

1 + (.5)k

]

µ(k)

(d) x(k) = [1 + (−1)k] cos(10k)µ(k)

Solution

(a) bounded, Bx = 1

(b) The following are the first few values of x(k).

k x(k)

0 0

1 1/2
2 1/2

3 3/8
4 4/16

5 5/25

Thus x(k) is bounded with Bx = .5.

(c) unbounded

(d) bounded, Bx = 2.

2.6 Consider the following sum of causal exponentials.

x(k) = [c1p
k
1 + c2p

k
2 ]µ(k)
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(a) Using the inequalities in Appendix 2, show that

|x(k)| ≤ |c1| · |p1|k + |c2| · |p2|k

(b) Show that x(k) is absolutely summable if |p1| < 1 and |p2| < 1. Find an upper bound

on ‖x‖1

(c) Suppose |p1| < 1 and |p2| < 1. Find an upper bound on the energy Ex.

Solution

(a) Using Appendix 2

|x(k)| = |[c1(p1)
k + c2(p2)

k]µ(k)|
= |c1(p1)

k + c2(p2)
k| · |µ(k)|

= |c1(p1)
k + c2(p2)

k|
≤ |c1(p1)

k| + |c2(p2)
k|

= |c1| · |pk
1| + |c2| · |pk

2]|
= |c1| · |p1|k + |c2| · |p2|k

(b) Suppose |p1| < 1 and |p2| < 1. Then using (a) and the geometric series in (2.2.14)

‖x‖1 =

∞
∑

k=−∞

|x(k)|

≤
∞
∑

k=0

|c1| · |p1|k + |c2| · |p2|k

= |c1|
∞

∑

k=0

|p1|k + |c2|
∞
∑

k=0

|p2|k

=
|c1|

1 − |p1|
+

|c2|
1 − |p2|

(c) Using (b) and (2.2.7) through (2.2.9)
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Ex = ‖x‖2
2

≤ ‖x‖2
1

≤ |c1|
1 − |p1|

+
|c2|

1− |p2|

2.7 Find the average power of the following signals.

(a) x(k) = 10

(b) x(k) = 20µ(k)

(c) x(k) = mod(k, 5)

(d) x(k) = a cos(πk/8) + b sin(πk/8)

(e) x(k) = 100[µ(k + 10)− µ(k − 10)]

(f) x(k) = jk

Solution

Using (2.2.10)-(2.2.12) and Appendix 2

(a) Px = 100

(b) Px = 400

(c) Px = (1 + 4 + 9 + 16)/5 = 6

(d)

[a cos(πk/8) + b sin(πk/8)]2 = a2 cos2(πk/8)) + 2ab cos(πk/8) sin(πk/i) + b2 sin2(πk/8)

= a2

[

1 + cos(πk/4)

2

]

+ ab sin(πk/4) + b2

[

1 − cos(πk/4)

2

]

Thus

Px =
a2 + b2

2

(e) Px = 104
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(f)

Px = lim
1

2N + 1

N
∑

k=−N

|jk|2

= lim
1

2N + 1

N
∑

k=−N

(|j|k)2

= lim
1

2N + 1

N
∑

k=−N

1

= 1

2.8 Classify each of the following systems as linear or nonlinear.

(a) y(k) = 4[y(k − 1) + 1]x(k)

(b) y(k) = 6kx(k)

(c) y(k) = −y(k − 2) + 10x(k + 3)

(d) y(k) = .5y(k)− 2y(k − 1)

(e) y(k) = .2y(k − 1) + x2(k)

(f) y(k) = −y(k − 1)x(k − 1)/10

Solution

(a) nonlinear (product term)

(b) linear

(c) linear

(d) linear

(e) nonlinear (input term)

(f) nonlinear (product term)

2.9 Classify each of the following systems as time-invariant or time-varying.

(a) y(k) = [x(k)− 2y(k − 1)]2

(b) y(k) = sin[πy(k − 1)] + 3x(k − 2)

(c) y(k) = (k + 1)y(k − 1) + cos[.1πx(k)]

(d) y(k) = .5y(k − 1) + exp(−k/5)µ(k)

(e) y(k) = log[1 + x2(k − 2)]
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(f) y(k) = kx(k − 1)

Solution

(a) time-invariant

(b) time-invariant

(c) time-varying

(d) time-varying

(e) time-invariant

(f) time-varying

2.10 Classify each of the following systems as causal or noncausal.

(a) y(k) = [3x(k)− y(k − 1)]3

(b) y(k) = sin[πy(k − 1)] + 3x(k + 1)

(c) y(k) = (k + 1)y(k − 1) + cos[.1πx(k2)]

(d) y(k) = .5y(k − 1) + exp(−k/5)µ(k)

(e) y(k) = log[1 + y2(k − 1)x2(k + 2)]

(f) h(k) = µ(k + 3)− µ(k − 3)

Solution

(a) causal

(b) noncausal

(c) causal

(d) causal

(e) noncausal

(f) noncausal

2.11 Consider the following system that consists of a gain of A and a delay of d samples.

y(k) = Ax(k − d)

(a) Find the impulse response h(k) of this system.

(b) Classify this system as FIR or IIR.
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(c) Is this system BIBO stable? If so, find ‖h‖1.

(d) For what values of A and d is this a passive system?

(e) For what values of A and d is this an active system?

(f) For what values of A and d is this a lossless system?

Solution

(a) h(k) = Aδ(k − d)

(b) FIR

(c) Yes, it is BIBO stable with ‖h‖1 = |A|.
(d)

Ey =

∞
∑

k=−∞

y2(k)

=

∞
∑

k=−∞

[Ax(k − d)]2

= A2

∞
∑

k=−∞

x2(k − d)

= A2

∞
∑

i=−∞

x2(i) , i = k − d

= A2Ex

This is a passive system for |A| < 1.

(e) This is an active system for |A| > 1

(f) This is a lossless system for |A| = 1

2.12 Consider the following linear time-invariant discrete-time system S.

y(k)− y(k − 2) = 2x(k)

(a) Find the characteristic polynomial of S and express it in factored form.

(b) Write down the general form of the zero-input response, yzi(k).

(c) Find the zero-input response when y(−1) = 4 and y(−2) = −1.
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Solution

(a)

a(z) = z2 − 1

= (z − 1)(z + 1)

(b)

yzi(k) = c1(p1)
k + c2(p2)

k

= c1 + c2(−1)k

(c) Evaluating part (b) at the two initial conditions yields

c1 − c2 = 4

c1 + c2 = −1

Adding the equations yields 2c1 = 3 or c1 = 1.5. Subtracting the first equation from the
second yields 2c2 = −5 or c2 = −2.5.. Thus the zero-input response is

yzi(k) = 1.5− 2.5(−1)k

√
2.13 Consider the following linear time-invariant discrete-time system S.

y(k) = 1.8y(k − 1)− .81y(k − 2)− 3x(k − 1)

(a) Find the characteristic polynomial a(z) and express it in factored form.

(b) Write down the general form of the zero-input response, yzi(k).

(c) Find the zero-input response when y(−1) = 2 and y(−2) = 2.

Solution
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(a)

a(z) = z2 − 1.8z + .81

= (z − .9)2

(b)

yzi(k) = (c1 + c2k)pk

= (c1 + c2k).9k

(c) Evaluating part (b) at the two initial conditions yields

(c1 − c2).9
−1 = 2

(c1 − 2c2).9
−2 = 2

or

c1 − c2 = 1.8

c1 − 2c2 = 1.62

Subtracting the second equation from the first yields c2 = .18. Subtracting the second
equation from two times the first yields c1 = 1.98. Thus the zero-input response is

yzi(k) = (1.98 + .18k).9k

2.14 Consider the following linear time-invariant discrete-time system S.

y(k) = −.64y(k − 2) + x(k)− x(k − 2)

(a) Find the characteristic polynomial a(z) and express it in factored form.

(b) Write down the general form of the zero-input response, yzi(k), expressing it as a real
signal.
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(c) Find the zero-input response when y(−1) = 3 and y(−2) = 1.

Solution

(a)

a(z) = z2 + .64

= (z − .8j)(z + .8j)

(b) In polar form the roots are z = .8 exp(±jπ/2). Thus

yzi(k) = rk[c1 cos(kθ) + c2 sin(kθ)]

= .8k[c1 cos(kπ/2) + c2 sin(πk/2)]

(c) Evaluating part (b) at the two initial conditions yields

.8−1c2(−1) = 3

.8−2c1(−1) = 1

Thus c2 = −3(.8) and c1 = −1(.64). Hence the zero-input response is

yzi(k) = −(.8)k[.64 cos(πk/2) + 2.4 sin(πk/2)]

2.15 Consider the following linear time-invariant discrete-time system S.

y(k) − 2y(k − 1) + 1.48y(k − 2) − .416y(k − 3) = 5x(k)

(a) Find the characteristic polynomial a(z). Using the MATLAB function roots, express it

in factored form.

