Discrete Event System Simulation 5th Edition Banks Solutions Manual

Solutions Manual DISCRETE-EVENT SYSTEM SIMULATION Fifth Edition

Jerry Banks John S. Carson II Barry L. Nelson David M. Nicol

August 10, 2009

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide **Visit Testimeter and Other and Other Definite General Period State State**

Contents

1	Introduction to Simulation	1
2	Simulation Examples in a Spreadsheet	5
3	General Principles	20
4	Simulation Software	21
5	Statistical Models in Simulation	22
6	Queueing Models	37
7	Random-Number Generation	45
8	Random-Variate Generation	50
9	Input Modeling	57
10	Verification, Calibration and Validation of Simulation Models	64
11	Estimation of Absolute Performance	66
12	Estimation of Relative Performance	69
13	Simulation of Manufacturing and Material Handling Systems	74
14	Simulation of Networked Computer Systems	75

Foreword

There are over three hundred exercises for solution in the text. These exercises emphasize principles of discrete-event simulation and provide practice in utilizing concepts found in the text.

Answers provided here are selective, in that not every problem in every chapter is solved. Answers in some instances are suggestive rather than complete. These two caveats hold particularly in chapters where building of computer simulation models is required. The solutions manual will give the instructor a basis for assisting the student and judging the student's progress. Some instructors may interpret an exercise differently than we do, or utilize an alternate solution method; they are at liberty to do so. We have provided solutions that our students have found to be understandable.

When computer solutions are provided they will be found on the text web site, www.bcnn.net, rather than here. Solutions in addition to those noted below may be developed and added to the book's web site.

Jerry Banks John S. Carson II Barry L. Nelson David M. Nicol

Chapter 1

Introduction to Simulation

1.1

	SYSTEM	ENTITIES	ATTRIBUTES	ACTIVITIES	EVENTS	STATE VARIABLES
	Small appliance repair shop	Appliances	Type of appliance Age of appliance	Repairing the appliance	Arrival of a job	Number of appliances waiting to be repaired
			Nature of problem		Completion of a job	Status of repair person busy or idle
a.	Cafeteria	Diners	Size of appetite	Selecting food	Arrival at service line	Number of diners in waiting line
			Entree preference	Paying for food	Departures from service line	Number of servers working
b.	Grocery store	Shoppers	Length of grocery list	Checking out	Arrival at checkout counters	Number of shoppers in line Number of checkout lanes in operation
					Departure from checkout counter	
c.	Laundromat	Washing machine	Breakdown rate	Repairing a machine	Occurrence of breakdowns	Number of machines running Number of machines in
					Completion of service	repair Number of Machines waiting for repair

	SYSTEM	ENTITIES	ATTRIBUTES	ACTIVITIES	EVENTS	STATE VARIABLES
d.	Fast food	Customers	Size of order	Placing the	Arrival at	Number of customers
	restaurant		desired	order	the counter	waiting
				Paying for	Completion	Number of positions
				the order	of purchase	operating
e.	Hospital	Patients	Attention level	Providing	Arrival of	Number of patients
	emergency room		required	service	the patient	waiting
				required		
					Departure of	Number of physicians
					the patient	working
f.	Taxicab company	Fares	Origination	Traveling	Pick-up	Number of busy taxi cabs
					of fare	
			Destination			Number of fares
					Drop-off	waiting to be picked up
					of fare	
g.	Automobile	Robot	Speed	Spot welding	Breaking	Availability of
	assembly line	welders			down	machines
			Breakdown rate			

1.3 Abbreviated solution:

Iteration	Problem Formulation	Setting of Objectives
1001401011	i iobielli i orinulatioli	and Overall Project Plan
1	Cars arriving at the in-	How should the traffic light be se-
	tersection are controlled	quenced? Criterion for evaluating
	by a traffic light. The	effectiveness: average delay time of
	cars may go straight,	cars. Resources required: 2 people
	turn left, or turn right.	for 5 days for data collection, 1 per-
	,	son for 2 days for data analysis, 1
		person for 3 days for model build-
		ing, 1 person for 2 days for running
		the model, 1 person for 3 days for
		implementation.
2	Same as 1 above plus the	How should the traffic light be se-
	following: Right on red	quenced? Criterion for evaluating
	is allowed after full stop	effectiveness: average delay time of
	provided no pedestrians	cars. Resources required: 2 people
	are crossing and no vehi-	for 8 days for data collection, 1 per-
	cle is approaching the in-	son for 3 days for data analysis, 1
	tersection.	person for 4 days for model build-
		ing, 1 person for 2 days for running
		the model, 1 person for 3 days for
0		implementation.
3	Same as 2 above plus the	How should the traffic light be
	following: Trucks arrive at the intersection. Ve-	sequenced? Should the road be widened to 4 lanes? Method of eval-
	hicles break down in the	uating effectiveness: average delay
	intersection making one	time of all vehicles. Resources re-
	lane impassable. Acci-	quired: 2 people for 10 days for data
	dents occur blocking traf-	collection, 1 person for 5 days for
	fic for varying amounts of	data analysis, 1 person for 5 days for
	time.	model building, 1 person for 3 days
		for running the model, 1 person for
		4 days for implementation.

