Chapter 1

Econometrics

There are no exercises or applications in Chapter 1.

(Dates were added to the figure by editing.)

Chapter 2

The Linear Regression Model

There are no exercises or applications in Chapter 2.

Example 2.1. Keynes's Consumption import $\$$			
Year	X	C	W
1940	241	226	0
1941	280	240	0
1942	319	235	1
1943	331	245	1
1944	345	255	1
1945	340	265	1
1946	332	295	0
1947	320	300	0
1948	339	305	0
1949	338	315	0
1950	371	325	0
plot;lhs=x;rhs=c;limits=200,350; endpoints=225,375;regression			
;tit	igu	ce 2.	Consumption Dat

(Dates and dashed lines were added by editing.)

Example 2.7. Nonzero Conditional Mean of the Disturbances

Chapter 3

Least Squares Regression

EXAMPLES - Section 3.2.2 and Table 3.2							
Import\$							
YEAR	RealGNP	Invest	GNPDefl	Interest	Infl	Trend	RealInv
2000	87.1	2.034	81.9	9.23	3.4	1	2.484
2001	88.0	1.929	83.8	6.91	1.6	2	2.311
2002	89.5	1.925	85.0	4.67	2.4	3	2.265
2003	92.0	2.028	86.7	4.12	1.9	4	2.339
2004	95.5	2.277	89.1	4.34	3.3	5	2.556
2005	98.7	2.527	91.9	6.19	3.4	6	2.750
2006	101.4	2.681	94.8	7.96	2.5	7	2.828
2007	103.2	2.644	97.3	8.05	4.1	8	2.717
2008	102.9	2.425	99.2	5.09	0.1	9	2.445
2009	100.0	1.878	100.0	3.25	2.7	10	1.878
2010	102.5	2.101	101.2	3.25	1.5	11	2.076
2011	104.2	2.240	103.3	3.25	3.0	12	2.168
2012	105.6	2.479	105.2	3.25	1.7	13	2.356
2013	109.0	2.648	106.7	3.25	1.5	14	2.482
2014	111.6	2.856	108.3	3.25	0.8	15	2.637
EndData							
Create ; $\mathbf{Y}=$ RealInv \$							
Create ; $\mathrm{T}=$ trend \$							
Create ; G = realgnp \$							
Create ; $\mathrm{R}=$ interest \$							
Create ; $\mathrm{P}=$ infl \$							
Namelist; $\mathrm{z}=\mathrm{y}, \mathrm{t}, \mathrm{g}, \mathrm{r}, \mathrm{p}$ \$							
Dstat ; rhs=z\$							

Variable\|	Mean	Standard Deviation	Minimum	Maximum	Cases	Missing Values
Y 1	2.420067	. 262666	1.878	2.828	15	0
T 1	8.0	4.472136	1.0	15.0	15	0
G\|	99.41333	7.525468	87.1	111.6	15	0
R 1	5.070667	2.081351	3.25	9.23	15	0
P\|	2.26	1.092703	. 1	4.1	15	0

Descriptive Statistics for 5 variables
Dstat results are matrix LASTDSTA in current project.
Regress;Lhs=y; rhs=one,t,g,r,p\$

Ordinary$\text { LHS }=Y$	least squares regression			
	Mean =	2.42007		
	Standard deviation	. 26267		
	No. of observations	15	DegFreedom	Mean square
Regression	Sum of Squares	. 760908	4	. 19023
Residual	Sum of Squares	. 205002	10	. 02050
Total	Sum of Squares	. 965911	14	. 06899
	Standard error of e =	. 14318	Root MSE	. 11691
Fit	R-squared	. 78776	R-bar squared	d . 70287
Model test	F[4, 10]	9.27926	Prob F > F*	. 00213
y	Coefficient $\begin{gathered}\text { Standard } \\ \text { Error }\end{gathered}$	$\begin{gathered} \text { Prob. } \\ t \quad\|t\|>T^{*} \end{gathered}$	$\begin{aligned} & \text { * } 95 \% \text { Conf } \\ & \text { Inter } \end{aligned}$	fidence erval
Constant\|	-6.26176*** 1.93671	-3.23 . 0090	-10.57700	-1.94651


```
\(\left.\begin{array}{lcc}\text { [CALC] SGY } & = & 4.0982867 \\ \text { [CALC] STG } & = & 451.9000000 \\ \text { [CALC] STT } & = & 280.0000000\end{array}\right)\)
Regress;quietly ; Lhs=y;rhs=one,t,g,r,p$
Matrix ; vars = diag(varb) ; sdevs=sqrt(vars)$
Matrix ; tstats = <sdevs>*b$
Matrix ; pcor = dirp(tstats,tstats) + degfrdm$
Matrix ; pci = diri(pcor)$
Matrix ; pcor = dirp(tstats,tstats,pci)$
Matrix ; list ; pcor = esqr(pcor)$
--------+--------------
    PCOR|
--------+--------------
        1| . 000000
        2l . }73381
        3| . }79284
        4| . }18144
        5| . 0875491
```


