Chapter 1

Econonetric Analysis 8th Edition G eene Sol uti ons Manual

Econometrics

There are no exercises or applications in Chapter 1.

Example 1.2

import$

Year, X,C

2000, 8559.4, 6830.4
2001, 8883.3, 7148.8
2002, 9060.1, 7439.2
2003, 9378.1, 7804.0
2004, 9937.2, 8285.1
2005, 10485.9, 8819.0
2006, 11268.1, 9322.7
2007, 11894.1, 9826.4
2008, 12238.8, 10129.9
2009, 12030.3, 10088.5
plot

;lhs=x

;rhs=c

;1imits=6500,10500
;endpoints=8500,12500
;grid

;regression

;vaxis=Personal Consumption;Footer=Personal Income

;Title=Figure 1.1 Aggregate U.S. Consumption and Income Data, 2000-2009$%

c Figure 1.1 Aggregate U.5. Consumption and Income Data, 2000-2009
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Chapter 2

The Linear Regression Model

There are no exercises or applications in Chapter 2.

Example 2.1. Keynes’s Consumption

import$

Year
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950

X
241
280
319
331
345
340
332
320
339
338
371

Cc
226
240
235
245
255
265
295
300
305
315
325
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plot;lhs=x;rhs=c;1limits=200,350; endpoints=225,375;regression
;title=Figure 2.1 Consumption Data, 1940-1950 $
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FIGURE 2.1 Consumption Data, 1940-1950
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Example 2.7. Nonzero Conditional Mean of the Disturbances
Y FIGURE 2.2 Disturbance with Nonzero Conditional Mean and Zere Unconditional Mean
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Chapter 3

Least Squares Regression

EXAMPLES - Section 3.2.2 and Table 3.2

Trend Reallnv

Missing
Cases Values
15 0

15 0

15 0

15 0

15 0

Import$

YEAR RealGNP Invest GNPDefl Interest Infl

2000 87.1 2.034 81.9 9.23 3.4 1

2001 88.0 1.929 83.8 6.91 1.6 2

2002 89.5 1.925 85.0 4.67 2.4 3

2003 92.0 2.028 86.7 4.12 1.9 4

2004 95.5 2.277 89.1 4.34 3.3 5

2005 98.7 2.527 91.9 6.19 3.4 6

2006 101.4 2.681 94.8 7.96 2.5 7

2007 103.2 2.644 97.3 8.05 4.1 8

2008 102.9 2.425 99.2 5.09 0.1 9

2009 100.0 1.878 100.0 3.25 2.7 10

2010 102.5 2.101 101.2 3.25 1.5 11

2011 104.2 2.240 103.3 3.25 3.0 12

2012 105.6 2.479 105.2 3.25 1.7 13

2013 109.0 2.648 106.7 3.25 1.5 14

2014 111.6 2.856 108.3 3.25 0.8 15

EndData

Create ; Y = ReallInv $

Create ; T = trend $

Create ; G = realgnp $

Create ; R = interest $

Create ; P = infl $

Namelist;z=y,t,qg,r,p$

Dstat ; rhs=z$

________ +_____________________________________________________________________

| Standard

Variable| Mean Deviation Minimum

________ +_____________________________________________________________________
Y| 2.420067 .262666 1.878
T| 8.0 4.472136 1.0
G| 99.41333 7.525468 87.1
R| 5.070667 2.081351 3.25
P| 2.26 1.092703 .1

________ +_____________________________________________________________________

Descriptive Statistics for 5 variables

Dstat results are matrix LASTDSTA in current project.
Regress;Lhs=y;rhs=one,t,g,r,p$

Ordinary
LHS=Y

Regression
Residual
Total

Fit

Model test

________ +____________________________________________________________________

Prob.
t |t |>T*
________ +____________________________________________________________________
.0090

Constant|

least squares regression
Mean

Standard deviation
No. of observations
Sum of Squares

Sum of Squares

Sum of Squares =
Standard error of e =

R-squared =
F[ 4, 10] =
Standard

Coefficient Error
-6.26176%** 1.93671

2.42007
.26267
15
.760908
.205002
.965911
.14318
.78776
9.27926

-3.23

2.484
2.311
2.265
2.339
2.556
2.750
2.828
2.717
2.445
1.878
2.076
2.168
2.356
2.482
2.637
Maximum
2.828
15.0
111.6
9.23
4.1
DegFreedom
4
10
14
Root MSE

