15. Proof 1. $\binom{n}{k}\binom{n-k}{j}=\frac{n!(n-k)!}{k!(n-k)!j!(n-k-j!)}=\frac{n!}{k!j!(n-k-j)!}$. Similarly, $\binom{n}{k}\binom{n-k}{j}$ equals the same expression.
Proof 2. There are two ways of choosing two disjoint sets, one with k elements and one with j-elements. We can pick the k element set first, then choose j elements from what is left, or we can pick the j element set first, then choose k elements from what is left.
16. | $n \backslash k$ | 3 | 4 | 5 | 6 | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | 20 | 15 | 6 | 1 | |
| 7 | | 35 | 21 | 7 | |
| | 8 | | | 56 | 28 |
| 9 | | | | 84 | |
17. The formula is simply the expansion of $(1-1)^{n}$.
18. $(1+x)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i}$. Taking the derivative of both sides, we get

$$
n(1+x)^{n-1}=\sum_{i=1}^{n} i\binom{n}{i} x^{i-1}
$$

Thus, if we let $x=1$, we have $n 2^{n-1}=\sum_{i=1}^{n} i\binom{n}{i}$.
19. False. $\binom{4}{2}$ is 6 , but $\binom{2}{0}+\binom{2}{1}+\binom{2}{2}$ is 4 . The correct statement is

$$
\binom{n}{k}=\binom{n-2}{k-2}+2\binom{n-2}{k-1}+\binom{n-2}{k} .
$$

The proof consists of applying the Pascal relationship to both $\binom{n-1}{k-1}$ and $\binom{n-1}{k}$ and adding the results.

1.4 Relations

1. If f is one-to-one then no two ordered pairs in R can have the same second element. If f is onto then the set of second elements of the ordered pairs in R must be equal to the range T of the function.
2. (a) No
(b) Yes
(c) No
3. The relation is reflexive $\left(x^{2}=x^{2}\right)$, symmetric $\left(x^{2}=y^{2} \Rightarrow y^{2}=x^{2}\right)$, and transitive $\left(x^{2}=y^{2}\right.$ and $\left.y^{2}=z^{2} \Rightarrow x^{2}=z^{2}\right)$. The equivalence classes are the sets $\{k,-k\}$ for each integer k. When $k=0$, the set is $\{0\}$.