(b) Write down the general form of the zero-input response, yzi(k).
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(c) Write the equations for the unknown coefficient vector c ∈ R3 as Ac = y0, where

y0 = [y(−1), y(−2), y(−3)]T is the initial condition vector.

Solution

(a)

a(z) = z3 − 2z2 + 1.48z − .416

a = [1 -2 1.48 -.416]

r = roots(a)

a(z) = (z − .8)(z − .6− .4j)(z − .6 + .4j)

(b) The complex roots in polar form are p2,3 = r exp(±jθ) where

r =
√

.62 + .42

= .7211

θ = arctan(±.4/.6)

= ±.588

Thus the form of the zero-input response is

yzi(k) = c1(p1)
k + rk[c2 cos(kθ) + c3 sin(kθ)]

= c1(.8)k + .7211k[c2 cos(.588k) + c3 sin(.588k)]

(c) Let c ∈ R3 be the unknown coefficient vector, and y0 = [y(−1), y(−2), y(−3)]T . Then

Ac = y0 or





.8−1 .7211−1 cos(−.588) .7211−1 sin(−.588)

.8−2 .7211−2 cos[−2(.588)] .7211−2 sin[−2(.588)]

.8−3 .7211−3 cos[−3(.588)] .7211−3 sin[−3(.588)]



 c = y0
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2.16 Consider the following linear time-invariant discrete-time system S.

y(k)− .9y(k − 1) = 2x(k) + x(k − 1)

(a) Find the characteristic polynomial a(z) and the input polynomial b(z).

(b) Write down the general form of the zero-state response, yzs(k), when the input is x(k) =
3(.4)kµ(k).

(c) Find the zero-state response.

Solution

(a)

a(z) = z − .9

b(z) = 2z + 1

(b)

yzs(k) = [d0(p0)
k + d1(p1)

k]µ(k)

= [d0(.4)k + d1(.9)k]µ(k)

(c)

d0 =
Ab(z)

a(z)

∣

∣

∣

∣

z=p0

=
3[2(.4) + 1]

.4− .9

=
5.4

−.5
= −10.8

d1 =
A(z − p1)b(z)

(z − p0)a(z)

∣

∣

∣

∣

z=p1

=
3[2(.9) + 1]

.5

=
8.4

.5
= 16.8
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Thus the zero-state response is

yzs(k) = [−10.8(.4)k + 16.8(.9)k]µ(k)

2.17 Consider the following linear time-invariant discrete-time system S.

y(k) = y(k − 1) − .24y(k − 2) + 3x(k) − 2x(k − 1)

(a) Find the characteristic polynomial a(z) and the input polynomial b(z).

(b) Suppose the input is the unit step, x(k) = µ(k). Write down the general form of the

zero-state response, yzs(k).

(c) Find the zero-state response to the unit step input.

Solution

(a)

a(z) = z2 − z + .24

b(z) = 3z − 2

(b) The factored form of a(z) is

a(z) = (z − .6)(z − .4)

Thus the form of the zero-state response to a unit step input is

yzs(k) = [d0 + d1(.6)k + d2(.4)k]µ(k)
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(c)

d0 =
Ab(z)

a(z)

∣

∣

∣

∣

z=p0

=
3 − 2

(1 − .6)(1− .4)

=
1

.24
= 4.167

d1 =
A(z − p1)b(z)

(z − p0)a(z)

∣

∣

∣

∣

z=p1

=
3(.6)− 2

(.6− 1)(.6− .4)

=
−.2

−.08
= 2.5

d2 =
A(z − p2)b(z)

(z − p0)a(z)

∣

∣

∣

∣

z=p2

=
3(.4)− 2

(.4− 1)(.4− .6)

=
−.8

−.12
= 6.667

Thus the zero-state response is

yzs(k) = [4.167 + 2.5(.6)k + 6.667(.4)k]µ(k)

2.18 Consider the following linear time-invariant discrete-time system S.

y(k) = y(k − 1) − .21y(k − 2) + 3x(k) + 2x(k − 2)

(a) Find the characteristic polynomial a(z) and the input polynomial b(z). Express a(z) in

factored form.

(b) Write down the general form of the zero-input response, yzi(k).

(c) Find the zero-input response when the initial condition is y(−1) = 1 and y(−2) = −1.
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(d) Write down the general form of the zero-state response when the input is x(k) =

2(.5)k−1µ(k).

(e) Find the zero-state response using the input in (d).

(f) Find the complete response using the initial condition in (c) and the input in (d).

Solution

(a)

a(z) = z2 − z + .21

= (z − .3)(z − .7)

b(z) = 3z2 + 2

(b) The general form of the zero-input response is

yzi(k) = c1(p1)
k + c2(p2)

k

= c1(.3)k + c2(.7)k

(c) Using (b) and applying the initial conditions yields

c1(.3)−1 + c2(.7)−1 = 1

c1(.3)−2 + c2(.7)−2 = −1

Clearing the denominators,

.7c1 + .3c2 = .21

.49c1 + .09c2 = −.0441

Subtracting the second equation from seven times the first equation yields 2.01c2 = 1.51.
Subtracting .3 times the first equation from the second yields .28c1 = −.127. Thus the

zero-input response is

yzi(k) = −.454(.3)k + .751(.7)k
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(d) First note that

x(k) = 2(.5)k−1µ(k)

= 4(.5)kµ(k)

The general form of the zero-state response is

yzs(k) = [d0(.5)k + d1(.3)k + d2(.7)k]µ(k)

(e)

d0 =
Ab(z)

a(z)

∣

∣

∣

∣

z=p0

=
4[3(.5)2 + 2]

(.5− .3)(.5− .7)

=
4(2.75)

−.04
= −275

d1 =
A(z − p1)b(z)

(z − p0)a(z)

∣

∣

∣

∣

z=p1

=
4[3(.3)2 + 2]

(.3− .5)(.3− .7)

=
4(2.27)

.08
= 113.5

d2 =
A(z − p2)b(z)

(z − p0)a(z)

∣

∣

∣

∣

z=p2

=
4[3(.7)2 + 2]

(.7− .5)(.7− .3)

=
4(2.63)

.08
= 131.5

Thus the zero-state response is

yzs(k) = [−275(.5)k + 113.5(.3)k + 131.5(.7)k]µ(k)
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(f) By superposition, the complete response is

y(k) = yzi(k) + yzs(k)

= −.454(.3)k + .751(.7)k + [−275(.5)k + 113.5(.3)k + 131.5(.7)k]µ(k)

2.19 Consider the following linear time-invariant discrete-time system S. Sketch a block diagram

of this IIR system.

y(k) = 3y(k − 1) − 2y(k − 2) + 4x(k) + 5x(k − 1)

Solution

a = [1,−3, 2]

b = [4, 5, 0]

x(k) e • •
? ? ?

0 5 4

? ? ?

�
��

�
��

�
��

+ + +- -z−1 z−1- - ey(k)

2 −3

6 6− −

6 6

•

•

Problem 2.19

2.20 Consider the following linear time-invariant discrete-time system S. Sketch a block diagram
of this FIR system.

y(k) = x(k) − 2x(k − 1) + 3x(k − 2) − 4x(k − 4)
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Solution

a = [1, 0, 0]

b = [1,−2, 3, 0,−4]

x(k) e - z−1 z−1 z−1 z−1- - -• • • •

? ? ? ? ?

? ? ? ?
- - - -

�
��

�
��

�
��

�
��

+ + + + ey(k)

1 −2 3 0 −4

Problem 2.20

2.21 Consider the following linear time-invariant discrete-time system S called an auto-regressive

system. Sketch a block diagram of this system.

y(k) = x(k)− .8y(k − 1) + .6y(k − 2)− .4y(k − 3)

Solution

a = [1, .8,−.6, .4]

b = [1, 0, 0, 0]
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x(k) d • • •
? ? ? ?
0 0 0 1

? ? ? ?m m m m+ + + +- - -z−1 z−1 z−1- - - dy(k)

.4 −.6 .8

6 6 6− − −

6 6 6

•

• •

Problem 2.21

2.22 Consider the block diagram shown in Figure 2.32.

x(k) e • •
? ? ?

1.8 .9 −.4

? ? ?