Exercises

1. Let $\mathbf{X}=\left[\begin{array}{cc}1 & x_{1} \\ \ldots & \ldots \\ 1 & x_{n}\end{array}\right]$.
(a) The normal equations are given by (3-12), $\mathbf{X}^{\prime} \mathbf{e}=\mathbf{0}$ (we drop the minus sign), hence for each of the columns of $\mathbf{X}, \mathbf{x}_{k}$, we know that $\mathbf{x}_{k}{ }^{\prime} \mathbf{e}=0$. This implies that $\sum_{i=1}^{n} e_{i}=0$ and $\sum_{i=1}^{n} x_{i} e_{i}=0$.
(b) Use $\Sigma_{i=1}^{n} e_{i}$ to conclude from the first normal equation that $a=\bar{y}-b \bar{x}$.
(c) We know that $\sum_{i=1}^{n} e_{i}=0$ and $\sum_{i=1}^{n} x_{i} e_{i}=0$. It follows then that $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) e_{i}=0$ because $\sum_{i=1}^{n} \bar{x} e_{i}=\bar{x} \sum_{i=1}^{n} e_{i}=0$. Substitute e_{i} to obtain $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-a-b x_{i}\right)=0$
or $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}-b\left(x_{i}-\bar{x}\right)\right)=0$
Then, $\left.\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=b \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)\right)$ so $b=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$.
(d) The first derivative vector of $\mathbf{e}^{\prime} \mathbf{e}$ is $-2 \mathbf{X}^{\prime} \mathbf{e}$. (The normal equations.) The second derivative matrix is $\partial^{2}\left(\mathbf{e}^{\prime} \mathbf{e}\right) / \partial \mathbf{b} \partial \mathbf{b}^{\prime}=2 \mathbf{X}^{\prime} \mathbf{X}$. We need to show that this matrix is positive definite. The diagonal elements are $2 n$ and $2 \Sigma_{i=1}^{n} x_{i}^{2}$ which are clearly both positive. The determinant is
$\left[(2 n)\left(2 \sum_{i=1}^{n} x_{i}^{2}\right)\right]-\left(2 \sum_{i=1}^{n} x_{i}\right)^{2}=4 n \sum_{i=1}^{n} x_{i}^{2}-4(n \bar{x})^{2}=4 n\left[\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}\right]=4 n\left[\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]\right.$.
Note that a much simpler proof appears after (3-6).
2. Write \mathbf{c} as $\mathbf{b}+(\mathbf{c}-\mathbf{b})$. Then, the sum of squared residuals based on \mathbf{c} is
$(\mathbf{y}-\mathbf{X c})^{\prime}(\mathbf{y}-\mathbf{X c})=[\mathbf{y}-\mathbf{X}(\mathbf{b}+(\mathbf{c}-\mathbf{b}))]^{\prime}[\mathbf{y}-\mathbf{X}(\mathbf{b}+(\mathbf{c}-\mathbf{b}))]=[(\mathbf{y}-\mathbf{X b})+\mathbf{X}(\mathbf{c}-\mathbf{b})]^{\prime}[(\mathbf{y}-\mathbf{X b})+\mathbf{X}(\mathbf{c}-\mathbf{b})]$ $=(\mathbf{y}-\mathbf{X b})^{\prime}(\mathbf{y}-\mathbf{X b})+(\mathbf{c}-\mathbf{b})^{\prime} \mathbf{X}^{\prime} \mathbf{X}(\mathbf{c}-\mathbf{b})+2(\mathbf{c}-\mathbf{b})^{\prime} \mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X b})$.
But, the third term is zero, as $2(\mathbf{c}-\mathbf{b})^{\prime} \mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X b})=2(\mathbf{c}-\mathbf{b}) \mathbf{X}^{\prime} \mathbf{e}=\mathbf{0}$. Therefore,