1.4 Data Needed

Number of guests attending Time required for boiling water Time required to cook pasta Time required to dice onions, bell peppers, mushrooms Time required to saute onions, bell peppers, mushrooms, ground beef Time required to add necessary condiments and spices Time required to add tomato sauce, tomatoes, tomato paste Time required to simmer sauce Time required to set the table Time required to drain pasta Time required to dish out the pasta and sauce

Events

Begin cooking Complete pasta cooking Complete sauce cooking Arrival of dinner guests

Begin eating

Activities

Boiling the water Cooking the pasta Cooking sauce

Serving the guests

State variables

Number of dinner guests Status of the water (boiling or not boiling) Status of the pasta (done or not done) Status of the sauce (done or not done)

1.5 Event

Deposit Withdrawal

Activities

Writing a check Cashing a check Making a deposit Verifying the account balance

Reconciling the checkbook with the bank statement

1.12 (a) 1971 with 1200 attendees

(b) 1972

(c) From Dec. 8, 1971 to Jan. 17, 1973, 1.11 years

- (d) DC, Southeast, West
- 1.15 The pupose of the WSC Foundation is to develop and manage a fund to help insure the continuance and high quality of the WSC.

Chapter 2

Simulation Examples in a Spreadsheet

CHAPTER 2. SIMULATION EXAMPLES IN A SPREADSHEET

For additional solutions check the course web site at www.bcnn.net. The numbers resulting from a student's spreadsheet simulation may differ from the results here, depending on the random numbers used.

In the spreadsheet solutions, the columns labeled "RD Assignment" are for manual solutions using the random digits in Table A. 1. You can ignore these columns when solving the problem in Excel, and instead use the methods in the textbook.

2.1	
-----	--

		Clock		Clock		Clock		
							Time	
					Waiting		Customer	
	Interarrival		Service	Time	Time	Time	Spends in	Idle Time
	Time	Arrival	Time	Service	in Queue	Service	System	of Server
Customer	(Minutes)	Time	(Minutes)	Begins	(Minutes)	Ends	(Minutes)	(Minutes)
1		0	25	0	0	25	25	
2	0	0	50	25	25	75	75	0
3	60	60	37	75	15	112	52	0
4	60	120	45	120	0	165	45	8
5	120	240	50	240	0	290	50	75
6	0	240	62	290	50	352	112	0
7	60	300	43	352	52	395	95	0
8	120	420	48	420	0	468	48	25
9	0	420	52	468	48	519	99	0
10	120	540	38	540	0	578	38	21
Average			45		19		112	

(a) The average time in the queue for the 10 new jobs is 19 minutes.

- (b) The average processing time of the 10 new jobs is 45 minutes.
- (c) The maximum time in the system for the 10 new jobs is 112 minutes.
- 2.2 Profit = Revenue from retail sales Cost of bagels made + Revenue from grocery store sales Lost profit.
 - Let Q =number of dozens baked/day

 $S = \sum_{i=1}^{n} 0_i$, where $0_i = 0$ order quantity in dozens for the *i*th customer

- Q-S = grocery store sales in dozens, Q > S
- S Q = dozens of excess demand, S > Q

 $Profit = \$5.40\min(S,Q) - \$3.80Q + \$2.70(Q-S) - \$1.60(S-Q)$

Number of	Probability	Cumulative	RD
Customers		Probability	Assignment
8	.35	.35	01-35
10	.30	.65	36-65
12	.25	.90	66-90
14	.10	1.00	91-100

	Dozens	Probability	Cumulative	RD
	Ordered		Probability	Assignment
-	1	.4	.4	1-4
	2	.3	.7	5-7
	3	.2	.9	8-9
	4	.1	1.0	0