�
��

�
��

�
��

+ + +- -z−1 z−1- -u2(k) u1(k) ey(k)

2.1 −1.5

6 6− −

6 6

•

•

Figure 2.32 A Block Diagram of the System in Problem 2.22

(a) Write a single difference equation description of this system.

(b) Write a system of difference equations for this system for ui(k) for 1 ≤ i ≤ 2 and y(k).

Solution

(a) By inspection of Figure 2.32

y(k) = −.4x(k) + .9x(k − 1) + 1.8x(k − 2) + 1.5y(k − 1) − 2.1y(k − 2)
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(b) The equivalent system of equations is

u2(k) = 1.8x(k)− 2.1y(k)

u1(k) = .9x(k) + 1.5y(k) + u2(k − 1)

y(k) = −.4x(k) + u1(k − 1)

2.23 Consider the following linear time-invariant discrete-time system S.

y(k) = .6y(k − 1) + x(k)− .7x(k − 1)

(a) Find the characteristic polynomial and the input polynomial.

(b) Write down the form of the impulse response, h(k).

(c) Find the impulse response.

Solution

(a)

a(z) = z − .6

b(z) = z − .7

(b)

h(k) = d0δ(k) + d1(.6)kµ(k)

(c)

d0 =
b(z)

a(z)

∣

∣

∣

∣

z=0

=
−.7)

−.6)

= 1.167

d1 =
(z − p1)b(z)

za(z)

∣

∣

∣

∣

z=p1

=
.6 − .7)

.6)

= −.167
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Thus the impulse response is

h(k) = 1.167δ(k)− .167(.6)kµ(k)

2.24 Consider the following linear time-invariant discrete-time system S.

y(k) = −.25y(k − 2) + x(k − 1)

(a) Find the characteristic polynomial and the input polynomial.

(b) Write down the form of the impulse response, h(k).

(c) Find the impulse response. Use the identities in Appendix 2 to express h(k) in real form.

Solution

(a)

a(z) = z2 + .25

b(z) = z

(b) First note that

a(z) = (z − .5j)(z + .5j)

Thus the form of the impulse response is

h(k) = d0δ(k) + [d1(.5j)k + d2(−.5j)k]µ(k)
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(c)

d0 =
b(z)

a(z)

∣

∣

∣

∣

z=0

= 0

d1 =
(z − p1)b(z)

za(z)

∣

∣

∣

∣

z=p1

=
.5j)

.5j(j)

= −j

d2 =
(z − p2)b(z)

za(z)

∣

∣

∣

∣

z=p2

=
−.5j)

−.5j(−j)

= j

Thus from Appendix 2 the impulse response is

h(k) = [−j(.5j)k + j(−.5j)k]µ(k)

= 2Re[−j(.5j)k]µ(k)

= −2Re[(.5)k(j)k+1]µ(k)

= −2(.5)kRe{[exp(jπ/2)]k+1}µ(k)

= −2(.5)kRe[exp[j(k + 1)π/2]µ(k)

= −2(.5)k cos[(k + 1)π/2]µ(k)

2.25 Consider the following linear time-invariant discrete-time system S. Suppose 0 < m ≤ n and
the characteristic polynomial a(z) has simple nonzero roots.

y(k) =

m
∑

i=0

bix(k − i)−
n

∑

i=1

aiy(k − i)

(a) Find the characteristic polynomial a(z) and the input polynomial b(z).

(b) Find a constraint on b(z) that ensures that the impulse response h(k) does not contain

an impulse term.

Solution
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(a)

a(z) = zn + a1z
n−1 + · · ·+ an

b(z) = b0z
n + b1z

n−1 + · · ·+ bmzn−m

(b) The coefficient of the impulse term is

d0 =
b(z)

a(z)

∣

∣

∣

∣

z=0

=
b(0)

a(0)

Thus

d0 6= 0 ⇔ b(0) 6= 0

⇔ m = n

2.26 Consider the following linear time-invariant discrete-time system S. Compute and sketch the

impulse response of this FIR system.

y(k) = u(k − 1) + 2u(k − 2) + 3u(k − 3) + 2u(k − 4) + u(k − 5)

Solution

By inspection, the impulse response is

h(k) = [0, 1, 2, 3, 2, 1, 0, 0, . . .]
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Problem 2.26

2.27 Using the definition of linear convolution, show that for any signal h(k)

h(k) ? δ(k) = h(k)

Solution

From Definition 2.3 we have

h(k) ? δ(k) =

∞
∑

i=−∞

h(i)x(k − i)

=

∞
∑

i=−∞

h(i)δ(k − i)

= h(k)
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2.28 Use Definition 2.3 and the commutative property to show that the linear convolution operator

is associative.

f(k) ? [g(k) ? h(k)] = [f(k) ? g(k)] ? h(k)

Solution

From Definition 2.3 we have

d1(k) = f(k) ? [g(k) ? h(k)]

=
∞
∑

m=−∞

f(m)

[

∞
∑

i=−∞

g(i)h(k− m − i)

]

=

∞
∑

m=−∞

∞
∑

i=−∞

f(m)g(i)h(k− m − i)

Next, using the commutative property

d2(k) = [f(k) ? g(k)] ? h(k)]

= h(k) ? [f(k) ? g(k)]

=

∞
∑

i=−∞

h(i)

[

∞
∑

m=−∞

f(m)g(k − i − m)

]

=

∞
∑

i=−∞

∞
∑

m=−∞

h(i)f(m)g(k− i − m)

=

∞
∑

n=−∞

∞
∑

m=−∞

h(k − n − m)f(m)g(n) , n = k − i − m

=

∞
∑

m=−∞

∞
∑

i=−∞

f(m)g(i)h(k− m − i) , i = n

Thus d2(k) = d1(k).

2.29 Use Definition 2.3 to show that the linear convolution operator is distributive.

f(k) ? [g(k) + h(k)] = f(k) ? g(k) + f(k) ? h(k)

76
c© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible

website, in whole or in part.



Solution

d(k) = f(k) ? [g(k) + h(k)]

=

∞
∑

i=−∞

f(i)[g(k− i) + h(k − i)]

=

∞
∑

i=−∞

f(i)g(k − i) + f(i)h(k − i)]

=
∞
∑

i=−∞

f(i)g(k − i) +
∞

∑

i=−∞

f(i)h(k − i)]

= f(k) ? g(k) + f(k) ? h(k)

2.30 Suppose h(k) and x(k) are defined as follows.

h = [2,−1, 0, 4]T

x = [5, 3,−7, 6]T

(a) Let yc(k) = h(k)◦x(k). Find the circular convolution matrix C(x) such that yc = C(x)h.

(b) Use C(x) to find yc(k).

Solution

(a) Using (2.7.9) and Example 2.14 as a guide, the 4 × 4 circular convolution matrix is

C(x) =









x(0) x(3) x(2) x(1)

x(1) x(0) x(3) x(2)
x(2) x(1) x(0) x(3)

x(3) x(2) x(1) x(0)









=









5 6 −7 3
3 5 6 −7

−7 3 5 6
6 −7 3 5)
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(b) Using (2.7.10) and the results from part (a)

yc = C(x)h

=









5 6 −7 3
3 5 6 −7

−7 3 5 6
6 −7 3 5)

















2
−1

0
4









=









16

−27
7

39









This can be verified using the DSP Companion function f conv.

2.31 Suppose h(k) and x(k) are the following signals of length L and M , respectively.

h = [3, 6,−1]T

x = [2, 0,−4, 5]T

(a) Let hz and xz be zero-padded versions of h(k) and x(k) of length N = L + M − 1.
Construct hz and xz.

(b) Let yc(k) = hz(k) ◦ xz(k). Find the circular convolution matrix C(xz) such that yc =
C(xz)hz.

(c) Use C(xz) to find yc(k).

(d) Use yc(k) to find the linear convolution y(k) = h(k) ? x(k) for 0 ≤ k < N .