$$
(\mathbf{y}-\mathbf{X c})^{\prime}(\mathbf{y}-\mathbf{X c} \mathbf{c})=\mathbf{e}^{\prime} \mathbf{e}+(\mathbf{c}-\mathbf{b})^{\prime} \mathbf{X}^{\prime} \mathbf{X}(\mathbf{c}-\mathbf{b})
$$

or $\quad(\mathbf{y}-\mathbf{X c})^{\prime}(\mathbf{y}-\mathbf{X c})-\mathbf{e}^{\prime} \mathbf{e}=(\mathbf{c}-\mathbf{b})^{\prime} \mathbf{X}^{\prime} \mathbf{X}(\mathbf{c}-\mathbf{b})$.
The right hand side can be written as $\mathbf{d}^{\prime} \mathbf{d}$ where $\mathbf{d}=\mathbf{X}(\mathbf{c}-\mathbf{b})$, so it is necessarily positive. This confirms what we knew at the outset, least squares is least squares.
3. In the regression of \mathbf{y} on \mathbf{i} and \mathbf{X}, the coefficients on \mathbf{X} are $\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{M}^{0} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{M}^{0} \mathbf{y} . \mathbf{M}^{0}=\mathbf{I}-\mathbf{i}\left(\mathbf{i}^{\prime} \mathbf{i}\right)^{-1} \mathbf{i}^{\prime}$ is the matrix which transforms observations into deviations from their column means. Since \mathbf{M}^{0} is idempotent and symmetric we may also write the preceding as $\left[\left(\mathbf{X}^{\prime} \mathbf{M}^{0 \prime}\right)\left(\mathbf{M}^{0} \mathbf{X}\right)\right]^{-1}\left(\mathbf{X}^{\prime} \mathbf{M}^{00}\right)\left(\mathbf{M}^{0} \mathbf{y}\right)$ which implies that the regression of $\mathbf{M}^{0} \mathbf{y}$ on $\mathbf{M}^{0} \mathbf{X}$ produces the least squares slopes. If only \mathbf{X} is transformed to deviations, we would compute $\left[\left(\mathbf{X}^{\prime} \mathbf{M}^{0 \prime}\right)\left(\mathbf{M}^{0} \mathbf{X}\right)\right]^{-1}\left(\mathbf{X}^{\prime} \mathbf{M}^{0 \prime}\right) \mathbf{y}$ but, of course, this is identical. However, if only \mathbf{y} is transformed, the result is $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{M}^{0} \mathbf{y}$ which is likely to be quite different.
4. What is the result of the matrix product $\mathbf{M}_{1} \mathbf{M}$ where \mathbf{M}_{1} is defined in (3-19) and \mathbf{M} is defined in (3-14)?

$$
\mathbf{M}_{1} \mathbf{M}=\left(\mathbf{I}-\mathbf{X}_{1}\left(\mathbf{X}_{1}{ }^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}{ }^{\prime}\right)\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)=\mathbf{M}-\mathbf{X}_{1}\left(\mathbf{X}_{1}{ }^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}{ }^{\prime} \mathbf{M}
$$