R-bar squared

Prob F > F*

Mean square
.19023
.02050
.06899
.11691
.70287
.00213

95% Confidence
Interval

-10.57700

-1.94651



-.26746

.04566
-.05559
-.09998

-.05628

T| -.16187**x* .04739 -3.42 .0066
G| .09960*** .02421 4.11 .0021
R| .01972 .03380 .58 .5725
P| -.01109 .03990 -.28 .7867
________ +____________________________________________________________________

*%%x %% * ==> Significance at 1%, 5%, 10% level.
Model was estimated on Aug 01, 2017 at 08:37:09 AM

Namelist; x=one,t,qg,r,p$

76.0600
522.060
7453.03
446.323
186.656

.15355

.09503

.07781
5
33.9000
244.100
3332.83
186.656
93.3300

Matrix ; list;x'x$
________ +______________________________________________________________________
RESULT | 1 2 3
________ +______________________________________________________________________
1] 15.0000 120.000 1491.20
2| 120.000 1240.00 12381.5
3| 1491.20 12381.5 149038.
4| 76.0600 522.060 7453.03
5| 33.9000 244.100 3332.83
Matrix ; list;x'y$
________ +______________
RESULT | 1
________ +______________
1| 36.3010
2| 288.691
3| 3612.90
4| 188.300
5| 82.8193
Matrix ; list;<x'x>*x'y$
________ +______________
RESULT | 1
________ +______________
1] -6.26176
2| -.161870
3| .0996027
4| .0197220
5| -.0110883

Matrix ; list;xcor(z)$

________ +____________________________________________

Cor.Mat. | Y T G R

Y| 1.00000 -.10441 .14809 .55261 .19388
T| -.10441 1.00000 .95910 -.66317 -.39612
G| .14809 .95910 1.00000 -.49410 -.32384
R| .55261 -.66317 -.49410 1.00000 .46358
P| .19388 -.39612 -.32384 .46358 1.00000

Create ; dy = dev(y) $
Create ; dt = dev(t) $
Create ; dg = dev(g) $
Calc ; list ; xbr(y)

; xbr(t)

; xbr(g) $
[CALC] = 2.4200667
[CALC] = 8.0000000
[CALC] = 99.4133333

Calculator: Computed 3 scalar results
Calc ; list ; sty = dt'dy
; sgg = dg'dg

; sgy = dg'dy
; stg = dt'dg
; stt = dt'dt$
[CALC] STY = -1.7170000

[CALC] SGG = 792.8573333



[CALC] SGY = 4.0982867

[CALC] STG = 451.9000000

[CALC] STT = 280.0000000

Calculator: Computed 5 scalar results

Calc ; list ; b2 = (sty*sgg - sgy*stg)/(stt*sgg-stg*stg)$
[CALC] B2 = -.1806630

Calc ; list ; b3 = (sgy*stt - sty*stg)/(stt*sgg-stg*stg)$
[CALC] B3 = .1081404

Calc ; list ; bl = xbr(y) - b2*xbr(t)-b3*xbr(g)$

[CALC] Bl = -6.8852242

Calc ; list ; byg = sgy / sgg $

[CALC] BYG = .0051690

Calc ; list ; byt = sty / stt §

[CALC] BYT = -.0061321

Calc ; list ; btg = stg / sgg$

[CALC] BTG = .5699638

Calc ; list ; r2gt=stg”*2/(sgg*stt)$

[CALC] R2GT = .9198809

Calc ; list ; byg t=byg- ((byt*btg-r2gt*byg)/(1-r2gt))s$
[CALC] BYG T = .1081404

Namelist ; yvar=y $
Matrix;list;xcor (x,yvar)$
________ +________
Cor.Mat. |
________ +________

ONE |

Y

.00000

T| -.10441
G| .14809
R| .55261
P| .19388

Regress;quietly

Matrix
Matrix
Matrix
Matrix
Matrix
Matrix

; vars =
; tstats
; pcor =
; pci

; pcor
; list ;

; Lhs=y;rhs=one,t,g,r,p$
diag(varb) ; sdevs=sqrt(vars)$
= <sdevs>*b$

dirp (tstats, tstats) + degfrdm$
diri (pcor) $

dirp (tstats, tstats,pci)$

pcor = esqr (pcor)$

.000000
.733814
.792847
.181449
.0875491



Exercises

1 x
1. Let X=]|..