Solution

(a) Here

N = L + M − 1

= 3 + 4 − 1

= 6

Thus the zero-padded versions of h(k) and x(k) are
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hz = [3, 6,−1, 0, 0, 0]T

xz = [2, 0,−4, 5, 0, 0]T

(b) Using (2.7.9) and the results from part (a), the N × N circular convolution matrix is

C(xz) =

















xz(0) xz(5) xz(4) xz(3) xz(2) xz(1)
xz(1) xz(0) xz(5) xz(4) xz(3) xz(2)

xz(2) xz(1) xz(0) xz(5) xz(4) xz(3)
xz(3) xz(2) xz(1) xz(0) xz(5) xz(4)

xz(4) xz(3) xz(2) xz(1) xz(0) xz(5)
xz(5) xz(4) xz(3) xz(2) xz(1) xz(0)

















=

















2 0 0 5 −4 0

0 2 0 0 5 −4
−4 0 2 0 0 5

5 −4 0 2 0 0
0 5 −4 0 2 0

0 0 5 −4 0 2

















(c) Using (2.7.9), the circular convolution of hz(k) with xz(k) is

yz(k) = C(xz)hz

=

















2 0 0 5 −4 0
0 2 0 0 5 −4
−4 0 2 0 0 5

5 −4 0 2 0 0
0 5 −4 0 2 0

0 0 5 −4 0 2

































3
6
−1

0
0

0

















=

















6
12

−14
−9

34
−5

















(d) Using (2.7.14) and the results of part (c), the linear convolution y(k) = h(k) ? x(k) is

y(k) = hz(k) ◦ xz(k)

= C(xz)hz

= [6, 12,−14,−9, 34,−5]T
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This can be verified using the DSP Companion function f conv.

2.32 Consider a linear discrete-time system S with input x and output y. Suppose S is driven by

an input x(k) for 0 ≤ k < L to produce a zero-state output y(k). Use deconvolution to find
the impulse response h(k) for 0 ≤ k < L if x(k) and y(k) are as follows.

x = [2, 0,−1, 4]T

y = [6, 1,−4, 3]T

Solution

Using (2.7.15) and Example 2.16 as a guide

h(0) =
y(0)

x(0)

=
6

2
= 3

Applying (2.7.18) with k = 1 yields

h(1) =
y(1)− h(0)x(1)

x(0)

=
1 − 3(0)

2
= .5

Applying (2.7.18) with k = 2 yields

h(2) =
y(2)− h(0)x(2)− h(1)x(1)

x(0)

=
−4 − 3(−1)− .5(0)

2
= −.5
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Finally, applying (2.7.18) with k = 3 yields

h(3) =
y(3)− h(0)x(3)− h(1)x(2)− h(2)x(1)

x(0)

=
3 − 3(4)− .5(−1) + .5(0)

2
= −4.25

Thus the impulse response of the discrete-time system is

h(k) = [3, .5,−.5,−4.25]T , 0 ≤ k < 4

This can be verified using the DSP Companion function f conv.

2.33 Suppose x(k) and y(k) are the following finite signals.

x = [5, 0,−4]T

y = [10,−5, 7, 4,−12]T

(a) Write the polynomials x(z) and y(z) whose coefficient vectors are x and y, respectively.
The leading coefficient corresponds to the highest power of z.

(b) Using long division, compute the quotient polynomial q(z) = y(z)/x(z).

(c) Deconvolve y(k) = h(k) ? x(k) to find h(k), using (2.7.15) and (2.7.18). Compare the
result with q(z) from part (b).

Solution

(a)

x(z) = 5z2 − 4

y(z) = 10z4 − 5z3 + 7z2 + 4z − 12
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(b)

2z2 − z + 3

5z2 − 4 | 10z4 − 5z3 + 7z2 + 4z − 12

10z4 − 0z3 − 8z2

−5z3 + 15z2 + 4z

−5z3 − 0z2 + 4z

15z2 + 0z − 12

15z2 + 0z − 12

0

Thus the quotient polynomial is

q(z) = 2z2 − z + 3

(c) Using (2.7.15) and Example 2.16 as a guide

q(0) =
y(0)

x(0)

=
−12

−4
= 3

Applying (2.7.18) with k = 1 yields

q(1) =
y(1)− q(0)x(1)

x(0)

=
4 − 3(0)

−4
= −1

Applying (2.7.18) with k = 2 yields

q(2) =
y(2)− q(0)x(2)− q(1)x(1)

x(0)

=
7 − 3(5)− (−1)0

−4
= 2
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Thus q = [2,−1, 3] and the quotient polynomial is

q(z) = 2z2 − z + 3

This can be verified using the MATLAB function deconv.

2.34 Some books use the following alternative way to define the linear cross-correlation of an L
point signal y(k) with an M -point signal x(k). Using a change of variable, show that this is

equivalent to Definition 2.5

ryx(k) =
1

L

L−1−k
∑

n=0

y(n + k)x(n)

Solution

Consider the change of variable i = n + k. Then n = i − k and

ryx(k) =
1

L

L−1−k
∑

n=0

y(n + k)x(n)

∣

∣

∣

∣

∣

i=n+k

=
1

L

L−1
∑

i=k

y(i)x(i− k)

Since x(n) = 0 for n < 0, the lower limit of the sum can be changed to zero without affecting
the result. Thus,

ryx(k) =
1

L

L−1
∑

i=0

y(i)x(i− k) , 0 ≤ k < L

This is identical to Definition 2.5.
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2.35 Suppose x(k) and y(k) are defined as follows.

x = [5, 0,−10]T

y = [1, 0,−2, 4, 3]T

(a) Find the linear cross-correlation matrix D(x) such that ryx = D(x)y.

(b) Use D(x) to find the linear cross-correlation ryx(k).

(c) Find the normalized linear cross-correlation ρyx(k).

Solution

(a) Using (2.8.2) and Example 2.18 as a guide, the linear cross-correlation matrix is

D(x) =
1

5













x(0) x(1) x(2) 0 0

0 x(0) x(1) x(2) 0
0 0 x(0) x(1) x(2)

0 0 0 x(0) x(1)
0 0 0 0 x(0)













=
1

5













5 0 −10 0 0

0 5 0 −10 0
0 0 5 0 −10

0 0 0 5 0
0 0 0 0 5













=













1 0 −2 0 0

0 1 0 −2 0
0 0 1 0 −2

0 0 0 1 0
0 0 0 0 1













(b) Using (2.8.3) and the results from part (a)
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ryx = D(x)y

=













1 0 −2 0 0
0 1 0 −2 0

0 0 1 0 −2
0 0 0 1 0
0 0 0 0 1

























1
0

−2
4
3













=













5
−8
−8

4
3













This can be verified using the DSP Companion function f corr.

(c) Using (2.8.5) we have L = 5 and M = 3. Also from Definition 2.5

ryy(0) =
1

L

L−1
∑

i=0

y2(i)

=
1 + 0 + 4 + 16 + 9

5
= 6

rxx(0) =
1

M

M−1
∑

i=0

x2(i)

=
25 + 0 + 100

3
= 41.67

Finally, from (4.49) the normalized cross-correlation of x(k) with y(k) is

ρyx(k) =
ryx(k)

√

(M/L)rxx(0)ryy(0)

=
ryx(k)

√

.6(6)41.67

= [.408,−.653,−.653, .327, .245]T

This can be verified using the DSP Companion function f corr.
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√
2.36 Suppose y(k) is as follows.

y = [5, 7,−2, 4, 8, 6, 1]T

(a) Construct a 3-point signal x(k) such that ryx(k) reaches its peak positive value at k = 3

and |x(0)| = 1.

(b) Construct a 4-point signal x(k) such that ryx(k) reaches its peak negative value at k = 2

and |x(0)| = 1.

Solution

(a) Recall that the cross-correlation ryx(k) measures the degree which x(k) is similar to a
subsignal of y(k). In order for ryx(k) to reach its maximum positive value at k = 3,

one must have maximum positive correlation starting at k = 3. Thus for some positive
constant α it is necessary that

x = α[y(3), y(4), y(5)]T

= α[4, 8, 6]T

The constraint, |x(0)| = 1, implies that the positive scale factor must be α = 1/4. Thus

x = [1, 2, 1.5]T

(b) In order for ryx(k) to reach its maximum negative value at k = 2, one must have
maximum negative correlation starting at k = 2. Thus for some positive constant α we

need

x = −α[y(2), y(3), y(4), y(5)]T

= α[2,−4,−8,−6]T

The constraint, |x(0)| = 1, implies that the positive scale factor must be α = 1/2. Thus

x = [1,−2,−4,−3]T

The answers to (a) and (b) can be verified using the DSP Companion function f corr.
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2.37 Suppose x(k) and y(k) are defined as follows.

x = [4, 0,−12, 8]T

y = [2, 3, 1,−1]T

(a) Find the circular cross-correlation matrix E(x) such that cyx = E(x)y.

(b) Use E(x) to find the circular cross-correlation cyx(k).

(c) Find the normalized circular cross-correlation σyx(k).

Solution

(a) Using Definition 2.6, cyx(k) is just 1/N times the dot product of y with x rotated right
by k samples. Thus the kth row of E(x) is the vector x rotated right by k samples.