There is no need to multiply out the second term. Each column of $\mathbf{M} \mathbf{X}_{1}$ is the vector of residuals in the regression of the corresponding column of \mathbf{X}_{1} on all of the columns in \mathbf{X}. Since that \mathbf{x} is one of the columns in \mathbf{X}, this regression provides a perfect fit, so the residuals are zero. Thus, $\mathbf{M} \mathbf{X}_{1}$ is a matrix of zeroes which implies that $\mathbf{M}_{1} \mathbf{M}=\mathbf{M}$.
5. The original \mathbf{X} matrix has n rows. We add an additional row, $\mathbf{x}_{s}{ }^{\prime}$. The new \mathbf{y} vector likewise has an additional element. Thus, $\mathbf{X}_{n, s}=\left[\begin{array}{c}\mathbf{X}_{n} \\ \mathbf{x}_{s}^{\prime}\end{array}\right]$ and $\mathbf{y}_{n, s}=\left[\begin{array}{l}\mathbf{y}_{n} \\ y_{s}\end{array}\right]$. The new coefficient vector is $\mathbf{b}_{n, s}=\left(\mathbf{X}_{n, s}{ }^{\prime} \mathbf{X}_{n, s}\right)^{-1}\left(\mathbf{X}_{n, s}{ }^{\prime} \mathbf{y}_{n, s}\right)$. The matrix is $\mathbf{X}_{n, s}{ }^{\prime} \mathbf{X}_{n, s}=\mathbf{X}_{n}{ }^{\prime} \mathbf{X}_{n}+\mathbf{X}_{s} \mathbf{x}_{s}{ }^{\prime}$. To invert this, use (A -66);

$$
\begin{aligned}
& \left(\mathbf{X}_{n, s}^{\prime} \mathbf{X}_{n, s}\right)^{-1}=\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1}-\frac{1}{1+\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{X}_{s} \mathbf{X}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \text {. The vector is } \\
& \left(\mathbf{X}_{n, s}{ }^{\prime} \mathbf{y}_{n, s}\right)=\left(\mathbf{X}_{n}{ }^{\prime} \mathbf{y}_{n}\right)+\mathbf{x}_{s} y_{s} \text {. Multiply out the four terms to get } \\
& \begin{array}{l}
\left(\mathbf{X}_{n, s}^{\prime} \mathbf{X}_{n, s}\right)^{-1}\left(\mathbf{X}_{n, s}^{\prime} \mathbf{y}_{n, s}\right)= \\
\mathbf{b}_{n}-\frac{1}{1+\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s} \mathbf{x}_{s}^{\prime} \mathbf{b}_{n}+\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{X}_{s} y_{s}-\frac{1}{1+\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{X}_{s} \mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s} y_{s}
\end{array} \\
& = \\
& \mathbf{b}_{n}+\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{X}_{s} y_{s}-\frac{\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}}{1+\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s} y_{s}-\frac{1}{1+\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s} \mathbf{X}_{s}^{\prime} \mathbf{b}_{n} \\
& \mathbf{b}_{n}+\left[1-\frac{\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}}{1+\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}}\right]\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s} y_{s}-\frac{1}{1+\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{X}_{s}}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s} \mathbf{x}_{s}^{\prime} \mathbf{b}_{n} \\
& \mathbf{b}_{n}+\frac{1}{1+\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s} y_{s}-\frac{1}{1+\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s} \mathbf{X}_{s}^{\prime} \mathbf{b}_{n} \\
& \mathbf{b}_{n}+\frac{1}{1+\mathbf{x}_{s}^{\prime}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{x}_{s}\left(y_{s}-\mathbf{x}_{s}^{\prime} \mathbf{b}_{n}\right)
\end{aligned}
$$