1 x,
(a) The normal equations are given by (3-12), X'e =0 (we drop the minus sign), hence for each of the columns
of X, X, we know that x.'e = 0. This implies that £{ e, =0and X, x.e, =0.

(b) Use 2 e, to conclude from the first normal equation that a =y — bX .
(c) We know that 2! e, =0 and X', x.e, = 0. It follows then that X", (x; — X)e, = 0 because

X1 Xe, =XZ e =0. Substitute e to obtain =i, (x, —X)(y;, —a—bx,)=0
or zinzl(xi - i)(Yi -y- b(Xi -X))=0

zin:l(xi _Y)(yi — V)

LX)
(d) The first derivative vector of e’e is -2X’e. (The normal equations.) The second derivative matrix is
0%(e'e)/obob’ = 2X'X. We need to show that this matrix is positive definite. The diagonal elements are 2n
and 23, x* which are clearly both positive. The determinant is
[(2n)( 22?:1Xi2 )] - (22?:1Xi )2 = 4nz?:1Xi2 -4(nx )2 = 4n[(2;1:1xi2) - niz] = 4n[(zin:l(xi - X)z] :
Note that a much simpler proof appears after (3-6).

Then, Zinzl(xi =X)(y; —Y) = bzin:l(xi —X)(x —X)) sob=

2. Write cas b + (c - b). Then, the sum of squared residuals based on c is
(y - Xe)'(y - Xe) = [y - X(b + (c - b))] [y - X(b + (¢ - b))] = [(y - Xb) + X(c - b)] "[(y - Xb) + X(c - b)]
= (y-Xb)'(y - Xb) + (c- b) 'X'X(c-b) + 2(c-b)'X'(y - Xb).
But, the third term is zero, as 2(c - b) 'X'(y - Xb) = 2(c - b)X'e = 0. Therefore,
(y-Xc)'(y - Xc) =e'e + (c - b) 'X'X(c - b)
or (y - Xc) "(y - Xc) -e'e = (c-b)'X'X(c-b).
The right hand side can be written as d'd where d = X(c - b), so it is necessarily positive. This confirms what
we knew at the outset, least squares is least squares.

3. Inthe regression of y on i and X, the coefficients on X are b = (X'M®X)*X'M%. M° = | -i(i"i)%i" is the
matrix which transforms observations into deviations from their column means. Since M° is idempotent and
symmetric we may also write the preceding as [(X"M®)(M®X)](X'M®) (M%) which implies that the regression
of MP% on M®X produces the least squares slopes. If only X is transformed to deviations, we would compute
[(X'MOY(MOX)]E(X'M®)y  but, of course, this is identical. However, if only y is transformed, the result is
(X"X)*X'M® which is likely to be quite different.

4. What is the result of the matrix product M1M where M is defined in (3-19) and M is defined in (3-14)?
MM = (1 - X3 (X2 X1) XY (1 - XOKIX)IX) = M - X (X' Xq)TX'M

There is no need to multiply out the second term. Each column of M X is the vector of residuals in the regression

of the corresponding column of X; on all of the columns in X. Since that x is one of the columns in X, this

regression provides a perfect fit, so the residuals are zero. Thus, MX; is a matrix of zeroes which implies that

MM =M.

5. The original X matrix has n rows. We add an additional row, xs’. The new'y vector likewise has an additional

X
element. Thus, X, ¢ :{X’”} andy, = B”} The new coefficient vector is

S S

bns = (Xns' Xns) *(Xns'Yns). The matrix is Xns'Xns = Xn'Xn + XsXs'. To invert this, use (A -66);