E(x) =
1

4









x(0) x(1) x(2) x(3)
x(3) x(0) x(1) x(2)

x(2) x(3) x(0) x(1)
x(1) x(2) x(3) x(0)









=
1

4









4 0 −12 8

8 4 0 −12
−12 8 4 0

0 −12 8 4









=









1 0 −3 2
2 1 0 −3
−3 2 1 0

0 −3 2 1









(b) Using Definition 2.6 and the results from part (a)

cyx = E(x)y

=









1 0 −3 2
2 1 0 −3
−3 2 1 0

0 −3 2 1

















2
3
1

−1









=









−3
10

1
−8









87
c© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible

website, in whole or in part.



This can be verified using the DSP Companion function f corr.

(c) Using (2.8.7), N = 4. Also from Definition 2.6

cyy(0) =
1

N

N−1
∑

i=0

y2(i)

=
4 + 9 + 1 + 1

4
= 3.75

cxx(0) =
1

N

N−1
∑

i=0

x2(i)

=
16 + 0 + 144 + 64

4
= 56

Finally, from (2.8.7) the normalized circular cross-correlation of y(k) with x(k) is

σyx(k) =
cyx(k)

√

cxx(0)cyy(0)

=
cyx(k)

√

3.75(56)

= [−.207, .690, .069,−.552]T

This can be verified using the DSP Companion function f corr.

2.38 Suppose y(k) is as follows.

y = [8, 2,−3, 4, 5, 7]T

(a) Construct a 6-point signal x(k) such that σyx(2) = 1 and |x(0)| = 6.

(b) Construct a 6-point signal x(k) such that σyx(3) = −1 and |x(0)| = 12.

Solution
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(a) Recall that normalized circular cross-correlation, −1 ≤ σyx(k) ≤ 1, measures the degree

which a rotated version of a signal x(k) is similar to the signal y(k). In order for σyx(k) to
reach its maximum positive value at k = 2, one must have maximum positive correlation
starting at k = 2. Thus for some positive constant α it is necessary that

x = α[y(2), y(3), y(4), y(5), y(0), y(1)]T

= α[−3, 4, 5, 7, 8, 2]T

The constraint, |x(0)| = 6, implies that the positive scale factor must be α = 2. Thus

x = [−6, 8, 10, 14, 16, 4]T

Because y and x are of the same length, this will result is σyx(2) = 1 which can be
verified by using the DSP Companion function f corr.

(b) In order for σyx(k) to reach its maximum negative value at k = 3, one must have

maximum negative correlation starting at k = 3. Thus for some positive constant α

x = −α[y(3), y(4), y(5), y(0), y(1), y(2)]T

= α[4, 5, 7, 8, 2,−3]T

The constraint, |x(0)| = 12, implies that the positive scale factor must be α = 3. Thus

x = [12, 15, 21, 24, 6,−9]T

Because y and x are of the same length, this will result is σyx(3) = −1 which can be
verified by using the DSP Companion function f corr.

2.39 Let x(k) be an N-point signal with average power Px.

(a) Show that rxx(0) = cxx(0) = Px

(b) Show that ρxx(0) = σxx(0) = 1

Solution
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(a) The average power of x(k) is

Px =
1

N

N−1
∑

k=0

x2(k)

From Definition 2.5, the auto-correlation of an N -point signal is

rxx(0) =
1

N

N−1
∑

i=0

x(i)x(i− 0)

=
1

N

N−1
∑

i=0

x2(i)

= Px

From Definition 2.6, the circular auto-correlation of an N -point signal with periodic

extension xp(k) is

cxx(0) =
1

N

N−1
∑

i=0

x(i)xp(i − 0)

=
1

N

N−1
∑

i=0

x(i)xp(i)

=
1

N

N−1
∑

i=0

x2(i)

= Px

(b) From (2.8.5), the normalized auto-correlation of an N -point signal is

ρxx(0) =
rxx(0)

√

(N/N )rxx(0)rxx(0)

= 1

From (2.8.7), the normalized circular auto-correlation of an N -point signal is
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σxx(0) =
cxx(0)

√

cxx(0)cxx(0)

= 1

2.40 This problem establishes the normalized circular cross-correlation inequality, |σyx(k)| ≤ 1.

Let x(k) and y(k) be sequences of length N where xp(k) is the periodic extension of x(k).

(a) Consider the signal u(i, k) = ay(i) + xp(i− k) where a is arbitrary. Show that

1

N

N−1
∑

i=0

[ay(i) + xp(i− k)]2 = a2cyy(0) + 2acyx(k) + cxx(0) ≥ 0

(b) Show that the inequality in part (a) can be written in matrix form as

[a, 1]

[

cyy(0) cyx(k)
cyx(k) cxx(0)

] [

a
1

]

≥ 0

(c) Since the inequality in part (b) holds for any a, the 2 × 2 coefficient matrix C(k) is
positive semi-definite, which means that det[C(k)] ≥ 0. Use this fact to show that

c2
yx(k) ≤ cxx(0)cyy(0) , 0 ≤ k < N

(d) Use the results from part (c) and the definition of normalized cross-correlation to show

that

−1 ≤ σyx(k) ≤ 1 , 0 ≤ k < N

Solution
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(a)

1

N

N−1
∑

i=0

u2(i, k) =
1

N

N−1
∑

i=0

[ay(i) + xp(i− k)]2

=
1

N

N−1
∑

i=0

a2y2(i) + 2ay(i)xp(i− k) + x2
p(i− k)

=
a2

N

N−1
∑

i=0

y2(i) +
2a

N

N−1
∑

i=0

y(i)xp(i − k) +
1

N

N−1
∑

i=0

x2
p(i − k)

= a2cyy(0) + 2acyx(k) +
1

N

N−1
∑

i=0

x2(i)

= a2cyy(0) + 2acyx(k) + cxx(0)

≥ 0

(b)

[a, 1]

[

cyy(0) cyx(k)

cyx(k) cxx(0)

][

a

1

]

= [a, 1]

[

acyy(0) + cyx(k)

acyx(k) + cxx(0)

]

= a2cyy(0) + acyx(k) + acyx(k) + cxx(0)

= a2cyy(0) + 2acyx(k) + cxx(0)

(c) The coefficient matrix C(k) from part (b) is positive semi-definite and therefore det[C(k)] ≥
0. But

det[C(k)] = det

{[

cyy(0) cyx(k)
cyx(k) cxx(0)

]}

= cyy(0)cxx(0) − c2
yx(k)

≥ 0

Thus

c2
yx(k) ≤ cxx(0)cyy(0) , 0 ≤ k < N
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(d) Using (2.8.7) and the results from part (c)

|σyx(k)| =

∣

∣

∣

∣

∣

cyx(k)
√

cxx(0)cyy(0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

√

c2
yx(k)

cxx(0)cyy(0)

∣

∣

∣

∣

∣

≤ 1

Thus

−1 ≤ σyx(k) ≤ 1 , 0 ≤ k < N

2.41 Consider the following FIR system.

y(k) =

5
∑

i=0

(1 + i)2x(k − i)

Let x(k) be a bounded input with bound Bx. Show that y(k) is bounded with bound By =

cBx. Find the minimum scale factor, c.

Solution

|y(k)| =

∣

∣

∣

∣

∣

5
∑

i=0

(1 + i)2x(k − i)

∣

∣

∣

∣

∣

≤
5

∑

i=0

|(1 + i)2x(k − i)|

=

5
∑

i=0

|(1 + i)2| · |x(k − i)|

≤ Bx

5
∑

i=0

|(1 + i)2|

= ‖h‖1Bx
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Here

‖h‖1 =

5
∑

i=0

(1 + i)2

= 1 + 4 + 9 + 16 + 25 + 36

= 93

Thus

By = 93Bx

2.42 Consider a linear time-invariant discrete-time system S with the following impulse response.
Find conditions on A and p that guarantee that S is BIBO stable.

h(k) = Apkµ(k)

Solution

The system S is BIBO stable if an only if ‖h‖1 < ∞. Here

‖h‖1 =

∞
∑

k=−∞

|h(k)|

=

∞
∑

k=0

Apk

= A

∞
∑

k=0

pk

=
A

1 − p
, |p| < 1

Thus S is BIBO stable if and only if |p| < 1. There is no constraint on A.
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2.43 From Proposition 2.1, a linear time-invariant discrete-time system S is BIBO stable if and

only if the impulse response h(k) is absolutely summable, that is, ‖h‖1 < ∞. Show that
‖h‖1 < ∞ is necessary for stability. That is, suppose that S is stable but h(k) is not absolutely
summable. Consider the following input, where h∗(k) denotes the complex conjugate of h(k)

(Proakis and Manolakis,1992).

x(k) =







h∗(k)

|h(k)| , h(k) 6= 0

0 , h(k) = 0

(a) Show that x(k) is bounded by finding a bound Bx.