6. Define the data matrix as follows: $\mathbf{X}=\left[\begin{array}{lll}\mathbf{i} & \mathbf{x} & \mathbf{0} \\ 1 & 0 & 1\end{array}\right]=\left[\begin{array}{ll}\mathbf{X}_{1}, \\ & \mathbf{1}\end{array}\right]=\left[\begin{array}{ll}\mathbf{X}_{1} & \mathbf{X}_{2}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}\mathbf{y}_{o} \\ y_{m}\end{array}\right]$. (The subscripts on the parts of \mathbf{y} refer to the "observed" and "missing" rows of \mathbf{X}. We will use Frish-Waugh to obtain the first two columns of the least squares coefficient vector. $\mathbf{b}_{1}=\left(\mathbf{X}_{1}{ }^{\prime} \mathbf{M}_{2} \mathbf{X}_{1}\right)^{-1}\left(\mathbf{X}_{1}{ }^{\prime} \mathbf{M}_{2} \mathbf{y}\right)$. Multiplying it out, we find that $\mathbf{M}_{2}=$ an identity matrix save for the last diagonal element that is equal to 0 .
$\mathbf{X}_{1}{ }^{\prime} \mathbf{M}_{2} \mathbf{X}_{1}=\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}-\mathbf{X}_{1}^{\prime}\left[\begin{array}{cc}\mathbf{0} & \mathbf{0} \\ \mathbf{0}^{\prime} & 1\end{array}\right] \mathbf{X}_{1}$. This just drops the last observation. $\mathbf{X}_{1}^{\prime} \mathbf{M}_{2} \mathbf{y}$ is computed likewise. Thus, the coeffients on the first two columns are the same as if y_{0} had been linearly regressed on \mathbf{X}_{1}. The denomonator of R^{2} is different for the two cases (drop the observation or keep it with zero fill and the dummy variable). For the first strategy, the mean of the $n-1$ observations should be different from the mean of the full n unless the last observation happens to equal the mean of the first $n-1$.

For the second strategy, replacing the missing value with the mean of the other $n-1$ observations, we can deduce the new slope vector logically. Using Frisch-Waugh, we can replace the column of x 's with deviations from the means, which then turns the last observation to zero. Thus, once again, the coefficient on the x equals what it is using the earlier strategy. The constant term will be the same as well.
7. For convenience, reorder the variables so that $\mathbf{X}=\left[\mathbf{i}, \mathbf{P}_{d}, \mathbf{P}_{n}, \mathbf{P}_{s}, \mathbf{Y}\right]$. The three dependent variables are \mathbf{E}_{d}, \mathbf{E}_{n}, and \mathbf{E}_{s}, and $\mathbf{Y}=\mathbf{E}_{d}+\mathbf{E}_{n}+\mathbf{E}_{s}$. The coefficient vectors are

$$
\begin{aligned}
& \mathbf{b}_{d}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{E}_{d,}, \\
& \mathbf{b}_{n}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{E}_{n}, \text { and } \\
& \mathbf{b}_{s}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{E}_{s .} .
\end{aligned}
$$

The sum of the three vectors is

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left[\mathbf{E}_{d}+\mathbf{E}_{n}+\mathbf{E}_{s}\right]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} .
$$

Now, \mathbf{Y} is the last column of \mathbf{X}, so the preceding sum is the vector of least squares coefficients in the regression of the last column of \mathbf{X} on all of the columns of \mathbf{X}, including the last. Of course, we get a perfect fit. In addition, $\mathbf{X}^{\prime}\left[\mathbf{E}_{d}+\mathbf{E}_{n}+\mathbf{E}_{s}\right]$ is the last column of $\mathbf{X}^{\prime} \mathbf{X}$, so the matrix product is equal to the last column of an identity matrix. Thus, the sum of the coefficients on all variables except income is 0 , while that on income is 1 .
8. Let \bar{R}_{K}^{2} denote the adjusted R^{2} in the full regression on K variables including \mathbf{x}_{k}, and let \bar{R}_{1}^{2} denote the adjusted R^{2} in the short regression on $K-1$ variables when \mathbf{x}_{k} is omitted. Let R_{K}^{2} and R_{1}^{2} denote their unadjusted counterparts. Then,

$$
\begin{aligned}
& R_{K}^{2}=1-\mathbf{e}^{\prime} \mathbf{e} / \mathbf{y}^{\prime} \mathbf{M}^{0} \mathbf{y} \\
& R_{1}^{2}=1-\mathbf{e}_{1}^{\prime} \mathbf{e}_{1} / \mathbf{y}^{\prime} \mathbf{M}^{0} \mathbf{y}
\end{aligned}
$$

where $\mathbf{e}^{\prime} \mathbf{e}$ is the sum of squared residuals in the full regression, $\mathbf{e}_{1} \mathbf{e}_{1}$ is the (larger) sum of squared residuals in the regression which omits \mathbf{x}_{k}, and $\mathbf{y}^{\prime} \mathbf{M}^{0} \mathbf{y}=\Sigma_{i}\left(y_{i}-\bar{y}\right)^{2}$.