Pre-analysis

$$\begin{split} E(\text{Number of Customers}) &= .35(8) + .30(10) + .25(12) + .10(14) \\ &= 10.20 \\ \\ E(\text{Dozens ordered}) &= .4(1) + .3(2) + .2(3) + .1(4) = 2 \\ \\ E(\text{Dozens sold}) &= \bar{S} = (10.20)(2) = 20.4 \\ \\ E(\text{Profit}) &= $5.40\text{Min}(\bar{S},Q) - $3.80Q + $2.70(Q - \bar{S}) - $1.60(\bar{S} - Q) \\ &= $5.40\text{Min}(20.4,Q) - $3.80Q + $2.70(Q - 20.4) \\ &- $0.67(20.4 - Q) \\ \\ E(\text{Profit}|Q = 0) &= 0 - 0 + $1.60(20.4) = -$32.64 \\ \\ E(\text{Profit}|Q = 10) &= $5.40(10) - $3.80(10) + 0 - $1.60(20.4 - 10) \\ &= -$0.64 \\ \\ E(\text{Profit}|Q = 20) &= $5.40(20) - $3.80(20) + 0 - $1.60(20.4 - 20) \\ &= $15.36 \\ \\ E(\text{Profit}|Q = 30) &= $5.40(20.4) - $3.80(30) + $2.70(30 - 20.4) - 0 \\ &= $22.08 \\ \\ E(\text{Profit}|Q = 40) &= $5.40(20.4) - $3.80(40) + $2.70(40 - 20.4) - 0 \\ &= $11.08 \\ \end{split}$$

The pre-analysis, based on expectation only, indicates that simulation of the policies Q = 20, 30, and 40 should be sufficient to determine the policy. The simulation should begin with Q = 30, then proceed to Q = 40, then, most likely to Q = 20.

Initially, conduct a simulation for Q = 20, 30 and 40. If the profit is maximized when Q = 30, it will become the policy recommendation.

The problem requests that the simulation for each policy should run for 5 days. This is a very short run length to make a policy decision.

Q = 30

Day	RD for Customer	Number of Customers	RD for Demand	Dozens Ordered	Revenue from	Lost Profit \$
					Retail \$	
1	44	10	8	3	16.20	0
			2	1	5.40	0
			4	1	5.40	0
			8	3	16.20	0
			1	1	5.40	0
			6	2	10.80	0
			3	1	5.40	0
			0	4	21.60	0
			2	1	5.40	0
			0	4	21.60	0
				21	113.40	0

For Day 1,

Profit = \$113.40 - \$152.00 + \$24.30 - 0 = \$14.30

Days 2, 3, 4 and 5 are now analyzed and the five day total profit is determined.

2.3 For a queueing system with i channels, first rank all the servers by their processing rate. Let (1) denote the fastest server, (2) the second fastest server, and so on.

2.4

Time Between	Probability	Cumulative	RD
Calls		Probability	Assignment
15	.14	.14	01-14
20	.22	.36	15-36
25	.43	.79	37-79
30	.17	.96	80-96
35	.04	1.00	97-00

Service	Probability	Cumulative	RD
Time		Probability	Assignment
5	.12	.12	01-12
15	.35	.47	13-47
25	.43	.90	48-90
35	.06	.96	91-96
45	.04	1.00	97-00

Comparison

Smalltown Taxi would have to decide which is more important—paying for about 43 hours of idle time in a five day period with no customers having to wait, or paying for around 4 hours of idle time in a five day period, but having a probability of waiting equal to 0.59 with an average waiting time for those who wait of around 20 minutes.

						One Taxi					
Day	Call	RD for Time between Calls	Time between Calls	Call Time	RD for Service Time	Service Time	Time Service Begins	Time Customer Waits	Time Service Ends	Time Customer in System	Idle Time of Taxi
1	1	15	-	0	01	5	0	0	5	5	0
	2	01	20	20	53	25	20	0	55	25	0
	3	14	15	35	62	25	55	20	80	45	0
	4	65	25	60	55	25	80	20	105	45	0
	5	73	25	85	95	35	105	20	140	55	0
	6	48	25	110	22	15	140	30	155	45	0
	: 20	77	25	444	63	25	470	25	495	50	0
2											
								-		-	-

Typical results for a 5 day simulation:

Total idle time = 265 minutes = 4.4 hours

Average idle time per call = 2.7 minutes

Proportion of idle time = .11

Total time customers wait = 1230 minutes

Average waiting time per customer = 11.9 minutes

Number of customers that wait = 61 (of 103 customers)

Probability that a customer has to wait = .59

Average waiting time of customers that wait = 20.2 minutes

	I		1	l	1	Taxi 1		1	Taxi 2		l	1	1	1
Day	Call	Time between Calls	Call Time	Service Time	Time Service Begins	Service Time	Time Service Ends	Time Service Begins	Service Time	Time Service Ends	Time Customer Waits	Time Customer in System	Idle Time Taxi 1	Idle Time Taxi 2
1	1	-	0	5	0	5	5				0	5		
	2	20	20	25	20	25	45				0	25		
	3	15	35	25				35	25	60	0	25		35
	4	25	60	25	60	25	85				0	25	15	
	5	25	85	35	80	35	120				0	35		
	6	25	110	15				110	15	125	0	15		50
	: 20	20	480	25	480	25	505				0	25	10	
2														
÷														