1
L+x( (X, X,) ',
(Xns'Yns) = (Xn'yn) + Xsys. Multiply out the four terms to get

(X)X, o) "= (X X,)™" (XIX,) X XL(X!IX, ). The vector is

(Xn,s’ Xn,s)_l(xn,s’yn,s) =

1
= ((X'X ) IXXDb o+ (XX )T Xeys —
n 1+X;(X;Xn)7lxs( n n) ss™n ( n n) SyS

1
— (X! X, )X XXX )T X
l+X;(X;Xn)’1XS( n n) s s( n n) SyS
Xy (X0 X,) %,
L+x (X[ X,) 7,

1
bn+ (X' X - XsYs — XX 71X _— (X'X _1X x'b
n ( n n) sYs ( n n) sys 1+X; (X;Xn)_lxs ( n n)

s*'sTn

’ r -1
b+ |1 X X ey y L e )i,
L X, (X0 X,) O, LT, (XX,) 2,
1 , 1

(X X,) "% xb,

(X X)X, Y,

+ - e —
"4 XL(XEX) X 1+ XL (X X,) X,

1

+— = (XX )'x -X!b,
n 1+Xg(xl,1xn),1xs( n n) s(ys S n)

01 1

the parts of y refer to the “observed” and “missing” rows of X. We will use Frish-Waugh to obtain the first
two columns of the least squares coefficient vector. bi=(X1'M2X1)1(X1’'Mzy). Multiplying it out, we find that
M = an identity matrix save for the last diagonal element that is equal to O.

0
O!
the coeffients on the first two columns are the same as if yo had been linearly regressed on X;. The denomonator
of R? is different for the two cases (drop the observation or keep it with zero fill and the dummy variable). For
the first strategy, the mean of the n-1 observations should be different from the mean of the full n unless the last
observation happens to equal the mean of the first n-1.

For the second strategy, replacing the missing value with the mean of the other n-1 observations, we can
deduce the new slope vector logically. Using Frisch-Waugh, we can replace the column of x’s with deviations
from the means, which then turns the last observation to zero. Thus, once again, the coefficient on the x equals
what it is using the earlier strategy. The constant term will be the same as well.

m

i 0 0
6. Define the data matrix as follows: X = {I X } = [Xl, } =[X, X,]andy= {y° } (The subscripts on
1 Y

, , 0 L : : S
X1i'M2X1 = XX, = X{ 1 X, . This just drops the last observation. Xi'Mzy is computed likewise. Thus,

7. For convenience, reorder the variables so that X = [i, Pg, Pn, Ps, Y]. The three dependent variables are Eg,
En and Es, and Y = Eq4 + E, + Es. The coefficient vectors are

bs = (X'X)X'Eq,
bn = (X'X)IX'E,, and
bs = (X'X)X'Es.

The sum of the three vectors is

b = (XX)X'[Eq+En+ Es] = (X'X)IX'Y.
Now, Y is the last column of X, so the preceding sum is the vector of least squares coefficients in the regression
of the last column of X on all of the columns of X, including the last. Of course, we get a perfect fit. In addition,

X'[Eq + En + Eg] is the last column of X'X, so the matrix product is equal to the last column of an identity
matrix. Thus, the sum of the coefficients on all variables except income is 0, while that on income is 1.



8. Let ﬁi denote the adjusted R? in the full regression on K variables including X, and Ietﬁf denote the
adjusted R? in the short regression on K-1 variables when x is omitted. Let RZ and R? denote their unadjusted
counterparts. Then,

RZ=1 - e'ely'Mdy

R12 =1- el'elly'MOy
where €'e is the sum of squared residuals in the full regression, ei"e; is the (larger) sum of squared residuals in
the regression which omits xi, and y'M®% = % (yi - ¥ )%

Then, Rk= 1 - [(-1)/(n-K)I(L- RZ)

and Ri=1 - [(n-1)/(n-(K-1))](L -R?).
The difference is the change in the adjusted R? when x is added to the regression,
Ric- Ri = [(-D)/(n-K+D)][er'enlyMy] - [(n-1)/(n-K)][e'ely M),

The difference is positive if and only if the ratio is greater than 1. After cancelling terms, we require for the
adjusted R? to increase that e;'es/(n-K+1)]/[(n-K)/e’e] > 1. From the previous problem, we have that e;'e; =
e'e + bi®(xe’Mix), where My is defined above and by is the least squares coefficient in the full regression of y
on X; and xx. Making the substitution, we require [(e'e + bk?(X'M1x))(n-K)]/[(n-K)e’e + e'e] > 1. Since e'e
= (n-K)s?, this simplifies to [e'e + bk®(xKMix)]/[e’e + s?] > 1. Since all terms are positive, the fraction is
greater than one if and only bi®(xdMix) > s or b®(X¢Mixi/s?) > 1. The denominator is the estimated
variance of by, so the result is proved.