Then,

$$
\begin{aligned}
& \bar{R}_{K}^{2}=1-[(n-1) /(n-K)]\left(1-R_{K}^{2}\right) \\
& \bar{R}_{1}^{2}=1-[(n-1) /(n-(K-1))]\left(1-R_{1}^{2}\right)
\end{aligned}
$$

and
The difference is the change in the adjusted R^{2} when \mathbf{x}_{k} is added to the regression,

$$
\bar{R}_{K}^{2}-\bar{R}_{1}^{2}=[(n-1) /(n-K+1)]\left[\mathbf{e}_{1}^{\prime} \mathbf{e}_{1} / \mathbf{y}^{\prime} \mathbf{M}^{0} \mathbf{y}\right]-[(n-1) /(n-K)]\left[\mathbf{e}^{\prime} \mathbf{e} / \mathbf{y}^{\prime} \mathbf{M}^{0} \mathbf{y}\right]
$$

The difference is positive if and only if the ratio is greater than 1 . After cancelling terms, we require for the adjusted R^{2} to increase that $\left.\mathbf{e}_{1}{ }^{\prime} \mathbf{e}_{1} /(n-K+1)\right] /\left[(n-K) / \mathbf{e}^{\prime} \mathbf{e}\right]>1$. From the previous problem, we have that $\mathbf{e}_{1} \mathbf{e}_{1}=$ $\mathbf{e}^{\prime} \mathbf{e}+b_{K}{ }^{2}\left(\mathbf{x}_{k}{ }^{\prime} \mathbf{M}_{1} \mathbf{x}_{k}\right)$, where \mathbf{M}_{1} is defined above and b_{k} is the least squares coefficient in the full regression of \mathbf{y} on \mathbf{X}_{1} and \mathbf{x}_{k}. Making the substitution, we require $\left[\left(\mathbf{e}^{\prime} \mathbf{e}+b_{K}{ }^{2}\left(\mathbf{x}_{k}{ }^{\prime} \mathbf{M}_{1} \mathbf{x}_{k}\right)\right)(n-K)\right] /\left[(n-K) \mathbf{e}^{\prime} \mathbf{e}+\mathbf{e}^{\prime} \mathbf{e}\right]>1$. Since $\mathbf{e}^{\prime} \mathbf{e}$ $=(n-K) s^{2}$, this simplifies to $\left[\mathbf{e}^{\prime} \mathbf{e}+b_{K}{ }^{2}\left(\mathbf{x}_{k}{ }^{\prime} \mathbf{M}_{1} \mathbf{x}_{k}\right)\right] /\left[\mathbf{e}^{\prime} \mathbf{e}+s^{2}\right]>1$. Since all terms are positive, the fraction is greater than one if and only $b_{K}{ }^{2}\left(\mathbf{x}_{k}{ }^{\prime} \mathbf{M}_{1} \mathbf{x}_{k}\right)>s^{2}$ or $b_{K}{ }^{2}\left(\mathbf{x}_{k}{ }^{\prime} \mathbf{M}_{1} \mathbf{x}_{k} / s^{2}\right)>1$. The denominator is the estimated variance of b_{k}, so the result is proved.
9. This R^{2} must be lower. The sum of squares associated with the coefficient vector which omits the constant term must be higher than the one which includes it. We can write the coefficient vector in the regression without a constant as $\mathbf{c}=\left(0, \mathbf{b}^{*}\right)$ where $\mathbf{b}^{*}=\left(\mathbf{W}^{\prime} \mathbf{W}\right)^{-1} \mathbf{W}^{\prime} \mathbf{y}$, with \mathbf{W} being the other $K-1$ columns of \mathbf{X}. Then, the result of the previous exercise applies directly.
10. We use the notation 'Var[.]' and ' $\operatorname{Cov}[$.$] ' to indicate the sample variances and covariances. Our information$ is $\quad \operatorname{Var}[N]=1, \operatorname{Var}[D]=1, \operatorname{Var}[Y]=1$.
Since $C=N+D, \operatorname{Var}[C]=\operatorname{Var}[N]+\operatorname{Var}[D]+2 \operatorname{Cov}[N, D]=2(1+\operatorname{Cov}[N, D])$.
From the regressions, we have
$\operatorname{Cov}[C, Y] / \operatorname{Var}[Y]=\operatorname{Cov}[C, Y]=.8$.
But,
$\operatorname{Cov}[C, Y]=\operatorname{Cov}[N, Y]+\operatorname{Cov}[D, Y]$.
Also, $\quad \operatorname{Cov}[C, N] / \operatorname{Var}[N]=\operatorname{Cov}[C, N]=.5$,
but, $\quad \operatorname{Cov}[C, N]=\operatorname{Var}[N]+\operatorname{Cov}[N, D]=1+\operatorname{Cov}[N, D], \operatorname{so} \operatorname{Cov}[N, D]=-.5$,
so that
$\operatorname{Var}[C]=2(1+-.5)=1$.
$\operatorname{Cov}[D, Y] / \operatorname{Var}[Y]=\operatorname{Cov}[D, Y]=.4$.
And,
$\begin{array}{ll}\text { Since } & \operatorname{Cov}[C, Y]=.8=\operatorname{Cov}[N, Y]+\operatorname{Cov}[D, Y], \operatorname{Cov}[N, Y]=.4 . \\ \text { Finally, } & \operatorname{Cov}[C, D]=\operatorname{Cov}[N, D]+\operatorname{Var}[D]=-.5+1=.5 .\end{array}$
Now, in the regression of C on D, the sum of squared residuals is $(n-1)\left\{\operatorname{Var}[C]-(\operatorname{Cov}[C, D] / \operatorname{Var}[D])^{2} \operatorname{Var}[D]\right\}$ based on the general regression result $\Sigma e^{2}=\Sigma\left(y_{i}-\bar{y}\right)^{2}-b^{2} \Sigma\left(x_{i}-\bar{x}\right)^{2}$. All of the necessary figures were obtained above. Inserting these and $n-1=20$ produces a sum of squared residuals of 15 .
11. Computed results are

