
8 CHAPTER 1. COUNTING

15. Proof 1.
(
n
k

)(
n−k

j

)
= n!(n−k)!

k! (n−k)!j!(n−k−j!) = n!
k!j!(n−k−j)! . Similarly,

(
n
k

)(
n−k

j

)
equals the same expression.

Proof 2. There are two ways of choosing two disjoint sets, one with k-
elements and one with j-elements. We can pick the k element set first,
then choose j elements from what is left, or we can pick the j element set
first, then choose k elements from what is left.

16.

n\k 3 4 5 6

6 20 15 6 1

7 35 21 7

8 56 28

9 84

17. The formula is simply the expansion of (1− 1)n.

18. (1 + x)n =
∑n

i=0

(
n
i

)
xi. Taking the derivative of both sides, we get

n(1 + x)n−1 =
n∑

i=1

i
(n

i

)
xi−1 .

Thus, if we let x = 1, we have n2n−1 =
∑n

i=1 i
(
n
i

)
.

19. False.
(
4
2

)
is 6, but

(
2
0

)
+

(
2
1

)
+

(
2
2

)
is 4. The correct statement is(n

k

)
=

(
n− 2
k − 2

)
+ 2

(
n− 2
k − 1

)
+

(
n− 2

k

)
.

The proof consists of applying the Pascal relationship to both
(
n−1
k−1

)
and(

n−1
k

)
and adding the results.

1.4 Relations

1. If f is one-to-one then no two ordered pairs in R can have the same second
element. If f is onto then the set of second elements of the ordered pairs
in R must be equal to the range T of the function.

2. (a) No

(b) Yes

(c) No

3. The relation is reflexive (x2 = x2), symmetric (x2 = y2 ⇒ y2 = x2), and
transitive (x2 = y2 and y2 = z2 ⇒ x2 = z2). The equivalence classes are
the sets {k,−k} for each integer k. When k = 0, the set is {0}.
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