9. This R? must be lower. The sum of squares associated with the coefficient vector which omits the constant
term must be higher than the one which includes it. We can write the coefficient vector in the regression without
aconstantasc = (0,b") where b™ = (W'W)W'y, with W being the other K-1 columns of X. Then, the result
of the previous exercise applies directly.

10. We use the notation ‘Var[.]” and ‘Cov[.]’ to indicate the sample variances and covariances. Our information
is Var[N] =1, Var[D] =1, Var[Y] = 1.
Since C=N + D, Var[C] = Var[N] + Var[D] + 2Cov[N,D] = 2(1 + Cov|[N,D]).
From the regressions, we have
Cov[C,Y]/Var[Y] = Cov[C,Y] = .8.

But, Cov[C,Y] = Cov[N,Y] + Cov[D,Y].

Also, Cov[C,N]/Var[N] = Cov[C,N] = .5,

but, Cov[C,N] = Var[N] + Cov[N,D] = 1+ Cov[N,D], so Cov[N,D] = -.5,
so that Var[C]=2(1 +-5)=1.

And, Cov[D,Y}/Var[Y] = Cov[D,Y] = 4.

Since Cov[C,Y] =.8 = CoVv[N,Y] + Cov[D,Y], Cov[N,Y] = 4.

Finally, Cov[C,D] =Cov[N,D] + Var[D] =-5+1= 5.

Now, in the regression of C on D, the sum of squared residuals is (n-1){Var[C] - (Cov[C,D]/Var[D])?Var[D]}
based on the general regression result Xe? = X(y; - 9)2 - bZx(xi - x )2 All of the necessary figures were obtained
above. Inserting these and n-1 = 20 produces a sum of squared residuals of 15.

11. Computed results are
Regress;lhs=realinv;rhs=one,realgnp,interest$

Ordinary least squares regression ............
LHS=REALINV Mean = 2.42007

Standard deviation = .26267
—————————— No. of observations = 15 DegFreedom Mean square
Regression Sum of Squares = .521605 2 .26080
Residual Sum of Squares = .444305 12 .03703
Total Sum of Squares = .965911 14 .06899
—————————— Standard error of e = .19242 Root MSE .17211



Fit R-squared = .54001 R-bar squared .46335
Model test F[ 2, 12] = 7.04388 Prob F > F* .00947
________ +____________________________________________________________________
| Standard Prob. 95% Confidence
REALINV| Coefficient Error t |£|>T* Interval
________ +____________________________________________________________________
Constant| -.04298 .86319 -.05 .9611 -1.92371 1.83775
REALGNP | .01945*%* .00786 2.47 .0293 .00232 .03657
INTEREST | .10448%** .02842 3.68 .0032 .04256 .16640
________ +____________________________________________________________________
Namelist; X=one,realgnp,interest$
Matrix ; list ; x'x ; x'realinv$
RESULT | 1 2 3
________ +__________________________________________
1| 15.0000 1491.20 76.0600
2| 1491.20 149038. 7453.03
3| 76.0600 7453.03 446.323
RESULT | 1
________ +______________
1) 36.3010
2| 3612.90
3] 188.300
Matrix ; list ; <x'x>*x'realinv$
RESULT | 1
________ +______________
1) -.0429785
2| .0194467
3] .104480
Matrix ; list ; ba=<x'x>*x'realinv$
BA| 1
________ +______________
1) -.0429785
2| .0194467
3] .104480
Matrix ; e = realinv - x*ba$
Calc ; list ; r2 =1 - e'e / ((n-1)*var(realinv)) $
[CALC] R2 = .5400140

12. The results cannot be correct. Since log S/N =log S/Y + log Y/N by simple, exact algebra, the same result
must apply to the least squares regression results. That means that the second equation estimated must equal
the first one plus log Y/N. Looking at the equations, that means that all of the coefficients would have to be
identical save for the second, which would have to equal its counterpart in the first equation, plus 1.
Therefore, the results cannot be correct. In an exchange between Leff and Arthur Goldberger that appeared
later in the same journal, Leff argued that the difference was simple rounding error. You can see that the
results in the second equation resemble those in the first, but not enough so that the explanation is credible.
Further discussion about the data themselves appeared in subsequent discussion. [See Goldberger (1973)
and Leff (1973).]