Regress;lhs=realinv;rhs=one, realgnp,interest\$

Ordinary LHS=REALINV	least squares regression			
	Mean	2.42007		
	Standard deviation	. 26267		
	No. of observations	15	DegFreedom	Mean square
Regression	Sum of Squares	. 521605	2	. 26080
Residual	Sum of Squares	. 444305	12	. 03703
Total	Sum of Squares	. 965911	14	. 06899
	Standard error of e =	. 19242	Root MSE	. 17211

12. The results cannot be correct. Since $\log S / N=\log S / Y+\log Y / N$ by simple, exact algebra, the same result must apply to the least squares regression results. That means that the second equation estimated must equal the first one plus $\log Y / N$. Looking at the equations, that means that all of the coefficients would have to be identical save for the second, which would have to equal its counterpart in the first equation, plus 1. Therefore, the results cannot be correct. In an exchange between Leff and Arthur Goldberger that appeared later in the same journal, Leff argued that the difference was simple rounding error. You can see that the results in the second equation resemble those in the first, but not enough so that the explanation is credible. Further discussion about the data themselves appeared in subsequent discussion. [See Goldberger (1973) and Leff (1973).]
13. a. Consider a regresion of y on x_{1}, x_{2} and x_{3}. The incremental contribution of x_{3} will be different depending on whether the order entered is $\left(\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{2}\right)$ or $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right),\left(\mathrm{x}_{2}, \mathrm{x}_{1}, \mathrm{x}_{3}\right)$, or $\left(\mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{1}\right)$.
b. Use the equation above (3-31) and consider x_{2} after x_{1}. If x_{1} and x 2 are orthogonal, then $\mathbf{X}_{2}{ }^{\prime} \mathbf{M}_{1} \mathbf{X}_{2}=\mathbf{X}_{2}{ }^{\prime} \mathbf{X}_{2}$ and the result reduces to $R_{1.2}{ }^{2}=R_{1}{ }^{2}+R_{2}{ }^{2}$. This is the if part. For only if, note that (3-31) implies that if the variables are not orthogonal, then, as observed earlier the previous result cannot hold.
c. Entering T first raises R^{2} from 0.00000 to 0.01090 . Entering T last raises R^{2} from .54013 to .78776 .