(b) Show that S is not is BIBO stable by showing that y(k) is unbounded at k = 0.

Solution

(a) Since x(0) = 0 when h(k) = 0, consider the case when h(k) 6= 0.

|x(k)| =

∣

∣

∣

∣

h∗(k)

|h(k)|

∣

∣

∣

∣

=
|h∗(k)|
|h(k)|

=
|h(k)|
|h(k)|

= 1

Thus x(k) is bounded with Bx = 1.
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(b)

|y(0)| = |h(k) ? x(k)|k=0

=

∣

∣

∣

∣

∣

∞
∑

i=−∞

h(i)x(−i)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

i=−∞

h(i)h∗(−i)

|h(−i)|

∣

∣

∣

∣

∣

=

∞
∑

i=−∞

|h(i)| · |h∗(−i)|
|h(−i)|

=

∞
∑

i=−∞

|h(i)|

= ‖h‖1

= ∞

2.44 Consider the following discrete-time system. Use GUI module g systime to simulate this

system. Hint: You can enter the b vector in the edit box by using two statements on one line:
i=0:8; b=cos(pi*i/4)

y(k) =

8
∑

i=0

cos(πi/4)x(k− i)

(a) Plot the polynomial roots

(b) Plot and the impulse response using N = 40.

Solution
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Problem 2.44 (b) Impulse Response
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2.45 Consider a discrete-time system with the following characteristic and input polynomials. Use

GUI module g systime to plot the step response using N = 100 points. The MATLAB poly

function can be used to specify coefficient vectors a and b in terms of their roots, as discussed
in Section 2.9.

a(z) = (z + .5 ± j.6)(z − .9)(z + .75)

b(z) = 3z2(z − .5)2

Solution
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Problem 2.45 Step Response
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√
2.46 Consider the following linear discrete-time system.

y(k) = 1.7y(k − 2) − .72y(k − 4) + 5x(k − 2) + 4.5x(k − 4)

Use GUI module g systime to plot the following damped cosine input and the zero-state
response to it using N = 30. To determine F0, set 2πF0kT = .3πk and solve for F0/fs where
T = 1/fs.

x(k) = .97k cos(.3πk)

Solution

2πF0kT = .3πk

Thus 2F0T = .3 or F0 = .15fs. If fs = 2000, then F0 = 300.
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Problem 2.46 Input and Output

2.47 Consider the following linear discrete-time system.

y(k) = −.4y(k − 1) + .19y(k − 2) − .104y(k − 3) + 6x(k) − 7.7x(k − 1) + 2.5x(k − 2)

Create a MAT-file called prob2 47 that contains fs = 100, the appropriate coefficient vectors

a and b, and the following input samples, where v(k) is white noise uniformly distributed over
[−.2, .2]. Uniform white noise can be generated with the MATLAB function rand.

x(k) = k exp(−k/50) + v(k) , 0 ≤ k < 500

(a) Print the MATLAB program used to create prob2 47.mat.

(b) Use GUI module g systime and the Import option to plot the roots of the characteristic
polynomial and the input polynomial.

(c) Plot the zero-state response on the input x(k).

100
c© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible

website, in whole or in part.



Solution

(a) % Problem 2.47

f_header(’Problem 2.47: Create MAT file’)

fs = 100;

a = [1 .4 -.19 .104]

b = [6 -7.7 2.5];

N = 500;

v = -.2 + .4*rand(1,N);

k = 0:N-1;

x = k .* exp(-k/50) + v;

save prob2_47 fs a b x

what
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Problem 2.47 (b) Polynomial Roots
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Problem 2.47 (c) Input and Output

2.48 Consider the following discrete-time system, which is a narrow band resonator filter with
sampling frequency of fs = 800 Hz.

y(k) = .704y(k − 1) − .723y(k − 2) + .141x(k)− .141x(k− 2)

Use GUI module g systime to find the zero-input response for the following initial conditions.
In each chase plot N = 50 points.

(a) y0 = [10,−3]T

(b) y0 = [−5,−8]T

Solution
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Problem 2.48 (a) Zero-input Response
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Problem 2.48 (b) Zero-input Response
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2.49 Consider the following discrete-time system, which is a notch filter with sampling interval

T = 1/360 sec.

y(k) = .956y(k− 1)− .914y(k− 2) + x(k)− x(k − 1) + x(k − 2)

Use GUI module g systime to find the output corresponding to the sinusoidal input x(k) =
cos(2πF0kT )µ(k). Do the following cases. Use the caliper option to estimate the steady state

amplitude in each case.

(a) Plot the output when F0 = 10 Hz.

(b) Plot the output when F0 = 60 Hz.

Solution
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Problem 2.49 (a) F0 = 10 Hz
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Problem 2.49 (b) F0 = 60 Hz

2.50 Consider the following two polynomials. Use g systime to compute, plot, and Export to a
data file the coefficients of the product polynomial c(z) = a(z)b(z). Then Import the saved

file and display the coefficients of the product polynomial.

a(z) = z2 − 2z + 3

b(z) = 4z3 + 5z2 − 6z + 7

Solution
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Problem 2.50 Polynomial Multiplication

product =

4 -3 -4 34 -32 21

2.51 Consider the following two polynomials. Use g systime to compute, plot, and Export to a

data file the coefficients of the quotient polynomial q(z) and the remainder polynomial r(z)
where b(z) = q(z)a(z) + r(z). Then Import the saved file and display the coefficients of the

quotient and remainder polynomials.

a(z) = z2 + 3z − 4

b(z) = 4z4 − z2 − 8

Solution

quotient =

4 -12 51

remainder =

0 0 0 -201 196

106
c© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible

website, in whole or in part.



Select type Select view

Slider bar

Edit parameters

−1 0 1 2 3 4 5
−10

−5

0

5

a
,
b

Deconvolution

 

 

a

b

−1 0 1 2 3 4 5
−400

−200

0

200

k

b
 
=
 
q
*
a
 
+
 
r

 

 

q

r

0 0.2 0.4 0.6 0.8 1
0

0.5

1
g_systime

x(k) S y(k)x(k) S y(k)

Problem 2.51 Polynomial Division

√
2.52 Use the GUI module g correlate to record the sequence of vowels “A”,“E”,“I”,

“O”,“U” in y. Play y to make sure you have a good recording of all five vowels. Then record
the vowel “O” in x. Play x back to make sure you have a good recording of “O” that sounds

similar to the “O” in y. Export the results to a MAT-file named my vowels.

(a) Plot the inputs x and y showing the vowels.

(b) Plot the normalized cross-correlation of y with x using the Caliper option to mark the
peak which should show the location of x in y.

(c) Based on the plots in (a), estimate the lag d1 that would be required to get the “O”

in x to align with the “O” in y. Compare this with the peak location d2 in (b). Find
the percent error relative to the estimated lag d1. There will be some error due to the

overlap of x with adjacent vowels and co-articulation effects in creating y.

Solution
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Problem 2.52 (b) Normalized Cross-correlation of x with y
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(c) From part (a), the start of O in x is approximately ox = 9000, and the start of O in y

is approximately oy = 1800. Thus the translation of y required to get a match with x is

d1 = ox − oy

≈ 9000− 1800

= 7200

The peak in part (b) is at d2 = 6807. Thus the percent error in finding the location of
O in x is

E =
100(d2 − d1)

d1

=
100(6807− 7200)

7200
= −5.46 %

2.53 The file prob2 53.mat contains two signals, x and y, and their sampling frequency, fs. Use
the GUI module g correlate to Import x, y, and fs.

(a) Plot x(k) and y(k).

(b) Plot the normalized linear cross-correlation ρyx(k). Does y(k) contain any scaled and

shifted versions of x(k)? Determine how many, and use the Caliper option to estimate
the locations of x(k) within y(k).

Solution

From the plot of ρxy(k), there are three scaled and shifted versions of y(k) within x(k). They
are located at

k = [388, 1718, 2851]

109
c© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible

website, in whole or in part.



Select type Select view

Slider bar

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−5

0

5
Inputs x and y: user−defined inputs from file prob2_53

y
(
k
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−1

0

1

k

x
(
k
)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x(k)
Linear

convolution
x(k)*y(k)

Problem 2.53 (a)

Select type Select view

Slider bar

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Normalized cross−correlation: user−defined inputs from file prob2_53

k

ρ
y
x
(
k
)

  (x,y) = (385.66,0.19)   (x,y) = (1720.47,0.18)   (x,y) = (2847.47,0.17)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x(k)

y(k)

Linear
cross−

correlation

ρ
yx
(k)

Problem 2.53 (b)

110
c© 2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible

website, in whole or in part.