13. a. Consider a regresion of y on X1, X2 and x3. The incremental contribution of x3 will be different
depending on whether the order entered is (X1,X3,X2) OF (X1,X2,X3), (X2,X1,X3), OF (X2,X3,X1).

b. Use the equation above (3-31) and consider x; after x;. 1f X1 and x2 are orthogonal, then X2’M1 X, = X2’ X5
and the result reduces to R12? = Ri? + R2%. This is the if part. For only if, note that (3-31) implies that if the
variables are not orthogonal, then, as observed earlier the previous result cannot hold.

c. Entering T first raises R? from 0.00000 to 0.01090. Entering T last raises R? from .54013 to .78776.

Ordinary least squares regression ............

T entered first R-squared = 01090
T not entered R-squared = .54013
T entered last R-squared = 78776

10



Application

2

? Chapter 3 Application 1
2

Read $

(Data appear in the text.)
Namelist ; X1 = one,educ,exp,ability$

Namelist ; X2 = mothered, fathered, sibs$
?

? a.
?

Regress ; Lhs = wage ; Rhs = x1$

e +

| Ordinary least squares regression |

| LHS=WAGE Mean = 2.059333 |

| Standard deviation = .2583869 |

| WIS=none Number of observs. = 15 |

| Model size Parameters = 4 |

| Degrees of freedom = 11 |

| Residuals Sum of squares = .7633163 |

| Standard error of e = .2634244 |

| Fit R-squared = .1833511 |

| Adjusted R-squared = -.3937136E-01 |

| Model test F[ 3, 11] (prob) = .82 (.5080) |

e +

fmmm————— - R it - o o +
|Variable| Coefficient | Standard Error |t-ratio |P[|T|>t]| Mean of X|
fom————— o —— o fomm Fo—————— fom +
Constant| 1.66364000 .61855318 2.690 .0210

EDUC | .01453897 .04902149 .297 L7723 12.8666667
EXP | .07103002 .04803415 1.479 .1673 2.80000000
ABILITY | .02661537 .09911731 .269 .7933 .36600000
el

? b.

?

Regress ; Lhs = wage ; Rhs = x1,x2$
e +

| Ordinary least squares regression |

| LHS=WAGE Mean = 2.059333 |

| Standard deviation = .2583869 |

| WTS=none Number of observs. = 15 |

| Model size Parameters = 7 |

| Degrees of freedom = 8 |

| Residuals Sum of squares = .4522662 |

| Standard error of e = .2377673 |

| Fit R-squared = .5161341 |

| Adjusted R-squared = .1532347 |

| Model test F[ 6, 8] (prob) = 1.42 (.3140) |

e +

o o~ Rt ittt - o Fomm +
|Variable| Coefficient | Standard Error |t-ratio |P[|T|>t]| Mean of X|

o o —— Rt ittt - o Fomm +
Constant| .04899633 .94880761 .052 .9601

EDUC | .02582213 .04468592 .578 .5793 12.8666667
EXP | .10339125 .04734541 2.184 .0605 2.80000000
ABILITY | .03074355 .12120133 .254 .8062 .36600000
MOTHERED | .10163069 .07017502 1.448 .1856 12.0666667
FATHERED | .00164437 .04464910 .037 .9715 12.6666667
SIBS | .05916922 .06901801 .857 L4162 2.20000000

? cC.



?

Regress ; Lhs = mothered ; Rhs = x1 ; Res = meds $
Regress ; Lhs = fathered ; Rhs = x1 ; Res = feds $
Regress ; Lhs = sibs ; Rhs = x1 ; Res = sibss $
Namelist ; X2S = meds, feds,sibss $

Matrix ; list ; Mean (X2S) $

Matrix Result has 3 rows and 1 columns.