Ordinary least squares regression		
T entered first R-squared	=	. 01090
T not entered R -squared	=	. 54013
T entered last R -squared	=	78776

Application

Constant ${ }^{\text {I }}$. 04899633 . 9	94880761	. 052	. 9601									
EDUC \|	. 02582213 . 0	04468592	. 578	. 5793	12.8666667								
EXP	. 10339125 . 0	04734541	2.184	. 0605	2.80000000								
ABILITY \|	. 03074355 . 1	12120133	. 254	. 8062	. 36600000								
MOTHERED ${ }^{\text {a }}$. 10163069 . 0	07017502	1.448	. 1856	12.0666667								
FATHERED ${ }^{\text {I }}$. 00164437 . 0	. 04464910	. 037	. 9715	12.6666667								
SIBS	.05916922 . 0	06901801	. 857	. 4162	2.20000000								
Regress ; Lhs = wage ; Rhs = X1, X2S \$													
\| Ordinary	least squares regression			I									
\| WTS=none	Number of observs.	. =	15	\|									
\| Model size	Parameters	=	7	\|									
\|	Degrees of freedom	m	8	\|									
\| Fit	R-squared	=	. 5161341	I									
\|	Adjusted R-squared	d	. 1532347	\|									
\|Variable	Coefficient	Standard Error	t-ratio	P[T	>t]	Mean of X						
Constant\|	1.66364000 . 5	55830716	2.980	. 0176									
EDUC	. 01453897 . 0	04424689	. 329	. 7509	12.8666667								
EXP \|	. 07103002.0	04335571	1.638	. 1400	2.80000000								
ABILITY \|	. 02661537 . 08	08946345	. 297	. 7737	. 36600000								
MEDS	. 10163069 . 070	. 07017502	1.448	. 1856	-. $118424 \mathrm{D}-14$								
FEDS	. 00164437 . 0	04464910	. 037	. 9715	.165793D-14								
SIBSS	. 05916922.0	. 06901801	. 857	. 4162	-. 592119D-16								

In the first set of results, the first coefficient vector is
$\mathbf{b}_{1}=\left(\mathbf{X}_{1}{ }^{\prime} \mathbf{M}_{2} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}{ }^{\prime} \mathbf{M}_{2} \mathbf{y}$ and $\mathbf{b}_{2}=\left(\mathbf{X}_{2}{ }^{\prime} \mathbf{M}_{1} \mathbf{X}_{2}\right)^{-1} \mathbf{X}_{2}{ }^{\prime} \mathbf{M}_{1} \mathbf{y}$
In the second regression, the second set of regressors is $\mathrm{M}_{1} \mathrm{X}_{2}$, so
$\mathbf{b}_{1}=\left(\mathbf{X}_{1}{ }^{\prime} \mathbf{M}_{12} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}{ }^{\prime} \mathbf{M}_{12} \mathbf{y}$ where $\mathbf{M}_{12}=\mathbf{I}-\left(\mathbf{M}_{1} \mathbf{X}_{2}\right)\left[\left(\mathbf{M}_{1} \mathbf{X}_{2}\right)^{\prime}\left(\mathbf{M}_{1} \mathbf{X}_{2}\right)\right]^{-1}\left(\mathbf{M}_{1} \mathbf{X}_{2}\right)^{\prime}$
Thus, because the " M " matrix is different, the coefficient vector is different. The second set of coefficients in the second regression is
$\mathbf{b}_{2}=\left[\left(\mathbf{M}_{1} \mathbf{X}_{2}\right)^{\prime} \mathbf{M}_{1}\left(\mathbf{M}_{1} \mathbf{X}_{2}\right)\right]^{-1}\left(\mathbf{M}_{1} \mathbf{X}_{2}\right) \mathbf{M}_{1} \mathbf{y}=\left(\mathbf{X}_{2}{ }^{\prime} \mathbf{M}_{1} \mathbf{X}_{2}\right)^{-1} \mathbf{X}_{2}{ }^{\prime} \mathbf{M}_{1} \mathbf{y}$ because \mathbf{M}_{1} is idempotent.