2.54 Consider the following discrete-time system.

y(k) = .95y(k − 1) + .035y(k − 2) − .462y(k − 3) + .351y(k − 4) +

.5x(k)− .75x(k − 1)− 1.2x(k − 2) + .4x(k − 3)− 1.2x(k − 4)

Write a MATLAB program that uses filter and plot to compute and plot the zero-state

response of this system to the following input. Plot both the input and the output on the
same graph.

x(k) = (k + 1)2(.8)kµ(k) , 0 ≤ k ≤ 100

Solution

% Problem 2.54

% Initialize

f_header(’Problem 2.54’)

a = [1 -.95 -.035 .462 -.351]

b = [.5 -.75 -1.2 .4 -1.2]

N =101;

k = 0 : N-1;

x = (k+1).^2 .* (.8).^k;

% Find zero-state response

y = filter (b,a,x);

% Plot input and output

figure

h = plot (k,x,k,y);

set (h(2),’LineWidth’,1.0)

f_labels (’’,’k’,’x(k) and y(k)’)

legend (’x’,’y’)

f_wait
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Problem 2.54 Input and Zero-State Response

2.55 Consider the following discrete-time system.

a(z) = z4 − .3z3 − .57z2 + .115z + .0168

b(z) = 10(z + .5)3

This system has four simple nonzero roots. Therefore the zero-input response consists of a
sum of the following four natural mode terms.

yzi(k) = c1p
k
1 + c2p

k
2 + c3p

k
3 + c4p

k
4

The coefficients can be determined from the initial condition

y0 = [y(−1), y(−2), y(−3), y(−4)]T

Setting yzi(−k) = y(−k) for 1 ≤ k ≤ 4 yields the following linear algebraic system in the
coefficient vector c = [c1, c2, c3, c4]

T .
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= y0

Write a MATLAB program that uses roots to find the roots of the characteristic polynomial
and then solves this linear algebraic system for the coefficient vector c using the MATLAB

left division or \ operator when the initial condition is y0. Print the roots and the coefficient
vector c. Use stem to plot the zero-input response yzi(k) for 0 ≤ k ≤ 40.

Solution

% Problem 2.55

% Initialize

f_header(’Problem 2.55’)

a = [1 -.3 -.57 .115 .0168]

y = [2 -1 0 3]’

n = 4;

% Construct coefficient matrix

p = roots(a)

A = zeros(n,n);

for i = 1 : n

for k = 1 : n

A(i,k) = p(k)^(-i);

end

end

% Find coefficient vector c

c = A \ y

% Compute zero-input response

N =41;

k = 0 : N-1;

y_0 = zeros(1,N);

for i = 1 : n
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y_0 = y_0 + c(i) .^ k;

end

% Plot it

figure

stem (k,y_0,’filled’,’.’)

f_labels (’’,’k’,’y_0(k)’)

f_wait

Program Output:

p =

-.7000

.8000

.3000

-.1000

c =

-.8195

.8720

-.0742

.0013
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Problem 2.55 Zero-Input Response to Initial Condition
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√
2.56 Consider the discrete-time system in Problem 2.55. Write a MATLAB program that uses the

DSP Companion function f filter0 to compute the zero-input response to the following initial
condition. Use stem to plot the zero-input response yzi(k) for −4 ≤ k ≤ 40.

y0 = [y(−1), y(−2), y(−3), y(−4)]T

Solution

% Problem 2.56

% Initialize

f_header(’Problem 2.56’)

a = [1 -.3 -.57 .115 .0168]

b = 10*poly([-.5,-.5,-.5])

y0 = [2 -1 0 3]’

n = 4;

% Solve system

N = 41;

x = zeros(1,N);

y_zi = f_filter0(b,a,x,y0);

% Plot it

figure

k = [-n : N-1];

stem (k,y_zi,’filled’,’.’)

f_labels (’Zero-input Response’,’k’,’y_{zi}(k)’)

f_wait
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Problem 2.56 Zero-input Response

2.57 Consider the following running average filter.

y(k) =
1

10

9
∑

i=0

x(k − i) , 0 ≤ k ≤ 100

Write a MATLAB program that performs the following tasks.

(a) Use filter and plot to compute and plot the zero-state response to the following input,

where v(k) is a random white noise uniformly distributed over [−.1, .1]. Plot x(k) and
y(k) below one another. Uniform white noise can be generated using the MATLAB

function rand.

x(k) = exp(−k/20) cos(πk/10)µ(k) + v(k)

(b) Add a third curve to the graph in part (a) by computing and plotting the zero-state
response using conv to perform convolution.

Solution

The transfer function of this FIR filter is
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H(z) = .1

9
∑

i=0

z−i

% Problem 2.57

% Initialize

f_header(’Problem 2.57’)

m = 9;

b = .1*ones(1,m+1);

a = 1;

N =101;

k = 0 : N-1;

c = .1;

x = exp(-k/20) .* cos(pi*k/10) + f_randu(1,N,-c,c);

% Find zero-state response

y = filter (b,a,x);

% Plot input and output

figure

h = plot (k,x,k,y);

set (h(2),’LineWidth’,1.0)

f_labels (’Input and Output’,’k’,’x(k) and y(k)’)

legend (’x’,’y’)

f_wait
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Problem 2.57 Running Average Filter of Order m = 9

2.58 Consider the following FIR filter. Write a MATLAB program that performs the following

tasks.

y(k) =
20
∑

i=0

(−1)ix(k − i)

10 + i2

(a) Use the function filter to compute and plot the impulse response h(k) for 0 ≤ k < N

where N = 50.

(b) Compute and plot the following periodic input.

x(k) = sin(.1πk)− 2 cos(.2πk) + 3 sin(.3πk) , 0 ≤ k < N

(c) Use conv to compute the zero-state response to the input x(k) using convolution. Also
compute the zero-state response to x(k) using filter. Plot both responses on the same

graph using a legend.

Solution
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% Problem 2.58

% Construct filter

f_header(’Problem 2.58’)

i = 0 : 20;

b = (-1).^2 ./ (10 + i.^2);

a = 1;

% Construct input

N = 50;

k = 0 : N-1;

x = sin(.1*pi*k) - 2*cos(.2*pi*k) + 3*sin(.3*pi*k);

% Compute and plot impulse response

delta = [1,zeros(1,N-1)];

h = filter (b,a,delta);

figure

plot (k,h)

f_labels (’Impulse Response’,’k’,’h(k)’)

f_wait

% Compute and plot zero-state response using convolution

figure

plot (k,x)

f_labels (’Input’,’k’,’x(k)’)

f_wait

circ = 0;

y1 = f_conv (h,x,circ);

k1 = 0 : length(y1)-1;

y2 = filter (b,a,x);

k2 = 0 : N-1;

hp = plot (k1,y1,k2,y2);

set (hp(2),’LineWidth’,1.5)

f_labels (’Zero State Response’,’k’,’y(k)’)

legend (’Using f\_conv’,’Using filter’)

f_wait
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Problem 2.58 (a) Impulse Response
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Problem 2.58 (b) Periodic Input
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Problem 2.58 (c) Zero-State Response

2.59 Consider the following pair of signals.

h = [1, 2, 3, 4, 5, 4, 3, 2, 1]T

x = [2,−1, 3, 4,−5, 0, 7, 9,−6]T

Verify that linear convolution and circular convolution produce different results by writing

a MATLAB program that uses the DSP Companion function f conv to compute the linear
convolution y(k) = h(k) ? x(k) and the circular convolution yc(k) = h(k) ◦ x(k). Plot y(k)

and yc(k) below one another on the same screen.

Solution

% Problem 2.59

% Initialize

f_header(’Problem 2.59’)

h = [1 2 3 4 5 4 3 2 1]

x = [2 -1 3 4 -5 0 7 9 -6]

% Compute convolutions
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y = f_conv (h,x,0);

y_c = f_conv (h,x,1);

% Plot them

figure

subplot (2,1,1)

k = 0 : length(y)-1;

plot (k,y)

f_labels (’Linear Convolution: y(k) = h(k) * x(k)’,’k’,’y(k)’)

subplot (2,1,2)

k = 0 : length(y_c)-1;

plot (k,y_c)

f_labels (’Circular Convolution: y_c(k) = h(k) \circ x(k)’,’k’,’y_c(k)’)

f_wait
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Problem 2.59 Linear and Circular Convolution
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2.60 Consider the following pair of signals.

h = [1, 2, 4, 8, 16, 8, 4, 2, 1]T

x = [2,−1,−4,−4,−1, 2]T

Verify that linear convolution can be achieved by zero padding and circular convolution by
writing a MATLAB program that pads these signals with an appropriate number of zeros and

uses the DSP Companion function f conv to compare the linear convolution y(k) = h(k)?x(k)
with the circular convolution yzc(k) = hz(k) ◦ xz(k). Plot the following.