Two taxis (using common RDs for time between calls and service time)

Typical results for a 5 day simulation:

Idle time of Taxi 1 = 685 minutes

Idle time of Taxi 2 = 1915 minutes

Total idle time = 2600 minutes = 43 hours

Average idle time per call = 25.7 minutes

Proportion of idle time = .54

Total time customers wait = 0 minutes

Number of customers that wait = 0

2.5 For manual simulations, RNN_x is a random normal number from Table A. 2. For spreadsheet simulations, it is generated from the appropriate VBA function as described in Chapter 2. Similarly for RNN_y and RNN_z .

$$\begin{array}{rcl} X &=& 100 + 10RNN_x \\ Y &=& 300 + 15RNN_y \\ Z &=& 40 + 8RNN_z \end{array}$$

Typical results...

	RNN_x	X	RNN_y	Y	RNN_z	Z	W
1	137	98.63	.577	308.7	568	35.46	11.49
2	.918	109.18	.303	304.55	384	36.93	11.20
3	1.692	116.92	383	294.26	198	38.42	10.70
4	199	98.01	1.033	315.50	.031	40.25	10.27
5	411	95.89	.633	309.50	.397	43.18	9.39
:							

After generating the 50 values of W, you can use a bar chart in Excel to develop the histogram.

2.6

Value of	Dashahilita	Cumulative	RD	Value of	Dashahilita	Cumulative	RD
В	Probability	Probability	Assignment	С	Probability	Probability	Assignment
0	0.2	0.2	1-2	10	0.1	0.1	1-10
1	0.2	0.4	3-4	20	0.25	0.35	11-35
2	0.2	0.6	5-6	30	0.5	0.85	36-85
3	0.2	0.8	7-8	40	0.15	1	86-1
4	0.2	1	9-0				

Customer	Α	В	С	D
1	79.23	2	30	2
2	113.04	3	30	32
3	58.53	0	20	1.46
4	99.68	0	20	2.49
5	87.15	0	10	4.36
6	91.05	1	40	0.83
7	66.97	1	30	0.7
8	104.88	3	30	0.5
9	61.6	1	30	0.61
10	98.92	3	30	0.4
Average	86.1	1.4	27	4.53

2.7

Lead Time (Days)	Probability	Cumulative Probability	RD Assignment
0	.166	.166	001-166
1	.166	.332	167-332
$\frac{2}{3}$	$.166 \\ .166$.498 .664	333-498 499-664
3 4	.166	.830	665-830
5	.166	.996	831-996
			996-000
			(discard)

Assume 5-day work weeks.

$$D = Demand$$

 $D = 5 + 1.5(RNN)$ (Rounded to nearest integer)

Week	Day	Beginning	RNN for	Demand	Ending	Order	RD for	Lead	Lost
		Inventory	Demands		Inventory	Quantity	Lead Time	Time	Sales
1	1	18	-1.40	3	15				0
	2	15	35	4	11				0
	3	11	38	4	7	13	691	4	0
	4	7	.05	5	2				0
	5	2	.36	6	0				4
2	6	0	.00	5	0				5
	7	0	83	4	0				4
	8	13	-1.83	2	11				0
	9	11	73	4	7	13	273	1	0
	10	7	89	4	3				0
:									

Typical results Average number of lost sales/week = 24/5 = 4.8 units/weeks

CHAPTER 2. SIMULATION EXAMPLES IN A SPREADSHEET

2.8 Material A (200kg/box)

Interarrival	Probability	Cumulative	RD
Time		Probability	Assignment
3	.2	.2	1-2
4	.2	.4	3-4
5	.2	.6	5-6
6	.2	.8	7-8
7	.2	1.0	9-0

Box	RD for Interarrival Time	Interarrival Time	Clock Time
1	1	3	3
2	4	4	7
3	8	6	13
4	3	4	17
:			
14	4	4	60

Material B (100kg/box)

Box	1	2	3	 10
Clock Time	6	12	18	 60

Material C (50kg/box)

Interarrival Time		val			Cumulative Probability		RD Assignme	
	2		.33		.33		01 - 33	
	3		.67		1.00		34-00	
		_			_			
	Box		RD for		Interarriva	1	Clock	
		In	terarrival Tim	e	Time		Time	
_	1		58		5		3	
	2		92		3		6	
	3		87		3		9	
	4		31		2		11	
	: :		:	: :			:	
	22		62		3		60	

Clock	A	B	C
Time	Arrival	Arrival	Arrival
3	1		1
6		1	2
7	2		
9			3
11			4
12		2	
:			
•			

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide Visit Testisans and a montrane defined source in the protocol and the decident of the source of the