1
+ ______________
1| -.1184238D-14
2| .1657933D-14
3| -.5921189D-16

The means are (essentially) zero. The sums must be zero, as these new
variables are orthogonal to the columns of X1. The first column in X1 is a
column of ones, so this means that these residuals must sum to zero.

[>)
? d.
?
Namelist ; X = X1,X2 $

Matrix ; 1 = init(n,1,1) $
Matrix ; MO = iden(n) - 1/n*i*i' $
Matrix ; bl2 = <X'X>*X'wage$
Calc ; list ; ymOy =(N-1)*var (wage) $
Matrix ; list ; cod = 1/ymOy * bl2'*X'*MO*X*bl2 $
Matrix COD has 1 rows and 1 columns.
1

+ ______________

1] .51613
Matrix ; e = wage - X*bl2 $
Calc ; list ; cod = 1 - 1/ym0y * e'e $
COD = .516134
The R squared is the same using either method of computation.
Calc ; list ; RsgAd = 1 - (n-1)/(n-col(x))*(l-cod)$
RSQAD = .153235

? Now drop the constant

Namelist ; X0 = educ,exp,ability,X2 $

Matrix ; 1 = init(n,1,1) $

Matrix ; MO = iden(n) - 1/n*i*i' $

Matrix ; bl20 = <X0'X0>*X0'wage$

Matrix ; list ; cod = 1/ymOy * b120'*X0'*MO*X0*b120 $

Matrix COD has 1 rows and 1 columns.
1
+ ______________
1] .52953
Matrix ; e0 = wage - X0*bl20 $
Calc ; list ; cod =1 - 1/ymO0y * e0'e0 $
COD = .515973

The R squared now changes depending on how it is computed. It also goes up,

completely artificially.
2

? e.
?

The R squared for the full regression appears immediately below.
? f.
Regress ; Lhs = wage ; Rhs = X1,X2 $

o +
| Ordinary least squares regression |
| WTS=none Number of observs. = 15 |
| Model size Parameters = 7 |
| Degrees of freedom = 8 |
| Fit R-squared = .5161341 |
o +



|Variable| Coefficient | Standard Error |t-ratio |P[|T|>t]| Mean of X|
fomm - R it - Fomm o +
Constant| .04899633 .94880761 052 9601
EDUC | .02582213 .04468592 .578 5793 12.8666667
EXP | .10339125 .04734541 2.184 0605 2.80000000
ABILITY | .03074355 .12120133 .254 8062 .36600000
MOTHERED | .10163069 .07017502 1.448 1856 12.0666667
FATHERED| .00164437 .04464910 037 9715 12.6666667
SIBS | .05916922 .06901801 857 4162 2.20000000
Regress ; Lhs = wage ; Rhs = X1,X2S $
| Ordinary least squares regression |
| WTS=none Number of observs. = 15 |
| Model size Parameters = 7 |
| Degrees of freedom = 8 |
| Fit R-squared = .5161341 |
| Adjusted R-squared = .1532347 |
fmmm————— - R it - Fomm o +
|Variable| Coefficient | Standard Error |t-ratio |P[|T|>t]| Mean of X|
fmmm————— - R it - o o +
Constant| 1.66364000 .55830716 2.980 0176
EDUC | .01453897 .04424689 329 7509 12.8666667
EXP | .07103002 .04335571 1.638 1400 2.80000000
ABILITY | .02661537 .08946345 .297 7737 .36600000
MEDS | .10163069 .07017502 1.448 1856 —-.118424D-14
FEDS | .00164437 .04464910 037 9715 .165793D-14
SIBSS | .05916922 .06901801 857 4162 -.592119D-16

In the first set of results, the first coefficient vector is
b1 = (Xl'szl)'lxl'sz and bz = (Xz'M1X2)'1X2'M1y

In the second regression, the second set of regressors is M1Xz, so
b1 = (Xl'Mlz Xl)'lxl'Mlzy where Mp=1- (M1X2)[(M1X2)'(M1X2)]'1(M1X2)'
Thus, because the “M” matrix is different, the coefficient vector is different. The second set of coefficients

in the second regression is

b2 = [(M1X2) M1(M1X2)]™ (M1X2)M1y = (Xo'M1X2) X' My because My is idempotent.
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