(a) The zero-padded signals hz(k) and xz(k) on the same graph using a legend.

(b) The linear convolution y(k) = h(k) ? x(k).

(c) The zero-padded circular convolution yzc(k) = hz(k) ◦ xz(k).

Solution

% Problem 2.60

% Initialize

f_header(’Problem 2.60’)

h = [1 2 4 8 16 8 4 2 1];

x = [2 -1 -4 -4 -1 2];

% Construct and plot zero-padded signals

L = length(h);

M = length(x);

h_z = [h, zeros(1,M-1)]

x_z = [x, zeros(1,L-1)]

figure

k = 0 : length(h_z)-1;

hp = plot (k,h_z,k,x_z);

set (hp(1),’LineWidth’,1.5)

f_labels (’Zero-Padded Signals’,’k’,’Inputs’)

legend (’h_z(k)’,’x_z(k)’)

f_wait

% Compute and plot convolutions
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y = f_conv (h,x,0);

y_zc = f_conv (h_z,x_z,1);

figure

plot (k,y)

f_labels (’Linear Convolution: y(k) = h(k) * x(k)’,’k’,’y(k)’)

f_wait

figure

plot (k,y_zc)

f_labels (’Circular Convolution: y_{zc}(k) = h_z(k) \circ x_z(k)’,’k’,’y_{zc}(k)’)

f_wait
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Problem 2.60 (a) Zero-padded Signals
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Problem 2.60 (b) Linear Convolution
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Problem 2.60 (c) Zero-padded Circular Convolution
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2.61 Consider the following polynomials

a(z) = z4 + 4z3 + 2z2 − z + 3

b(z) = z3 − 3z2 + 4z − 1

c(z) = a(z)b(z)

Let a ∈ R5, b ∈ R4 and c ∈ R8 be the coefficient vectors of a(z), b(z) and c(z), respectively.

(a) Find the coefficient vector of c(z) by direct multiplication by hand.

(b) Write a MATLAB program that uses conv to find the coefficient vector of c(z) by com-
puting c as the linear convolution of a with b.

(c) In the program, show that a can be recovered from b and c by using the MATLAB

function deconv to perform deconvolution.

Solution

% Problem 2.61

% Initialize

f_header(’Problem 2.61’)

a = [1 4 2 -1 3]

b = [1 -3 4 -1]

% Construct coefficient vector of product polynomial

c = conv (a,b)

% Recover coefficients of a from b and c

[a,r] = deconv (c,a)

(a) Using direct multiplication, C(z) = A(z)B(z), we have
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A(z)B(z) = z4 + 4z3 + 2z2 − z + 3

z3 − 3z2 + 4z − 1

z7 + 4z6 + 2z5 − z4 + 3z3

−3z6 − 12z5 − 6z4 + 3z3 − 9z2

4z5 + 16z4 + 8z3 − 4z2 + 12z

−z4 − 4z3 − 2z2 + z − 3

z7 + z6 − 6z5 + 8z4 + 10z3 − 15z2 + 13z − 3

Thus the coefficient vector of the product polynomial is

c = [1, 1,−6, 8, 10,−15, 13,−3]T

(b) The program output for c using conv is

c =

1 1 -6 8 10 -15 13 -3

(c) The program output for a using deconv is

a =

1 -3 4 -1

2.62 Consider the following pair of signals.

x = [2,−4, 3, 7, 6, 1, 9, 4,−3, 2, 7, 8]T

y = [3, 2, 1, 0,−1,−2,−3,−2,−1, 0, 1, 2]T

Verify that linear cross-correlation and circular cross-correlation produce different results by
writing a MATLAB program that uses the DSP Companion function f corr to compute the

linear cross-correlation, ryx(k), and the circular cross-correlation, cyx(k). Plot ryx(k) and
cyx(k) below one another on the same screen.

Solution
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% Problem 2.62

% Initialize

f_header(’Problem 2.62’)

x = [3 2 1 0 -1 -2 -3 -2 -1 0 1 2]

y = [2 -4 3 7 6 1 9 4 -3 2 7 8]

% Compute cross-correlations

r_xy = f_corr (x,y,0,0);

c_xy = f_corr (x,y,1,0);

% Plot them

figure

subplot (2,1,1)

k = 0 : length(r_xy)-1;

plot (k,r_xy)

f_labels (’Linear Cross-Correlation’,’k’,’r_{xy}(k)’)

subplot (2,1,2)

k = 0 : length(c_xy)-1;

plot (k,c_xy)

f_labels (’Circular Cross-Correlation)’,’k’,’c_{xy}(k)’)

f_wait
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Problem 2.62 Linear and Circular Cross-Correlation

√
2.63 Consider the following pair of signals.

y = [1, 8,−3, 2, 7,−5,−1, 4]T

x = [2,−3, 4, 0, 5]T

Verify that linear cross-correlation can be achieved by zero-padding and circular cross-correlation

by writing a MATLAB program that pads these signals with an appropriate number of zeros
and uses the DSP Companion function f corr to compute the linear cross-correlation ryx(k)

and the circular cross-correlation cyzxz
(k). Plot the following.

(a) The zero-padded signals xz(k) and yz(k) on the same graph using a legend.

(b) The linear cross-correlation ryx(k) and the scaled zero-padded circular cross-correlation

(N/L)cyzxz
(k) on the same graph using a legend.

Solution

% Problem 2.63
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% Initialize

f_header(’Problem 2.63’)

y = [1 8 -3 2 7 -5 -1 4]

x = [2 -3 4 0 5]

% Construct and plot zero-padded signals

L = length(y);

M = length(x);

x_z = [x, zeros(1,L-1)];

y_z = [y, zeros(1,M-1)];

figure

N = length(y_z);

k = 0 : N-1;

hp = plot (k,x_z,k,y_z);

set (hp(1),’LineWidth’,1.5)

f_labels (’Zero-Padded Signals’,’k’,’Inputs’)

legend (’x_z(k)’,’y_z(k)’)

f_wait

% Compute and plot cross-correlations

r_yx = f_corr (y,x,0,0);

R_yx = (N/L)*f_corr (y_z,x_z,1,0);

kr = 0 : length(r_yx)-1;

kR = 0 : length(R_yx)-1;

figure

h = plot (kR,R_yx,kr,r_yx);

set (h(2),’LineWidth’,1.5)

legend (’(N/L)c_{y_zx_z}(k)’, ’r_{yx}(k)’,’Location’,’North’)

f_wait
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Problem 2.63 (a) Zero-Padded Signals
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Problem 2.63 (b) Cross-Correlations
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2.64 Consider the following pair of signals of length N = 8.

x = [2,−4, 7, 3, 8,−6, 5, 1]T

y = [3, 1,−5, 2, 4, 9, 7, 0]T

Write a MATLAB program that performs the following tasks.

(a) Use the DSP Companion function f corr to compute the circular cross-correlation, cyx(k).

(b) Compute and print u(k) = x(−k) using the periodic extension, xp(k).

(c) Verify that cyx(k) = [y(k) ◦ x(−k)]/N by using the DSP Companion function f conv to

compute and plot the scaled circular convolution, w(k) = [u(k) ◦ x(k)]/N . Plot cyx(k)
and w(k) below one another on the same screen.

Solution

% Problem 2.64

% Initialize

f_header(’Problem 2.64’)

y = [3 1 -5 2 4 9 7 0]

x = [2 -4 7 3 8 -6 5 1]

% Compute and plot circular cross-correlation

c_yx = f_corr (y,x,1,0);

% Construct u(k) = x(-k) using periodic extension x_p(k)

N = length(x);

u = [x(1), x(N:-1:2)]

% Compute and plot scaled circular convolution

w = f_conv (y,u,1)/N;

figure

subplot(2,1,1)

kc = 0 : length(c_yx)-1;

plot (kc,c_yx)

f_labels (’Circular Cross-correlation of y(k) with x(k)’,’k’,’c_{yx}(k)’)
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subplot(2,1,2)

kw = 0 : length(w)-1;

plot (kw,w)

f_labels (’Scaled Circular Convolution of y(k) with x(-k)’,’k’,’[y(k) \circ x(-k)]/N’)

f_wait

(b) The signal u(k) = x(−k) using the periodic extension xp(k) is

u =

2 1 5 -6 8 3 7 -4
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Problem 2.64 (c) Scaled Circular Convolution
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